1
|
Wilby AJ, Cabral S, Zoghi N, Howell SJ, Farnie G, Harrison H. A novel preclinical model of the normal human breast. J Mammary Gland Biol Neoplasia 2024; 29:9. [PMID: 38695983 PMCID: PMC11065935 DOI: 10.1007/s10911-024-09562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Improved screening and treatment have decreased breast cancer mortality, although incidence continues to rise. Women at increased risk of breast cancer can be offered risk reducing treatments, such as tamoxifen, but this has not been shown to reduce breast cancer mortality. New, more efficacious, risk-reducing agents are needed. The identification of novel candidates for prevention is hampered by a lack of good preclinical models. Current patient derived in vitro and in vivo models cannot fully recapitulate the complexities of the human tissue, lacking human extracellular matrix, stroma, and immune cells, all of which are known to influence therapy response. Here we describe a normal breast explant model utilising a tuneable hydrogel which maintains epithelial proliferation, hormone receptor expression, and residency of T cells and macrophages over 7 days. Unlike other organotypic tissue cultures which are often limited by hyper-proliferation, loss of hormone signalling, and short treatment windows (< 48h), our model shows that tissue remains viable over 7 days with none of these early changes. This offers a powerful and unique opportunity to model the normal breast and study changes in response to various risk factors, such as breast density and hormone exposure. Further validation of the model, using samples from patients undergoing preventive therapies, will hopefully confirm this to be a valuable tool, allowing us to test novel agents for breast cancer risk reduction preclinically.
Collapse
Affiliation(s)
- Anthony J Wilby
- Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Oglesby Cancer Research Building, Wilmslow Road, Manchester, M20 4GJ, United Kingdom
- Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, United Kingdom
| | - Sara Cabral
- Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Oglesby Cancer Research Building, Wilmslow Road, Manchester, M20 4GJ, United Kingdom
- Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, United Kingdom
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Nastaran Zoghi
- Department of Materials & Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Sacha J Howell
- Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Oglesby Cancer Research Building, Wilmslow Road, Manchester, M20 4GJ, United Kingdom
- Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, 29 Grafton St, Manchester, M13 9WU, United Kingdom
- The Nightingale and Prevent Breast Cancer Centre, Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Gillian Farnie
- Cancer Research Horizons, The Francis Crick Institute, 1 Midland Road, Manchester, NW1 1AT, United Kingdom
| | - Hannah Harrison
- Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Oglesby Cancer Research Building, Wilmslow Road, Manchester, M20 4GJ, United Kingdom.
- Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, United Kingdom.
| |
Collapse
|
2
|
Diedrich AM, Daneshgar A, Tang P, Klein O, Mohr A, Onwuegbuchulam OA, von Rueden S, Menck K, Bleckmann A, Juratli MA, Becker F, Sauer IM, Hillebrandt KH, Pascher A, Struecker B. Proteomic analysis of decellularized mice liver and kidney extracellular matrices. J Biol Eng 2024; 18:17. [PMID: 38389090 PMCID: PMC10885605 DOI: 10.1186/s13036-024-00413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The extracellular matrix (ECM) is a three-dimensional network of proteins that encases and supports cells within a tissue and promotes physiological and pathological cellular differentiation and functionality. Understanding the complex composition of the ECM is essential to decrypt physiological processes as well as pathogenesis. In this context, the method of decellularization is a useful technique to eliminate cellular components from tissues while preserving the majority of the structural and functional integrity of the ECM. RESULTS In this study, we employed a bottom-up proteomic approach to elucidate the intricate network of proteins in the decellularized extracellular matrices of murine liver and kidney tissues. This approach involved the use of a novel, perfusion-based decellularization protocol to generate acellular whole organ scaffolds. Proteomic analysis of decellularized mice liver and kidney ECM scaffolds revealed tissue-specific differences in matrisome composition, while we found a predominantly stable composition of the core matrisome, consisting of collagens, glycoproteins, and proteoglycans. Liver matrisome analysis revealed unique proteins such as collagen type VI alpha-6, fibrillin-2 or biglycan. In the kidney, specific ECM-regulators such as cathepsin z were detected. CONCLUSION The identification of distinct proteomic signatures provides insights into how different matrisome compositions might influence the biological properties of distinct tissues. This experimental workflow will help to further elucidate the proteomic landscape of decellularized extracellular matrix scaffolds of mice in order to decipher complex cell-matrix interactions and their contribution to a tissue-specific microenvironment.
Collapse
Affiliation(s)
- Anna-Maria Diedrich
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany
| | - Assal Daneshgar
- Department of Surgery, Charité Mitte | Campus Virchow-Klinikum, Charité -Universitaetsmedizin Berlin, Campus, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitaetsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Peter Tang
- Department of Surgery, Charité Mitte | Campus Virchow-Klinikum, Charité -Universitaetsmedizin Berlin, Campus, 13353, Berlin, Germany
| | - Oliver Klein
- Berlin Institute of Health at Charité - Universitaetsmedizin Berlin, Core Facility Imaging Mass Spectrometry, 13353, Berlin, Germany
| | - Annika Mohr
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany
| | - Olachi A Onwuegbuchulam
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany
| | - Sabine von Rueden
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany
| | - Kerstin Menck
- Department of Medicine A for Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Annalen Bleckmann
- Department of Medicine A for Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Mazen A Juratli
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Felix Becker
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Igor M Sauer
- Department of Surgery, Charité Mitte | Campus Virchow-Klinikum, Charité -Universitaetsmedizin Berlin, Campus, 13353, Berlin, Germany
| | - Karl H Hillebrandt
- Department of Surgery, Charité Mitte | Campus Virchow-Klinikum, Charité -Universitaetsmedizin Berlin, Campus, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitaetsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Pascher
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany
| | - Benjamin Struecker
- Department of General, Visceral, and Transplant Surgery, University Hospital Muenster, 48149, Muenster, Germany.
- West German Cancer Center, University Hospital Muenster, 48149, Muenster, Germany.
| |
Collapse
|
3
|
Morais MRPT, Tian P, O'cualain R, Lawless C, Lennon R. Protocol to characterize basement membranes during kidney development using mass spectrometry-based label-free quantitative proteomics. STAR Protoc 2023; 4:102741. [PMID: 38039136 PMCID: PMC10722381 DOI: 10.1016/j.xpro.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Basement membranes are specialized extracellular matrices formed by highly insoluble structural proteins and extracellular matrix (ECM)-bound components that provide structural and signaling support to tissues and are dynamic during development. Here, we present a mass spectrometry-based label-free quantitative proteomics protocol to investigate basement membranes and define their composition using samples from human kidney organoids and mouse fetal kidneys. This protocol facilitates the study of basement membrane and other ECM components during development to improve our understanding of matrix regulation and function. For complete details on the use and execution of this protocol, please refer to Morais et al.1.
Collapse
Affiliation(s)
- Mychel R P T Morais
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK.
| | - Ronan O'cualain
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK.
| |
Collapse
|
4
|
Naba A. 10 years of extracellular matrix proteomics: Accomplishments, challenges, and future perspectives. Mol Cell Proteomics 2023; 22:100528. [PMID: 36918099 PMCID: PMC10152135 DOI: 10.1016/j.mcpro.2023.100528] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
The extracellular matrix (ECM) is a complex assembly of hundreds of proteins forming the architectural scaffold of multicellular organisms. In addition to its structural role, the ECM conveys signals orchestrating cellular phenotypes. Alterations of ECM composition, abundance, structure, or mechanics, have been linked to diseases and disorders affecting all physiological systems, including fibrosis and cancer. Deciphering the protein composition of the ECM and how it changes in pathophysiological contexts is thus the first step toward understanding the roles of the ECM in health and disease and toward the development of therapeutic strategies to correct disease-causing ECM alterations. Potentially, the ECM also represents a vast, yet untapped reservoir of disease biomarkers. ECM proteins are characterized by unique biochemical properties that have hindered their study: they are large, heavily and uniquely post-translationally modified, and highly insoluble. Overcoming these challenges, we and others have devised mass-spectrometry-based proteomic approaches to define the ECM composition, or "matrisome", of tissues. This review provides a historical overview of ECM proteomics research and presents the latest advances that now allow the profiling of the ECM of healthy and diseased tissues. The second part highlights recent examples illustrating how ECM proteomics has emerged as a powerful discovery pipeline to identify prognostic cancer biomarkers. The third part discusses remaining challenges limiting our ability to translate findings to clinical application and proposes approaches to overcome them. Last, the review introduces readers to resources available to facilitate the interpretation of ECM proteomics datasets. The ECM was once thought to be impenetrable. MS-based proteomics has proven to be a powerful tool to decode the ECM. In light of the progress made over the past decade, there are reasons to believe that the in-depth exploration of the matrisome is within reach and that we may soon witness the first translational application of ECM proteomics.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
McCabe MC, Saviola AJ, Hansen KC. Mass Spectrometry-Based Atlas of Extracellular Matrix Proteins across 25 Mouse Organs. J Proteome Res 2023; 22:790-801. [PMID: 36763087 DOI: 10.1021/acs.jproteome.2c00526] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The extracellular matrix (ECM) is a critical non-cellular component of multicellular organisms containing a variety of proteins, glycoproteins, and proteoglycans which have been implicated in a wide variety of essential biological processes, including development, wound healing, and aging. Due to low solubility, many ECM proteins have been underrepresented in previous proteomic datasets. Using an optimized three-step decellularization and ECM extraction method involving chaotrope extraction and digestion via hydroxylamine hydrochloride, we have generated coverage of the matrisome across 25 organs. We observe that the top 100 most abundant proteins from the ECM fractions of all tissues are generally present in all tissues, indicating that tissue matrices are principally composed of a shared set of ECM proteins. However, these proteins vary up to 4000-fold between tissues, resulting in highly unique matrix profiles even with the same primary set of proteins. A data reduction approach was used to reveal related networks of expressed ECM proteins across varying tissues, including basement membrane and collagen subtypes.
Collapse
Affiliation(s)
- Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado 80045, United States
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado 80045, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado 80045, United States
- Cancer Center Proteomics Core, School of Medicine, University of Colorado, Aurora, Colorado 80045, United States
| |
Collapse
|
6
|
Hebisch M, Klostermeier S, Wolf K, Boccaccini AR, Wolf SE, Tanzi RE, Kim DY. The Impact of the Cellular Environment and Aging on Modeling Alzheimer's Disease in 3D Cell Culture Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205037. [PMID: 36642841 PMCID: PMC10015857 DOI: 10.1002/advs.202205037] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Indexed: 06/13/2023]
Abstract
Creating a cellular model of Alzheimer's disease (AD) that accurately recapitulates disease pathology has been a longstanding challenge. Recent studies showed that human AD neural cells, integrated into three-dimensional (3D) hydrogel matrix, display key features of AD neuropathology. Like in the human brain, the extracellular matrix (ECM) plays a critical role in determining the rate of neuropathogenesis in hydrogel-based 3D cellular models. Aging, the greatest risk factor for AD, significantly alters brain ECM properties. Therefore, it is important to understand how age-associated changes in ECM affect accumulation of pathogenic molecules, neuroinflammation, and neurodegeneration in AD patients and in vitro models. In this review, mechanistic hypotheses is presented to address the impact of the ECM properties and their changes with aging on AD and AD-related dementias. Altered ECM characteristics in aged brains, including matrix stiffness, pore size, and composition, will contribute to disease pathogenesis by modulating the accumulation, propagation, and spreading of pathogenic molecules of AD. Emerging hydrogel-based disease models with differing ECM properties provide an exciting opportunity to study the impact of brain ECM aging on AD pathogenesis, providing novel mechanistic insights. Understanding the role of ECM aging in AD pathogenesis should also improve modeling AD in 3D hydrogel systems.
Collapse
Affiliation(s)
- Matthias Hebisch
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Stefanie Klostermeier
- Institute of Medical PhysicsFriedrich‐Alexander Universität Erlangen‐Nürnberg91052ErlangenGermany
- Max‐Planck‐Zentrum für Physik und Medizin91054ErlangenGermany
| | - Katharina Wolf
- Department of Medicine 1Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Stephan E. Wolf
- Institute of Glass and CeramicsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Rudolph E. Tanzi
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Doo Yeon Kim
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| |
Collapse
|
7
|
Hardy MJ, Pu X, Oxford JT. Purification and Isolation of Proteins from Hyaline Cartilage. Methods Mol Biol 2023; 2598:217-225. [PMID: 36355295 DOI: 10.1007/978-1-0716-2839-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Proteins from hyaline or articular cartilage can be isolated and purified using a series of chemical extraction steps and various identification techniques including mass spectrometry and immunoblotting. The isolation and purification of proteins from cartilage will facilitate the study of specific proteins and multimeric complexes of cartilage proteins to better understand their functions in normal healthy cartilage as well as pathological conditions of cartilage. Cartilage tissue engineering efforts rely on the comprehensive understanding of the composition of cartilage and the function of each of the protein constituents.
Collapse
Affiliation(s)
- Makenna J Hardy
- Department of Biological Sciences, Biomolecular Research Center, Boise State University, Boise, ID, USA
| | - Xinzhu Pu
- Department of Biological Sciences, Biomolecular Research Center, Boise State University, Boise, ID, USA
| | - Julia Thom Oxford
- Department of Biological Sciences, Biomolecular Research Center, Boise State University, Boise, ID, USA.
| |
Collapse
|
8
|
Wang H, Sun WQ, Wang J. Complete proteomic profiling of regenerative bio-scaffolds with a two-step trypsinization method. J Biomed Mater Res B Appl Biomater 2023; 111:62-72. [PMID: 35822935 DOI: 10.1002/jbm.b.35132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 01/01/2023]
Abstract
Regenerative bio-scaffolds, widely used for clinical tissue reconstruction and tissue repairs, are functionally diversified and structurally complex decellularized tissue materials (e.g., extracellular matrix, ECM). ECM is naturally cross-linked and can be further selectively cross-linked upon processing. Identification, quantification and bioinformatics functional comparison of all ECM proteins are challenging for regenerative bio-scaffolds. In this study, we have applied proteomic profiling with a two-step sequential trypsinization method, and identified and quantified 300-400 constituent proteins in three commercially available regenerative bio-scaffolds (BioDesign Surgisis, ReGen tissue matrix, and ThormalGEN mesh). These proteins were classified into four categories and 14 subcategories based on their mainly biological function. The main components of regenerative bio-scaffolds were highly abundant ECM structural proteins, and the minor parts of bio-scaffolds were lowly abundant, less cross-linked, functionally more diversified proteins, especially extracellular fluid proteins that were easily solubilized by trypsin. The comparative analysis has revealed large differences in the number, type, abundance and function of identified proteins, as well as the extent of decellularization and cross-linking among regenerative bio-scaffolds. So, the proteomic profiling with a two-step sequential trypsinization method could not only provide the molecular basis to better understand the degradation process of regenerative bio-scaffolds in vivo and different clinical outcomes among various regenerative bio-scaffolds, facilitate the exploration of the response mechanisms in the host's early clinical stages of ECM-induced tissue regeneration that is still poorly understood, but also can be used for optimization of the decellularization and cross-linking process, product characterization and rational design of new ECM products.
Collapse
Affiliation(s)
- Huidan Wang
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wendell Q Sun
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jian Wang
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
9
|
Hall ML, Givens S, Santosh N, Iacovino M, Kyba M, Ogle BM. Laminin 411 mediates endothelial specification via multiple signaling axes that converge on β-catenin. Stem Cell Reports 2022; 17:569-583. [PMID: 35120622 PMCID: PMC9039757 DOI: 10.1016/j.stemcr.2022.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
The extracellular matrix (ECM) provides essential cues to promote endothelial specification during tissue development in vivo; correspondingly, ECM is considered essential for endothelial differentiation outside of the body. However, systematic studies to assess the precise contribution of individual ECM proteins to endothelial differentiation have not been conducted. Further, the multi-component nature of differentiation protocols makes it challenging to study the underlying mechanisms by which the ECM contributes to cell fate. In this study, we determined that Laminin 411 alone increases endothelial differentiation of induced pluripotent stem cells over collagen I or Matrigel. The effect of ECM was shown to be independent of vascular endothelial growth factor (VEGF) binding capacity. We also show that ECM-guided endothelial differentiation is dependent on activation of focal adhesion kinase (FAK), integrin-linked kinase (ILK), Notch, and β-catenin pathways. Our results indicate that ECM contributes to endothelial differentiation through multiple avenues, which converge at the expression of active β-catenin.
Collapse
Affiliation(s)
- Mikayla L Hall
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, 7-130 Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Sophie Givens
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, 7-130 Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Natasha Santosh
- Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Michelina Iacovino
- Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Michael Kyba
- Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Lillehei Heart Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, 7-130 Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Lillehei Heart Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Institute for Engineering in Medicine, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
do Nascimento NC, Dos Santos AP, Mohallem R, Aryal UK, Xie J, Cox A, Sivasankar MP. Furosemide-induced systemic dehydration alters the proteome of rabbit vocal folds. J Proteomics 2022; 252:104431. [PMID: 34823036 DOI: 10.1016/j.jprot.2021.104431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Whole-body dehydration (i.e., systemic dehydration) leads to vocal fold tissue dehydration. Furosemide, a common diuretic prescribed to treat hypertension and edema-associated conditions, induces systemic dehydration. Furosemide also causes voice changes in human speakers, making this method of systemic dehydration particularly interesting for vocal fold dehydration studies. Our objective was to obtain a comprehensive proteome of vocal folds following furosemide-induced systemic dehydration. New Zealand White rabbits were used as the animal model and randomly assigned to euhydrated (control) or furosemide-dehydrated groups. Systemic dehydration, induced by injectable furosemide, was verified by an average body weight loss of -5.5% and significant percentage changes in blood analytes in the dehydrated rabbits compared to controls. Vocal fold specimens, including mucosa and muscle, were processed for proteomic analysis using label-free quantitation LC-MS/MS. Over 1600 proteins were successfully identified across all vocal fold samples; and associated with a variety of cellular components and ubiquitous cell functions. Protein levels were compared between groups showing 32 proteins differentially regulated (p ≤ 0.05) in the dehydrated vocal folds. These are mainly involved with mitochondrial translation and metabolism. The downregulation of proteins involved in mitochondrial metabolism in the vocal folds suggests a mechanism to prevent oxidative stress associated with systemic dehydration. SIGNIFICANCE: Voice disorders affect different population demographics worldwide with one in 13 adults in the United States reporting voice problems annually. Vocal fold systemic hydration is clinically recognized for preventing and treating voice problems and depends on optimal body hydration primarily achieved by water intake. Herein, we use the rabbit as a translatable animal model, and furosemide as a translatable method of systemic dehydration, to reveal a comprehensive proteomic profile of vocal fold mucosa and muscle in response to systemic dehydration. The significant subset of proteins differentially regulated due to furosemide-induced dehydration offer novel insights into the molecular mechanisms of systemic dehydration in the vocal folds. These findings also deepen our understanding of changes to tissue biology after diuretic administration.
Collapse
Affiliation(s)
- Naila Cannes do Nascimento
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette 47907, IN, United States.
| | - Andrea Pires Dos Santos
- Department of Comparative Pathobiology, Purdue University, West Lafayette 47907, IN, United States
| | - Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette 47907, IN, United States; Purdue Proteomics Facility, Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette 47907, IN, United States
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette 47907, IN, United States; Purdue Proteomics Facility, Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette 47907, IN, United States
| | - Jun Xie
- Department of Statistics, Purdue University, West Lafayette 47907, IN, United States
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette 47907, IN, United States
| | - M Preeti Sivasankar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette 47907, IN, United States
| |
Collapse
|
11
|
Beeghly GF, Amofa KY, Fischbach C, Kumar S. Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer. Annu Rev Biomed Eng 2022; 24:29-59. [PMID: 35119915 DOI: 10.1146/annurev-bioeng-110220-115419] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The success of anticancer therapies is often limited by heterogeneity within and between tumors. While much attention has been devoted to understanding the intrinsic molecular diversity of tumor cells, the surrounding tissue microenvironment is also highly complex and coevolves with tumor cells to drive clinical outcomes. Here, we propose that diverse types of solid tumors share common physical motifs that change in time and space, serving as universal regulators of malignancy. We use breast cancer and glioblastoma as instructive examples and highlight how invasion in both diseases is driven by the appropriation of structural guidance cues, contact-dependent heterotypic interactions with stromal cells, and elevated interstitial fluid pressure and flow. We discuss how engineering strategies show increasing value for measuring and modeling these physical properties for mechanistic studies. Moreover, engineered systems offer great promise for developing and testing novel therapies that improve patient prognosis by normalizing the physical tumor microenvironment. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Garrett F Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Kwasi Y Amofa
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA; .,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, USA
| | - Sanjay Kumar
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
McCabe MC, Schmitt LR, Hill RC, Dzieciatkowska M, Maslanka M, Daamen WF, van Kuppevelt TH, Hof DJ, Hansen KC. Evaluation and Refinement of Sample Preparation Methods for Extracellular Matrix Proteome Coverage. Mol Cell Proteomics 2021; 20:100079. [PMID: 33845168 PMCID: PMC8188056 DOI: 10.1016/j.mcpro.2021.100079] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix is a key component of tissues, yet it is underrepresented in proteomic datasets. Identification and evaluation of proteins in the extracellular matrix (ECM) has proved challenging due to the insolubility of many ECM proteins in traditional protein extraction buffers. Here we separate the decellularization and ECM extraction steps of several prominent methods for evaluation under real-world conditions. The results are used to optimize a two-fraction ECM extraction method. Approximately one dozen additional parameters are tested, and recommendations for analysis based on overall ECM coverage or specific ECM classes are given. Compared with a standard in-solution digest, the optimized method yielded a fourfold improvement in unique ECM peptide identifications.
Collapse
Affiliation(s)
- Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Lauren R Schmitt
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA; Cancer Center Proteomics Core, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA; Cancer Center Proteomics Core, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Mark Maslanka
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA; Cancer Center Proteomics Core, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Danique J Hof
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA; Cancer Center Proteomics Core, School of Medicine, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
13
|
Heydari Z, Zarkesh I, Ghanian MH, Aghdaei MH, Kotova S, Zahmatkesh E, Farzaneh Z, Piryaei A, Akbarzadeh I, Shpichka A, Gramignoli R, Timashev P, Baharvand H, Vosough M. Biofabrication of size-controlled liver microtissues incorporated with ECM-derived microparticles to prolong hepatocyte function. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00137-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Todhunter ME, Miyano M, Moolamalla DS, Filippov A, Sayaman RW, LaBarge MA. Volume-constrained microcontainers enable myoepithelial functional differentiation in highly parallel mammary organoid culture. iScience 2021; 24:102253. [PMID: 33796842 PMCID: PMC7995530 DOI: 10.1016/j.isci.2021.102253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 01/02/2023] Open
Abstract
A long-standing constraint on organoid culture is the need to add exogenous substances to provide hydrogel matrix, which limits the study of fully human or fully native organoids. This paper introduces an approach to culture reconstituted mammary organoids without the impediment of exogenous matrix. We enclose organoids in nanoliter-scale, topologically enclosed, fluid compartments surrounded by agar. Organoids cultured in these “microcontainers” appear to secrete enough extracellular matrix to yield a self-sufficient microenvironment without exogenous supplements. In microcontainers, mammary organoids exhibit contractility and a high-level, physiological, myoepithelial (MEP) behavior that has not been previously reported in reconstituted organoids. The presence of contractility suggests that microcontainers elicit MEP functional differentiation, an important milestone. Microcontainers yield thousands of substantially identical and individually trackable organoids within a single culture vessel, enabling longitudinal studies and statistically powerful experiments, such as the evaluation of small effect sizes. Microcontainers open new doors for researchers who rely on organoid models. Microcontainers are volume-constrained microwells with hydrogel lids Microcontainers enable statistically robust experimental design with organoids Organoids produce their own extracellular matrix within microcontainers Myoepithelial cells in mammary organoids achieve fully functional differentiation
Collapse
Affiliation(s)
- Michael E Todhunter
- Department of Population Sciences, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Masaru Miyano
- Department of Population Sciences, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Divya S Moolamalla
- Department of Population Sciences, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Aleksandr Filippov
- Department of Population Sciences, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Rosalyn W Sayaman
- Department of Population Sciences, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
15
|
Proteome-wide and matrisome-specific alterations during human pancreas development and maturation. Nat Commun 2021; 12:1020. [PMID: 33589611 PMCID: PMC7884717 DOI: 10.1038/s41467-021-21261-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023] Open
Abstract
The extracellular matrix (ECM) is unique to each tissue and capable of guiding cell differentiation, migration, morphology, and function. The ECM proteome of different developmental stages has not been systematically studied in the human pancreas. In this study, we apply mass spectrometry-based quantitative proteomics strategies using N,N-dimethyl leucine isobaric tags to delineate proteome-wide and ECM-specific alterations in four age groups: fetal (18-20 weeks gestation), juvenile (5-16 years old), young adults (21-29 years old) and older adults (50-61 years old). We identify 3,523 proteins including 185 ECM proteins and quantify 117 of them. We detect previously unknown proteome and matrisome features during pancreas development and maturation. We also visualize specific ECM proteins of interest using immunofluorescent staining and investigate changes in ECM localization within islet or acinar compartments. This comprehensive proteomics analysis contributes to an improved understanding of the critical roles that ECM plays throughout human pancreas development and maturation.
Collapse
|
16
|
Saydé T, El Hamoui O, Alies B, Gaudin K, Lespes G, Battu S. Biomaterials for Three-Dimensional Cell Culture: From Applications in Oncology to Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:481. [PMID: 33668665 PMCID: PMC7917665 DOI: 10.3390/nano11020481] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Three-dimensional cell culture has revolutionized cellular biology research and opened the door to novel discoveries in terms of cellular behavior and response to microenvironment stimuli. Different types of 3D culture exist today, including hydrogel scaffold-based models, which possess a complex structure mimicking the extracellular matrix. These hydrogels can be made of polymers (natural or synthetic) or low-molecular weight gelators that, via the supramolecular assembly of molecules, allow the production of a reproducible hydrogel with tunable mechanical properties. When cancer cells are grown in this type of hydrogel, they develop into multicellular tumor spheroids (MCTS). Three-dimensional (3D) cancer culture combined with a complex microenvironment that consists of a platform to study tumor development and also to assess the toxicity of physico-chemical entities such as ions, molecules or particles. With the emergence of nanoparticles of different origins and natures, implementing a reproducible in vitro model that consists of a bio-indicator for nano-toxicity assays is inevitable. However, the maneuver process of such a bio-indicator requires the implementation of a repeatable system that undergoes an exhaustive follow-up. Hence, the biggest challenge in this matter is the reproducibility of the MCTS and the associated full-scale characterization of this system's components.
Collapse
Affiliation(s)
- Tarek Saydé
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges, France;
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
| | - Omar El Hamoui
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l’Adour (E2S/UPPA), 2 Avenue Pierre Angot, 64053 Pau, France
| | - Bruno Alies
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
| | - Karen Gaudin
- ARNA, INSERM U1212, UMR CNRS 5320, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France; (O.E.H.); (B.A.); (K.G.)
| | - Gaëtane Lespes
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, Université de Pau et des Pays de l’Adour (E2S/UPPA), 2 Avenue Pierre Angot, 64053 Pau, France
| | - Serge Battu
- EA3842-CAPTuR, GEIST, Faculté de Médecine, Université de Limoges, 2 rue du Dr Marcland, 87025 Limoges, France;
| |
Collapse
|
17
|
Abdallah M, Nagarajan S, Martin M, Tamer M, Faour WH, Bassil M, Cuisinier FJG, Gergely C, Varga B, Pall O, Miele P, Balme S, El Tahchi M, Bechelany M. Enhancement of Podocyte Attachment on Polyacrylamide Hydrogels with Gelatin-Based Polymers. ACS APPLIED BIO MATERIALS 2020; 3:7531-7539. [PMID: 35019494 DOI: 10.1021/acsabm.0c00734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological activities of cells such as survival and differentiation processes are mainly maintained by a specific extracellular matrix (ECM). Hydrogels have recently been employed successfully in tissue engineering applications. In particular, scaffolds made of gelatin methacrylate-based hydrogels (GelMA) showed great potential due to their biocompatibility, biofunctionality, and low mechanical strength. The development of a hydrogel having tunable and appropriate mechanical properties as well as chemical and biological cues was the aim of this work. A synthetic and biological hybrid hydrogel was developed to mimic the biological and mechanical properties of native ECM. A combination of gelatin methacrylate and acrylamide (GelMA-AAm)-based hydrogels was studied, and it showed tunable mechanical properties upon changing the polymer concentrations. Different GelMA-AAm samples were prepared and studied by varying the concentrations of GelMA and AAm (AAm2.5% + GelMA3%, AAm5% + GelMA3%, and AAm5% + GelMA5%). The swelling behavior, biodegradability, physicochemical and mechanical properties of GelMA-AAm were also characterized. The results showed a variation of swelling capability and a tunable elasticity ranging from 4.03 to 24.98 kPa depending on polymer concentrations. Moreover, the podocyte cell morphology, cytoskeleton reorganization and differentiation were evaluated as a function of GelMA-AAm mechanical properties. We concluded that the AAm2.5% + GelMA3% hydrogel sample having an elasticity of 4.03 kPa can mimic the native kidney glomerular basement membrane (GBM) elasticity and allow podocyte cell attachment without the functionalization of the gel surface with adhesion proteins compared to synthetic hydrogels (PAAm). This work will further enhance the knowledge of the behavior of podocyte cells to understand their biological properties in both healthy and diseased states.
Collapse
Affiliation(s)
- Maya Abdallah
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34095, France
| | - Sakthivel Nagarajan
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34095, France
| | - Marta Martin
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier 34095, France
| | - Marleine Tamer
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34095, France
| | - Wissam H Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Maria Bassil
- Faculty of Sciences II, Department of Physics, Biomaterials and Intelligent Materials Research Laboratory (LBMI), Lebanese University, Beirut, Lebanon
| | - Frederic J G Cuisinier
- Laboratoire de Bioingénierie et Nanosciences, Université de Montpellier, Montpellier, France
| | - Csilla Gergely
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier 34095, France
| | - Bela Varga
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier 34095, France
| | - Orsolya Pall
- Laboratoire de Bioingénierie et Nanosciences, Université de Montpellier, Montpellier, France
| | - Philippe Miele
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34095, France
| | - Sebastien Balme
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34095, France
| | - Mario El Tahchi
- Faculty of Sciences II, Department of Physics, Biomaterials and Intelligent Materials Research Laboratory (LBMI), Lebanese University, Beirut, Lebanon
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34095, France
| |
Collapse
|
18
|
Villalobos Solis MI, Poudel S, Bonnot C, Shrestha HK, Hettich RL, Veneault-Fourrey C, Martin F, Abraham PE. A Viable New Strategy for the Discovery of Peptide Proteolytic Cleavage Products in Plant-Microbe Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1177-1188. [PMID: 32597696 DOI: 10.1094/mpmi-04-20-0082-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Small peptides that are proteolytic cleavage products (PCPs) of less than 100 amino acids are emerging as key signaling molecules that mediate cell-to-cell communication and biological processes that occur between and within plants, fungi, and bacteria. Yet, the discovery and characterization of these molecules is largely overlooked. Today, selective enrichment and subsequent characterization by mass spectrometry-based sequencing offers the greatest potential for their comprehensive characterization, however qualitative and quantitative performance metrics are rarely captured. Herein, we addressed this need by benchmarking the performance of an enrichment strategy, optimized specifically for small PCPs, using state-of-the-art de novo-assisted peptide sequencing. As a case study, we implemented this approach to identify PCPs from different root and foliar tissues of the hybrid poplar Populus × canescens 717-1B4 in interaction with the ectomycorrhizal basidiomycete Laccaria bicolor. In total, we identified 1,660 and 2,870 Populus and L. bicolor unique PCPs, respectively. Qualitative results supported the identification of well-known PCPs, like the mature form of the photosystem II complex 5-kDa protein (approximately 3 kDa). A total of 157 PCPs were determined to be significantly more abundant in root tips with established ectomycorrhiza when compared with root tips without established ectomycorrhiza and extramatrical mycelium of L. bicolor. These PCPs mapped to 64 Populus proteins and 69 L. bicolor proteins in our database, with several of them previously implicated in biologically relevant associations between plant and fungus.
Collapse
Affiliation(s)
- Manuel I Villalobos Solis
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
- Department of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, U.S.A
| | - Suresh Poudel
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| | - Clemence Bonnot
- UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280 Champenoux, France
| | - Him K Shrestha
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
- Department of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, U.S.A
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| | - Claire Veneault-Fourrey
- UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280 Champenoux, France
| | - Francis Martin
- UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280 Champenoux, France
| | - Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| |
Collapse
|
19
|
Tsutsui S, Wakasa H, Tsugami Y, Suzuki T, Nishimura T, Kobayashi K. Distinct Expression Patterns of Fibrillar Collagen Types I, III, and V in Association with Mammary Gland Remodeling during Pregnancy, Lactation and Weaning. J Mammary Gland Biol Neoplasia 2020; 25:219-232. [PMID: 32915396 DOI: 10.1007/s10911-020-09457-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022] Open
Abstract
The mammary gland structurally and functionally remodels during pregnancy, during lactation and after weaning. There are three types of fibrillar collagens, types I, III, and V, in mammary stromal tissue. While the importance of the fibrillar structure of collagens for mammary morphogenesis has been suggested, the expression patterns of each type of fibrillar collagen in conjunction with mammary remodeling remain unclear. In this study, we investigated their expression patterns during pregnancy, parturition, lactation and involution. Type I collagen showed a well-developed fibril structure during pregnancy, but the fibrillar structure of type I collagen then became sparse at parturition and during lactation, which was concurrent with the downregulation of its mRNA and protein levels. The well-developed fibrillar structure of type I collagen reappeared after weaning. On the other hand, type V collagen showed a well-developed fibrillar structure and upregulation in the lactation period but not in the periods of pregnancy and involution. Type III collagen transiently developed a dense fibrillar network at the time of parturition and exhibited drastic increases in mRNA expression. These results indicate that each type of fibrillar collagen is distinctly involved in structural and functional remodeling in mammary glands during pregnancy, parturition, lactation, and involution after weaning. Furthermore, in vitro studies of mammary epithelial cells showed regulatory effects of type I collagen on cell adhesion, cell proliferation, ductal branching, and β-casein secretion. Each type of fibrillar collagen may have different roles in defining the cellular microenvironment in conjunction with structural and functional mammary gland remodeling.
Collapse
Affiliation(s)
- Shiori Tsutsui
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Haruka Wakasa
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Yusaku Tsugami
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Takahiro Suzuki
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan.
| |
Collapse
|
20
|
The human liver matrisome - Proteomic analysis of native and fibrotic human liver extracellular matrices for organ engineering approaches. Biomaterials 2020; 257:120247. [PMID: 32739662 DOI: 10.1016/j.biomaterials.2020.120247] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/05/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
The production of biomaterials that endow significant morphogenic and microenvironmental cues for the constitution of cell integration and regeneration remains a key challenge in the successful implementation of functional organ replacements. Despite the vast development in the production of biological and architecturally native matrices, the complex compositions and pivotal figures by which the human matrisome mediates many of its essential functions are yet to be defined. Here we present a thorough analysis of the native human liver proteomic landscape using decellularization and defatting protocols to create extracellular matrix scaffolds of natural origin that can further be used in both bottom-up and top-down approaches in tissue engineering based organ replacements. Furthermore, by analyzing human liver extracellular matrices in different stages of fibrosis and cirrhosis, we have identified distinct attributes of these tissues that could potentially be exploited therapeutically and thus require further investigation. The general experimental pipeline presented in this study is applicable to any type of tissue and can be widely used for different approaches in regenerative medicine and in the construction of novel biomaterials for organ engineering approaches.
Collapse
|
21
|
Makuloluwa AK, Stewart RMK, Kaye SB, Williams RL, Hamill KJ. Mass Spectrometry Reveals α-2-HS-Glycoprotein as a Key Early Extracellular Matrix Protein for Conjunctival Cells. Invest Ophthalmol Vis Sci 2020; 61:44. [PMID: 32232343 PMCID: PMC7401837 DOI: 10.1167/iovs.61.3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose To determine the composition of extracellular matrix (ECM) proteins secreted by a conjunctival epithelial cell line and to identify components that aid conjunctival epithelial cell culture. Methods Human conjunctival epithelial cell line (HCjE-Gi) cells were cultured in serum-free media and their ECM isolated using ammonium hydroxide. Growth characteristics were evaluated for fresh HCjE-Gi cells plated onto ECMs obtained from 3- to 28-day cell cultures. Mass spectrometry was used to characterize the ECM composition over 42 culture days. Cell adhesion and growth on pre-adsorbed fibronectin and α-2-HS-glycoprotein (α-2-HS-GP) were investigated. Results Day 3 ECM provided the best substrate for cell growth compared to ECM obtained from 5- to 28-day cell cultures. Mass spectrometry identified a predominantly laminin 332 matrix throughout the time course, with progressive changes to matrix composition over time: proportional decreases in matrix-bound growth factors and increases in proteases. Fibronectin and α-2-HS-GP were 5- and 200-fold enriched as a proportion of the early ECM relative to the late ECM, respectively. Experiments on these proteins in isolation demonstrated that fibronectin supported rapid cell adhesion, whereas fibronectin and α-2-HS-GP both supported enhanced cell growth compared to tissue culture polystyrene. Conclusions These data reveal α-2-HS-GP as a candidate protein to enhance the growth of conjunctival epithelial cells and raise the possibility of exploiting these findings for targeted improvement to synthetic tissue engineered conjunctival substrates.
Collapse
|
22
|
Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. NATURE REVIEWS. MATERIALS 2020; 5:539-551. [PMID: 32953138 PMCID: PMC7500703 DOI: 10.1038/s41578-020-0199-8] [Citation(s) in RCA: 456] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 05/19/2023]
Abstract
Matrigel, a basement-membrane matrix extracted from Engelbreth-Holm-Swarm mouse sarcomas, has been used for more than four decades for a myriad of cell culture applications. However, Matrigel is limited in its applicability to cellular biology, therapeutic cell manufacturing and drug discovery owing to its complex, ill-defined and variable composition. Variations in the mechanical and biochemical properties within a single batch of Matrigel - and between batches - have led to uncertainty in cell culture experiments and a lack of reproducibility. Moreover, Matrigel is not conducive to physical or biochemical manipulation, making it difficult to fine-tune the matrix to promote intended cell behaviours and achieve specific biological outcomes. Recent advances in synthetic scaffolds have led to the development of xenogenic-free, chemically defined, highly tunable and reproducible alternatives. In this Review, we assess the applications of Matrigel in cell culture, regenerative medicine and organoid assembly, detailing the limitations of Matrigel and highlighting synthetic scaffold alternatives that have shown equivalent or superior results. Additionally, we discuss the hurdles that are limiting a full transition from Matrigel to synthetic scaffolds and provide a brief perspective on the future directions of synthetic scaffolds for cell culture applications.
Collapse
Affiliation(s)
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin–Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
23
|
Frid MG, Thurman JM, Hansen KC, Maron BA, Stenmark KR. Inflammation, immunity, and vascular remodeling in pulmonary hypertension; Evidence for complement involvement? Glob Cardiol Sci Pract 2020; 2020:e202001. [PMID: 32478115 PMCID: PMC7232865 DOI: 10.21542/gcsp.2020.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary (arterial) hypertension (PH/PAH) is a life-threatening cardiopulmonary disorder. Experimental evidence suggests involvement of inflammatory and autoimmune processes in pathogenesis of PH/PAH, however the triggering and disease-promoting mechanisms remain unknown. The complement system is a key arm of innate immunity implicated in various pro-inflammatory and autoimmune diseases, yet, surprisingly little is known about the role of complement in PH/PAH pathogenesis. The preponderance of the existing data associates complement with PH/PAH via analysis of plasma and does not study the lung directly. Therefore, we aimed to resolve this by analyzing both the mechanisms of local lung-specific complement activation and the correlation of dysregulated plasma complement to clinical outcome in PAH patients. In our recent studies, reviewed herein, we show, for the first time, that immunoglobulin-driven activation of the complement cascade, specifically its alternative pathway, in the pulmonary perivascular areas, is a key mechanism initiating pro-inflammatory processes in the early stage of experimental hypoxic PH (a form of "sterile inflammation"). In human patients with end-stage PAH, we have demonstrated that perivascular deposition of immunoglobulin G (IgG) and activation of the complement cascade are "longitudinally" persistent in the disease. We also showed, using unbiased network analysis, that plasma complement signaling, including again the Alternative pathway, is a prognostic factor of survival in patients with idiopathic PAH (IPAH). Based on these initial findings, we suggest that vascular-specific, immunoglobulin-driven dysregulated complement signaling triggers and maintains pulmonary vascular remodeling and PH. Future experiments in this area would facilitate discoveries on whether complement signaling can serve both as a biomarker and therapeutic target in PH/PAH.
Collapse
Affiliation(s)
- Maria G. Frid
- University of Colorado, Denver, Anschutz Medical Campus, USA
| | | | - Kirk C. Hansen
- University of Colorado, Denver, Anschutz Medical Campus, USA
| | | | | |
Collapse
|
24
|
Shao X, Taha IN, Clauser KR, Gao Y(T, Naba A. MatrisomeDB: the ECM-protein knowledge database. Nucleic Acids Res 2020; 48:D1136-D1144. [PMID: 31586405 PMCID: PMC6943062 DOI: 10.1093/nar/gkz849] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022] Open
Abstract
The extracellular matrix (ECM) is a complex and dynamic meshwork of cross-linked proteins that supports cell polarization and functions and tissue organization and homeostasis. Over the past few decades, mass-spectrometry-based proteomics has emerged as the method of choice to characterize the composition of the ECM of normal and diseased tissues. Here, we present a new release of MatrisomeDB, a searchable collection of curated proteomic data from 17 studies on the ECM of 15 different normal tissue types, six cancer types (different grades of breast cancers, colorectal cancer, melanoma, and insulinoma) and other diseases including vascular defects and lung and liver fibroses. MatrisomeDB (http://www.pepchem.org/matrisomedb) was built by retrieving raw mass spectrometry data files and reprocessing them using the same search parameters and criteria to allow for a more direct comparison between the different studies. The present release of MatrisomeDB includes 847 human and 791 mouse ECM proteoforms and over 350 000 human and 600 000 mouse ECM-derived peptide-to-spectrum matches. For each query, a hierarchically-clustered tissue distribution map, a peptide coverage map, and a list of post-translational modifications identified, are generated. MatrisomeDB is the most complete collection of ECM proteomic data to date and allows the building of a comprehensive ECM atlas.
Collapse
Affiliation(s)
- Xinhao Shao
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Isra N Taha
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Yu (Tom) Gao
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois at Chicago Cancer Center, Chicago, IL 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois at Chicago Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
25
|
Ashworth JC, Thompson JL, James JR, Slater CE, Pijuan-Galitó S, Lis-Slimak K, Holley RJ, Meade KA, Thompson A, Arkill KP, Tassieri M, Wright AJ, Farnie G, Merry CLR. Peptide gels of fully-defined composition and mechanics for probing cell-cell and cell-matrix interactions in vitro. Matrix Biol 2020; 85-86:15-33. [PMID: 31295578 PMCID: PMC7610915 DOI: 10.1016/j.matbio.2019.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/28/2019] [Accepted: 06/24/2019] [Indexed: 01/14/2023]
Abstract
Current materials used for in vitro 3D cell culture are often limited by their poor similarity to human tissue, batch-to-batch variability and complexity of composition and manufacture. Here, we present a "blank slate" culture environment based on a self-assembling peptide gel free from matrix motifs. The gel can be customised by incorporating matrix components selected to match the target tissue, with independent control of mechanical properties. Therefore the matrix components are restricted to those specifically added, or those synthesised by encapsulated cells. The flexible 3D culture platform provides full control over biochemical and physical properties, allowing the impact of biochemical composition and tissue mechanics to be separately evaluated in vitro. Here, we demonstrate that the peptide gels support the growth of a range of cells including human induced pluripotent stem cells and human cancer cell lines. Furthermore, we present proof-of-concept that the peptide gels can be used to build disease-relevant models. Controlling the peptide gelator concentration allows peptide gel stiffness to be matched to normal breast (<1 kPa) or breast tumour tissue (>1 kPa), with higher stiffness favouring the viability of breast cancer cells over normal breast cells. In parallel, the peptide gels may be modified with matrix components relevant to human breast, such as collagen I and hyaluronan. The choice and concentration of these additions affect the size, shape and organisation of breast epithelial cell structures formed in co-culture with fibroblasts. This system therefore provides a means of unravelling the individual influences of matrix, mechanical properties and cell-cell interactions in cancer and other diseases.
Collapse
Affiliation(s)
- J C Ashworth
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK; Manchester Cancer Research Centre, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK.
| | - J L Thompson
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - J R James
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - C E Slater
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - S Pijuan-Galitó
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK; Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, UK
| | - K Lis-Slimak
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - R J Holley
- Stem Cell and Neurotherapies Group, University of Manchester, UK
| | - K A Meade
- Office of Business Relations, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - A Thompson
- Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - K P Arkill
- Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK
| | - M Tassieri
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, UK
| | - A J Wright
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, UK
| | - G Farnie
- Manchester Cancer Research Centre, Division of Molecular & Clinical Cancer Sciences, University of Manchester, UK; SGC, Botnar Research Centre, NDORMS, University of Oxford, UK.
| | - C L R Merry
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, UK.
| |
Collapse
|
26
|
Bi H, Ye K, Jin S. Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells. Biomaterials 2019; 233:119673. [PMID: 31866049 DOI: 10.1016/j.biomaterials.2019.119673] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 01/15/2023]
Abstract
In pancreatic tissue engineering, generating human pancreatic islet organoids from stem cells has been challenging due mainly to a poor understanding of niches required for multicellular tissue self-assembly in vitro. In this study, we aimed to identify bioactive, chemically defined niches from natural, biological materials for islet development in vitro. We investigated the proteomics of decellularized rat pancreatic extracellular matrix (dpECM) hydrogel using advanced bioinformatics analysis, and identified that type V collagen (ColV) is constantly and abundantly present in dpECM hydrogel. Niches provided to human pluripotent stem cells (iPSCs) by presenting ColV in matrix coating substrates permitted stem cells progression into islet-like organoids that consist of all major pancreatic endocrine cell types, i.e. α, β, δ, and pancreatic polypeptide cells. In the presence of ColV niches, gene expressions of all key pancreatic transcription factors and major hormone genes significantly increased in iPSC-derived organoids. Most importantly, ColV-containing microenvironment resulted in enhanced glucose responsive secretions of both insulin and glucagon hormone from organoids. The study demonstrates that ColV is a critical regulator that augments islet self-assembly from iPSCs, and it is feasible to utilize natural biomaterials to build tissue cues essential for multicellular tissue production in vitro.
Collapse
Affiliation(s)
- Huanjing Bi
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902, USA; Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902, USA
| | - Sha Jin
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902, USA; Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902, USA.
| |
Collapse
|
27
|
Dapic I, Baljeu-Neuman L, Uwugiaren N, Kers J, Goodlett DR, Corthals GL. Proteome analysis of tissues by mass spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:403-441. [PMID: 31390493 DOI: 10.1002/mas.21598] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Tissues and biofluids are important sources of information used for the detection of diseases and decisions on patient therapies. There are several accepted methods for preservation of tissues, among which the most popular are fresh-frozen and formalin-fixed paraffin embedded methods. Depending on the preservation method and the amount of sample available, various specific protocols are available for tissue processing for subsequent proteomic analysis. Protocols are tailored to answer various biological questions, and as such vary in lysis and digestion conditions, as well as duration. The existence of diverse tissue-sample protocols has led to confusion in how to choose the best protocol for a given tissue and made it difficult to compare results across sample types. Here, we summarize procedures used for tissue processing for subsequent bottom-up proteomic analysis. Furthermore, we compare protocols for their variations in the composition of lysis buffers, digestion procedures, and purification steps. For example, reports have shown that lysis buffer composition plays an important role in the profile of extracted proteins: the most common are tris(hydroxymethyl)aminomethane, radioimmunoprecipitation assay, and ammonium bicarbonate buffers. Although, trypsin is the most commonly used enzyme for proteolysis, in some protocols it is supplemented with Lys-C and/or chymotrypsin, which will often lead to an increase in proteome coverage. Data show that the selection of the lysis procedure might need to be tissue-specific to produce distinct protocols for individual tissue types. Finally, selection of the procedures is also influenced by the amount of sample available, which range from biopsies or the size of a few dozen of mm2 obtained with laser capture microdissection to much larger amounts that weight several milligrams.
Collapse
Affiliation(s)
- Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | | | - Naomi Uwugiaren
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Jesper Kers
- Department of Pathology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - David R Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- University of Maryland, 20N. Pine Street, Baltimore, MD 21201
| | - Garry L Corthals
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Ma F, Tremmel DM, Li Z, Lietz CB, Sackett SD, Odorico JS, Li L. In Depth Quantification of Extracellular Matrix Proteins from Human Pancreas. J Proteome Res 2019; 18:3156-3165. [PMID: 31200599 DOI: 10.1021/acs.jproteome.9b00241] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Extracellular matrix (ECM) is an important component of the pancreatic microenvironment which regulates β cell proliferation, differentiation, and insulin secretion. Protocols have recently been developed for the decellularization of the human pancreas to generate functional scaffolds and hydrogels. In this work, we characterized human pancreatic ECM composition before and after decellularization using isobaric dimethylated leucine (DiLeu) labeling for relative quantification of ECM proteins. A novel correction factor was employed in the study to eliminate the bias introduced during sample preparation. In comparison to the commonly employed sample preparation methods (urea and FASP) for proteomic analysis, a recently developed surfactant and chaotropic agent assisted sequential extraction/on pellet digestion (SCAD) protocol has provided an improved strategy for ECM protein extraction of human pancreatic ECM matrix. The quantitative proteomic results revealed the preservation of matrisome proteins while most of the cellular proteins were removed. This method was compared with a well-established label-free quantification (LFQ) approach which rendered similar expressions of different categories of proteins (collagens, ECM glycoproteins, proteoglycans, etc.). The distinct expression of ECM proteins was quantified comparing adult and fetal pancreas ECM, shedding light on the correlation between matrix composition and postnatal β cell maturation. Despite the distinct profiles of different subcategories in the native pancreas, the distribution of matrisome proteins exhibited similar trends after the decellularization process. Our method generated a large data set of matrisome proteins from a single tissue type. These results provide valuable insight into the possibilities of constructing a bioengineered pancreas. It may also facilitate better understanding of the potential roles that matrisome proteins play in postnatal β cell maturation.
Collapse
Affiliation(s)
- Fengfei Ma
- School of Pharmacy , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Daniel M Tremmel
- Department of Surgery, Division of Transplantation, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Zihui Li
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Christopher B Lietz
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Sara Dutton Sackett
- Department of Surgery, Division of Transplantation, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Jon S Odorico
- Department of Surgery, Division of Transplantation, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Lingjun Li
- School of Pharmacy , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
29
|
Devaud YR, Avilla-Royo E, Trachsel C, Grossmann J, Martin I, Lutolf MP, Ehrbar M. Label-Free Quantification Proteomics for the Identification of Mesenchymal Stromal Cell Matrisome Inside 3D Poly(Ethylene Glycol) Hydrogels. Adv Healthc Mater 2018; 7:e1800534. [PMID: 30260582 DOI: 10.1002/adhm.201800534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/20/2018] [Indexed: 01/31/2023]
Abstract
Cells modulate the functional properties of their environment by depositing extracellular matrix (ECM) proteins during biological processes in vivo and in vitro. Despite the ECMs central role in tissue formation, its quantification in hydrogels like Matrigel, which have a complex materials-inherent biopolymer composition is exceptionally challenging. Here, the use of protein-free, synthetic poly(ethylene glycol) hydrogels enables the analysis of deposited human bone marrow mesenchymal stromal cells ECM directly harvested from fresh 3D cell cultures by a tandem mass spectrometry (LC-MS/MS) method. In this study, it is proved that a label-free LC-MS/MS quantification method can selectively identify proteins deposited in 3D synthetic hydrogels following different growth factor (GF) treatments. Furthermore, it is shown that the sequence in which GFs are administered and the choice of stimuli significantly influences the number and abundance of ECM proteins. Therefore, this provides a versatile method to optimize GF treatments in synthetic hydrogel-based regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Yannick R. Devaud
- Department of Obstetrics; University Hospital Zurich; University of Zurich; Schmelzbergstr. 12 8091 Zurich Switzerland
| | - Eva Avilla-Royo
- Department of Obstetrics; University Hospital Zurich; University of Zurich; Schmelzbergstr. 12 8091 Zurich Switzerland
- Institute for Biomechanics; Swiss Federal Institute of Technology; CH-8008 Zurich Switzerland
| | - Christian Trachsel
- Functional Genomics Center University of Zurich and ETH Zurich; Winterthurerstr. 190 8057 Zürich Switzerland
| | - Jonas Grossmann
- Functional Genomics Center University of Zurich and ETH Zurich; Winterthurerstr. 190 8057 Zürich Switzerland
| | - Ivan Martin
- Department of Biomedicine and Department of Surgery; University Hospital Basel; University of Basel; Hebelstrasse 20 4031 Basel Switzerland
| | - Matthias P. Lutolf
- Institute of Bioengineering; Ecole Polytechnique Fédérale de Lausanne (EPFL); Station 15, Bld AI 1109 1015 Lausanne Switzerland
| | - Martin Ehrbar
- Department of Obstetrics; University Hospital Zurich; University of Zurich; Schmelzbergstr. 12 8091 Zurich Switzerland
| |
Collapse
|
30
|
Han W, Wu Q, Zhang X, Duan Z. Innovation for hepatotoxicity in vitro research models: A review. J Appl Toxicol 2018; 39:146-162. [PMID: 30182494 DOI: 10.1002/jat.3711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Many categories of drugs can induce hepatotoxicity, so improving the prediction of toxic drugs is important. In vitro models using human hepatocytes are more accurate than in vivo animal models. Good in vitro models require an abundance of metabolic enzyme activities and normal cellular polarity. However, none of the in vitro models can completely simulate hepatocytes in the human body. There are two ways to overcome this limitation: enhancing the metabolic function of hepatocytes and changing the cultural environment. In this review, we summarize the current state of research, including the main characteristics of in vitro models and their limitations, as well as improved technology and developmental prospects. We hope that this review provides some new ideas for hepatotoxicity research.
Collapse
Affiliation(s)
- Weijia Han
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Qiao Wu
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Xiaohui Zhang
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| |
Collapse
|
31
|
Tomko LA, Hill RC, Barrett A, Szulczewski JM, Conklin MW, Eliceiri KW, Keely PJ, Hansen KC, Ponik SM. Targeted matrisome analysis identifies thrombospondin-2 and tenascin-C in aligned collagen stroma from invasive breast carcinoma. Sci Rep 2018; 8:12941. [PMID: 30154546 PMCID: PMC6113240 DOI: 10.1038/s41598-018-31126-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/12/2018] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence demonstrates an important role for the extracellular matrix (ECM) in breast cancer progression. Collagen type I, a core constituent of the fibrous ECM, undergoes a significant set of changes that accompany tumor progression, termed Tumor Associated Collagen Signatures (TACS). Late stages of this progression are characterized by the presence of bundled, straight collagen (TACS-2) that become oriented perpendicular to the tumor-stromal boundary (TACS-3). Importantly, the presence of TACS-3 collagen is an independent predictor of poor patient outcome. At present, it remains unclear whether reorganization of the collagen matrix is the consequence of mechanical or compositional tissue remodeling. Here, we identify compositional changes in ECM correlating to collagen fiber reorganization from nineteen normal and invasive ductal carcinoma (IDC) patient biopsies using matrisome-targeted proteomics. Twenty-seven ECM proteins were significantly altered in IDC samples compared to normal tissue. Further, a set of nineteen matrisome proteins positively correlate and five proteins inversely correlate with IDC tissues containing straightened collagen fibers. Tenascin-C and thrombospondin-2 significantly co-localized with aligned collagen fibers in IDC tissues. This study highlights the compositional change in matrisome proteins accompanying collagen re-organization during breast cancer progression and provides candidate proteins for investigation into cellular and structural influences on collagen alignment.
Collapse
Affiliation(s)
- Lucas A Tomko
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., WIMR II Rm. 4528, Madison, WI, 53705, United States
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado-Denver, 12801 E. 17th Avenue, Bldg. RC-1 South, Aurora, CO, 80045, United States
| | - Alexander Barrett
- Department of Biochemistry and Molecular Genetics, University of Colorado-Denver, 12801 E. 17th Avenue, Bldg. RC-1 South, Aurora, CO, 80045, United States
| | - Joseph M Szulczewski
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., WIMR II Rm. 4528, Madison, WI, 53705, United States
| | - Matthew W Conklin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., WIMR II Rm. 4528, Madison, WI, 53705, United States
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, 1675 Observatory Dr., Madison, WI, 53706, United States
| | - Patricia J Keely
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., WIMR II Rm. 4528, Madison, WI, 53705, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado-Denver, 12801 E. 17th Avenue, Bldg. RC-1 South, Aurora, CO, 80045, United States.
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., WIMR II Rm. 4528, Madison, WI, 53705, United States.
| |
Collapse
|
32
|
Kazantseva J, Ivanov R, Gasik M, Neuman T, Hussainova I. Graphene-Augmented Nanofiber Scaffolds Trigger Gene Expression Switching of Four Cancer Cell Types. ACS Biomater Sci Eng 2018; 4:1622-1629. [PMID: 30258984 PMCID: PMC6150649 DOI: 10.1021/acsbiomaterials.8b00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
![]()
Three-dimensional
(3D) customized scaffolds are anticipated to
provide new frontiers in cell manipulation and advanced therapy methods.
Here, we demonstrate the application of hybrid 3D porous scaffolds,
representing networks of highly aligned self-assembled ceramic nanofibers,
for culturing four types of cancer cells. Ultrahigh aspect ratio (∼107) of graphene augmented fibers of tailored nanotopology is
shown as an alternative tool to substantially affect cancerous gene
expression, eventually due to differences in local biomechanical features
of the cell–matrix interactions. Here, we report a clear selective
up- and down-regulation of groups of markers for breast cancer (MDA-MB231),
colorectal cancer (CaCO2), melanoma (WM239A), and neuroblastoma (Kelly)
depending on only fiber orientation and morphology without application
of any other stimulus. Changes in gene expression are also revealed
for Mitomycin C treatment of MDA-MB231, making the scaffold a suitable
platform for testing of anticancer agents. This allows an opportunity
for selective “clean” guidance to a deep understanding
of mechanisms of cancer cells progressive growth and tumor formation
without possible side effects by manipulation with the specific markers.
Collapse
Affiliation(s)
| | - Roman Ivanov
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate 5, Tallinn 19086, Estonia
| | - Michael Gasik
- School of Chemical Engineering, Aalto University Foundation, 00076 Aalto, Espoo, Finland
| | | | - Irina Hussainova
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate 5, Tallinn 19086, Estonia.,ITMO University, Kronverksky prospect 49, St. Petersburg 197101, Russian Federation
| |
Collapse
|
33
|
Dapic I, Uwugiaren N, Jansen PJ, Corthals GL. Fast and Simple Protocols for Mass Spectrometry-Based Proteomics of Small Fresh Frozen Uterine Tissue Sections. Anal Chem 2017; 89:10769-10775. [PMID: 28910098 PMCID: PMC5647562 DOI: 10.1021/acs.analchem.7b01937] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Human
tissues are an important link between organ-specific spatial
molecular information, patient pathology, and patient treatment options.
However, patient tissues are uniquely obtained by time and location,
and limited in their availability and size. Currently, little knowledge
exists about appropriate and simplified protocols for routine MS-based
analysis of the various types and sizes of tissues. Following standard
procedures used in pathology, we selected small fresh frozen uterine
tissue samples to investigate how the tissue preparation protocol
affected the subsequent proteomics analysis. First, we observed that
protein extraction with 0.1% SDS followed by extraction with a 30%
ACN/urea resulted in a decrease in the number of identified proteins,
when compared to extraction with 30% ACN/urea only. The decrease in
the number of proteins was approximately 55% and 20%, for 10 and 16
μm thick tissue, respectively. Interestingly, the relative abundance
of the proteins shared between the two methods was higher when SDS/ACN/urea
was used, compared to the 30% ACN/urea extraction, indicating the
role of SDS to be beneficial for protein solubility. Second, the influence
of tissue thickness was investigated by comparing the results obtained
for 10, 16, and 20 μm thick (1 mm2) tissue using
urea/30% ACN. We observed an increase in the number of identified
proteins and corresponding quantity with an increase in the tissue
thickness. Finally, by analyzing very small amounts of tissues (∼0.2
mm2) of 10, 16, and 20 μm thickness, we observed
that the increase in tissue thickness resulted in a higher number
of protein identifications and corresponding quantitative values.
Collapse
Affiliation(s)
- Irena Dapic
- University of Amsterdam, Van 't Hoff Institute for Molecular Sciences (HIMS) , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Naomi Uwugiaren
- University of Amsterdam, Van 't Hoff Institute for Molecular Sciences (HIMS) , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Petra J Jansen
- University of Amsterdam, Van 't Hoff Institute for Molecular Sciences (HIMS) , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Garry L Corthals
- University of Amsterdam, Van 't Hoff Institute for Molecular Sciences (HIMS) , Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
34
|
Guo Z, Cheng J, Sun H, Sun W. A qualitative and quantitative evaluation of the peptide characteristics of microwave- and ultrasound-assisted digestion in discovery and targeted proteomic analyses. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1353-1362. [PMID: 28557149 DOI: 10.1002/rcm.7913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Fast digestion methods can dramatically accelerate enzyme digestion and increase the throughput of proteomic analysis. However, the peptide characteristics of fast digestion methods and their performance in discovery and targeted proteomic analysis must be systematically evaluated. METHODS Three digestion methods, including overnight digestion, microwave-assisted protein enzymatic digestion (MAPED), and high-intensity focused ultrasonic-assisted enzymatic digestion (HIFUSAED), in trypsin or in trypsin/Lys-C were comprehensively compared in both discovery and targeted proteomics analysis using the HeLa cell proteome. In discovery proteomic analysis, the highest numbers of peptides and proteins were identified when the sample was digested via the MAPED method with trypsin/Lys-C. RESULTS The fast digestion methods showed a higher mis-cleavage rate and a lower semi-tryptic rate than the overnight digestion method. In both label-free quantitative analysis and targeted proteomic analysis, both fully cleaved peptides (FCPs) and mis-cleaved peptides (MCPs) from the fast digestion methods and the overnight digestion method showed good reproducibility if they showed good abundance. CONCLUSIONS When both the FCPs and MCPs were included in the analysis, the MAPED with trypsin/Lys-C method showed the best results for both discovery proteomic analysis and relative quantitative targeted proteomic analysis. These results will be beneficial for the application of fast digestion methods to proteomics.
Collapse
Affiliation(s)
- Zhengguang Guo
- Core Facility of Instrument, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Cheng
- Core Facility of Instrument, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Haidan Sun
- Core Facility of Instrument, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Sun
- Core Facility of Instrument, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Ashraf Kharaz Y, Zamboulis D, Sanders K, Comerford E, Clegg P, Peffers M. Comparison between chaotropic and detergent-based sample preparation workflow in tendon for mass spectrometry analysis. Proteomics 2017; 17:1700018. [PMID: 28547889 PMCID: PMC5575552 DOI: 10.1002/pmic.201700018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 01/12/2023]
Abstract
Exploring the tendon proteome is a challenging but important task for understanding the mechanisms of physiological/pathological processes during ageing and disease and for the development of new treatments. Several extraction methods have been utilised for tendon mass spectrometry, however different extraction methods have not been simultaneously compared. In the present study we compared protein extraction in tendon with two chaotropic agents, guanidine hydrochloride (GnHCl) and urea, a detergent, RapiGest™, and their combinations for shotgun mass spectrometry. An initial proteomic analysis was performed following urea, GnHCl, and RapiGest™ extraction of equine superficial digital flexor tendon (SDFT) tissue. Subsequently, another proteomic analysis was performed following extraction with GnHCl, Rapigest™, and their combinations. Between the two chaotropic agents, GnHCl extracted more proteins, whilst a greater number of proteins were solely identified after Rapigest™ extraction. Protein extraction with a combination of GnHCl followed by RapiGest™ on the insoluble pellet demonstrated, after label-free quantification, increased abundance of identified collagen proteins and low sample to sample variability. In contrast, GnHCl extraction on its own showed increased abundance of identified proteoglycans and cellular proteins. Therefore, the selection of protein extraction method for tendon tissue for mass spectrometry analysis should reflect the focus of the study.
Collapse
Affiliation(s)
- Yalda Ashraf Kharaz
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Danae Zamboulis
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Karen Sanders
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Eithne Comerford
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
| | - Peter Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
- The MRC‐Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA)LiverpoolUK
| | - Mandy Peffers
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK
- The MRC‐Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA)LiverpoolUK
| |
Collapse
|
36
|
Vu LT, Orbach SM, Ray WK, Cassin ME, Rajagopalan P, Helm RF. The hepatocyte proteome in organotypic rat liver models and the influence of the local microenvironment. Proteome Sci 2017; 15:12. [PMID: 28649179 PMCID: PMC5480101 DOI: 10.1186/s12953-017-0120-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/15/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Liver models that closely mimic the in vivo microenvironment are useful for understanding liver functions, capabilities, and intercellular communication processes. Three-dimensional (3D) liver models assembled using hepatocytes and liver sinusoidal endothelial cells (LSECs) separated by a polyelectrolyte multilayer (PEM) provide a functional system while also permitting isolation of individual cell types for proteomic analyses. METHODS To better understand the mechanisms and processes that underlie liver model function, hepatocytes were maintained as monolayers and 3D PEM-based formats in the presence or absence of primary LSECs. The resulting hepatocyte proteomes, the proteins in the PEM, and extracellular levels of urea, albumin and glucose after three days of culture were compared. RESULTS All systems were ketogenic and found to release glucose. The presence of the PEM led to increases in proteins associated with both mitochondrial and peroxisomal-based β-oxidation. The PEMs also limited production of structural and migratory proteins associated with dedifferentiation. The presence of LSECs increased levels of Phase I and Phase II biotransformation enzymes as well as several proteins associated with the endoplasmic reticulum and extracellular matrix remodeling. The proteomic analysis of the PEMs indicated that there was no significant change after three days of culture. These results are discussed in relation to liver model function. CONCLUSIONS Heterotypic cell-cell and cell-ECM interactions exert different effects on hepatocyte functions and phenotypes.
Collapse
Affiliation(s)
- Lucas T. Vu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 USA
| | - Sophia M. Orbach
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 USA
| | - W. Keith Ray
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061 USA
| | - Margaret E. Cassin
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 USA
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 USA
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia 24061 USA
- ICTAS Center for Systems Biology and Engineered Tissues, Virginia Tech, Blacksburg, Virginia 24061 USA
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061 USA
- ICTAS Center for Systems Biology and Engineered Tissues, Virginia Tech, Blacksburg, Virginia 24061 USA
| |
Collapse
|
37
|
Goddard ET, Hill RC, Barrett A, Betts C, Guo Q, Maller O, Borges VF, Hansen KC, Schedin P. Quantitative extracellular matrix proteomics to study mammary and liver tissue microenvironments. Int J Biochem Cell Biol 2016; 81:223-232. [PMID: 27771439 DOI: 10.1016/j.biocel.2016.10.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 01/22/2023]
Abstract
Normal epithelium exists within a dynamic extracellular matrix (ECM) that is tuned to regulate tissue specific epithelial cell function. As such, ECM contributes to tissue homeostasis, differentiation, and disease, including cancer. Though it is now recognized that the functional unit of normal and transformed epithelium is the epithelial cell and its adjacent ECM, we lack a basic understanding of tissue-specific ECM composition and abundance, as well as how physiologic changes in ECM impact cancer risk and outcomes. While traditional proteomic techniques have advanced to robustly identify ECM proteins within tissues, methods to determine absolute abundance have lagged. Here, with a focus on tissues relevant to breast cancer, we utilize mass spectrometry methods optimized for absolute quantitative ECM analysis. Employing an extensive protein extraction and digestion method, combined with stable isotope labeled Quantitative conCATamer (QconCAT) peptides that serve as internal standards for absolute quantification of protein, we quantify 98 ECM, ECM-associated, and cellular proteins in a single analytical run. In rodent models, we applied this approach to the primary site of breast cancer, the normal mammary gland, as well as a common and particularly deadly site of breast cancer metastasis, the liver. We find that mammary gland and liver have distinct ECM abundance and relative composition. Further, we show mammary gland ECM abundance and relative compositions differ across the reproductive cycle, with the most dramatic changes occurring during the pro-tumorigenic window of weaning-induced involution. Combined, this work suggests ECM candidates for investigation of breast cancer progression and metastasis, particularly in postpartum breast cancers that are characterized by high metastatic rates. Finally, we suggest that with use of absolute quantitative ECM proteomics to characterize tissues of interest, it will be possible to reconstruct more relevant in vitro models to investigate tumor-ECM dynamics at higher resolution.
Collapse
Affiliation(s)
- Erica T Goddard
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander Barrett
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Courtney Betts
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Qiuchen Guo
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Ori Maller
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA, USA
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; University of Colorado Cancer Center, Aurora, CO, USA; Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Pepper Schedin
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
38
|
Parisi L, Zomer Volpato F, Cagol N, Siciliano M, Migliaresi C, Motta A, Sala R. An innovative protocol for schwann cells extracellular matrix proteins extraction. J Biomed Mater Res A 2016; 104:3175-3180. [PMID: 27500379 DOI: 10.1002/jbm.a.35854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/15/2016] [Accepted: 08/02/2016] [Indexed: 01/01/2023]
Abstract
The evidence that extracellular matrix (ECM) components could represent new targets for drugs designed to approach degenerative disease, requires their analysis. Before the analysis, proteins should be extracted from ECM and solubilized. Currently, few protocols for ECM proteins extraction and solubilization are available in literature, and most of them are based mainly on the use of proteolytic enzymes, such as trypsin, which often lead to proteins damage. Moreover, no methods have been so far proposed to solubilize Schwann Cell ECM, which may represent an important target for the therapy of neurodegenerative disorders. In our study, we propose to solubilize SC ECM through the use of surfactants and urea. We compared our method of solubilization, with one of that proposed in literature for a general ECM, mainly based on the use of enzymes. We want to highlight the benefit of solubilizing SC ECM, avoiding the use of proteolytic enzymes. To compare the amount of proteins extracted with both methods, MicroBCA assay was used, while the quality of the proteins extracted was observed through the SDS-PAGE. The results obtained confirm a better solubilization of SC ECM proteins with the proposed protocol, both quantitatively and qualitatively, showing a higher concentration of proteins extracted and a better enrichment of protein fractions, if compared to the enzyme-based protocol. Our results show that SC ECM could be efficiently solubilized through the use of surfactant and urea, avoiding the use of enzyme-base methods. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3175-3180, 2016.
Collapse
Affiliation(s)
- L Parisi
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy.
| | - F Zomer Volpato
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - N Cagol
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - M Siciliano
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - C Migliaresi
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - A Motta
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - R Sala
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| |
Collapse
|
39
|
Hsueh MF, Khabut A, Kjellström S, Önnerfjord P, Kraus VB. Elucidating the Molecular Composition of Cartilage by Proteomics. J Proteome Res 2016; 15:374-88. [PMID: 26632656 DOI: 10.1021/acs.jproteome.5b00946] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Articular cartilage consists of chondrocytes and two major components, a collagen-rich framework and highly abundant proteoglycans. Most prior studies defining the zonal distribution of cartilage have extracted proteins with guanidine-HCl. However, an unextracted collagen-rich residual is left after extraction. In addition, the high abundance of anionic polysaccharide molecules extracted from cartilage adversely affects the chromatographic separation. In this study, we established a method for removing chondrocytes from cartilage sections with minimal extracellular matrix protein loss. The addition of surfactant to guanidine-HCl extraction buffer improved protein solubility. Ultrafiltration removed interference from polysaccharides and salts. Almost four-times more collagen peptides were extracted by the in situ trypsin digestion method. However, as expected, proteoglycans were more abundant within the guanidine-HCl extraction. These different methods were used to extract cartilage sections from different cartilage layers (superficial, intermediate, and deep), joint types (knee and hip), and disease states (healthy and osteoarthritic), and the extractions were evaluated by quantitative and qualitative proteomic analyses. The results of this study led to the identifications of the potential biomarkers of osteoarthritis (OA), OA progression, and the joint specific biomarkers.
Collapse
Affiliation(s)
- Ming-Feng Hsueh
- Duke Molecular Physiology Institute, ‡Departments of Medicine, and §Pathology, Duke University School of Medicine, Duke University , Durham, North Carolina 27701, United States.,Department of Clinical Sciences Lund, Section of Rheumatology and Molecular Skeletal Biology and ¶Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University , SE 22184 Lund, Sweden
| | - Areej Khabut
- Duke Molecular Physiology Institute, ‡Departments of Medicine, and §Pathology, Duke University School of Medicine, Duke University , Durham, North Carolina 27701, United States.,Department of Clinical Sciences Lund, Section of Rheumatology and Molecular Skeletal Biology and ¶Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University , SE 22184 Lund, Sweden
| | - Sven Kjellström
- Duke Molecular Physiology Institute, ‡Departments of Medicine, and §Pathology, Duke University School of Medicine, Duke University , Durham, North Carolina 27701, United States.,Department of Clinical Sciences Lund, Section of Rheumatology and Molecular Skeletal Biology and ¶Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University , SE 22184 Lund, Sweden
| | - Patrik Önnerfjord
- Duke Molecular Physiology Institute, ‡Departments of Medicine, and §Pathology, Duke University School of Medicine, Duke University , Durham, North Carolina 27701, United States.,Department of Clinical Sciences Lund, Section of Rheumatology and Molecular Skeletal Biology and ¶Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University , SE 22184 Lund, Sweden
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, ‡Departments of Medicine, and §Pathology, Duke University School of Medicine, Duke University , Durham, North Carolina 27701, United States.,Department of Clinical Sciences Lund, Section of Rheumatology and Molecular Skeletal Biology and ¶Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University , SE 22184 Lund, Sweden
| |
Collapse
|
40
|
McConnell JC, O'Connell OV, Brennan K, Weiping L, Howe M, Joseph L, Knight D, O'Cualain R, Lim Y, Leek A, Waddington R, Rogan J, Astley SM, Gandhi A, Kirwan CC, Sherratt MJ, Streuli CH. Increased peri-ductal collagen micro-organization may contribute to raised mammographic density. Breast Cancer Res 2016; 18:5. [PMID: 26747277 PMCID: PMC4706673 DOI: 10.1186/s13058-015-0664-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High mammographic density is a therapeutically modifiable risk factor for breast cancer. Although mammographic density is correlated with the relative abundance of collagen-rich fibroglandular tissue, the causative mechanisms, associated structural remodelling and mechanical consequences remain poorly defined. In this study we have developed a new collaborative bedside-to-bench workflow to determine the relationship between mammographic density, collagen abundance and alignment, tissue stiffness and the expression of extracellular matrix organising proteins. METHODS Mammographic density was assessed in 22 post-menopausal women (aged 54-66 y). A radiologist and a pathologist identified and excised regions of elevated non-cancerous X-ray density prior to laboratory characterization. Collagen abundance was determined by both Masson's trichrome and Picrosirius red staining (which enhances collagen birefringence when viewed under polarised light). The structural specificity of these collagen visualisation methods was determined by comparing the relative birefringence and ultrastructure (visualised by atomic force microscopy) of unaligned collagen I fibrils in reconstituted gels with the highly aligned collagen fibrils in rat tail tendon. Localised collagen fibril organisation and stiffness was also evaluated in tissue sections by atomic force microscopy/spectroscopy and the abundance of key extracellular proteins was assessed using mass spectrometry. RESULTS Mammographic density was positively correlated with the abundance of aligned periductal fibrils rather than with the abundance of amorphous collagen. Compared with matched tissue resected from the breasts of low mammographic density patients, the highly birefringent tissue in mammographically dense breasts was both significantly stiffer and characterised by large (>80 μm long) fibrillar collagen bundles. Subsequent proteomic analyses not only confirmed the absence of collagen fibrosis in high mammographic density tissue, but additionally identified the up-regulation of periostin and collagen XVI (regulators of collagen fibril structure and architecture) as potential mediators of localised mechanical stiffness. CONCLUSIONS These preliminary data suggest that remodelling, and hence stiffening, of the existing stromal collagen microarchitecture promotes high mammographic density within the breast. In turn, this aberrant mechanical environment may trigger neoplasia-associated mechanotransduction pathways within the epithelial cell population.
Collapse
Affiliation(s)
- James C McConnell
- Centre for Tissue Injury & Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | - Oliver V O'Connell
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Keith Brennan
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Lisa Weiping
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Miles Howe
- University Hospital of South Manchester, Manchester, UK.
| | - Leena Joseph
- University Hospital of South Manchester, Manchester, UK.
| | - David Knight
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Ronan O'Cualain
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK. ronan.o'
| | - Yit Lim
- University Hospital of South Manchester, Manchester, UK.
| | - Angela Leek
- Manchester Cancer Research Centre Tissue Biobank, University of Manchester, Manchester, UK.
| | - Rachael Waddington
- Manchester Cancer Research Centre Tissue Biobank, University of Manchester, Manchester, UK.
| | - Jane Rogan
- Manchester Cancer Research Centre Tissue Biobank, University of Manchester, Manchester, UK.
| | - Susan M Astley
- Centre for Imaging Sciences, Institute of Population Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | - Ashu Gandhi
- University Hospital of South Manchester, Manchester, UK.
| | - Cliona C Kirwan
- Institute of Cancer Sciences, Manchester Academic Health Sciences Centre, University Hospital of South Manchester, University of Manchester, Manchester, UK.
| | - Michael J Sherratt
- Centre for Tissue Injury & Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| | - Charles H Streuli
- Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
41
|
Abstract
Much progress in understanding cell migration has been determined by using classic two-dimensional (2D) tissue culture platforms. However, increasingly, it is appreciated that certain properties of cell migration
in vivo are not represented by strictly 2D assays. There is much interest in creating relevant three-dimensional (3D) culture environments and engineered platforms to better represent features of the extracellular matrix and stromal microenvironment that are not captured in 2D platforms. Important to this goal is a solid understanding of the features of the extracellular matrix—composition, stiffness, topography, and alignment—in different tissues and disease states and the development of means to capture these features
Collapse
Affiliation(s)
- Patricia Keely
- Department of Cell and Regenerative Biology, UW Carbone Cancer Center, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Amrinder Nain
- 2Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
42
|
Bracaglia LG, Fisher JP. Extracellular Matrix-Based Biohybrid Materials for Engineering Compliant, Matrix-Dense Tissues. Adv Healthc Mater 2015; 4:2475-87. [PMID: 26227679 DOI: 10.1002/adhm.201500236] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/23/2015] [Indexed: 12/24/2022]
Abstract
An ideal tissue engineering scaffold should not only promote, but take an active role in, constructive remodeling and formation of site appropriate tissue. Extracellular matrix (ECM)-derived proteins provide unmatched cellular recognition, and therefore influence cellular response towards predicted remodeling behaviors. Materials built with only these proteins, however, can degrade rapidly or begin too weak to substitute for compliant, matrix-dense tissues. The focus of this Progress Report is on biohybrid materials that incorporate polymer components with ECM-derived proteins, to produce a substrate with desired mechanical and degradation properties, as well as actively guide tissue remodeling. Materials are described through four fabrication methods: 1) polymer and ECM-protein fibers woven together, 2) polymer and ECM proteins combined in a bilayer, 3) cell-built ECM on polymer scaffold, and 4) ECM proteins and polymers combined in a single hydrogel. Scaffolds from each fabrication method can achieve characteristics suitable for different types of tissue. In vivo testing has shown progressive remodeling in injury models, and suggests ECM-based biohybrid materials promote a prohealing immune response over single component alternatives. The prohealing immune response is associated with lasting success and long term host maintenance of the implant.
Collapse
Affiliation(s)
- Laura G. Bracaglia
- Fischell Department of Bioengineering; University of Maryland; 3238 Jeong H. Kim Engineering Building College Park MD 20742 USA
| | - John P. Fisher
- Fischell Department of Bioengineering; University of Maryland; 3238 Jeong H. Kim Engineering Building College Park MD 20742 USA
| |
Collapse
|
43
|
Deegan DB, Zimmerman C, Skardal A, Atala A, Shupe TD. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology. J Mech Behav Biomed Mater 2015; 55:87-103. [PMID: 26569044 DOI: 10.1016/j.jmbbm.2015.10.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022]
Abstract
Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture.
Collapse
Affiliation(s)
- Daniel B Deegan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| | - Cynthia Zimmerman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas D Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
44
|
Li Q, Uygun BE, Geerts S, Ozer S, Scalf M, Gilpin SE, Ott HC, Yarmush ML, Smith LM, Welham NV, Frey BL. Proteomic analysis of naturally-sourced biological scaffolds. Biomaterials 2015; 75:37-46. [PMID: 26476196 DOI: 10.1016/j.biomaterials.2015.10.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022]
Abstract
A key challenge to the clinical implementation of decellularized scaffold-based tissue engineering lies in understanding the process of removing cells and immunogenic material from a donor tissue/organ while maintaining the biochemical and biophysical properties of the scaffold that will promote growth of newly seeded cells. Current criteria for evaluating whole organ decellularization are primarily based on nucleic acids, as they are easy to quantify and have been directly correlated to adverse host responses. However, numerous proteins cause immunogenic responses and thus should be measured directly to further understand and quantify the efficacy of decellularization. In addition, there has been increasing appreciation for the role of the various protein components of the extracellular matrix (ECM) in directing cell growth and regulating organ function. We performed in-depth proteomic analysis on four types of biological scaffolds and identified a large number of both remnant cellular and ECM proteins. Measurements of individual protein abundances during the decellularization process revealed significant removal of numerous cellular proteins, but preservation of most structural matrix proteins. The observation that decellularized scaffolds still contain many cellular proteins, although at decreased abundance, indicates that elimination of DNA does not assure adequate removal of all cellular material. Thus, proteomic analysis provides crucial characterization of the decellularization process to create biological scaffolds for future tissue/organ replacement therapies.
Collapse
Affiliation(s)
- Qiyao Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Sharon Geerts
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Sinan Ozer
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah E Gilpin
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nathan V Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
45
|
Naba A, Clauser KR, Hynes RO. Enrichment of Extracellular Matrix Proteins from Tissues and Digestion into Peptides for Mass Spectrometry Analysis. J Vis Exp 2015:e53057. [PMID: 26273955 PMCID: PMC4545199 DOI: 10.3791/53057] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The extracellular matrix (ECM) is a complex meshwork of cross-linked proteins that provides biophysical and biochemical cues that are major regulators of cell proliferation, survival, migration, etc. The ECM plays important roles in development and in diverse pathologies including cardio-vascular and musculo-skeletal diseases, fibrosis, and cancer. Thus, characterizing the composition of ECMs of normal and diseased tissues could lead to the identification of novel prognostic and diagnostic biomarkers and potential novel therapeutic targets. However, the very nature of ECM proteins (large in size, cross-linked and covalently bound, heavily glycosylated) has rendered biochemical analyses of ECMs challenging. To overcome this challenge, we developed a method to enrich ECMs from fresh or frozen tissues and tumors that takes advantage of the insolubility of ECM proteins. We describe here in detail the decellularization procedure that consists of sequential incubations in buffers of different pH and salt and detergent concentrations and that results in 1) the extraction of intracellular (cytosolic, nuclear, membrane and cytoskeletal) proteins and 2) the enrichment of ECM proteins. We then describe how to deglycosylate and digest ECM-enriched protein preparations into peptides for subsequent analysis by mass spectrometry.
Collapse
Affiliation(s)
- Alexandra Naba
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology;
| | | | - Richard O Hynes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| |
Collapse
|
46
|
Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: Tools and insights for the "omics" era. Matrix Biol 2015; 49:10-24. [PMID: 26163349 DOI: 10.1016/j.matbio.2015.06.003] [Citation(s) in RCA: 689] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022]
Abstract
The extracellular matrix (ECM) is a fundamental component of multicellular organisms that provides mechanical and chemical cues that orchestrate cellular and tissue organization and functions. Degradation, hyperproduction or alteration of the composition of the ECM cause or accompany numerous pathologies. Thus, a better characterization of ECM composition, metabolism, and biology can lead to the identification of novel prognostic and diagnostic markers and therapeutic opportunities. The development over the last few years of high-throughput ("omics") approaches has considerably accelerated the pace of discovery in life sciences. In this review, we describe new bioinformatic tools and experimental strategies for ECM research, and illustrate how these tools and approaches can be exploited to provide novel insights in our understanding of ECM biology. We also introduce a web platform "the matrisome project" and the database MatrisomeDB that compiles in silico and in vivo data on the matrisome, defined as the ensemble of genes encoding ECM and ECM-associated proteins. Finally, we present a first draft of an ECM atlas built by compiling proteomics data on the ECM composition of 14 different tissues and tumor types.
Collapse
Affiliation(s)
- Alexandra Naba
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Karl R Clauser
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Huiming Ding
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Barbara K. Ostrom Bioinformatics and Computing facility at the Swanson Biotechnology Center, Cambridge, MA 02139, USA
| | - Charles A Whittaker
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Barbara K. Ostrom Bioinformatics and Computing facility at the Swanson Biotechnology Center, Cambridge, MA 02139, USA
| | - Steven A Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Richard O Hynes
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
47
|
Hill RC, Calle EA, Dzieciatkowska M, Niklason LE, Hansen KC. Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering. Mol Cell Proteomics 2015; 14:961-73. [PMID: 25660013 PMCID: PMC4390273 DOI: 10.1074/mcp.m114.045260] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/06/2015] [Indexed: 01/20/2023] Open
Abstract
The use of extracellular matrix (ECM) scaffolds, derived from decellularized tissues for engineered organ generation, holds enormous potential in the field of regenerative medicine. To support organ engineering efforts, we developed a targeted proteomics method to extract and quantify extracellular matrix components from tissues. Our method provides more complete and accurate protein characterization than traditional approaches. This is accomplished through the analysis of both the chaotrope-soluble and -insoluble protein fractions and using recombinantly generated stable isotope labeled peptides for endogenous protein quantification. Using this approach, we have generated 74 peptides, representing 56 proteins to quantify protein in native (nondecellularized) and decellularized lung matrices. We have focused on proteins of the ECM and additional intracellular proteins that are challenging to remove during the decellularization procedure. Results indicate that the acellular lung scaffold is predominantly composed of structural collagens, with the majority of these proteins found in the insoluble ECM, a fraction that is often discarded using widely accepted proteomic methods. The decellularization procedure removes over 98% of intracellular proteins evaluated and retains, to varying degrees, proteoglycans and glycoproteins of the ECM. Accurate characterization of ECM proteins from tissue samples will help advance organ engineering efforts by generating a molecular readout that can be correlated with functional outcome to drive the next generation of engineered organs.
Collapse
Affiliation(s)
- Ryan C Hill
- ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045
| | | | - Monika Dzieciatkowska
- ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045
| | - Laura E Niklason
- §Department of Biomedical Engineering and Anesthesiology, ¶Yale University, New Haven, CT 06519
| | - Kirk C Hansen
- ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045,
| |
Collapse
|
48
|
Prakash MD, Munoz MA, Jain R, Tong PL, Koskinen A, Regner M, Kleifeld O, Ho B, Olson M, Turner SJ, Mrass P, Weninger W, Bird PI. Granzyme B promotes cytotoxic lymphocyte transmigration via basement membrane remodeling. Immunity 2014; 41:960-72. [PMID: 25526309 DOI: 10.1016/j.immuni.2014.11.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 11/25/2014] [Indexed: 01/17/2023]
Abstract
Granzyme B (GzmB) is a protease with a well-characterized intracellular role in targeted destruction of compromised cells by cytotoxic lymphocytes. However, GzmB also cleaves extracellular matrix components, suggesting that it influences the interplay between cytotoxic lymphocytes and their environment. Here, we show that GzmB-null effector T cells and natural killer (NK) cells exhibited a cell-autonomous homing deficit in mouse models of inflammation and Ectromelia virus infection. Intravital imaging of effector T cells in inflamed cremaster muscle venules revealed that GzmB-null cells adhered normally to the vessel wall and could extend lamellipodia through it but did not cross it efficiently. In vitro migration assays showed that active GzmB was released from migrating cytotoxic lymphocytes and enabled chemokine-driven movement through basement membranes. Finally, proteomic analysis demonstrated that GzmB cleaved basement membrane constituents. Our results highlight an important role for GzmB in expediting cytotoxic lymphocyte diapedesis via basement membrane remodeling.
Collapse
Affiliation(s)
- Monica D Prakash
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Marcia A Munoz
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Rohit Jain
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Philip L Tong
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Aulikki Koskinen
- Department of Emerging Pathogens and Vaccines, John Curtin School of Medical Research, College of Medicine, Biology, and Environment, Australian National University, Canberra, ACT 2600, Australia
| | - Matthias Regner
- Department of Emerging Pathogens and Vaccines, John Curtin School of Medical Research, College of Medicine, Biology, and Environment, Australian National University, Canberra, ACT 2600, Australia
| | - Oded Kleifeld
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Bosco Ho
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Matthew Olson
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paulus Mrass
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown, NSW 2042, Australia
| | - Wolfgang Weninger
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown, NSW 2042, Australia; Discipline of Dermatology, Sydney Medical School, University of Sydney, NSW 2006, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
49
|
Abstract
Our friend and colleague, Dr. Dick Heinegård, contributed greatly to the understanding of joint tissue biochemistry, the discovery and validation of arthritis-related biomarkers and the establishment of methodology for proteomic studies in osteoarthritis (OA). To date, discovery of OA-related biomarkers has focused on cartilage, synovial fluid and serum. Methods, such as affinity depletion and hyaluronidase treatment have facilitated proteomics discovery research from these sources. Osteoarthritis usually involves multiple joints; this characteristic makes it easier to detect OA with a systemic biomarker but makes it hard to delineate abnormalities of individual affected joints. Although the abundance of cartilage proteins in urine may generally be lower than other tissue/sample sources, the protein composition of urine is much less complex and its collection is non-invasive thereby facilitating the development of patient friendly biomarkers. To date however, relatively few proteomics studies have been conducted in OA urine. Proteomics strategies have identified many proteins that may relate to pathological mechanisms of OA. Further targeted approaches to validate the role of these proteins in OA are needed. Herein we summarize recent proteomic studies related to joint tissues and the cohorts used; a clear understanding of the cohorts is important for this work as we expect that the decisive discoveries of OA-related biomarkers rely on comprehensive phenotyping of healthy non-OA and OA subjects. Besides the common phenotyping criteria that include, gender, age, and body mass index (BMI), it is essential to collect data on symptoms and signs of OA outside the index joints and to bolster this with objective imaging data whenever possible to gain the most precise appreciation of the total burden of disease. Proteomic studies on systemic biospecimens, such as serum and urine, rely on comprehensive phenotyping data to unravel the true meaning of the proteomic results.
Collapse
|
50
|
Proteome array identification of bioactive soluble proteins/peptides in Matrigel: relevance to stem cell responses. Cytotechnology 2014; 67:873-83. [PMID: 24744128 DOI: 10.1007/s10616-014-9727-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 04/04/2014] [Indexed: 01/19/2023] Open
Abstract
Matrigel and similar commercial products are extracts of the Engelbreth-Holm-Swarm sarcoma that provide a basement-membrane-like attachment substrate or gel that is used to grow cells on or in, respectively. To ascertain further what proteins may be present in Matrigel, besides its major basement-membrane constituents, an analysis of the expressed liquid of gelled Matrigel was performed using proteome array technology. Among the growth factors/cytokines assayed, high positive detection was found for IGFBP1, IGFBP3, LIF, platelet factor 4, PlGF-2, and VEGF; moderate reactivity was found for cyr61, IGFBP2, IGFBP6, IL-1ra, and NOV; and low, but detectable, responses occurred for aFGF, IL-13, IL-23, M-CSF, and VEGF-B. Among the chemokines assayed, high positive detection was found for MIG and serpin E1; moderate reactivity was found for IP-10, MCP-1, and MCP-5, and low, but detectable, responses occurred for CXCL16, I-TAC, and MIP-1α. Among the other biologically active proteins assayed, high positive detection was found for adiponectin, C5a, endocan, lipocalin-2, sICAM-1, MMP-3, and TIMP-1; moderate reactivity was found for C-reactive protein, coagulation factor III, endoglin, endostatin/collagen XVIII, endothelin-1, ICAM-1, MMP-9, osteopontin, pentraxin-3, and RANTES; and low, but detectable, responses occurred for fetuin A, MMP-8, pentraxin-2, RBP4, resistin, and TIMP-4. The study found several growth factors, chemokines, and biologically active proteins not previously identified in Matrigel, and this may have significance to the interpretations of observed cellular responses when cells are grown on or in Matrigel.
Collapse
|