1
|
Qian X, He Y, Zhang L, Li X, Tang W. Physiological and Proteome Analysis of the Effects of Chitosan Oligosaccharides on Salt Tolerance of Rice Seedlings. Int J Mol Sci 2024; 25:5953. [PMID: 38892141 PMCID: PMC11173229 DOI: 10.3390/ijms25115953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Rice (Oryza sativa L.) is an important social-economic crop, and rice seedlings are easily affected by salt stress. Chitosan oligosaccharide (COS) plays a positive role in promoting plant growth and development. To gain a better understanding of the salt tolerance mechanism of rice under the action of COS, Nipponbare rice seedlings were selected as the experimental materials, and the physiological and biochemical indexes of rice seedlings in three stages (normal growth, salt stress and recovery) were measured. Unlabelled quantitative proteomics technology was used to study differential protein and signaling pathways of rice seedlings under salt stress, and the mechanism of COS to improve rice tolerance to salt stress was elucidated. Results showed that after treatment with COS, the chlorophyll content of rice seedlings was 1.26 times higher than that of the blank group (CK). The root activity during the recovery stage was 1.46 times that of the CK group. The soluble sugar in root, stem and leaf increased by 53.42%, 77.10% and 9.37%, respectively. The total amino acid content increased by 77% during the stem recovery stage. Furthermore, the malondialdehyde content in root, stem and leaf increased by 21.28%, 26.67% and 32.69%, respectively. The activity of oxide dismutase (SOD), peroxidase (POD) and oxygenase (CAT) were increased. There were more differentially expressed proteins in the three parts of the experimental group than in the CK group. Gene Ontology (GO) annotation of these differentially expressed proteins revealed that the experimental group was enriched for more entries. Then, through the Kyoto Encyclopedia of Genes and Genomes (KEGG), the top ten pathways enriched with differentially expressed proteins in the two groups (COS and CK groups) were utilized, and a detailed interpretation of the glycolysis and photosynthesis pathways was provided. Five key proteins, including phosphofructokinase, fructose bisphosphate aldolases, glycer-aldehyde-3-phosphate dehydrogenase, enolase and pyruvate kinase, were identified in the glycolysis pathway. In the photosynthesis pathway, oxygen evolution enhancement proteins, iron redox proteins and ferredoxin-NADPH reductase were the key proteins. The addition of COS led to an increase in the abundance of proteins, a response of rice seedlings to salt stress. COS helped rice seedlings resist salt stress. Furthermore, using COS as biopesticides and biofertilizers can effectively increase the utilization of saline-affected farmland, thereby contributing to the alleviating of the global food crisis.
Collapse
Affiliation(s)
| | | | | | | | - Wenzhu Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (X.Q.); (Y.H.); (L.Z.); (X.L.)
| |
Collapse
|
2
|
Schreier TB, Müller KH, Eicke S, Faulkner C, Zeeman SC, Hibberd JM. Plasmodesmal connectivity in C 4 Gynandropsis gynandra is induced by light and dependent on photosynthesis. THE NEW PHYTOLOGIST 2024; 241:298-313. [PMID: 37882365 PMCID: PMC10952754 DOI: 10.1111/nph.19343] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/11/2022] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
In leaves of C4 plants, the reactions of photosynthesis become restricted between two compartments. Typically, this allows accumulation of C4 acids in mesophyll (M) cells and subsequent decarboxylation in the bundle sheath (BS). In C4 grasses, proliferation of plasmodesmata between these cell types is thought to increase cell-to-cell connectivity to allow efficient metabolite movement. However, it is not known whether C4 dicotyledons also show this enhanced plasmodesmal connectivity and so whether this is a general requirement for C4 photosynthesis is not clear. How M and BS cells in C4 leaves become highly connected is also not known. We investigated these questions using 3D- and 2D-electron microscopy on the C4 dicotyledon Gynandropsis gynandra as well as phylogenetically close C3 relatives. The M-BS interface of C4 G. gynandra showed higher plasmodesmal frequency compared with closely related C3 species. Formation of these plasmodesmata was induced by light. Pharmacological agents that perturbed photosynthesis reduced the number of plasmodesmata, but this inhibitory effect could be reversed by the provision of exogenous sucrose. We conclude that enhanced formation of plasmodesmata between M and BS cells is wired to the induction of photosynthesis in C4 G. gynandra.
Collapse
Affiliation(s)
- Tina B. Schreier
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB1 3EAUK
- Present address:
Department of BiologyUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Karin H. Müller
- Cambridge Advanced Imaging Centre (CAIC)University of CambridgeDowning StreetCambridgeCB2 3DYUK
| | - Simona Eicke
- Institute of Molecular Plant BiologyETH ZurichZurichCH‐8092Switzerland
| | - Christine Faulkner
- Cell and Developmental BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Samuel C. Zeeman
- Institute of Molecular Plant BiologyETH ZurichZurichCH‐8092Switzerland
| | - Julian M. Hibberd
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB1 3EAUK
| |
Collapse
|
3
|
Hou Z, Xu D, Deng N, Li Y, Yang L, Li S, Zhou H, Huang Q, Wang X. Comparative Proteomics of Mulberry Leaves at Different Developmental Stages Identify Novel Proteins Function Related to Photosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:797631. [PMID: 35003187 PMCID: PMC8739898 DOI: 10.3389/fpls.2021.797631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/19/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Mulberry leaves at different positions are different in photosynthetic rate, nutrient substance and feeding impact to silkworms. Here, we investigated the proteomic differences of the first (L1), sixth (L6), and twentieth (L20) mulberry leaves at different stem positions (from top to the base) using a label-free quantitative proteomics approach. L1 contained less developed photosynthetic apparatus but was more active in protein synthesis. L20 has more channel proteins and oxidoreductases relative to L6. Proteins that detected in all measured leaves were classified into three groups according to their expression patterns in L1, L6, and L20. The protein group that displayed the maximum amount in L6 has the highest possibility that function related to photosynthesis. Nine function unknown proteins belong to this group were further analyzed in the light responsive expression, evolutionary tree and sub-cellular localization analysis. Based on the results, five proteins were suggested to be involved in photosynthesis. Taken together, these results reveal the molecular details of different roles of mulberry leaves at different developmental stages and contribute to the identification of five proteins that might function related to photosynthesis.
Collapse
Affiliation(s)
- Zhiwei Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Dashun Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Na Deng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yan Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Luoling Yang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Shuxuan Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hong Zhou
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Qintao Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiling Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Endoplasmic Reticulum Subproteome Analysis Reveals Underlying Defense Mechanisms of Wheat Seedling Leaves under Salt Stress. Int J Mol Sci 2021; 22:ijms22094840. [PMID: 34063651 PMCID: PMC8124925 DOI: 10.3390/ijms22094840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/13/2023] Open
Abstract
Salt stress is the second most important abiotic stress factor in the world, which seriously affects crop growth, development and grain production. In this study, we performed the first integrated physiological and endoplasmic reticulum (ER) proteome analysis of wheat seedling leaves under salt stress using a label-free-based quantitative proteomic approach. Salt stress caused significant decrease in seedling height, root length, relative water content and chlorophyll content of wheat seedling leaves, indicating that wheat seedling growth was significantly inhibited under salt stress. The ER proteome analysis identified 233 ER-localized differentially accumulated proteins (DAPs) in response to salt stress, including 202 upregulated and 31 downregulated proteins. The upregulated proteins were mainly involved in the oxidation-reduction process, transmembrane transport, the carboxylic acid metabolic process, stress response, the arbohydrate metabolic process and proteolysis, while the downregulated proteins mainly participated in the metabolic process, biological regulation and the cellular process. In particular, salt stress induced significant upregulation of protein disulfide isomerase-like proteins and heat shock proteins and significant downregulation of ribosomal protein abundance. Further transcript expression analysis revealed that half of the detected DAP genes showed a consistent pattern with their protein levels under salt stress. A putative metabolic pathway of ER subproteome of wheat seedling leaves in response to salt stress was proposed, which reveals the potential roles of wheat ER proteome in salt stress response and defense.
Collapse
|
5
|
Floris D, Kühlbrandt W. Molecular landscape of etioplast inner membranes in higher plants. NATURE PLANTS 2021; 7:514-523. [PMID: 33875833 PMCID: PMC8055535 DOI: 10.1038/s41477-021-00896-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/21/2020] [Accepted: 03/05/2021] [Indexed: 05/16/2023]
Abstract
Etioplasts are photosynthetically inactive plastids that accumulate when light levels are too low for chloroplast maturation. The etioplast inner membrane consists of a paracrystalline tubular lattice and peripheral, disk-shaped membranes, respectively known as the prolamellar body and prothylakoids. These distinct membrane regions are connected into one continuous compartment. To date, no structures of protein complexes in or at etioplast membranes have been reported. Here, we used electron cryo-tomography to explore the molecular membrane landscape of pea and maize etioplasts. Our tomographic reconstructions show that ATP synthase monomers are enriched in the prothylakoids, and plastid ribosomes in the tubular lattice. The entire tubular lattice is covered by regular helical arrays of a membrane-associated protein, which we identified as the 37-kDa enzyme, light-dependent protochlorophyllide oxidoreductase (LPOR). LPOR is the most abundant protein in the etioplast, where it is responsible for chlorophyll biosynthesis, photoprotection and defining the membrane geometry of the prolamellar body. Based on the 9-Å-resolution volume of the subtomogram average, we propose a structural model of membrane-associated LPOR.
Collapse
Affiliation(s)
- Davide Floris
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Gao ZF, Shen Z, Chao Q, Yan Z, Ge XL, Lu T, Zheng H, Qian CR, Wang BC. Large-scale Proteomic and Phosphoproteomic Analyses of Maize Seedling Leaves During De-etiolation. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:397-414. [PMID: 33385613 PMCID: PMC8242269 DOI: 10.1016/j.gpb.2020.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/19/2019] [Revised: 07/16/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
De-etiolation consists of a series of developmental and physiological changes that a plant undergoes in response to light. During this process light, an important environmental signal, triggers the inhibition of mesocotyl elongation and the production of photosynthetically active chloroplasts, and etiolated leaves transition from the "sink" stage to the "source" stage. De-etiolation has been extensively studied in maize (Zea mays L.). However, little is known about how this transition is regulated. In this study, we described a quantitative proteomic and phosphoproteomic atlas of the de-etiolation process in maize. We identified 16,420 proteins in proteome, among which 14,168 proteins were quantified. In addition, 8746 phosphorylation sites within 3110 proteins were identified. From the combined proteomic and phosphoproteomic data, we identified a total of 17,436 proteins. Only 7.0% (998/14,168) of proteins significantly changed in abundance during de-etiolation. In contrast, 26.6% of phosphorylated proteins exhibited significant changes in phosphorylation level; these included proteins involved in gene expression and homeostatic pathways and rate-limiting enzymes involved in photosynthetic light and carbon reactions. Based on phosphoproteomic analysis, 34.0% (1057/3110) of phosphorylated proteins identified in this study contained more than 2 phosphorylation sites, and 37 proteins contained more than 16 phosphorylation sites, indicating that multi-phosphorylation is ubiquitous during the de-etiolation process. Our results suggest that plants might preferentially regulate the level of posttranslational modifications (PTMs) rather than protein abundance for adapting to changing environments. The study of PTMs could thus better reveal the regulation of de-etiolation.
Collapse
Affiliation(s)
- Zhi-Fang Gao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Qing Chao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhen Yan
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan-Liang Ge
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Tiancong Lu
- Beijing ProteinWorld Biotech, Beijing 100012, China
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ 08855, USA
| | - Chun-Rong Qian
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Bai-Chen Wang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Vitorino R, Guedes S, Trindade F, Correia I, Moura G, Carvalho P, Santos MAS, Amado F. De novo sequencing of proteins by mass spectrometry. Expert Rev Proteomics 2020; 17:595-607. [PMID: 33016158 DOI: 10.1080/14789450.2020.1831387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Proteins are crucial for every cellular activity and unraveling their sequence and structure is a crucial step to fully understand their biology. Early methods of protein sequencing were mainly based on the use of enzymatic or chemical degradation of peptide chains. With the completion of the human genome project and with the expansion of the information available for each protein, various databases containing this sequence information were formed. AREAS COVERED De novo protein sequencing, shotgun proteomics and other mass-spectrometric techniques, along with the various software are currently available for proteogenomic analysis. Emphasis is placed on the methods for de novo sequencing, together with potential and shortcomings using databases for interpretation of protein sequence data. EXPERT OPINION As mass-spectrometry sequencing performance is improving with better software and hardware optimizations, combined with user-friendly interfaces, de-novo protein sequencing becomes imperative in shotgun proteomic studies. Issues regarding unknown or mutated peptide sequences, as well as, unexpected post-translational modifications (PTMs) and their identification through false discovery rate searches using the target/decoy strategy need to be addressed. Ideally, it should become integrated in standard proteomic workflows as an add-on to conventional database search engines, which then would be able to provide improved identification.
Collapse
Affiliation(s)
- Rui Vitorino
- QOPNA & LAQV-REQUIMTE, Departamento De Química, Institute of Biomedicine - iBiMED , Aveiro, Portugal.,iBiMED, Department of Medical Sciences, University of Aveiro , Aveiro, Portugal.,Unidade De Investigação Cardiovascular, Departamento De Cirurgia E Fisiologia, Faculdade De Medicina, Universidade Do Porto , Porto, Portugal
| | - Sofia Guedes
- QOPNA & LAQV-REQUIMTE, Departamento De Química, Institute of Biomedicine - iBiMED , Aveiro, Portugal
| | - Fabio Trindade
- Unidade De Investigação Cardiovascular, Departamento De Cirurgia E Fisiologia, Faculdade De Medicina, Universidade Do Porto , Porto, Portugal
| | - Inês Correia
- iBiMED, Department of Medical Sciences, University of Aveiro , Aveiro, Portugal
| | - Gabriela Moura
- iBiMED, Department of Medical Sciences, University of Aveiro , Aveiro, Portugal
| | - Paulo Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, FIOCRUZ, Laboratory for Proteomics and Protein Engineering , Brazil
| | - Manuel A S Santos
- iBiMED, Department of Medical Sciences, University of Aveiro , Aveiro, Portugal
| | - Francisco Amado
- QOPNA & LAQV-REQUIMTE, Departamento De Química, Institute of Biomedicine - iBiMED , Aveiro, Portugal
| |
Collapse
|
8
|
Yan Z, Shen Z, Li Z, Chao Q, Kong L, Gao ZF, Li QW, Zheng HY, Zhao CF, Lu CM, Wang YW, Wang BC. Genome-wide transcriptome and proteome profiles indicate an active role of alternative splicing during de-etiolation of maize seedlings. PLANTA 2020; 252:60. [PMID: 32964359 DOI: 10.1007/s00425-020-03464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/22/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
AS events affect genes encoding protein domain composition and make the single gene produce more proteins with a certain number of genes to satisfy the establishment of photosynthesis during de-etiolation. The drastic switch from skotomorphogenic to photomorphogenic development is an excellent system to elucidate rapid developmental responses to environmental stimuli in plants. To decipher the effects of different light wavelengths on de-etiolation, we illuminated etiolated maize seedlings with blue, red, blue-red mixed and white light, respectively. We found that blue light alone has the strongest effect on photomorphogenesis and that this effect can be attributed to the higher number and expression levels of photosynthesis and chlorosynthesis proteins. Deep sequencing-based transcriptome analysis revealed gene expression changes under different light treatments and a genome-wide alteration in alternative splicing (AS) profiles. We discovered 41,188 novel transcript isoforms for annotated genes, which increases the percentage of multi-exon genes with AS to 63% in maize. We provide peptide support for all defined types of AS, especially retained introns. Further in silico prediction revealed that 58.2% of retained introns have changes in domains compared with their most similar annotated protein isoform. This suggests that AS acts as a protein function switch allowing rapid light response through the addition or removal of functional domains. The richness of novel transcripts and protein isoforms also demonstrates the potential and importance of integrating proteomics into genome annotation in maize.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Zhe Li
- Precision Scientific (Beijing) Co., Ltd., Beijing, 100085, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China
| | - Lei Kong
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Qing-Wei Li
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hai-Yan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ, 08855, USA
| | - Cai-Feng Zhao
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, NJ, 08855, USA
| | - Cong-Ming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ying-Wei Wang
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
9
|
Zheng G, Yin T, Lu Z, Boboua SYB, Li J, Zhou W. Degradation of rice straw at low temperature using a novel microbial consortium LTF-27 with efficient ability. BIORESOURCE TECHNOLOGY 2020; 304:123064. [PMID: 32115346 DOI: 10.1016/j.biortech.2020.123064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
In this study, a novel psychrotrophic lignocelluloses degrading microbial consortium LTF-27 was successfully obtained from cold perennial forest soil by successive enrichment culture under facultative anaerobic static conditions. The microbial consortium showed efficient degradation of rice straw, which cellulose, hemicelluloses and lignin lost 71.7%, 65.6% and 12.5% of its weigh, respectively, in 20 days at 15 °C. The predominant liquid products were acetic acid and butyric acid during degrading lignocellulose in anaerobic digestion (AD) process inoculated with the LTF-27. The consortium mainly composed of Parabacteroides, Alcaligenes, Lysinibacillus, Sphingobacterium, and Clostridium, along with some unclassified uncultured bacteria, indicating powerful synergistic interaction in AD process. A multi-species lignocellulolytic enzyme system working cooperatingly on lignocelluolse degradation was revealed by proteomics analysis of cellulose bound fraction of the crude extracellular enzyme, which provides key theoretical base for further exploration and application of LTF-27.
Collapse
Affiliation(s)
- Guoxiang Zheng
- College of Engineering, Northeast Agriculture University, Harbin 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China; Heilongjiang Key Laboratory of Technology and Equipment for the Utilization of Agricultural Renewable Resources, Harbin 150030, China.
| | - Ting Yin
- College of Engineering, Northeast Agriculture University, Harbin 150030, China; Heilongjiang Key Laboratory of Technology and Equipment for the Utilization of Agricultural Renewable Resources, Harbin 150030, China
| | - Zhaoxin Lu
- College of Engineering, Northeast Agriculture University, Harbin 150030, China; Heilongjiang Key Laboratory of Technology and Equipment for the Utilization of Agricultural Renewable Resources, Harbin 150030, China
| | - Stopira Yannick Benz Boboua
- College of Engineering, Northeast Agriculture University, Harbin 150030, China; Heilongjiang Key Laboratory of Technology and Equipment for the Utilization of Agricultural Renewable Resources, Harbin 150030, China
| | - Jiachen Li
- College of Engineering, Northeast Agriculture University, Harbin 150030, China; Heilongjiang Key Laboratory of Technology and Equipment for the Utilization of Agricultural Renewable Resources, Harbin 150030, China
| | - Wenlong Zhou
- College of Engineering, Northeast Agriculture University, Harbin 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| |
Collapse
|
10
|
Yan Z, Shen Z, Gao ZF, Chao Q, Qian CR, Zheng H, Wang BC. A comprehensive analysis of the lysine acetylome reveals diverse functions of acetylated proteins during de-etiolation in Zea mays. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153158. [PMID: 32240968 DOI: 10.1016/j.jplph.2020.153158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/16/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 06/11/2023]
Abstract
Lysine acetylation is one of the most important post-translational modifications and is involved in multiple cellular processes in plants. There is evidence that acetylation may play an important role in light-induced de-etiolation, a key developmental switch from skotomorphogenesis to photomorphogenesis. During this transition, establishment of photosynthesis is of great significance. However, studies on acetylome dynamics during de-etiolation are limited. Here, we performed the first global lysine acetylome analysis for Zea mays seedlings undergoing de-etiolation, using nano liquid chromatography coupled to tandem mass spectrometry, and identified 814 lysine-acetylated sites on 462 proteins. Bioinformatics analysis of this acetylome showed that most of the lysine-acetylated proteins are predicted to be located in the cytoplasm, nucleus, chloroplast, and mitochondria. In addition, we detected ten lysine acetylation motifs and found that the accumulation of 482 lysine-acetylated peptides corresponding to 289 proteins changed significantly during de-etiolation. These proteins include transcription factors, histones, and proteins involved in chlorophyll synthesis, photosynthesis light reaction, carbon assimilation, glycolysis, the TCA cycle, amino acid metabolism, lipid metabolism, and nucleotide metabolism. Our study provides an in-depth dataset that extends our knowledge of in vivo acetylome dynamics during de-etiolation in monocots. This dataset promotes our understanding of the functional consequences of lysine acetylation in diverse cellular metabolic regulatory processes, and will be a useful toolkit for further investigations of the lysine acetylome and de-etiolation in plants.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| | - Chun-Rong Qian
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, New Jersey 08855, USA.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
11
|
Large-scale Identification and Time-course Quantification of Ubiquitylation Events During Maize Seedling De-etiolation. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 17:603-622. [PMID: 32179194 PMCID: PMC7212306 DOI: 10.1016/j.gpb.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/27/2017] [Revised: 04/11/2018] [Accepted: 05/04/2018] [Indexed: 01/02/2023]
Abstract
The ubiquitin system is crucial for the development and fitness of higher plants. De-etiolation, during which green plants initiate photomorphogenesis and establish autotrophy, is a dramatic and complicated process that is tightly regulated by a massive number of ubiquitylation/de-ubiquitylation events. Here we present site-specific quantitative proteomic data for the ubiquitylomes of de-etiolating seedling leaves of Zea mays L. (exposed to light for 1, 6, or 12 h) achieved through immunoprecipitation-based high-resolution mass spectrometry (MS). Through the integrated analysis of multiple ubiquitylomes, we identified and quantified 1926 unique ubiquitylation sites corresponding to 1053 proteins. We analyzed these sites and found five potential ubiquitylation motifs, KA, AXK, KXG, AK, and TK. Time-course studies revealed that the ubiquitylation levels of 214 sites corresponding to 173 proteins were highly correlated across two replicate MS experiments, and significant alterations in the ubiquitylation levels of 78 sites (fold change >1.5) were detected after de-etiolation for 12 h. The majority of the ubiquitylated sites we identified corresponded to substrates involved in protein and DNA metabolism, such as ribosomes and histones. Meanwhile, multiple ubiquitylation sites were detected in proteins whose functions reflect the major physiological changes that occur during plant de-etiolation, such as hormone synthesis/signaling proteins, key C4 photosynthetic enzymes, and light signaling proteins. This study on the ubiquitylome of the maize seedling leaf is the first attempt ever to study the ubiquitylome of a C4 plant and provides the proteomic basis for elucidating the role of ubiquitylation during plant de-etiolation.
Collapse
|
12
|
Wang B, Li N, Wang J, Huang S, Tang Y, Yang S, Yang T, Wang Q, Yu Q, Gao J. iTRAQ-Based Proteomics Reveals that the Tomato ms10 35 Gene Causes Male Sterility through Compromising Fat Acid Metabolism. Proteomics 2020; 20:e1900213. [PMID: 32104964 DOI: 10.1002/pmic.201900213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2019] [Revised: 02/16/2020] [Indexed: 11/11/2022]
Abstract
So far, over 50 spontaneous male sterile mutants of tomato have been described and most of them are categorized as genetic male sterility. To date, the mechanism of tomato genetic male sterility remained unclear. In this study, differential proteomic analysis is performed between genetic male sterile line (2-517), which carries the male sterility (ms1035 ) gene, and its wild-type (VF-11) using isobaric tags for relative and absolute quantification-based strategy. A total of 8272 proteins are quantified in the 2-517 and VF-11 lines at the floral bud and florescence stages. These proteins are involved in different cellular and metabolic processes, which express obvious functional tendencies toward the hydroxylation of the ω-carbon in fatty acids, the tricarboxylic acid cycle, the glycolytic, and pentose phosphate pathways. Based on the results, a protein network explaining the mechanisms of tomato genetic male sterility is proposed, finding the compromising fat acid metabolism may cause the male sterility. These results are confirmed by parallel reaction monitoring, quantitative Real-time PCR (qRT-PCR), and physiological assays. Taken together, these results provide new insights into the metabolic pathway of anther abortion induced by ms1035 and offer useful clues to identify the crucial proteins involved in genetic male sterility in tomato.
Collapse
Affiliation(s)
- Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Shaoyong Huang
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Yaping Tang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Shengbao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Qiang Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China.,College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Jie Gao
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| |
Collapse
|
13
|
Armarego-Marriott T, Sandoval-Ibañez O, Kowalewska Ł. Beyond the darkness: recent lessons from etiolation and de-etiolation studies. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1215-1225. [PMID: 31854450 PMCID: PMC7031072 DOI: 10.1093/jxb/erz496] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/28/2019] [Accepted: 11/29/2019] [Indexed: 05/06/2023]
Abstract
The state of etiolation is generally defined by the presence of non-green plastids (etioplasts) in plant tissues that would normally contain chloroplasts. In the commonly used dark-grown seedling system, etiolation is coupled with a type of growth called skotomorphogenesis. Upon illumination, de-etiolation occurs, marked by the transition from etioplast to chloroplast, and, at the seedling level, a switch to photomorphogenic growth. Etiolation and de-etiolation systems are therefore important for understanding both the acquisition of photosynthetic capacity during chloroplast biogenesis and plant responses to light-the most relevant signal in the life and growth of the organism. In this review, we discuss recent discoveries (within the past 2-3 years) in the field of etiolation and de-etiolation, with a particular focus on post-transcriptional processes and ultrastructural changes. We further discuss ambiguities in definitions of the term 'etiolation', and benefits and biases of common etiolation/de-etiolation systems. Finally, we raise several open questions and future research possibilities.
Collapse
Affiliation(s)
| | | | - Łucja Kowalewska
- Faculty of Biology, Department of Plant Anatomy and Cytology, University of Warsaw, Warszawa, Poland
| |
Collapse
|
14
|
Wang D, Sun Y, Chang L, Tong Z, Xie Q, Jin X, Zhu L, He P, Li H, Wang X. Subcellular proteome profiles of different latex fractions revealed washed solutions from rubber particles contain crucial enzymes for natural rubber biosynthesis. J Proteomics 2018; 182:53-64. [PMID: 29729991 DOI: 10.1016/j.jprot.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 01/20/2023]
Abstract
Rubber particle (RP) is a specific organelle for natural rubber biosynthesis (NRB) and storage in rubber tree Hevea brasiliensis. NRB is processed by RP membrane-localized proteins, which were traditionally purified by repeated washing. However, we noticed many proteins in the discarded washing solutions (WS) from RP. Here, we compared the proteome profiles of WS, C-serum (CS) and RP by 2-DE, and identified 233 abundant proteins from WS by mass spectrometry. Many spots on 2-DE gels were identified as different protein species. We further performed shotgun analysis of CS, WS and RP and identified 1837, 1799 and 1020 unique proteins, respectively. Together with 2-DE, we finally identified 1825 proteins from WS, 246 were WS-specific. These WS-specific proteins were annotated in Gene Ontology, indicating most abundant pathways are organic substance metabolic process, protein degradation, primary metabolic process, and energy metabolism. Protein-protein interaction analysis revealed these WS-specific proteins are mainly involved in ribosomal metabolism, proteasome system, vacuolar protein sorting and endocytosis. Label free and Western blotting revealed many WS-specific proteins and protein complexes are crucial for NRB initiation. These findings not only deepen our understanding of WS proteome, but also provide new evidences on the roles of RP membrane proteins in NRB. SIGNIFICANCE Natural rubber is stored in rubber particle from the rubber tree. Rubber particles were traditionally purified by repeated washing, but many proteins were identified from the washing solutions (WS). We obtained the first visualization proteome profiles with 1825 proteins from WS, including 246 WS-specific ones. These WS proteins contain almost all enzymes for polyisoprene initiation and may play important roles in rubber biosynthesis.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan 571158, China
| | - Yong Sun
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Lili Chang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Zheng Tong
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Quanliang Xie
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiang Jin
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan 571158, China
| | - Liping Zhu
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Peng He
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan 571158, China; College of Life Sciences, Key Laboratory of Agrobiotechnology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
15
|
Yu L, Wang W, Zeng S, Chen Z, Yang A, Shi J, Zhao X, Song B. Label-free quantitative proteomics analysis of Cytosinpeptidemycin responses in southern rice black-streaked dwarf virus-infected rice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 147:20-26. [PMID: 29933987 DOI: 10.1016/j.pestbp.2017.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/24/2017] [Revised: 05/19/2017] [Accepted: 06/06/2017] [Indexed: 05/20/2023]
Abstract
Southern rice black-streaked dwarf virus (SRBSDV), a genus Fijivirus of the family Reoviridae, could result in the significant crop losses because being short of an effective controlling measures. Cytosinpeptidemycin, a microbial pesticides developed by China, displayed a wide antiviral activity against many plant viruses. However, its underlying mechanism remains unclear. In this study, a total of 2321 proteins were identified using label-free proteomics technology. Compared with the treatment of SRBSDV-infected rice, 84 and 207 proteins were detected to be up-regulated and only presented in treatment group of SDBSDV-infected rice pre-treated by Cytosinpeptidemycin, which were partially enriched to stress and defense response, such as pathogenesis-related protein 5 (PR-5), pathogenesis-related protein 10 (PR-10) and heat shock protein (Hsp protein). Meanwhile, the real-time quantitative PCR (RT-qPCR) showed that Cytosinpeptidemycin could also up-regulate some resistance genes, and these results indicated a similar trends with the data of the label-free proteomics. Moreover, Cytosinpeptidemycin could enhance the defense enzymatic activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). These data offer a more comprehensive view about the response of SRBSDV-infected rice triggered by Cytosinpeptidemycin in the level of the proteome, mRNA and enzymatic activity.
Collapse
Affiliation(s)
- Lu Yu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Wenli Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Song Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Zhuo Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| | - Anming Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiaozhen Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
16
|
Santisree P, Bhatnagar-Mathur P, Sharma KK. Molecular insights into the functional role of nitric oxide (NO) as a signal for plant responses in chickpea. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:267-283. [PMID: 32291041 DOI: 10.1071/fp16324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/20/2016] [Accepted: 03/14/2017] [Indexed: 06/11/2023]
Abstract
The molecular mechanisms and targets of nitric oxide (NO) are not fully known in plants. Our study reports the first large-scale quantitative proteomic analysis of NO donor responsive proteins in chickpea. Dose response studies carried out using NO donors, sodium nitroprusside (SNP), diethylamine NONOate (DETA) and S-nitrosoglutathione (GSNO) in chickpea genotype ICCV1882, revealed a dose dependent positive impact on seed germination and seedling growth. SNP at 0.1mM concentration proved to be most appropriate following confirmation using four different chickpea genotypes. while SNP treatment enhanced the percentage of germination, chlorophyll and nitrogen contents in chickpea, addition of NO scavenger, cPTIO reverted its impact under abiotic stresses. Proteome profiling revealed 172 downregulated and 76 upregulated proteins, of which majority were involved in metabolic processes (118) by virtue of their catalytic (145) and binding (106) activity. A few crucial proteins such as S-adenosylmethionine synthase, dehydroascorbate reductase, pyruvate kinase fragment, 1-aminocyclopropane-1-carboxylic acid oxidase, 1-pyrroline-5-carboxylate synthetase were less abundant whereas Bowman-Birk type protease inhibitor, non-specific lipid transfer protein, chalcone synthase, ribulose-1-5-bisphosphate carboxylase oxygenase large subunit, PSII D2 protein were highly abundant in SNP treated samples. This study highlights the protein networks for a better understanding of possible NO induced regulatory mechanisms in plants.
Collapse
Affiliation(s)
- Parankusam Santisree
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru, Hyderabad-502324, Telangana, India
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru, Hyderabad-502324, Telangana, India
| | - Kiran K Sharma
- International Crops Research Institute for the Semiarid Tropics (ICRISAT), Patancheru, Hyderabad-502324, Telangana, India
| |
Collapse
|
17
|
Bu TT, Shen J, Chao Q, Shen Z, Yan Z, Zheng HY, Wang BC. Dynamic N-glycoproteome analysis of maize seedling leaves during de-etiolation using Concanavalin A lectin affinity chromatography and a nano-LC-MS/MS-based iTRAQ approach. PLANT CELL REPORTS 2017; 36:1943-1958. [PMID: 28942497 DOI: 10.1007/s00299-017-2209-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/13/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
The identification of N -glycosylated proteins with information about changes in the level of N -glycosylation during de-etiolation provides a database that will aid further research on plant N -glycosylation and de-etiolation. N-glycosylation is one of the most prominent and abundant protein post-translational modifications in all eukaryotes and in plants it plays important roles in development, stress tolerance and immune responses. Because light-induced de-etiolation is one of the most dramatic developmental processes known in plants, seedlings undergoing de-etiolation are an excellent model for investigating dynamic proteomic profiles. Here, we present a comprehensive, quantitative N-glycoproteomic profile of maize seedlings undergoing 12 h of de-etiolation obtained using Concanavalin A (Con A) lectin affinity chromatography enrichment coupled with a nano-LC-MS/MS-based iTRAQ approach. In total, 1084 unique N-glycopeptides carrying 909 N-glycosylation sites and corresponding to 609 proteins were identified and quantified, including 186 N-glycosylation sites from 162 proteins that were significantly regulated over the course of the 12 h de-etiolation period. Based on hierarchical clustering analysis, the significantly regulated N-glycopeptides were divided into seven clusters that showed different N-glycosylation patterns during de-etiolation. We found no obvious difference in the enriched MapMan bincode categories for each cluster, and these clustered significantly regulated N-glycoproteins (SRNPs) are enriched in miscellaneous, protein, cell wall and signaling, indicating that although the N-glycosylation regulation patterns of these SRNPs might differ, they are involved in similar biological processes. Overall, this study represents the first large-scale quantitative N-glycoproteome of the model C4 plant, maize, which is one of the most important cereal and biofuel crops. Our results greatly expand the maize N-glycoproteomic database and also shed light on the potential roles of N-glycosylation modification during the greening of maize leaves.
Collapse
Affiliation(s)
- Tian-Tian Bu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Shen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qing Chao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhuo Shen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Zhen Yan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Yan Zheng
- Center for Advanced Biotechnology and Medicine, Robert-Wood Johnson Medical School-Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Bai-Chen Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
18
|
Aguilar-Hernández V, Kim DY, Stankey RJ, Scalf M, Smith LM, Vierstra RD. Mass Spectrometric Analyses Reveal a Central Role for Ubiquitylation in Remodeling the Arabidopsis Proteome during Photomorphogenesis. MOLECULAR PLANT 2017; 10:846-865. [PMID: 28461270 PMCID: PMC5695678 DOI: 10.1016/j.molp.2017.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/27/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 05/21/2023]
Abstract
The switch from skotomorphogenesis to photomorphogenesis is a key developmental transition in the life of seed plants. While much of the underpinning proteome remodeling is driven by light-induced changes in gene expression, the proteolytic removal of specific proteins by the ubiquitin-26S proteasome system is also likely paramount. Through mass spectrometric analysis of ubiquitylated proteins affinity-purified from etiolated Arabidopsis seedlings before and after red-light irradiation, we identified a number of influential proteins whose ubiquitylation status is modified during this switch. We observed a substantial enrichment for proteins involved in auxin, abscisic acid, ethylene, and brassinosteroid signaling, peroxisome function, disease resistance, protein phosphorylation and light perception, including the phytochrome (Phy) A and phototropin photoreceptors. Soon after red-light treatment, PhyA becomes the dominant ubiquitylated species, with ubiquitin attachment sites mapped to six lysines. A PhyA mutant protected from ubiquitin addition at these sites is substantially more stable in planta upon photoconversion to Pfr and is hyperactive in driving photomorphogenesis. However, light still stimulates ubiquitylation and degradation of this mutant, implying that other attachment sites and/or proteolytic pathways exist. Collectively, we expand the catalog of ubiquitylation targets in Arabidopsis and show that this post-translational modification is central to the rewiring of plants for photoautotrophic growth.
Collapse
Affiliation(s)
- Victor Aguilar-Hernández
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO 63130, USA; Department of Genetics, 425-G Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Do-Young Kim
- Department of Genetics, 425-G Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert J Stankey
- Department of Genetics, 425-G Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Scalf
- Department of Chemistry, 1101 University Avenue, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, 1101 University Avenue, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO 63130, USA; Department of Genetics, 425-G Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
19
|
Zhang N, Zhang HJ, Sun QQ, Cao YY, Li X, Zhao B, Wu P, Guo YD. Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production. Sci Rep 2017; 7:503. [PMID: 28356562 PMCID: PMC5428666 DOI: 10.1038/s41598-017-00566-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2016] [Accepted: 02/21/2017] [Indexed: 12/13/2022] Open
Abstract
Seed germination is a critical and complex process in the plant life cycle. Although previous studies have found that melatonin can promote seed germination under salt stress, the involvement of melatonin in the regulation of proteomic changes remains poorly understood. In this study, a total of 157 proteins were significantly influenced (ratio ≥ 2 or ≤ -2) by melatonin during seed germination under salt stress using a label-free quantitative technique. Our GO analysis revealed that several pathways were obviously regulated by melatonin, including ribosome biosynthesis, lipid metabolism, carbohydrate metabolism, and storage protein degradation. Not only stress-tolerant proteins but also proteins that produce ATP as part of glycolysis, the citric acid cycle, and the glyoxylate cycle were upregulated by melatonin. Overall, this study provides new evidence that melatonin alleviates the inhibitory effects of NaCl stress on seed germination by promoting energy production. This study is the first to provide insights at the proteomic level into the molecular mechanism of melatonin in response to salt stress in cucumber seeds. This may be helpful to further understand the role of melatonin in cucumber seed germination under stress conditions.
Collapse
Affiliation(s)
- Na Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Hai-Jun Zhang
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
| | - Qian-Qian Sun
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yun-Yun Cao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xingsheng Li
- Shandong Provincial Key Laboratory of Cucurbitaceae Vegetable Biological Breeding, Shandong Huasheng Agriculture Co. Ltd, Shandong, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing, China.
| | - Ping Wu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China.
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
20
|
Huang Y, Cai S, Zeng J, Wu D, Zhang G. Isobaric Tags for Relative and Absolute Quantitation Proteomic Analysis of Germinating Barley under Gibberellin and Abscisic Acid Treatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2248-2257. [PMID: 28221792 DOI: 10.1021/acs.jafc.6b04865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/06/2023]
Abstract
The degradation of starch in barley grains is a primary step of beer production. The addition of an appropriate amount of gibberellin (GA) promotes the production of fermentable sugars, beneficial to the brewing industry. However, the response of proteomics in germinating barley to GA and abscisic acid (ABA) treatments is not thoroughly understood. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) proteomics analysis was performed to illustrate the change of proteins in Tibetan wild barley XZ72 and XZ95 under GA and ABA treatments during germination. XZ72 had more proteins upregulated than XZ95 under GA treatment, while under ABA treatments, XZ95 had more proteins upregulated than XZ72. Concerning the proteins involved in energy metabolism under GA treatment, XZ72 had more proteins upregulated than XZ95. Among the 174 proteins related to starch metabolism, 31 proteins related to starch hydrolysis, such as α-amylase, α-glucosidase, and β-fructofuranosidase, showed higher relative abundance in control and GA treatments in XZ72 than in XZ95. Analysis of correlation between proteins and metabolites indicated that higher hydrolase activity is beneficial for the accumulation of fermentable sugars during germination. On the other hand, 26 starch-synthesis-related proteins were upregulated in XZ95 under ABA treatment. It may be suggested that GA-induced proteins act as accelerators of starch degradation, while ABA-induced proteins inhibit starch degradation. The current results showed that XZ72 is highly capable of allocating the starch-hydrolyzing enzymes, which play important roles in starch breakdown.
Collapse
Affiliation(s)
- Yuqing Huang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Shengguan Cai
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jianbin Zeng
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Dezhi Wu
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| | - Guoping Zhang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, Zhejiang University , Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
21
|
Xu J, Li Y, Wang Y, Liu X, Zhu XG. Altered expression profiles of microRNA families during de-etiolation of maize and rice leaves. BMC Res Notes 2017; 10:108. [PMID: 28235420 PMCID: PMC5324284 DOI: 10.1186/s13104-016-2367-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2016] [Accepted: 12/28/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are highly conserved small non-coding RNAs that play important regulatory roles in plants. Although many miRNA families are sequentially and functionally conserved across plant kingdoms (Dezulian et al. in Genome Biol 13, 2005), they still differ in many aspects such as family size, average length, genomic loci etc. (Unver et al. in Int J Plant Genomics, 2009). RESULTS In this study, we investigated changes of miRNA expression profiles during greening process of etiolated seedlings of Oryza sativa (C3) and Zea mays (C4) to explore conserved and species-specific characteristics of miRNAs between these two species. Futhermore, we predicted 47 and 42 candidate novel miRNAs using parameterized monocot specific miRDeep2 pipeline in maize and rice respectively. Potential targets of miRNAs comprising both mRNA and long non-coding RNA (lncRNA) were examined to clarify potential regulation of photosynthesis. Based on our result, two putative positive Kranz regulators reported by Wang et al. (2010) were predicted as potential targets of miR156. A few photosynthesis related genes such as sulfate adenylytransferase (APS3), chlorophyll a/b binding family protein etc. were suggested to be regulated by miRNAs. However, no C4 shuttle genes were predicted to be direct targets of either known or candidate novel miRNAs. CONCLUSIONS This study provided the comprehensive list of miRNA that showed altered expression during the de-etiolation process and a number of candidate miRNAs that might play regulatory roles in C3 and C4 photosynthesis.
Collapse
Affiliation(s)
- Jiajia Xu
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Li
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yaling Wang
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyu Liu
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Guang Zhu
- Key Laboratory of Computational Biology and Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Hybrid Rice Research, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
22
|
Lu Y, Chen X, Yin Z, Zhu S, Wu D, Chen X. Screening for potential serum biomarkers in rat mesangial proliferative nephritis. Proteomics 2016; 16:1015-22. [PMID: 26791873 DOI: 10.1002/pmic.201500405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2015] [Revised: 12/28/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022]
Abstract
Mesangial proliferative nephritis (MesPGN) is a common kidney disease worldwide. The main feature of the disease is mesangial cell proliferation-induced injury to kidney function. In this study, we explored serum biomarkers for kidney function injury in anti-Thy1 nephritis. We found that mesangial proliferation were increased on days 5 and 7, and recovered by day 14 in anti-Thy1 nephritis. 24-h urine protein, the ratio of urine protein to urine creatine, serum creatine, and blood urea nitrogen, were increased at days 5 and 7 in the model. We found that TXN, BET1, PrRP, VGF, and NPS differed strongly from controls on days 5 and, associated with kidney injury when detected by SELDI-TOF MS. Moreover, we applied LC-MS to detect differential protein expression and found A2M, C3, ITIH4, ITIH3, VDBP, AFM, and SERPINF2 to be upregulated, and ES1, HPX, SERPINC1, SERPINA1F, SERPINA4, SERPINA3K, SPI, TF, VNN3, SERPINF1, and PON1 to be downregulated, on days 5 and 7, associated with kidney injury. The levels of VNN3 and VDBP were validated by Western blotting. Overall, this study explored a group of candidate biomarkers of mesangial proliferation inducing kidney injury, to provide the basis of an assessment model for MesPGN in the future.
Collapse
Affiliation(s)
- Yang Lu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, P. R. China
| | - Xiaoniao Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, P. R. China.,Medical College, NanKai University, Tianjin, P. R. China
| | - Zhong Yin
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, P. R. China
| | - Shuying Zhu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, P. R. China
| | - Di Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, P. R. China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing, P. R. China
| |
Collapse
|
23
|
Ligand-mediated changes in conformational dynamics of NpmA: implications for ribosomal interactions. Sci Rep 2016; 6:37061. [PMID: 27845431 PMCID: PMC5109232 DOI: 10.1038/srep37061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2016] [Accepted: 10/24/2016] [Indexed: 12/30/2022] Open
Abstract
Aminoglycosides are broad-spectrum antibiotics that bind to the 30S ribosomal subunit (30S) of bacteria and disrupt protein translation. NpmA, a structurally well-characterized methyltransferase identified in an E. coli clinical isolate, catalyzes methylation of 30S at A1408 of the 16S rRNA and confers aminoglycoside resistance. Using sucrose cushion centrifugation and isothermal titration calorimetry, we first confirmed the binding between NpmA and 30S. Next, we performed amide Hydrogen/Deuterium Exchange Mass Spectrometry (HDXMS) of apo NpmA and in the presence and absence of SAM/SAH. We observed that ligand binding resulted in time-dependent differences in deuterium exchange not only at the ligand-binding pocket (D25–D55 and A86–E112) but also in distal regions (F62-F82 and Y113-S144) of NpmA. These results provide insights into methylation group donor cofactor-mediated allostery in NpmA in the ligand-bound states, which could not be observed in the static endpoint crystal structures. We predict that the two distal sites in NpmA form part of the allosteric sites that importantly are part of the main 16S rRNA binding interface. Thus HDXMS helped uncover allosteric communication relays that couple SAM/SAH binding sites with the ribosome-binding site. This highlights how HDXMS together with X-ray crystallography can provide important allosteric insights in protein-ligand complexes.
Collapse
|
24
|
Xu J, Bräutigam A, Weber APM, Zhu XG. Systems analysis of cis-regulatory motifs in C4 photosynthesis genes using maize and rice leaf transcriptomic data during a process of de-etiolation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5105-17. [PMID: 27436282 PMCID: PMC5014158 DOI: 10.1093/jxb/erw275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/23/2023]
Abstract
Identification of potential cis-regulatory motifs controlling the development of C4 photosynthesis is a major focus of current research. In this study, we used time-series RNA-seq data collected from etiolated maize and rice leaf tissues sampled during a de-etiolation process to systematically characterize the expression patterns of C4-related genes and to further identify potential cis elements in five different genomic regions (i.e. promoter, 5'UTR, 3'UTR, intron, and coding sequence) of C4 orthologous genes. The results demonstrate that although most of the C4 genes show similar expression patterns, a number of them, including chloroplast dicarboxylate transporter 1, aspartate aminotransferase, and triose phosphate transporter, show shifted expression patterns compared with their C3 counterparts. A number of conserved short DNA motifs between maize C4 genes and their rice orthologous genes were identified not only in the promoter, 5'UTR, 3'UTR, and coding sequences, but also in the introns of core C4 genes. We also identified cis-regulatory motifs that exist in maize C4 genes and also in genes showing similar expression patterns as maize C4 genes but that do not exist in rice C3 orthologs, suggesting a possible recruitment of pre-existing cis-elements from genes unrelated to C4 photosynthesis into C4 photosynthesis genes during C4 evolution.
Collapse
Affiliation(s)
- Jiajia Xu
- CAS Key Laboratory of Computational Biology and State Key Laboratory for Hybrid Rice, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, 40225 Düsseldorf, Germany Network Analysis and Modeling, IPK Gatersleben, Correnstrasse 3, D-06466 Stadt Seeland, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Xin-Guang Zhu
- CAS Key Laboratory of Computational Biology and State Key Laboratory for Hybrid Rice, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
25
|
Chen YB, Wang D, Ge XL, Zhao BG, Wang XC, Wang BC. Comparative proteomics of leaves found at different stem positions of maize seedlings. JOURNAL OF PLANT PHYSIOLOGY 2016; 198:116-28. [PMID: 27176136 DOI: 10.1016/j.jplph.2016.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/25/2016] [Revised: 03/26/2016] [Accepted: 03/30/2016] [Indexed: 05/11/2023]
Abstract
To better understand the roles of leaves at different stem positions during plant development, we measured the physiological properties of leaves 1-4 on maize seedling stems, and performed a proteomics study to investigate the differences in protein expression in the four leaves using two-dimensional difference gel electrophoresis and tandem mass spectrometry in conjunction with database searching. A total of 167 significantly differentially expressed protein spots were found and identified. Of these, 35% are involved in photosynthesis. By further analysis of the data, we speculated that in leaf 1 the seedling has started to transition from a heterotroph to an autotroph, development of leaf 2 is the time at which the seedling fully transitions from a heterotroph to an autotroph, and leaf maturity was reached only with fully expanded leaves 3 and 4, although there were still some protein expression differences in the two leaves. These results suggest that the different leaves make different contributions to maize seedling growth via modulation of the expression of the photosynthetic proteins. Together, these results provide insight into the roles of the different maize leaves as the plant develops from a heterotroph to an autotroph.
Collapse
Affiliation(s)
- Yi-Bo Chen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
| | - Dan Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Xuan-Liang Ge
- Institute of Cultivation and Tillage of Heilongjiang Academy of Agricultural Sciences, Haerbin, Heilongjiang, China
| | - Biligen-Gaowa Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
| | - Xu-Chu Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China.
| |
Collapse
|
26
|
Lu Y, Wang J, Dapeng C, Wu D, Cai G, Chen X. Bioinformatics analysis of proteomics profiles in senescent human primary proximal tubule epithelial cells. BMC Nephrol 2016; 17:39. [PMID: 27036204 PMCID: PMC4818421 DOI: 10.1186/s12882-016-0249-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2015] [Accepted: 03/18/2016] [Indexed: 12/11/2022] Open
Abstract
Background Dysfunction of renal tubule epithelial cells is associated with renal tubulointerstitial fibrosis. Exploration of the proteomic profiles of senesced tubule epithelial cells is essential to elucidate the mechanism of tubulointerstitium development. Methods Primary human proximal tubule epithelial cells from passage 3 (P3) and passage 6 (P6) were selected for evaluation. EdU and SA-β-galactosidase staining were used to detect cell senescence. p53, p21, and p16 were detected by Western blot analysis. Liquid chromatography mass spectrometry (LC-MS) was used to examine differentially expressed proteins (DEPs) between P6 and P3 cells. The expression of DEPs was examined by Western blot analysis. Bioinformatics analysis was performed by protein-protein interaction and gene ontology analyses. Results The majority of tubule cells from passage 6 (P6) stained positive for SA-β-galactosidase, whereas passage 3 (P3) cells were negative. Senescence biomarkers, including p53, p21, and p16, were upregulated in P6 cells relative to P3 cells. EdU staining results showed a lower rate of EdU positive cells in P6 cells than in P3 cells. LC-MS was used to examine DEPs between P6 and P3 cells. These DEPs are involved in glycolysis, response to stress, cytoskeleton regulation, oxidative reduction, ATP binding, and oxidative stress. Using Western blot analysis, we validated the down-regulation of AKR1B1, EEF2, EEF1A1, and HSP90 and the up-regulation of VIM in P6 cells seen in the LC-MS data. More importantly, we built the molecular network based on biological functions and protein-protein interactions and found that the DEPs are involved in translation elongation, stress, and glycolysis, and that they are all associated with cytoskeleton regulation, which regulates senescent cell activities such as apoptosis and EMT in tubule epithelial cells. Conclusions We explored proteomic profile changes in cell culture-induced senescent cells and built senescence-associated molecular networks, which will help to elucidate the mechanisms of senescence in human proximal tubule epithelial cells.
Collapse
Affiliation(s)
- Yang Lu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, General Hospital of PLA, Fuxing Road 28, Beijing, 100853, P.R. China
| | - Jingchao Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, General Hospital of PLA, Fuxing Road 28, Beijing, 100853, P.R. China
| | - Chen Dapeng
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, General Hospital of PLA, Fuxing Road 28, Beijing, 100853, P.R. China.,Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Di Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, General Hospital of PLA, Fuxing Road 28, Beijing, 100853, P.R. China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, General Hospital of PLA, Fuxing Road 28, Beijing, 100853, P.R. China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, General Hospital of PLA, Fuxing Road 28, Beijing, 100853, P.R. China.
| |
Collapse
|
27
|
Label-Free Proteomic Analysis of Flavohemoglobin Deleted Strain of Saccharomyces cerevisiae. INTERNATIONAL JOURNAL OF PROTEOMICS 2016; 2016:8302423. [PMID: 26881076 PMCID: PMC4737026 DOI: 10.1155/2016/8302423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/17/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
Abstract
Yeast flavohemoglobin, YHb, encoded by the nuclear gene YHB1, has been implicated in the nitrosative stress responses in Saccharomyces cerevisiae. It is still unclear how S. cerevisiae can withstand this NO level in the absence of flavohemoglobin. To better understand the physiological function of flavohemoglobin in yeast, in the present study a label-free differential proteomics study has been carried out in wild-type and YHB1 deleted strains of S. cerevisiae grown under fermentative conditions. From the analysis, 417 proteins in Y190 and 392 proteins in ΔYHB1 were identified with high confidence. Interestingly, among the differentially expressed identified proteins, 40 proteins were found to be downregulated whereas 41 were found to be upregulated in ΔYHB1 strain of S. cerevisiae (p value < 0.05). The differentially expressed proteins were also classified according to gene ontology (GO) terms. The most enriched and significant GO terms included nitrogen compound biosynthesis, amino acid biosynthesis, translational regulation, and protein folding. Interactions of differentially expressed proteins were generated using Search Tool for the Retrieval of Interacting Genes (STRING) database. This is the first report which offers a more complete view of the proteome changes in S. cerevisiae in the absence of flavohemoglobin.
Collapse
|
28
|
Xu H, Cao D, Chen Y, Wei D, Wang Y, Stevenson RA, Zhu Y, Lin J. Gene expression and proteomic analysis of shoot apical meristem transition from dormancy to activation in Cunninghamia lanceolata (Lamb.) Hook. Sci Rep 2016; 6:19938. [PMID: 26832850 PMCID: PMC4735791 DOI: 10.1038/srep19938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2015] [Accepted: 12/21/2015] [Indexed: 11/17/2022] Open
Abstract
In contrast to annual plants, in perennial plants, the shoot apical meristem (SAM) can undergo seasonal transitions between dormancy and activity; understanding this transition is crucial for understanding growth in perennial plants. However, little is known about the molecular mechanisms of SAM development in trees. Here, light and transmission electron microscopy revealed that evident changes in starch granules, lipid bodies, and cell walls thickness of the SAM in C. lanceolata during the transition from dormancy to activation. HPLC-ESI-MS/MS analysis showed that levels of indole-3-acetic acid (IAA) increased and levels of abscisic acid (ABA) decreased from dormant to active stage. Examination of 20 genes and 132 differentially expressed proteins revealed that the expression of genes and proteins potentially involved in cell division and expansion significantly increased in the active stage, whereas those related to the abscisic acid insensitive 3(ABI3), the cytoskeleton and energy metabolism decreased in the dormant stage. These findings provide new insights into the complex mechanism of gene and protein expression and their relation to cytological and physiological changes of SAM in this coniferous species.
Collapse
Affiliation(s)
- Huimin Xu
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Dechang Cao
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yanmei Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongmei Wei
- School of Life Science, Taizhou University, Zhejiang 318000, China
| | - Yanwei Wang
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Rebecca Ann Stevenson
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Yingfang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Jinxing Lin
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
29
|
Ning DL, Liu KH, Liu CC, Liu JW, Qian CR, Yu Y, Wang YF, Wang YC, Wang BC. Large-scale comparative phosphoprotein analysis of maize seedling leaves during greening. PLANTA 2016; 243:501-517. [PMID: 26497871 DOI: 10.1007/s00425-015-2420-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/18/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
MAIN CONCLUSION : Large-scale comparative phosphoprotein analysis in maize seedlings reveals a complicated molecular regulation mechanism at the phosphoproteomic level during de-etiolation. In the present study we report a phosphoproteomic study conducted on Zea mays etiolated leaves harvested at three time points during greening (etiolated seedlings and seedlings exposed to light for 6 or 12 h). We identified a total of 2483 phosphopeptides containing 2389 unambiguous phosphosites from 1339 proteins. The abundance of nearly 692 phosphorylated peptides containing 783 phosphosites was reproducible and profiled with high confidence among treatments. Comparisons with other large-scale phosphoproteomic studies revealed that 473 of the phosphosites are novel to this study. Of the 783 phosphosites identified, 171, 79, and 138 were identified in 0, 6, and 12 h samples, respectively, which suggest that regulation of phosphorylation plays important roles during maize seedling de-etiolation. Our experimental methods included enrichment of phosphoproteins, allowing the identification of a great number of low abundance proteins, such as transcription factors, protein kinases, and photoreceptors. Most of the identified phosphoproteins were involved in gene transcription, post-transcriptional regulation, or signal transduction, and only a few were involved in photosynthesis and carbon metabolism. It is noteworthy that tyrosine phosphorylation and calcium signaling pathways might play important roles during maize seedling de-etiolation. Taken together, we have elucidated a new level of complexity in light-induced reversible protein phosphorylation during maize seedling de-etiolation.
Collapse
|
30
|
Wang S, Zhang G, Zhang Y, Song Q, Chen Z, Wang J, Guo J, Niu N, Wang J, Ma S. Comparative studies of mitochondrial proteomics reveal an intimate protein network of male sterility in wheat (Triticum aestivum L.). JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6191-203. [PMID: 26136264 PMCID: PMC4588876 DOI: 10.1093/jxb/erv322] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/22/2023]
Abstract
Plant male sterility has often been associated with mitochondrial dysfunction; however, the mechanism in wheat (Triticum aestivum L.) has not been elucidated. This study set out to probe the mechanism of physiological male sterility (PHYMS) induced by the chemical hybridizing agent (CHA)-SQ-1, and cytoplasmic male sterility (CMS) of wheat at the proteomic level. A total of 71 differentially expressed mitochondrial proteins were found to be involved in pollen abortion and further identified by MALDI-TOF/TOF MS (matrix-assisted laser desorption/ionization-time of fight/time of flight mass spectrometry). These proteins were implicated in different cellular responses and metabolic processes, with obvious functional tendencies toward the tricarboxylic acid cycle, the mitochondrial electron transport chain, protein synthesis and degradation, oxidation stress, the cell division cycle, and epigenetics. Interactions between identified proteins were demonstrated by bioinformatics analysis, enabling a more complete insight into biological pathways involved in anther abortion and pollen defects. Accordingly, a mitochondria-mediated male sterility protein network in wheat is proposed; this network was further confirmed by physiological data, RT-PCR (real-time PCR), and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling) assay. The results provide intriguing insights into the metabolic pathway of anther abortion induced by CHA-SQ-1 and also give useful clues to identify the crucial proteins of PHYMS and CMS in wheat.
Collapse
Affiliation(s)
- Shuping Wang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Gaisheng Zhang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Yingxin Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Qilu Song
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Zheng Chen
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Junsheng Wang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Jialin Guo
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Na Niu
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Junwei Wang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| | - Shoucai Ma
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
31
|
Biswas KH, Badireddy S, Rajendran A, Anand GS, Visweswariah SS. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2. PeerJ 2015; 3:e882. [PMID: 25922789 PMCID: PMC4411481 DOI: 10.7717/peerj.882] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2014] [Accepted: 03/18/2015] [Indexed: 01/01/2023] Open
Abstract
GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain). In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET) experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS) experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins.
Collapse
Affiliation(s)
- Kabir Hassan Biswas
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | - Suguna Badireddy
- Department of Biological Sciences, National University of Singapore , Singapore , Singapore
| | - Abinaya Rajendran
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | | | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| |
Collapse
|
32
|
Zhang YT, Zhang YL, Chen SX, Yin GH, Yang ZZ, Lee S, Liu CG, Zhao DD, Ma YK, Song FQ, Bennett JW, Yang FS. Proteomics of methyl jasmonate induced defense response in maize leaves against Asian corn borer. BMC Genomics 2015; 16:224. [PMID: 25885025 PMCID: PMC4375847 DOI: 10.1186/s12864-015-1363-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2014] [Accepted: 02/19/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Jasmonic acid (JA) and methyl jasmonate (MeJA) regulate plant development, resistance to stress, and insect attack by inducing specific gene expression. However, little is known about the mechanism of plant defense against herbivore attack at a protein level. Using a high-resolution 2-D gel, we identified 62 MeJA-responsive proteins and measured protein expression level changes. RESULTS Among these 62 proteins, 43 proteins levels were increased while 11 proteins were decreased. We also found eight proteins uniquely expressed in response to MeJA treatment. Data are available via ProteomeXchange with identifier PXD001793. The proteins identified in this study have important biological functions including photosynthesis and energy related proteins (38.4%), protein folding, degradation and regulated proteins (15.0%), stress and defense regulated proteins (11.7%), and redox-responsive proteins (8.3%). The expression levels of four important genes were determined by qRT-PCR analysis. The expression levels of these proteins did not correlate well with their translation levels. To test the defense functions of the differentially expressed proteins, expression vectors of four protein coding genes were constructed to express in-fusion proteins in E. coli. The expressed proteins were used to feed Ostrinia furnacalis, the Asian corn borer (ACB). Our results demonstrated that the recombinant proteins of pathogenesis-related protein 1 (PR1) and thioredoxin M-type, chloroplastic precursor (TRXM) showed the significant inhibition on the development of larvae and pupae. CONCLUSIONS We found MeJA could not only induce plant defense mechanisms to insects, it also enhanced toxic protein production that potentially can be used for bio-control of ACB.
Collapse
Affiliation(s)
- Yi Tong Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China.
- Majorbio Pharm Technology Co., Ltd., Shanghai, 201203, China.
| | - Yu Liang Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| | - Si Xue Chen
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China.
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, 32610, USA.
| | - Guo Hua Yin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Ze Zhong Yang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China.
- Institute of Pesticide Science, Hunan Agricultural University, Changsha, China.
| | - Samantha Lee
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Chun Guang Liu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China.
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China.
| | - Dan Dan Zhao
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China.
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China.
| | - Yu Kun Ma
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China.
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China.
| | - Fu Qiang Song
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China.
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China.
| | - Joan W Bennett
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Feng Shan Yang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin, 150080, China.
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China.
| |
Collapse
|
33
|
Krishnamurthy S, Moorthy BS, Xin Xiang L, Xin Shan L, Bharatham K, Tulsian NK, Mihalek I, Anand GS. Active site coupling in PDE:PKA complexes promotes resetting of mammalian cAMP signaling. Biophys J 2015; 107:1426-40. [PMID: 25229150 DOI: 10.1016/j.bpj.2014.07.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2014] [Revised: 07/03/2014] [Accepted: 07/15/2014] [Indexed: 11/25/2022] Open
Abstract
Cyclic 3'5' adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.
Collapse
Affiliation(s)
- Srinath Krishnamurthy
- Department of Biological Sciences, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore
| | | | - Lim Xin Xiang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Lim Xin Shan
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore.
| |
Collapse
|
34
|
Weinhold A, Wielsch N, Svatoš A, Baldwin IT. Label-free nanoUPLC-MSE based quantification of antimicrobial peptides from the leaf apoplast of Nicotiana attenuata. BMC PLANT BIOLOGY 2015; 15:18. [PMID: 25604123 PMCID: PMC4318441 DOI: 10.1186/s12870-014-0398-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/26/2014] [Accepted: 12/22/2014] [Indexed: 05/30/2023]
Abstract
BACKGROUND Overexpressing novel antimicrobial peptides (AMPs) in plants is a promising approach for crop disease resistance engineering. However, the in planta stability and subcellular localization of each AMP should be validated for the respective plant species, which can be challenging due to the small sizes and extreme pI ranges of AMPs which limits the utility of standard proteomic gel-based methods. Despite recent advances in quantitative shotgun proteomics, its potential for AMP analysis has not been utilized and high throughput methods are still lacking. RESULTS We created transgenic Nicotiana attenuata plants that independently express 10 different AMPs under a constitutive 35S promoter and compared the extracellular accumulation of each AMP using a universal and versatile protein quantification method. We coupled a rapid apoplastic peptide extraction with label-free protein quantification by nanoUPLC-MSE analysis using Hi3 method and identified/quantified 7 of 10 expressed AMPs in the transgenic plants ranging from 37 to 91 amino acids in length. The quantitative comparison among the transgenic plant lines showed that three particular peptides, belonging to the defensin, knottin and lipid-transfer protein families, attained the highest concentrations of 91 to 254 pmol per g leaf fresh mass, which identified them as best suited for ectopic expression in N. attenuata. The chosen mass spectrometric approach proved to be highly sensitive in the detection of different AMP types and exhibited the high level of analytical reproducibility required for label-free quantitative measurements along with a simple protocol required for the sample preparation. CONCLUSIONS Heterologous expression of AMPs in plants can result in highly variable and non-predictable peptide amounts and we present a universal quantitative method to confirm peptide stability and extracellular deposition. The method allows for the rapid quantification of apoplastic peptides without cumbersome and time-consuming purification or chromatographic steps and can be easily adapted to other plant species.
Collapse
Affiliation(s)
- Arne Weinhold
- />Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Natalie Wielsch
- />Max Planck Institute for Chemical Ecology, Mass Spectrometry/Proteomics Research Group, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Aleš Svatoš
- />Max Planck Institute for Chemical Ecology, Mass Spectrometry/Proteomics Research Group, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Ian T Baldwin
- />Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| |
Collapse
|
35
|
Ai Q, Sun G, Luo Y, Dong X, Hu R, Meng X, Sun X. Ginsenoside Rb1 prevents hypoxia-reoxygenation-induced apoptosis in H9c2 cardiomyocytes via an estrogen receptor-dependent crosstalk among the Akt, JNK, and ERK 1/2 pathways using a label-free quantitative proteomics analysis. RSC Adv 2015. [DOI: 10.1039/c5ra02432c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
Rb1 prevents H/R-induced apoptosis of H9c2 cells via an estrogen receptor-dependent crosstalk among the Akt, JNK, and ERK 1/2 pathways.
Collapse
Affiliation(s)
- Qidi Ai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
| | - Guibo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
| | - Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
| | - Xi Dong
- Wenzhou Medical University
- Wenzhou
- P. R. China
| | - Ruifeng Hu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
| | - Xiangbao Meng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine
- Ministry of Education
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
| |
Collapse
|
36
|
Lu Y, Cai G, Cui S, Geng W, Chen D, Wen J, Zhang Y, Zhang F, Xie Y, Fu B, Chen X. FHL2-driven molecular network mediated Septin2 knockdown inducing apoptosis in mesangial cell. Proteomics 2014; 14:2485-97. [PMID: 25103794 DOI: 10.1002/pmic.201400252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2014] [Revised: 07/22/2014] [Accepted: 08/04/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Yang Lu
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Guangyan Cai
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Shaoyuan Cui
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Wenjia Geng
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Dapeng Chen
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Jun Wen
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Yuanyuan Zhang
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Fujian Zhang
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Yuansheng Xie
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Bo Fu
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| | - Xiangmei Chen
- Department of Nephrology; Chinese PLA General Hospital; Chinese PLA Institute of Nephrology; State Key Laboratory of Kidney Diseases; National Clinical Research Center of Kidney Diseases; Beijing P. R. China
| |
Collapse
|
37
|
Wang QY, Liu ZS, Wang J, Wang HX, Li A, Yang Y, Wang XZ, Zhao YQ, Han QY, Cai H, Liang B, Song N, Li WH, Li T. Glutathione peroxidase-1 is required for self-renewal of murine embryonic stem cells. Biochem Biophys Res Commun 2014; 448:454-60. [PMID: 24802396 DOI: 10.1016/j.bbrc.2014.04.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 01/03/2023]
Abstract
Embryonic stem (ES) cells are pluripotent cells that are capable of giving rise to any type of cells in the body and possess unlimited self-renewal potential. However, the exact regulatory mechanisms that govern the self-renewal ability of ES cells remain elusive. To understand the immediate early events during ES cell differentiation, we performed a proteomics study and analyzed the proteomic difference in murine ES cells before and after a 6-h spontaneous differentiation. We found that the expression level of glutathione peroxidase-1 (GPx-1), an antioxidant enzyme, is dramatically decreased upon the differentiation. Both knockdown of GPx-1 expression with shRNA and inhibiting GPx-1 activity by inhibitor led to the differentiation of ES cells. Furthermore, we showed that during early differentiation, the quick degradation of GPx-1 was mediated by proteasome. Thus, our data indicated that GPx-1 is a key regulator of self-renewal of murine embryonic stem cells.
Collapse
Affiliation(s)
- Qian-Yi Wang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing 100850, China
| | - Zhao-Shan Liu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing 100850, China
| | - Jie Wang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing 100850, China
| | - Hong-Xia Wang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing 100850, China
| | - Ang Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing 100850, China
| | - Yang Yang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing 100850, China
| | - Xin-Zheng Wang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing 100850, China
| | - Yong-Qiang Zhao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing 100850, China
| | - Qiu-Ying Han
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing 100850, China
| | - Hong Cai
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing 100850, China
| | - Bing Liang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing 100850, China
| | - Nan Song
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing 100850, China
| | - Wei-Hua Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing 100850, China
| | - Tao Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 27 Tai-Ping Rd., Beijing 100850, China.
| |
Collapse
|
38
|
Chao Q, Liu XY, Mei YC, Gao ZF, Chen YB, Qian CR, Hao YB, Wang BC. Light-regulated phosphorylation of maize phosphoenolpyruvate carboxykinase plays a vital role in its activity. PLANT MOLECULAR BIOLOGY 2014; 85:95-105. [PMID: 24435212 DOI: 10.1007/s11103-014-0171-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/04/2013] [Accepted: 01/02/2014] [Indexed: 05/21/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK)-the major decarboxylase in PEPCK-type C4 plants-is also present in appreciable amounts in the bundle sheath cells of NADP-malic enzyme-type C4 plants, such as maize (Zea mays), where it plays an apparent crucial role during photosynthesis (Wingler et al., in Plant Physiol 120(2):539-546, 1999; Furumoto et al., in Plant Mol Biol 41(3):301-311, 1999). Herein, we describe the use of mass spectrometry to demonstrate phosphorylation of maize PEPCK residues Ser55, Thr58, Thr59, and Thr120. Western blotting indicated that the extent of Ser55 phosphorylation dramatically increases in the leaves of maize seedlings when the seedlings are transferred from darkness to light, and decreases in the leaves of seedlings transferred from light to darkness. The effect of light on phosphorylation of this residue is opposite that of the effect of light on PEPCK activity, with the decarboxylase activity of PEPCK being less in illuminated leaves than in leaves left in the dark. This inverse relationship between PEPCK activity and the extent of phosphorylation suggests that the suppressive effect of light on PEPCK decarboxylation activity might be mediated by reversible phosphorylation of Ser55.
Collapse
Affiliation(s)
- Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Mora L, Bramley PM, Fraser PD. Development and optimisation of a label-free quantitative proteomic procedure and its application in the assessment of genetically modified tomato fruit. Proteomics 2014; 13:2016-30. [PMID: 23616442 DOI: 10.1002/pmic.201200480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2012] [Revised: 04/01/2013] [Accepted: 04/10/2013] [Indexed: 01/01/2023]
Abstract
A key global challenge for plant biotechnology is addressing food security, whereby provision must be made to feed 9 billion people with nutritional feedstuffs by 2050. To achieve this step change in agricultural production new crop varieties are required that are tolerant to environmental stresses imposed by climate change, have better yields, are more nutritious and require less resource input. Genetic modification (GM) and marker-assisted screening will need to be fully utilised to deliver these new crop varieties. To evaluate these varieties both in terms of environmental and food safety and the rational design of traits a systems level characterisation is necessary. To link the transcriptome to the metabolome, quantitative proteomics is required. Routine quantitative proteomics is an important challenge. Gel-based densitometry and MS analysis after stable isotope labeling have been employed. In the present article, we describe the application of a label-free approach that can be used in combination with SDS-PAGE and reverse-phase chromatography to evaluate the changes in the proteome of new crop varieties. The workflow has been optimised for protein coverage, accuracy and robustness, then its application demonstrated using a GM tomato variety engineered to deliver nutrient dense fruit.
Collapse
Affiliation(s)
- Leticia Mora
- Centre for Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | | | | |
Collapse
|
40
|
Barkla BJ, Vera-Estrella R, Pantoja O. Progress and challenges for abiotic stress proteomics of crop plants. Proteomics 2014; 13:1801-15. [PMID: 23512887 DOI: 10.1002/pmic.201200401] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/12/2022]
Abstract
Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | | | | |
Collapse
|
41
|
Chungopast S, Thapanapongworakul P, Matsuura H, Van Dao T, Asahi T, Tada K, Tajima S, Nomura M. Glutamine synthetase I-deficiency in Mesorhizobium loti differentially affects nodule development and activity in Lotus japonicus. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:104-108. [PMID: 24484964 DOI: 10.1016/j.jplph.2013.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/02/2013] [Revised: 10/25/2013] [Accepted: 10/25/2013] [Indexed: 06/03/2023]
Abstract
In this study, we focused on the effect of glutamine synthetase (GSI) activity in Mesorhizobium loti on the symbiosis between the host plant, Lotus japonicus, and the bacteroids. We used a signature-tagged mutant of M. loti (STM30) with a transposon inserted into the GSI (mll0343) gene. The L. japonicus plants inoculated with STM30 had significantly more nodules, and the occurrence of senesced nodules was much higher than in plants inoculated with the wild-type. The acetylene reduction activity (ARA) per nodule inoculated with STM30 was lowered compared to the control. Also, the concentration of chlorophyll, glutamine, and asparagine in leaves of STM30-infected plants was found to be reduced. Taken together, these data demonstrate that a GSI deficiency in M. loti differentially affects legume-rhizobia symbiosis by modifying nodule development and metabolic processes.
Collapse
Affiliation(s)
- Sirinapa Chungopast
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakorn Pathom 73140, Thailand
| | - Pilunthana Thapanapongworakul
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Faculty of Agriculture, Chiang Mai University, 50200 Chiang Mai, Thailand
| | - Hiroyuki Matsuura
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Tan Van Dao
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; Faculty of Biology, Hanoi National University of Education, 136 Xuan Thuy Road, Hanoi, Vietnam
| | - Toshimasa Asahi
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Kuninao Tada
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Shigeyuki Tajima
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Mika Nomura
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
42
|
Li C, Qiu Q, Wang Y, Li P, Xiao C, Wang H, Lin Y, Wang W. Time course label-free quantitative analysis of cardiac muscles of rats after myocardial infarction. MOLECULAR BIOSYSTEMS 2014; 10:505-13. [PMID: 24382414 DOI: 10.1039/c3mb70422j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
Heart failure is a worldwide cause of mortality and morbidity and is the ultimate ending of a variety of complex diseases. This reflects our incomplete understanding of its underlying molecular mechanisms and furthermore increases the complexity of the disease. To better understand the molecular mechanisms of heart failure, we investigated dynamic proteomic differences between the heart tissue of myocardial infarction rats and the rats in the sham group at days 4, 14, 28, 45 after operation. Using a label-free quantitative proteomic approach based on nanoscale ultra-performance liquid chromatography-ESI-MS(E), 133 proteins were identified at the four time points in 8 groups. 13 non-redundant proteins changed dynamically after acute myocardial infarction (AMI) in rat left ventricular (LV) tissue, including cytoskeletal proteins, metabolic enzymes, oxidative stress related proteins and ion channel proteins. The network analysis showed that the differential protein might play an important role in lipid metabolism and hypertrophic cardiomyopathy. The dynamic changes in the expression of beta-actin, alpha B-crystallin (CryAB), heat shock protein 8(HSP8), desmin and l-lactate dehydrogenase B (LDHB) were tested by the western-blot assay, and the results were consistent with the label-free quantitative proteomic results. Correlative analysis indicates that the CryAB and desmin have a better linear relation with heart function (ejection fraction) than cardiac troponin T (cTNT). Our results provide the first experimental evidence of the proteins that are differentially expressed following myocardial infarction, using time-course label-free quantitative proteomics in vivo without ischemia-reperfusion injury or myocardial ischemia. These differential functional proteins (especially CryAB and desmin) have different patterns during the myocardial infarction, which may partially account for the underlying mechanisms involved in cardiac rehabilitation.
Collapse
Affiliation(s)
- Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zheng YS, Guo JX, Zhang JP, Gao AN, Yang XM, Li XQ, Liu WH, Li LH. A proteomic study of spike development inhibition in bread wheat. Proteomics 2013; 13:2622-37. [DOI: 10.1002/pmic.201300026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2013] [Revised: 06/17/2013] [Accepted: 06/26/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Yong-Sheng Zheng
- National Key Facilities for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences; Chinese Academy of Agricultural Sciences; Beijing P. R. China
- Crop Research Institute; Shandong Academy of Agricultural Sciences; Jinan P. R. China
| | - Jun-Xian Guo
- National Key Facilities for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences; Chinese Academy of Agricultural Sciences; Beijing P. R. China
- Crop Research Institute; Shandong Academy of Agricultural Sciences; Jinan P. R. China
| | - Jin-Peng Zhang
- National Key Facilities for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Ai-Nong Gao
- National Key Facilities for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Xin-Ming Yang
- National Key Facilities for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Xiu-Quan Li
- National Key Facilities for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Wei-Hua Liu
- National Key Facilities for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| | - Li-Hui Li
- National Key Facilities for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences; Chinese Academy of Agricultural Sciences; Beijing P. R. China
| |
Collapse
|
44
|
Parviainen VI, Joenväärä S, Tohmola N, Renkonen R. Label-free mass spectrometry proteome quantification of human embryonic kidney cells following 24 hours of sialic acid overproduction. Proteome Sci 2013; 11:38. [PMID: 23915316 PMCID: PMC3750590 DOI: 10.1186/1477-5956-11-38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2013] [Accepted: 07/25/2013] [Indexed: 01/15/2023] Open
Abstract
Background Cell surface glycoprotein sialylation is one of the most ubiquitous glycan modifications found on higher eukaryotes. The surface sialylation pattern of cells is influenced by the cellular environment but also by the Golgi sialyltransferase activity and flux of metabolites through sialic acid producing pathways. Altered cell surface sialic acid patterns have been observed in several cancers and other pathological conditions. In this experiment we examined the cellular proteomic changes that occur in human embryonic kidney cells after 24 hours of sialic acid overproduction using N-Acetylmannosamine. We utilized high resolution mass spectrometry and label free protein quantification to characterize the relative changes in protein abundance as well as multiple reaction monitoring to quantify the cellular sialic acid levels. Results Using N-Acetylmannosamine we were able to induce sialic acid production to almost 70-fold compared to non-induced control cells. Mass spectrometric analysis of cellular proteome of control and induced cells identified 1802 proteins of which 105 displayed significant changes in abundance. Functional analysis of the resulting relative changes in protein abundance revealed regulation of several cellular pathways including protein transport, metabolic and signaling pathways and remodeling of epithelial adherens junctions. We also identified several physically interacting co-regulated proteins in the set of changed proteins. Conclusions In this experiment we show that increased metabolic flux through sialic acid producing pathway affects the abundance of several protein transport, epithelial adherens junction, signaling and metabolic pathway related proteins.
Collapse
Affiliation(s)
- Ville I Parviainen
- Transplantation Laboratory, Haartman Institute, University of Helsinki & HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | |
Collapse
|
45
|
Demartini DR, Pasquali G, Carlini CR. An overview of proteomics approaches applied to biopharmaceuticals and cyclotides research. J Proteomics 2013; 93:224-33. [PMID: 23777896 DOI: 10.1016/j.jprot.2013.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 01/22/2023]
Abstract
The evolution in proteomics approaches is notable, including quantitative proteomics and strategies for elucidation of post-translational modifications. Faster and more accurate mass spectrometers as well as cleverer bioinformatics tolls are making the difference in such advancement. Among the wide range of research in plant proteomics, biopharmaceutical production using plants as "biofactories" and the screening of new activities of new molecules, in this case, peptides, are quite important regarding translational proteomics. The present review is focused on "recombinant proteins and bioactive peptides", with biopharmaceuticals and cyclotides chosen as examples. Their application and challenges are focused on a "translational proteomics" point of view, in order to exemplify some new areas of research based on proteomics strategies. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Diogo Ribeiro Demartini
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul., Av. Bento Gonçalves 9500, Prédio 43431, Sala 214, Porto Alegre, RS 91501-970, Brazil.
| | | | | |
Collapse
|
46
|
Yang L, Rong W, Xiao T, Zhang Y, Xu B, Liu Y, Wang L, Wu F, Qi J, Zhao X, Wang H, Han N, Guo S, Wu J, Gao Y, Cheng S. Secretory/releasing proteome-based identification of plasma biomarkers in HBV-associated hepatocellular carcinoma. SCIENCE CHINA-LIFE SCIENCES 2013; 56:638-46. [PMID: 23749381 DOI: 10.1007/s11427-013-4497-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/03/2013] [Accepted: 05/17/2013] [Indexed: 12/11/2022]
Abstract
For successful therapy, hepatocellular carcinoma (HCC) must be detected at an early stage. Herein, we used a proteomic approach to analyze the secretory/releasing proteome of HCC tissues to identify plasma biomarkers. Serum-free conditioned media (CM) were collected from primary cultures of cancerous tissues and surrounding noncancerous tissues. Proteomic analysis of the CM proteins permitted the identification of 1365 proteins. The enriched molecular functions and biological processes of the CM proteins, such as hydrolase activity and catabolic processes, were consistent with the liver being the most important metabolic organ. Moreover, 19% of the proteins were characterized as extracellular or membrane-bound. For validation, secretory proteins involved in transforming growth factor-β signaling pathways were validated in plasma samples. Alphafetoprotein (AFP), metalloproteinase (MMP)1, osteopontin (OPN), and pregnancy-specific beta-1-glycoprotein (PSG)9 were significantly increased in HCC patients. The overall performance of MMP1 and OPN in the diagnosis of HCC remained greater than that of AFP. In addition, this study represents the first report of MMP1 as a biomarker with a higher sensitivity and specificity than AFP. Thus, this study provides a valuable resource of the HCC secretome with the potential to investigate serological biomarkers. MMP1 and OPN could be used as novel biomarkers for the early detection of HCC and to improve the sensitivity of biomarkers compared with AFP.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Cancer Institute (Hospital), Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hao J, Li W, Dan J, Ye X, Wang F, Zeng X, Wang L, Wang H, Cheng Y, Liu L, Shui W. Reprogramming- and pluripotency-associated membrane proteins in mouse stem cells revealed by label-free quantitative proteomics. J Proteomics 2013; 86:70-84. [DOI: 10.1016/j.jprot.2013.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2012] [Revised: 03/10/2013] [Accepted: 04/07/2013] [Indexed: 12/15/2022]
|
48
|
Gonzalez-Fernandez R, Aloria K, Arizmendi JM, Jorrin-Novo JV. Application of label-free shotgun nUPLC-MS(E) and 2-DE approaches in the study of Botrytis cinerea mycelium. J Proteome Res 2013; 12:3042-56. [PMID: 23627497 DOI: 10.1021/pr3010937] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
The phytopathogenic fungus Botrytis cinerea infects more than different 200 plant species and causes substantial losses in numerous crops. The B05.10 and T4 wild-type strain genomes have been recently sequenced, becoming a model system for necrotrophic pathogens, as well as opening up new alternatives in functional genomics, such as proteomics. We analyzed B. cinerea mycelium from these two wild-type strains, introducing label-free shotgun nUPLC-MS(E) methodology to complement the 2-DE-MS-based approach. We assessed the label-free nUPLC-MS(E) methodology for protein identification and quantification using five mycelium protein dilutions. A total of 225 and 170 protein species were identified by nUPLC-MS(E) in the B05.10 and T4 strains, respectively. Moreover, 129 protein species were quantified in both strains. Significant differences in protein abundance were found in 15 more abundant and 16 less abundant protein species in the B05.10 strain compared to the T4 strain. Twenty-nine qualitative and 15 significant quantitative differences were found using 2-DE. The label-free nUPLC-MS(E) was a reliable, reproducible and sensitive method for protein identification and quantification to study the B. cinerea mycelial proteome. Results obtained by gel-based and gel-free complementary approaches allow a deeper characterization of this fungus, as well as the identification of potential virulence factors.
Collapse
Affiliation(s)
- Raquel Gonzalez-Fernandez
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba, Agrifood Campus of International Excellence, ceiA3, 14071-Córdoba, Spain
| | | | | | | |
Collapse
|
49
|
Ning DL, Liu CC, Liu JW, Shen Z, Chen S, Liu F, Wang BC, Yang CP. Label-free quantitative proteomics analysis of dormant terminal buds of poplar. Mol Biol Rep 2013; 40:4529-42. [PMID: 23677710 DOI: 10.1007/s11033-013-2548-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2012] [Accepted: 04/29/2013] [Indexed: 01/02/2023]
Abstract
Induction and break of bud dormancy are important features for perennial plants surviving extreme seasonal variations in climate. However, the molecular mechanism of the dormancy regulation, still remain poorly understood. To better understand the molecular basis of poplar bud dormancy, we used a label-free quantitative proteomics method based on nanoscale ultra performance liquid chromatography-ESI-MS(E) for investigation of differential protein expression during dormancy induction, dormancy, and dormancy break in apical buds of poplar (Populus simonii × P. nigra). Among these identified over 300 proteins during poplar bud dormancy, there are 74 significantly altered proteins, most of which involved in carbohydrate metabolism (22 %), redox regulation (19 %), amino acid transport and metabolism (10 %), and stress response (8 %). Thirty-one of these proteins were up-regulated, five were down-regulated during three phase, and thirty-eight were expressed specifically under different conditions. Pathway analysis suggests that there are still the presence of various physiological activities and a particular influence on photosynthesis and energy metabolism during poplar bud dormancy. Differential expression patterns were identified for key enzymes involved in major metabolic pathways such as glycolysis and the pentose phosphate pathway, thus manifesting the interplay of intricate molecular events in energy generation for new protein synthesis in the dormant buds. Furthermore, there are significant changes present in redox regulation and defense response proteins, for instance in peroxidase and ascorbate peroxidase. Overall, this study provides a better understanding of the possible regulation mechanisms during poplar bud dormancy.
Collapse
Affiliation(s)
- De-Li Ning
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Li Y, Wen T, Zhu M, Li L, Wei J, Wu X, Guo M, Liu S, Zhao H, Xia S, Huang W, Wang P, Wu Z, Zhao L, Shui W, Li Z, Yin Z. Glycoproteomic analysis of tissues from patients with colon cancer using lectin microarrays and nanoLC-MS/MS. MOLECULAR BIOSYSTEMS 2013; 9:1877-87. [PMID: 23567825 DOI: 10.1039/c3mb00013c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
The current study evaluated the glycoproteomic profile of tissues from colon cancer patients. The lectin microarray was first performed to compare the glycoprotein profiles between colon cancer and matched normal tissues. Level of N-acetylglucosamine (GlcNAc) that Solanum tuberosum lectin (STL) bound was found to be elevated in colon cancer, which was verified through lectin histochemistry. The subsequent glycoproteomic analysis based on STL enrichment of glycoproteins followed by label-free quantitative nano liquid chromatography-mass spectrometry/mass spectrometry (nanoLC-MS/MS) analysis identified 72 proteins in high confidence. Among these proteins, 17 were exclusively detected in cancer tissues, and 14 were significantly upregulated in tumor tissues. Annexin A1 and HSP90β were chosen for further investigation by immunoprecipitation coupled with lectin blots, western blots and tissue microarrays. Both Annexin A1 and HSP90β were GlcNAcylated, and their protein expressions were elevated in colon cancer, compared to normal tissues. Moreover, specific changes of GlcNAc abundances in Annexin A1 and HSP90β suggested that tumor-specific glycan patterns could serve as candidate biomarkers of colon cancer for distinguishing cancer patients from healthy individuals.
Collapse
Affiliation(s)
- Yangguang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|