1
|
Yakemow G, Kolesar TA, Wright N, Beheshti I, Choi EH, Ryner L, Chaulk S, Patel R, Ko JH. Investigating neural markers of Alzheimer's disease in posttraumatic stress disorder using machine learning algorithms and magnetic resonance imaging. Front Neurol 2024; 15:1470727. [PMID: 39574505 PMCID: PMC11578870 DOI: 10.3389/fneur.2024.1470727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Posttraumatic stress disorder (PTSD) is a mental health disorder caused by experiencing or witnessing traumatic events. Recent studies show that patients with PTSD have an increased risk of developing dementia, including Alzheimer's disease (AD), but there is currently no way to predict which patients will go on to develop AD. The objective of this study was to identify structural and functional neural changes in patients with PTSD that may contribute to the future development of AD. Methods Neuroimaging (pseudo-continuous arterial spin labeling [pCASL] and structural magnetic resonance imaging [MRI]) and behavioral data for the current study (n = 67) were taken from our non-randomized open label clinical trial (ClinicalTrials.gov Identifier: NCT03229915) for treatment-seeking individuals with PTSD (n = 40) and age-matched healthy controls (HC; n = 27). Only the baseline measures were utilized for this study. Mean cerebral blood flow (CBF) and gray matter (GM) volume were compared between groups. Additionally, we utilized two previously established machine learning-based algorithms, one representing AD-like brain activity (Machine learning-based AD Designation [MAD]) and the other focused on AD-like brain structural changes (AD-like Brain Structure [ABS]). MAD scores were calculated from pCASL data and ABS scores were calculated from structural T1-MRI images. Correlations between neuroimaging data (regional CBF, GM volume, MAD scores, ABS scores) and PTSD symptom severity scores measured by the clinician-administered PTSD scale for DSM-5 (CAPS-5) were assessed. Results Decreased CBF was observed in two brain regions (left caudate/striatum and left inferior parietal lobule/middle temporal lobe) in the PTSD group, compared to the HC group. Decreased GM volume was also observed in the PTSD group in the right temporal lobe (parahippocampal gyrus, middle temporal lobe), compared to the HC group. GM volume within the right temporal lobe cluster negatively correlated with CAPS-5 scores and MAD scores in the PTSD group. Conclusion Results suggest that patients with PTSD with reduced GM volume in the right temporal regions (parahippocampal gyrus) experienced greater symptom severity and showed more AD-like brain activity. These results show potential for early identification of those who may be at an increased risk for future development of dementia.
Collapse
Affiliation(s)
- Gabriella Yakemow
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Brain Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Tiffany A. Kolesar
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Brain Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Natalie Wright
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Brain Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Brain Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Eun Hyung Choi
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Brain Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Lawrence Ryner
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sarah Chaulk
- Department of Clinical Health Psychology, University of Manitoba, Winnipeg, MB, Canada
| | - Ronak Patel
- Department of Clinical Health Psychology, University of Manitoba, Winnipeg, MB, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Brain Research Centre, Health Sciences Centre, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Peña-Bautista C, Álvarez-Sánchez L, Balaguer Á, Raga L, García-Vallés L, Baquero M, Cháfer-Pericás C. Defining Alzheimer's Disease through Proteomic CSF Profiling. J Proteome Res 2024; 23:5096-5106. [PMID: 39373095 DOI: 10.1021/acs.jproteome.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Alzheimer disease (AD) is the main cause of dementia, and its complexity is not yet completely understood. Proteomic profiles can provide useful information to explore the pathways involved and the heterogeneity among AD patients. A proteomic analysis was performed in cerebrospinal fluid (CSF) samples from mild cognitive impairment due to AD (MCI-AD) and control individuals; both groups were classified by amyloid β42/amyloid β40 levels in CSF (data available in BioStudies database (S-BSST1456)). The analysis based on PLS regression and volcano plot identified 7 proteins (FOLR2, PPP3CA, SMOC2, STMN1, TAGLN3, TMEM132B, and UCHL1) mainly related to protein phosphorylation, structure maintenance, inflammation, and protein degradation. Enrichment analysis revealed the involvement of different biological processes related to neuronal mechanisms and synapses, lipid and carbohydrate metabolism, immune system and inflammation, vascular, hormones, and response to stimuli, and cell signaling and adhesion. In addition, the proteomic profile showed some association with the levels of AD biomarkers in CSF. Regarding the subtypes, two MCI-AD subgroups were identified: one could be related to synapsis and neuronal functions and the other to innate immunity. The study of the proteomic profile in the CSF of AD patients reflects the heterogeneity of biochemical pathways involved in AD.
Collapse
Affiliation(s)
- Carmen Peña-Bautista
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Lourdes Álvarez-Sánchez
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Ángel Balaguer
- Faculty of Mathematical Sciences, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Luis Raga
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Lorena García-Vallés
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Miguel Baquero
- Division of Neurology, Hospital Universitari I Politècnic La Fe, 46026 Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| |
Collapse
|
3
|
Khandia R, Gurjar P, Priyanka, Romashchenko V, Al-Hussain SA, Zaki MEA. Recent advances in stem cell therapy: efficacy, ethics, safety concerns, and future directions focusing on neurodegenerative disorders - a review. Int J Surg 2024; 110:6367-6381. [PMID: 39705668 DOI: 10.1097/js9.0000000000001609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/29/2024] [Indexed: 12/22/2024]
Abstract
Neurodegeneration refers to the gradual loss of neurons and extensive changes in glial cells like tau inclusions in astrocytes and oligodendrocytes, α-synuclein inclusions in oligodendrocytes and SOD1 aggregates in astrocytes along with deterioration in the motor, cognition, learning, and behavior. Common neurodegenerative disorders are Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), spinocerebellar ataxia (SCA), and supranuclear palsy. There is a lack of effective treatment for neurodegenerative diseases, and scientists are putting their efforts into developing therapies against them. Stem cell therapy has emerged as a hope for neurodegenerative disorders since it is not only the damaged neurons that might be replaced, but other neuromodulators and neuroprotectors are secreted. Stem cell terminal differentiation before implantation ensures the implantation of correct cells and molecular markers like carbonic anhydrase II, CNPase (2',3'-cyclic nucleotide 3'-phosphohydrolase), myelin basic protein (MBP), and myelin oligodendrocyte glycoprotein (MOG) elucidate the differentiation. Secretion of various growth factors like epidermal growth factor (EGF), keratinocyte growth factor (KGF), vascular endothelial growth factor-α (VEGF-α), transforming growth factor (TGF), and macrophage inflammatory protein (MIP) supports cell survival, cell proliferation, blood vessel formation, axon regeneration, and neuroglial functional connection formation at the site of degeneration. Adverse effects of stem cell therapy, like teratogenicity and differentiation in different cells other than the desired one under the influence of microenvironment, are a few key concerns. Post-transplantation improved synaptic plasticity, apoptosis inhibition, and reduction in tau-phosphorylation and amyloid beta (Aβ) production has been observed in Alzheimer's patients. A large number of experimental, preclinical, and clinical studies have been conducted, and encouraging results have been obtained. The present review exhaustively discusses various kinds of stem cells, their usage in treating neurodegenerative disorders, limitations and challenges, and ethical issues related to stem cell therapy.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru AngadDev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | | | - Sami A Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Tokuoka SM, Hamano F, Kobayashi A, Adachi S, Andou T, Natsume T, Oda Y. Plasma proteomics and lipidomics facilitate elucidation of the link between Alzheimer's disease development and vessel wall fragility. Sci Rep 2024; 14:19901. [PMID: 39191863 DOI: 10.1038/s41598-024-71097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
Proximity Extension Assay (PEA) and mass spectrometry (MS) methodologies were utilized for the proteomic and lipidomic characterization of plasma specimens from patients who developed Alzheimer's disease. Proteomics was performed by both PEA and Liquid Chromatography (LC)/MS in this study, but all the more because LC/MS generally tends to be biased towards proteins with high expression and high variability, generating hypotheses proved challenging. Consequently, attempt was made to interpret the results from the PEA data. There were 150 significantly variable proteins and 68 lipids among 1000 proteins and 400 lipids. Pathway analysis was performed for both total and variable proteins measured to reduce bias, and it appeared that vascular fragility was related to AD. Furthermore, a multitude of lipid-associated proteins exhibited statistical changes. In certain instances, the function of individual proteins affected the factors associated with them, whereas others demonstrated trends contrary to anticipated outcomes. These trends seem indicative of diverse feedback mechanisms that provide homeostatic equilibrium. The degree of unsaturation of fatty acids, correlated with cardiovascular risk, warrants specific attention. Certain bile acids exhibited the potential to cause vascular endothelial damage. Contemplating these discoveries in tandem with previously documented phenomena, subtle shifts in homeostatic functions seem to be linked to the fragility of vascular endothelial cells. This is evidenced by the slow and chronic evolution of Alzheimer's disease from preclinical stages to its manifestation.
Collapse
Affiliation(s)
- Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Fumie Hamano
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ayako Kobayashi
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Shungo Adachi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aoumi, Koto-ku, Tokyo, 135-0064, Japan
| | - Tomohiro Andou
- Axcelead Drug Discovery Partners, Inc., 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa, 251-0012, Japan
| | - Tohru Natsume
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aoumi, Koto-ku, Tokyo, 135-0064, Japan
| | - Yoshiya Oda
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| |
Collapse
|
5
|
Gao J, Li H, Lv H, Cheng X. Mutation of TRPML1 Channel and Pathogenesis of Neurodegeneration in Haimeria. Mol Neurobiol 2024; 61:4992-5001. [PMID: 38157120 DOI: 10.1007/s12035-023-03874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Neurodegenerative diseases, a group of debilitating disorders, have garnered increasing attention due to their escalating prevalence, particularly among aging populations. Alzheimer's disease (AD) reigns as a prominent exemplar within this category, distinguished by its relentless progression of cognitive impairment and the accumulation of aberrant protein aggregates within the intricate landscape of the brain. While the intricate pathogenesis of neurodegenerative diseases has been the subject of extensive investigation, recent scientific inquiry has unveiled a novel player in this complex scenario-transient receptor potential mucolipin 1 (TRPML1) channels. This comprehensive review embarks on an exploration of the intricate interplay between TRPML1 channels and neurodegenerative diseases, with an explicit spotlight on Alzheimer's disease. It immerses itself in the intricate molecular mechanisms governing TRPML1 channel functionality and elucidates their profound implications for the well-being of neurons. Furthermore, the review ventures into the realm of therapeutic potential, pondering the possibilities and challenges associated with targeting TRPML1 channels as a promising avenue for the amelioration of neurodegenerative disorders. As we traverse this multifaceted terrain of neurodegeneration and the enigmatic role of TRPML1 channels, we embark on a journey that not only broadens our understanding of the intricate machinery governing neuronal health but also holds promise for the development of innovative therapeutic interventions in the relentless battle against neurodegenerative diseases.
Collapse
Affiliation(s)
- Junqing Gao
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China
| | - Huanhuan Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi'an, 710038, China
| | - Hua Lv
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China
| | - Xiansong Cheng
- Department of Neurology, Shaanxi Provincial People's Hospital, Shaanxi, Xi'an, 710068, China.
| |
Collapse
|
6
|
Gaire BP, Koronyo Y, Fuchs DT, Shi H, Rentsendorj A, Danziger R, Vit JP, Mirzaei N, Doustar J, Sheyn J, Hampel H, Vergallo A, Davis MR, Jallow O, Baldacci F, Verdooner SR, Barron E, Mirzaei M, Gupta VK, Graham SL, Tayebi M, Carare RO, Sadun AA, Miller CA, Dumitrascu OM, Lahiri S, Gao L, Black KL, Koronyo-Hamaoui M. Alzheimer's disease pathophysiology in the Retina. Prog Retin Eye Res 2024; 101:101273. [PMID: 38759947 PMCID: PMC11285518 DOI: 10.1016/j.preteyeres.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The retina is an emerging CNS target for potential noninvasive diagnosis and tracking of Alzheimer's disease (AD). Studies have identified the pathological hallmarks of AD, including amyloid β-protein (Aβ) deposits and abnormal tau protein isoforms, in the retinas of AD patients and animal models. Moreover, structural and functional vascular abnormalities such as reduced blood flow, vascular Aβ deposition, and blood-retinal barrier damage, along with inflammation and neurodegeneration, have been described in retinas of patients with mild cognitive impairment and AD dementia. Histological, biochemical, and clinical studies have demonstrated that the nature and severity of AD pathologies in the retina and brain correspond. Proteomics analysis revealed a similar pattern of dysregulated proteins and biological pathways in the retina and brain of AD patients, with enhanced inflammatory and neurodegenerative processes, impaired oxidative-phosphorylation, and mitochondrial dysfunction. Notably, investigational imaging technologies can now detect AD-specific amyloid deposits, as well as vasculopathy and neurodegeneration in the retina of living AD patients, suggesting alterations at different disease stages and links to brain pathology. Current and exploratory ophthalmic imaging modalities, such as optical coherence tomography (OCT), OCT-angiography, confocal scanning laser ophthalmoscopy, and hyperspectral imaging, may offer promise in the clinical assessment of AD. However, further research is needed to deepen our understanding of AD's impact on the retina and its progression. To advance this field, future studies require replication in larger and diverse cohorts with confirmed AD biomarkers and standardized retinal imaging techniques. This will validate potential retinal biomarkers for AD, aiding in early screening and monitoring.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Danziger
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jean-Philippe Vit
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Filippo Baldacci
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | | | - Ernesto Barron
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia; Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mourad Tayebi
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Roxana O Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton, UK
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Shouri Lahiri
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Gao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Alanazi MA. The Role of Physical Activity in Adjunctive Nursing Management of Neuro-Degenerative Diseases among Older Adults: A Systematic Review of Interventional Studies. Life (Basel) 2024; 14:597. [PMID: 38792618 PMCID: PMC11122640 DOI: 10.3390/life14050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Neurodegenerative diseases such as dementia and Parkinson's disease pose significant challenges to older adults globally. While pharmacological treatments remain primary, increasing evidence supports the role of non-pharmacological strategies like physical activity in managing these conditions. This systematic review critically evaluates the effectiveness of Nursing based physical activity interventions in improving cognitive function, physical functioning, mobility, and overall quality of life among older adults with neurodegenerative diseases. We conducted a comprehensive search across PubMed, EMBASE, Web of Science, CENTRAL, and other relevant databases, focusing on randomized controlled trials and observational studies that examined the impact of structured physical activity. Our findings from nineteen studies involving 1673 participants indicate that interventions ranging from aerobic exercises, resistance training, to mind-body exercises like Tai Chi and yoga have beneficial effects. Specifically, physical activity was consistently found to enhance cognitive performance, increase mobility, and improve balance and daily living activities, contributing to a better quality of life. However, these benefits vary depending on the type, intensity, and duration of the activity performed. Despite promising results, limitations such as small sample sizes, study heterogeneity, and short-term follow-up periods call for more robust, long-term studies to solidify these findings. This review underscores the potential of tailored physical activity programs as adjunctive therapy in the comprehensive management of neurodegenerative diseases among the elderly population.
Collapse
Affiliation(s)
- Majed Awad Alanazi
- Department of Medical Surgical Nursing, College of Nursing, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
8
|
Liang Z, Zhuang H, Cao X, Ma G, Shen L. Subcellular proteomics insights into Alzheimer's disease development. Proteomics Clin Appl 2024; 18:e2200112. [PMID: 37650321 DOI: 10.1002/prca.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
Alzheimer's disease (AD), one of the most common dementias, is a neurodegenerative disease characterized by cognitive impairment and decreased judgment function. The expected number of AD patient is increasing in the context of the world's advancing medical care and increasing human life expectancy. Since current molecular mechanism studies on AD pathogenesis are incomplete, there is no specific and effective therapeutic agent. Mass spectrometry (MS)-based unbiased proteomics studies provide an effective and comprehensive approach. Many advances have been made in the study of the mechanism, diagnostic markers, and drug targets of AD using proteomics. This paper focus on subcellular level studies, reviews studies using proteomics to study AD-associated mitochondrial dysfunction, synaptic, and myelin damage, the protein composition of amyloid plaques (APs) and neurofibrillary tangles (NFTs), changes in tissue extracellular vehicles (EVs) and exosome proteome, and the protein changes in ribosomes and lysosomes. The methods of sample separation and preparation and proteomic analysis as well as the main findings of these studies are involved. The results of these proteomics studies provide insights into the pathogenesis of AD and provide theoretical resource and direction for future research in AD, helping to identify new biomarkers and drugs targets for AD.
Collapse
Affiliation(s)
- Zhiyuan Liang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Hongbin Zhuang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Xueshan Cao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, P. R. China
| |
Collapse
|
9
|
Griñán‐Ferré C, Jarné‐Ferrer J, Bellver‐Sanchís A, Codony S, Puigoriol‐Illamola D, Sanfeliu C, Oh Y, Lee S, Vázquez S, Pallàs M. Novel molecular mechanism driving neuroprotection after soluble epoxide hydrolase inhibition: Insights for Alzheimer's disease therapeutics. CNS Neurosci Ther 2024; 30:e14511. [PMID: 37905690 PMCID: PMC11017401 DOI: 10.1111/cns.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Neuroinflammation is widely recognized as a significant hallmark of Alzheimer's disease (AD). To combat neuroinflammation, the inhibition of the soluble epoxide hydrolase (sEH) enzyme has been demonstrated crucial. Importantly, sEH inhibition could be related to other neuroprotective pathways described in AD. AIMS The aim of the study was to unveil new molecular pathways driving neuroprotection through sEH, we used an optimized, potent, and selective sEH inhibitor (sEHi, UB-SCG-51). MATERIALS AND METHODS UB-SCG-51 was tested in neuroblastoma cell line, SH-SY5Y, in primary mouse and human astrocytes cultures challenged with proinflammatory insults and in microglia cultures treated with amyloid oligomers, as well as in mice AD model (5XFAD). RESULTS UB-SCG-51 (10 and 30 μM) prevented neurotoxic reactive-astrocyte conversion in primary mouse astrocytes challenged with TNF-α, IL-1α, and C1q (T/I/C) combination for 24 h. Moreover, in microglial cultures, sEHi reduced inflammation and glial activity. In addition, UB-SCG-51 rescued 5XFAD cognitive impairment, reducing the number of Amyloid-β plaques and Tau hyperphosphorylation accompanied by a reduction in neuroinflammation and apoptotic markers. Notably, a transcriptional profile analysis revealed a new pathway modulated by sEHi treatment. Specifically, the eIF2α/CHOP pathway, which promoted the endoplasmic reticulum response, was increased in the 5XFAD-treated group. These findings were confirmed in human primary astrocytes by combining sEHi and eIF2α inhibitor (eIF2αi) treatment. Besides, combining both treatments resulted in increased in C3 gene expression after T/I/C compared with the group treated with sEHi alone in cultures. DISCUSSION Therefore, sEHi rescued cognitive impairment and neurodegeneration in AD mice model, based on the reduction of inflammation and eIF2α/CHOP signaling pathway. CONCLUSIONS In whole, our results support the concept that targeting neuroinflammation through sEH inhibition is a promising therapeutic strategy to fight against Alzheimer's disease with additive and/or synergistic activities targeting neuroinflammation and cell stress.
Collapse
Affiliation(s)
- Christian Griñán‐Ferré
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadridSpain
| | - Júlia Jarné‐Ferrer
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Aina Bellver‐Sanchís
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Sandra Codony
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB)University of Barcelona (UB)BarcelonaSpain
| | - Dolors Puigoriol‐Illamola
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC)BarcelonaSpain
| | - Yumin Oh
- Neuraly Inc.MarylandGaithersburgUSA
| | | | - Santiago Vázquez
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB)University of Barcelona (UB)BarcelonaSpain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
10
|
Bhuvaneshwar K, Gusev Y. Translational bioinformatics and data science for biomarker discovery in mental health: an analytical review. Brief Bioinform 2024; 25:bbae098. [PMID: 38493340 PMCID: PMC10944574 DOI: 10.1093/bib/bbae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024] Open
Abstract
Translational bioinformatics and data science play a crucial role in biomarker discovery as it enables translational research and helps to bridge the gap between the bench research and the bedside clinical applications. Thanks to newer and faster molecular profiling technologies and reducing costs, there are many opportunities for researchers to explore the molecular and physiological mechanisms of diseases. Biomarker discovery enables researchers to better characterize patients, enables early detection and intervention/prevention and predicts treatment responses. Due to increasing prevalence and rising treatment costs, mental health (MH) disorders have become an important venue for biomarker discovery with the goal of improved patient diagnostics, treatment and care. Exploration of underlying biological mechanisms is the key to the understanding of pathogenesis and pathophysiology of MH disorders. In an effort to better understand the underlying mechanisms of MH disorders, we reviewed the major accomplishments in the MH space from a bioinformatics and data science perspective, summarized existing knowledge derived from molecular and cellular data and described challenges and areas of opportunities in this space.
Collapse
Affiliation(s)
- Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington DC, 20007, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington DC, 20007, USA
| |
Collapse
|
11
|
Rahman MA, Rahman MDH, Rhim H, Kim B. Drug Target to Alleviate Mitochondrial Dysfunctions in Alzheimer's Disease: Recent Advances and Therapeutic Implications. Curr Neuropharmacol 2024; 22:1942-1959. [PMID: 39234772 PMCID: PMC11333791 DOI: 10.2174/1570159x22666240426091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is a severe progressive neurodegenerative condition associated with neuronal damage and reduced cognitive function that primarily affects the aged worldwide. While there is increasing evidence suggesting that mitochondrial dysfunction is one of the most significant factors contributing to AD, its accurate pathobiology remains unclear. Mitochondrial bioenergetics and homeostasis are impaired and defected during AD pathogenesis. However, the potential of mutations in nuclear or mitochondrial DNA encoding mitochondrial constituents to cause mitochondrial dysfunction has been considered since it is one of the intracellular processes commonly compromised in early AD stages. Additionally, electron transport chain dysfunction and mitochondrial pathological protein interactions are related to mitochondrial dysfunction in AD. Many mitochondrial parameters decline during aging, causing an imbalance in reactive oxygen species (ROS) production, leading to oxidative stress in age-related AD. Moreover, neuroinflammation is another potential causative factor in AD-associated mitochondrial dysfunction. While several treatments targeting mitochondrial dysfunction have undergone preclinical studies, few have been successful in clinical trials. Therefore, this review discusses the molecular mechanisms and different therapeutic approaches for correcting mitochondrial dysfunction in AD, which have the potential to advance the future development of novel drug-based AD interventions.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - MD. Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| |
Collapse
|
12
|
Sun Y, Zhao J, Lu Y, Ngo FY, Shuai B, Zhang ZJ, Feng Y, Rong J. In Silico Prediction of Quercetin Analogs for Targeting Death-Associated Protein Kinase 1 (DAPK1) Against Alzheimer's Disease. Curr Neuropharmacol 2024; 22:2353-2367. [PMID: 38752632 PMCID: PMC11451310 DOI: 10.2174/1570159x22666240515090434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 10/06/2024] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that greatly affects the health and life quality of the elderly population. Existing drugs mainly alleviate symptoms but fail to halt disease progression, underscoring the urgent need for the development of novel drugs. Based on the neuroprotective effects of flavonoid quercetin in AD, this study was designed to identify potential AD-related targets for quercetin and perform in silico prediction of promising analogs for the treatment of AD. Database mining suggested death-associated protein kinase 1 (DAPK1) as the most promising AD-related target for quercetin among seven protein candidates. To achieve better biological effects for the treatment of AD, we devised a series of quercetin analogs as ligands for DAPK1, and molecular docking analyses, absorption, distribution, metabolism, and excretion (ADME) predictions, as well as molecular dynamics (MD) simulations, were performed. The energy for drug-protein interaction was predicted and ranked. As a result, quercetin-A1a and quercetin-A1a1 out of 19 quercetin analogs exhibited the lowest interaction energy for binding to DAPK1 than quercetin, and they had similar dynamics performance with quercetin. In addition, quercetin-A1a and quercetin-A1a1 were predicted to have better water solubility. Thus, quercetin-A1a and quercetin-A1a1 could be promising agents for the treatment of AD. Our findings paved the way for further experimental studies and the development of novel drugs.
Collapse
Affiliation(s)
- Yilu Sun
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jia Zhao
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
- Zhu Nansun’s Workstation and Yu Jin’s Workstation, School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yizhu Lu
- School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
| | - Fung Yin Ngo
- School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang-Jin Zhang
- Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
- School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jianhui Rong
- School of Chinese Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
13
|
Ariafar S, Makhdoomi S, Mohammadi M. Arsenic and Tau Phosphorylation: a Mechanistic Review. Biol Trace Elem Res 2023; 201:5708-5720. [PMID: 37211576 DOI: 10.1007/s12011-023-03634-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/14/2023] [Indexed: 05/23/2023]
Abstract
Arsenic poisoning can affect the peripheral nervous system and cause peripheral neuropathy. Despite different studies on the mechanism of intoxication, the complete process is not explained yet, which can prevent further intoxication and produce effective treatment. In the following paper, we would like to consider the idea that arsenic might cause some diseases via inflammation induction, and tauopathy in neurons. Tau protein, one of the microtubule-associated proteins expressed in neurons, contributes to neuronal microtubules structure. Arsenic may be involved in cellular cascades involved in modulating tau function or hyperphosphorylation of tau protein, which ultimately leads to nerve destruction. For proof of this assumption, some investigations have been planned to measure the association between arsenic and quantities of phosphorylation of tau protein. Additionally, some researchers have investigated the association between microtubule trafficking in neurons and the levels of tau protein phosphorylation. It should be noticed that changing tau phosphorylation in arsenic toxicity may add a new feature to understanding the mechanism of poisonousness and aid in discovering novel therapeutic candidates such as tau phosphorylation inhibitors for drug development.
Collapse
Affiliation(s)
- Saba Ariafar
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajjad Makhdoomi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
14
|
Hill J, Shalaby KE, Bihaqi SW, Alansi BH, Barlock B, Parang K, Thompson R, Ouararhni K, Zawia NH. Tolfenamic Acid Derivatives: A New Class of Transcriptional Modulators with Potential Therapeutic Applications for Alzheimer's Disease and Related Disorders. Int J Mol Sci 2023; 24:15216. [PMID: 37894896 PMCID: PMC10607430 DOI: 10.3390/ijms242015216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The field of Alzheimer's disease (AD) has witnessed recent breakthroughs in the development of disease-modifying biologics and diagnostic markers. While immunotherapeutic interventions have provided much-awaited solutions, nucleic acid-based tools represent other avenues of intervention; however, these approaches are costly and invasive, and they have serious side effects. Previously, we have shown in AD animal models that tolfenamic acid (TA) can lower the expression of AD-related genes and their products and subsequently reduce pathological burden and improve cognition. Using TA as a scaffold and the zinc finger domain of SP1 as a pharmacophore, we developed safer and more potent brain-penetrating analogs that interfere with sequence-specific DNA binding at transcription start sites and predominantly modulate the expression of SP1 target genes. More importantly, the proteome of treated cells displayed ~75% of the downregulated products as SP1 targets. Specific levels of SP1-driven genes and AD biomarkers such as amyloid precursor protein (APP) and Tau proteins were also decreased as part of this targeted systemic response. These small molecules, therefore, offer a viable alternative to achieving desired therapeutic outcomes by interfering with both amyloid and Tau pathways with limited off-target systemic changes.
Collapse
Affiliation(s)
- Jaunetta Hill
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (J.H.); (S.W.B.); (B.H.A.); (B.B.)
| | - Karim E. Shalaby
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar; (K.E.S.); (K.O.)
| | - Syed W. Bihaqi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (J.H.); (S.W.B.); (B.H.A.); (B.B.)
| | - Bothaina H. Alansi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (J.H.); (S.W.B.); (B.H.A.); (B.B.)
| | - Benjamin Barlock
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (J.H.); (S.W.B.); (B.H.A.); (B.B.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Richard Thompson
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar; (K.E.S.); (K.O.)
| | - Khalid Ouararhni
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar; (K.E.S.); (K.O.)
| | - Nasser H. Zawia
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (J.H.); (S.W.B.); (B.H.A.); (B.B.)
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar; (K.E.S.); (K.O.)
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI 02881, USA
- Biological and Biomedical Sciences Division, College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
15
|
Bittencourt LO, Dionizio A, Ferreira MKM, Aragão WAB, de Carvalho Cartágenes S, Puty B, do Socorro Ferraz Maia C, Zohoori FV, Buzalaf MAR, Lima RR. Prolonged exposure to high fluoride levels during adolescence to adulthood elicits molecular, morphological, and functional impairments in the hippocampus. Sci Rep 2023; 13:11083. [PMID: 37422569 PMCID: PMC10329641 DOI: 10.1038/s41598-023-38096-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/03/2023] [Indexed: 07/10/2023] Open
Abstract
Fluoride is added to water due to its anticariogenic activity. However, due to its natural presence in soils and reservoirs at high levels, it could be a potential environmental toxicant. This study investigated whether prolonged exposure to fluoride from adolescence to adulthood-at concentrations commonly found in artificially fluoridated water and in fluorosis endemic areas-is associated with memory and learning impairments in mice, and assessed the molecular and morphological aspects involved. For this endeavor, 21-days-old mice received 10 or 50 mg/L of fluoride in drinking water for 60 days and the results indicated that the increased plasma fluoride bioavailability was associated with the triggering of short- and long-term memory impairments after high F concentration levels. These changes were associated with modulation of the hippocampal proteomic profile, especially of proteins related to synaptic communication, and a neurodegenerative pattern in the CA3 and DG. From a translational perspective, our data provide evidence of potential molecular targets of fluoride neurotoxicity in the hippocampus at levels much higher than that in artificially fluoridated water and reinforce the safety of exposure to low concentrations of fluoride. In conclusion, prolonged exposure to the optimum fluoride level of artificially fluoridated water was not associated with cognitive impairments, while a higher concentration associated with fluorosis triggered memory and learning deficits, associated with a neuronal density reduction in the hippocampus.
Collapse
Affiliation(s)
- Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n. 01, Guamá, Belém, Pará, 66075-110, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, São Paulo, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n. 01, Guamá, Belém, Pará, 66075-110, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n. 01, Guamá, Belém, Pará, 66075-110, Brazil
| | - Sabrina de Carvalho Cartágenes
- Laboratory of Inflammation and Behavior Pharmacology, Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n. 01, Guamá, Belém, Pará, 66075-110, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Inflammation and Behavior Pharmacology, Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Fatemeh Vida Zohoori
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n. 01, Guamá, Belém, Pará, 66075-110, Brazil.
| |
Collapse
|
16
|
Luo M, He Z, Cui H, Chen YPP, Ward P. Class activation attention transfer neural networks for MCI conversion prediction. Comput Biol Med 2023; 156:106700. [PMID: 36871338 DOI: 10.1016/j.compbiomed.2023.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 08/24/2022] [Accepted: 12/09/2022] [Indexed: 02/23/2023]
Abstract
Accurate prediction of the trajectory of Alzheimer's disease (AD) from an early stage is of substantial value for treatment and planning to delay the onset of AD. We propose a novel attention transfer method to train a 3D convolutional neural network to predict which patients with mild cognitive impairment (MCI) will progress to AD within 3 years. A model is first trained on a separate but related source task (task we are transferring information from) to automatically learn regions of interest (ROI) from a given image. Next we train a model to simultaneously classify progressive MCI (pMCI) and stable MCI (sMCI) (the target task we want to solve) and the ROIs learned from the source task. The predicted ROIs are then used to focus the model's attention on certain areas of the brain when classifying pMCI versus sMCI. Thus, in contrast to traditional transfer learning, we transfer attention maps instead of transferring model weights from a source task to the target classification task. Our Method outperformed all methods tested including traditional transfer learning and methods that used expert knowledge to define ROI. Furthermore, the attention map transferred from the source task highlights known Alzheimer's pathology.
Collapse
Affiliation(s)
- Min Luo
- Department of Computer Science and Information Technology, La Trobe University, Melbourne Vic, 3086, Australia
| | - Zhen He
- Department of Computer Science and Information Technology, La Trobe University, Melbourne Vic, 3086, Australia.
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne Vic, 3086, Australia
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne Vic, 3086, Australia
| | - Phillip Ward
- Monash Biomedical Imaging, Melbourne Vic, 3800, Australia; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Vic, 3800, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Melbourne 3800, Australia
| |
Collapse
|
17
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
18
|
Elgammal YM, Zahran MA, Abdelsalam MM. A new strategy for the early detection of alzheimer disease stages using multifractal geometry analysis based on K-Nearest Neighbor algorithm. Sci Rep 2022; 12:22381. [PMID: 36572791 PMCID: PMC9792538 DOI: 10.1038/s41598-022-26958-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's Disease (AD) is considered one of the most diseases that much prevalent among elderly people all over the world. AD is an incurable neurodegenerative disease affecting cognitive functions and were characterized by progressive and collective functions deteriorating. Remarkably, early detection of AD is essential for the development of new and invented treatment strategies. As Dementia causes irreversible damage to the brain neurons and leads to changes in its structure that can be described adequately within the framework of multifractals. Hence, the present work focus on developing a promising and efficient computing technique to pre-process and classify the AD disease especially in the early stages using multifractal geometry to extract the most changeable features due to AD. Then, A machine learning classification algorithm (K-Nearest Neighbor) has been implemented in order to classify and detect the main four early stages of AD. Two datasets have been used to ensure the validation of the proposed methodology. The proposed technique has achieved 99.4% accuracy and 100% sensitivity. The comparative results show that the proposed classification technique outperforms is recent techniques in terms of performance measures.
Collapse
Affiliation(s)
- Yasmina M Elgammal
- Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - M A Zahran
- Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed M Abdelsalam
- Computers Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
19
|
Boulaamane Y, Ibrahim MAA, Britel MR, Maurady A. In silico studies of natural product-like caffeine derivatives as potential MAO-B inhibitors/AA 2AR antagonists for the treatment of Parkinson's disease. J Integr Bioinform 2022; 19:jib-2021-0027. [PMID: 36112816 PMCID: PMC9800045 DOI: 10.1515/jib-2021-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 06/24/2022] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease is considered the second most frequent neurodegenerative disease. It is described by the loss of dopaminergic neurons in the mid-brain. For many decades, L-DOPA has been considered as the gold standard for treating Parkinson's disease motor symptoms, however, due to the decrease of efficacy, in the long run, there is an urgent need for novel antiparkinsonian drugs. Caffeine derivatives have been reported several times for their neuroprotective properties and dual blockade of monoamine oxidase (MAO) and adenosine A2A receptors (AA2AR). Natural products are currently attracting more focus due to structural diversity and safety in contrast to synthetic drugs. In the present work, computational studies were conducted on natural product-like caffeine derivatives to search for novel potent candidates acting as dual MAO-B inhibitors/AA2AR antagonists for Parkinson's disease. Our findings revealed two natural products among the top hits: CNP0202316 and CNP0365210 fulfill the requirements of drugs acting on the brain. The selected lead compounds were further studied using molecular dynamics simulation to assess their stability with MAO-B. Current findings might shift the interest towards natural-based compounds and could be exploited to further optimize caffeine derivatives into a successful dual-target-directed drug for managing and halting the neuronal damage in Parkinson's disease patients.
Collapse
Affiliation(s)
- Yassir Boulaamane
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
20
|
Karimi N, Bayram Çatak F, Arslan E, Saghazadeh A, Rezaei N. Tau immunotherapy in Alzheimer’s disease and progressive supranuclear palsy. Int Immunopharmacol 2022; 113:109445. [DOI: 10.1016/j.intimp.2022.109445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
|
21
|
Zacharia LC, Eleftheriou C, Gkretsi V. Effects of 2-methoxyestradiol on hydrogen peroxide induced neuronal cell death and tau hyperphosphorylation. Life Sci 2022; 309:121047. [DOI: 10.1016/j.lfs.2022.121047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/25/2022] [Accepted: 10/02/2022] [Indexed: 11/29/2022]
|
22
|
Nian Y, Hu X, Zhang R, Feng J, Du J, Li F, Bu L, Zhang Y, Chen Y, Tao C. Mining on Alzheimer's diseases related knowledge graph to identity potential AD-related semantic triples for drug repurposing. BMC Bioinformatics 2022; 23:407. [PMID: 36180861 PMCID: PMC9523633 DOI: 10.1186/s12859-022-04934-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To date, there are no effective treatments for most neurodegenerative diseases. Knowledge graphs can provide comprehensive and semantic representation for heterogeneous data, and have been successfully leveraged in many biomedical applications including drug repurposing. Our objective is to construct a knowledge graph from literature to study the relations between Alzheimer's disease (AD) and chemicals, drugs and dietary supplements in order to identify opportunities to prevent or delay neurodegenerative progression. We collected biomedical annotations and extracted their relations using SemRep via SemMedDB. We used both a BERT-based classifier and rule-based methods during data preprocessing to exclude noise while preserving most AD-related semantic triples. The 1,672,110 filtered triples were used to train with knowledge graph completion algorithms (i.e., TransE, DistMult, and ComplEx) to predict candidates that might be helpful for AD treatment or prevention. RESULTS Among three knowledge graph completion models, TransE outperformed the other two (MR = 10.53, Hits@1 = 0.28). We leveraged the time-slicing technique to further evaluate the prediction results. We found supporting evidence for most highly ranked candidates predicted by our model which indicates that our approach can inform reliable new knowledge. CONCLUSION This paper shows that our graph mining model can predict reliable new relationships between AD and other entities (i.e., dietary supplements, chemicals, and drugs). The knowledge graph constructed can facilitate data-driven knowledge discoveries and the generation of novel hypotheses.
Collapse
Affiliation(s)
- Yi Nian
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Xinyue Hu
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Rui Zhang
- Department of Pharmaceutical Care & Health System (PCHS) and the Institute for Health Informatics (IHI), University of Minnesota, 7-115A Weaver-Densford Hall, Minneapolis, MN 55455 USA
| | - Jingna Feng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Jingcheng Du
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Fang Li
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| | - Larry Bu
- University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201 USA
| | - Yuji Zhang
- University of Maryland School of Medicine, 655 W Baltimore St S, Baltimore, MD 21201 USA
| | - Yong Chen
- Department of Biostatistics, Epidemiology and Informatics (DBEI), the Perelman School of Medicine, University of Pennsylvania, 602 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Cui Tao
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030 USA
| |
Collapse
|
23
|
Inoue Y, Tasaki M, Masuda T, Misumi Y, Nomura T, Ando Y, Ueda M. α-Enolase reduces cerebrovascular Aβ deposits by protecting Aβ amyloid formation. Cell Mol Life Sci 2022; 79:462. [PMID: 35916996 PMCID: PMC11072596 DOI: 10.1007/s00018-022-04493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by cerebrovascular amyloid β (Aβ) deposits and causes dementia and cerebral hemorrhage. Although α-enolase (ENO1) was shown to possess multifunctional roles, its exact functions in CAA pathogenesis have not been determined. In this study, we focused on ENO1, a well-known glycolytic enzyme, which was previously identified via a proteomic approach as an upregulated protein in brain samples from patients with Alzheimer's disease (AD). We utilized the thioflavin T fluorescence assay and transmission electron microscopy to monitor the effects of ENO1 on amyloid formation by Aβ peptides. We also cultured murine primary cerebrovascular smooth muscle cells to determine the effects of ENO1 on Aβ cytotoxicity. To investigate the effects of ENO1 in vivo, we infused ENO1 or a vehicle control into the brains of APP23 mice, a transgenic model of AD/CAA, using a continuous infusion system, followed by a cognitive test and pathological and biochemical analyses. We found that novel functions of ENO1 included interacting with Aβ and inhibiting its fibril formation, disrupting Aβ fibrils, and weakening the cytotoxic effects of these fibrils via proteolytic degradation of Aβ peptide. We also demonstrated that infusion of ENO1 into APP23 mouse brains reduced cerebrovascular Aβ deposits and improved cognitive impairment. In addition, we found that enzymatically inactivated ENO1 failed to inhibit Aβ fibril formation and fibril disruption. The proteolytic activity of ENO1 may thus underlie the enzyme's cytoprotective effect and clearance of Aβ from the brain, and ENO1 may be a therapeutic target in CAA.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Chuo-ku, Honjo, Kumamoto, Kumamoto, 860-8556, Japan.
| | - Masayoshi Tasaki
- Department of Biomedical Laboratory Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Teruaki Masuda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Chuo-ku, Honjo, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yohei Misumi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Chuo-ku, Honjo, Kumamoto, Kumamoto, 860-8556, Japan
| | - Toshiya Nomura
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Chuo-ku, Honjo, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yukio Ando
- Department of Amyloidosis Research, Nagasaki International University, Sasebo, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Chuo-ku, Honjo, Kumamoto, Kumamoto, 860-8556, Japan
| |
Collapse
|
24
|
Rahman MA, Rahman MDH, Mamun-Or-Rashid ANM, Hwang H, Chung S, Kim B, Rhim H. Autophagy Modulation in Aggresome Formation: Emerging Implications and Treatments of Alzheimer's Disease. Biomedicines 2022; 10:1027. [PMID: 35625764 PMCID: PMC9138936 DOI: 10.3390/biomedicines10051027] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prevailing neurodegenerative diseases in the world, which is characterized by memory dysfunction and the formation of tau and amyloid β (Aβ) aggregates in multiple brain regions, including the hippocampus and cortex. The formation of senile plaques involving tau hyperphosphorylation, fibrillar Aβ, and neurofibrillary tangles (NFTs) is used as a pathological marker of AD and eventually produces aggregation or misfolded protein. Importantly, it has been found that the failure to degrade these aggregate-prone proteins leads to pathological consequences, such as synaptic impairment, cytotoxicity, neuronal atrophy, and memory deficits associated with AD. Recently, increasing evidence has suggested that the autophagy pathway plays a role as a central cellular protection system to prevent the toxicity induced by aggregation or misfolded proteins. Moreover, it has also been revealed that AD-related protein aggresomes could be selectively degraded by autophagosome and lysosomal fusion through the autophagy pathway, which is known as aggrephagy. Therefore, the regulation of autophagy serve as a useful approach to modulate the formation of aggresomes associated with AD. This review focuses on the recent improvements in the application of natural compounds and small molecules as a potential therapeutic approach for AD prevention and treatment via aggrephagy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 1-5, Hoegidong, Dongdaemungu, Seoul 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - M D Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - A N M Mamun-Or-Rashid
- Anti-Aging Medical Research Center and Glycation Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 602-8566, Japan
| | - Hongik Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Sooyoung Chung
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 1-5, Hoegidong, Dongdaemungu, Seoul 02447, Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Korea
| |
Collapse
|
25
|
Hasan MF, Trushina E. Advances in Recapitulating Alzheimer's Disease Phenotypes Using Human Induced Pluripotent Stem Cell-Based In Vitro Models. Brain Sci 2022; 12:552. [PMID: 35624938 PMCID: PMC9138647 DOI: 10.3390/brainsci12050552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder and the leading cause of death among older individuals. Available treatment strategies only temporarily mitigate symptoms without modifying disease progression. Recent studies revealed the multifaceted neurobiology of AD and shifted the target of drug development. Established animal models of AD are mostly tailored to yield a subset of disease phenotypes, which do not recapitulate the complexity of sporadic late-onset AD, the most common form of the disease. The use of human induced pluripotent stem cells (HiPSCs) offers unique opportunities to fill these gaps. Emerging technology allows the development of disease models that recapitulate a brain-like microenvironment using patient-derived cells. These models retain the individual's unraveled genetic background, yielding clinically relevant disease phenotypes and enabling cost-effective, high-throughput studies for drug discovery. Here, we review the development of various HiPSC-based models to study AD mechanisms and their application in drug discovery.
Collapse
Affiliation(s)
- Md Fayad Hasan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
26
|
Kim NH, Huh Y, Kim D. Benzo[
g
]
coumarin‐benzothiazole
hybrid: A fluorescent probe for the detection of amyloid‐beta aggregates. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Na Hee Kim
- Department of Biomedical Science, Graduate School Kyung Hee University Seoul Republic of Korea
| | - Youngbuhm Huh
- Department of Biomedical Science, Graduate School Kyung Hee University Seoul Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine Kyung Hee University Seoul Republic of Korea
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School Kyung Hee University Seoul Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine Kyung Hee University Seoul Republic of Korea
- Center for Converging Humanities Kyung Hee University Seoul Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science Institute Kyung Hee University Seoul Republic of Korea
- KHU‐KIST Department of Converging Science and Technology Kyung Hee University Seoul Republic of Korea
| |
Collapse
|
27
|
Huang S, Wang YJ, Guo J. Biofluid Biomarkers of Alzheimer’s Disease: Progress, Problems, and Perspectives. Neurosci Bull 2022; 38:677-691. [PMID: 35306613 PMCID: PMC9206048 DOI: 10.1007/s12264-022-00836-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Since the establishment of the biomarker-based A-T-N (Amyloid/Tau/Neurodegeneration) framework in Alzheimer’s disease (AD), the diagnosis of AD has become more precise, and cerebrospinal fluid tests and positron emission tomography examinations based on this framework have become widely accepted. However, the A-T-N framework does not encompass the whole spectrum of AD pathologies, and problems with invasiveness and high cost limit the application of the above diagnostic methods aimed at the central nervous system. Therefore, we suggest the addition of an “X” to the A-T-N framework and a focus on peripheral biomarkers in the diagnosis of AD. In this review, we retrospectively describe the recent progress in biomarkers based on the A-T-N-X framework, analyze the problems, and present our perspectives on the diagnosis of AD.
Collapse
|
28
|
Movahedpour A, Vakili O, Khalifeh M, Mousavi P, Mahmoodzadeh A, Taheri-Anganeh M, Razmeh S, Shabaninejad Z, Yousefi F, Behrouj H, Ghasemi H, Khatami SH. Mammalian target of rapamycin (mTOR) signaling pathway and traumatic brain injury: A novel insight into targeted therapy. Cell Biochem Funct 2022; 40:232-247. [PMID: 35258097 DOI: 10.1002/cbf.3692] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/11/2022]
Abstract
Traumatic brain injury (TBI) is one of the most concerning health issues in which the normal brain function may be disrupted as a result of a blow, bump, or jolt to the head. Loss of consciousness, amnesia, focal neurological defects, alteration in mental state, and destructive diseases of the nervous system such as cognitive impairment, Parkinson's, and Alzheimer's disease. Parkinson's disease is a chronic progressive neurodegenerative disorder, characterized by the early loss of striatal dopaminergic neurons. TBI is a major risk factor for Parkinson's disease. Existing therapeutic approaches have not been often effective, indicating the necessity of discovering more efficient therapeutic targets. The mammalian target of rapamycin (mTOR) signaling pathway responds to different environmental cues to modulate a large number of cellular processes such as cell proliferation, survival, protein synthesis, autophagy, and cell metabolism. Moreover, mTOR has been reported to affect the regeneration of the injured nerves throughout the central nervous system (CNS). In this context, recent evaluations have revealed that mTOR inhibitors could be potential targets to defeat a group of neurological disorders, and thus, a number of clinical trials are investigating their efficacy in treating dementia, autism, epilepsy, stroke, and brain injury, as irritating neurological defects. The current review describes the interplay between mTOR signaling and major CNS-related disorders (esp. neurodegenerative diseases), as well as the mTOR signaling-TBI relationship. It also aims to discuss the promising therapeutic capacities of mTOR inhibitors during the TBI.
Collapse
Affiliation(s)
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoomeh Khalifeh
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Razmeh
- Department of Internal Medicine, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yousefi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | | | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Icarisid
II
rescues cognitive dysfunction via activation of Wnt/β‐catenin signaling pathway promoting hippocampal neurogenesis in
APP
/
PS1
transgenic mice. Phytother Res 2022; 36:2095-2108. [DOI: 10.1002/ptr.7430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 12/27/2022]
|
30
|
Ahmad R, Chowdhury K, Kumar S, Irfan M, Reddy GS, Akter F, Jahan D, Haque M. Diabetes Mellitus: A Path to Amnesia, Personality, and Behavior Change. BIOLOGY 2022; 11:biology11030382. [PMID: 35336756 PMCID: PMC8945557 DOI: 10.3390/biology11030382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Diabetes Mellitus (DM) is a metabolic disorder resulting from a disturbance of insulin secretion, action, or both. Hyperglycemia and overproduction of superoxide induce the development and progression of chronic complications of DM. The impact of DM and its complication on the central nervous system (CNS) such as dementia and Alzheimer’s Disease (AD) still remain obscure. In dementia, there is a gradual decline in cognitive function. The incidence of dementia increases with age, and patient become socially, physically, and mentally more vulnerable and dependent. The symptoms often emerge decades after the onset of pathophysiology, thus impairing early therapeutic intervention. Most diabetic subjects who develop dementia are above the age of 65, but diabetes may also cause an increased risk of developing dementia before 65 years. Vascular dementia is the second most common form of dementia after AD. Type 2 DM (T2DM) increases the incidence of vascular dementia (since its covers the vascular system) and AD. The functional and structural integrity of the CNS is altered in T2DM due to increased synthesis of Aβ. Additionally, hyperphosphorylation of Tau protein also results from dysregulation of various signaling cascades in T2DM, thereby causing neuronal damage and AD. There is the prospect for development of a therapy that may help prevent or halt the progress of dementia resulting from T2DM. Abstract Type 2 diabetes mellitus is increasingly being associated with cognition dysfunction. Dementia, including vascular dementia and Alzheimer’s Disease, is being recognized as comorbidities of this metabolic disorder. The progressive hallmarks of this cognitive dysfunction include mild impairment of cognition and cognitive decline. Dementia and mild impairment of cognition appear primarily in older patients. Studies on risk factors, neuropathology, and brain imaging have provided important suggestions for mechanisms that lie behind the development of dementia. It is a significant challenge to understand the disease processes related to diabetes that affect the brain and lead to dementia development. The connection between diabetes mellitus and dysfunction of cognition has been observed in many human and animal studies that have noted that mechanisms related to diabetes mellitus are possibly responsible for aggravating cognitive dysfunction. This article attempts to narrate the possible association between Type 2 diabetes and dementia, reviewing studies that have noted this association in vascular dementia and Alzheimer’s Disease and helping to explain the potential mechanisms behind the disease process. A Google search for “Diabetes Mellitus and Dementia” was carried out. Search was also done for “Diabetes Mellitus”, “Vascular Dementia”, and “Alzheimer’s Disease”. The literature search was done using Google Scholar, Pubmed, Embase, ScienceDirect, and MEDLINE. Keeping in mind the increasing rate of Diabetes Mellitus, it is important to establish the Type 2 diabetes’ effect on the brain and diseases of neurodegeneration. This narrative review aims to build awareness regarding the different types of dementia and their relationship with diabetes.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh;
| | - Kona Chowdhury
- Department of Pediatrics, Gonoshasthaya Samaj Vittik Medical College and Hospital, Dhaka 1344, Bangladesh;
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, 907/A, Uvarsad Gandhinagar, Gujarat 382422, India;
| | - Mohammed Irfan
- Department of Forensics, Federal University of Pelotas, Pelotas 96020-010, RS, Brazil;
| | - Govindool Sharaschandra Reddy
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA;
| | - Farhana Akter
- Department of Endocrinology, Chittagong Medical College, Chattogram 4203, Bangladesh;
| | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, 111/1/A Distillery Road, Gandaria Beside Dhupkhola, Dhaka 1204, Bangladesh;
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: or
| |
Collapse
|
31
|
Taheri M, Aslani S, Ghafouri H, Mohammadi A, Akbary Moghaddam V, Moradi N, Naeimi H. Synthesis, in vitro biological evaluation and molecular modelling of new 2-chloro-3-hydrazinopyrazine derivatives as potent acetylcholinesterase inhibitors on PC12 cells. BMC Chem 2022; 16:7. [PMID: 35193649 PMCID: PMC8864858 DOI: 10.1186/s13065-022-00799-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background The loss of cholinergic neurotransmission in Alzheimer's disease (AD) patients' brain is accompanied by a reduced concentration of Acetylcholine (ACh) within synaptic clefts. Thus, the use of acetylcholinesterase inhibitors (AChEIs) to block the cholinergic degradation of ACh is a promising approach for AD treatment. In the present study, a series of 2-chloro-3-hydrazinopyrazine derivatives (CHP1-5) were designed, synthesized, and biologically evaluated as potential multifunctional anti-AD agents. Methods In addition, the chemical structures and purity of the synthesized compounds were elucidated through using IR, 1H and 13C NMR, and elemental analyses. Further, the intended compounds were assessed in vitro for their AChE inhibitory and neuroprotective effects. Furthermore, DPPH, FRAP and ABTS assays were utilized to determine their antioxidant activity. The statistical analysis was performed using one-way ANOVA. Results Based on the results, CHP4 and CHP5 exhibited strong AChE inhibitory effects with the IC50 values of 3.76 and 4.2 µM compared to the donepezil (0.53 µM), respectively. The study examined the effect and molecular mechanism of CHP4 on the Ab1–42-induced cytotoxicity in differentiated PC12 cells. At concentrations of 0–100 μM, CHP4 was non-toxic in PC12. Additionally, Ab1–42 significantly stimulated tau hyperphosphorylation and induced differentiated PC12 cell death. Further, CHP4 resulted in diminishing the Ab1–42-induced toxicity in PC12 cell significantly. CHP4 at 30 μM concentration significantly increased the Ab1–42-induced HSP70 expression and decreased tau hyperphosphorylation. Conclusions According to the results of our studies CHP4 can be considered as safe and efficient AChEI and employed as a potential multifunctional anti-AD agent. Supplementary Information The online version contains supplementary material available at 10.1186/s13065-022-00799-w.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Samira Aslani
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran. .,Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | | - Nastarn Moradi
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Hananeh Naeimi
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
32
|
Sodhi K, Pratt R, Wang X, Lakhani HV, Pillai SS, Zehra M, Wang J, Grover L, Henderson B, Denvir J, Liu J, Pierre S, Nelson T, Shapiro JI. Role of adipocyte Na,K-ATPase oxidant amplification loop in cognitive decline and neurodegeneration. iScience 2021; 24:103262. [PMID: 34755095 PMCID: PMC8564125 DOI: 10.1016/j.isci.2021.103262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest that a western diet may contribute to clinical neurodegeneration and dementia. Adipocyte-specific expression of the Na,K-ATPase signaling antagonist, NaKtide, ameliorates the pathophysiological consequences of murine experimental obesity and renal failure. In this study, we found that a western diet produced systemic oxidant stress along with evidence of activation of Na,K-ATPase signaling within both murine brain and peripheral tissues. We also noted this diet caused increases in circulating inflammatory cytokines as well as behavioral, and brain biochemical changes consistent with neurodegeneration. Adipocyte specific NaKtide affected by a doxycycline on/off expression system ameliorated all of these diet effects. These data suggest that a western diet produces cognitive decline and neurodegeneration through augmented Na,K-ATPase signaling and that antagonism of this pathway in adipocytes ameliorates the pathophysiology. If this observation is confirmed in humans, the adipocyte Na,K-ATPase may serve as a clinical target in the therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Komal Sodhi
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Rebecca Pratt
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Xiaoliang Wang
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Sneha S. Pillai
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Mishghan Zehra
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jiayan Wang
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Lawrence Grover
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Brandon Henderson
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - James Denvir
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jiang Liu
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Sandrine Pierre
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Thomas Nelson
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Joseph I. Shapiro
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
33
|
Jin JE, Hue GE. The Need for Preservation of Medical Decision Making with Diminished Cognitive Capacity. AJOB Neurosci 2021; 12:224-226. [PMID: 34704903 DOI: 10.1080/21507740.2021.1941412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
34
|
Exposure to Environmental Arsenic and Emerging Risk of Alzheimer's Disease: Perspective Mechanisms, Management Strategy, and Future Directions. TOXICS 2021; 9:toxics9080188. [PMID: 34437506 PMCID: PMC8402411 DOI: 10.3390/toxics9080188] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is one of the most prevailing neurodegenerative diseases, characterized by memory dysfunction and the presence of hyperphosphorylated tau and amyloid β (Aβ) aggregates in multiple brain regions, including the hippocampus and cortex. The exact etiology of AD has not yet been confirmed. However, epidemiological reports suggest that populations who were exposed to environmental hazards are more likely to develop AD than those who were not. Arsenic (As) is a naturally occurring environmental risk factor abundant in the Earth’s crust, and human exposure to As predominantly occurs through drinking water. Convincing evidence suggests that As causes neurotoxicity and impairs memory and cognition, although the hypothesis and molecular mechanism of As-associated pathobiology in AD are not yet clear. However, exposure to As and its metabolites leads to various pathogenic events such as oxidative stress, inflammation, mitochondrial dysfunctions, ER stress, apoptosis, impaired protein homeostasis, and abnormal calcium signaling. Evidence has indicated that As exposure induces alterations that coincide with most of the biochemical, pathological, and clinical developments of AD. Here, we overview existing literature to gain insights into the plausible mechanisms that underlie As-induced neurotoxicity and the subsequent neurological deficits in AD. Prospective strategies for the prevention and management of arsenic exposure and neurotoxicity have also been discussed.
Collapse
|
35
|
Lipocalin‐Type Prostaglandin
d
Synthase Conjugates as Magnetic Resonance Imaging Contrast Agents for Detecting Amyloid β‐Rich Regions in the Brain of Live Alzheimer's Disease Mice. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
36
|
Kimura AM, Tsuji M, Yasumoto T, Mori Y, Oguchi T, Tsuji Y, Umino M, Umino A, Nishikawa T, Nakamura S, Inoue T, Kiuchi Y, Yamada M, Teplow DB, Ono K. Myricetin prevents high molecular weight Aβ 1-42 oligomer-induced neurotoxicity through antioxidant effects in cell membranes and mitochondria. Free Radic Biol Med 2021; 171:232-244. [PMID: 34015458 DOI: 10.1016/j.freeradbiomed.2021.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Excessive accumulation of amyloid β-protein (Aβ) is one of the primary mechanisms that leads to neuronal death with phosphorylated tau in the pathogenesis of Alzheimer's disease (AD). Protofibrils, one of the high-molecular-weight Aβ oligomers (HMW-Aβo), are implicated to be important targets of disease modifying therapy of AD. We previously reported that phenolic compounds such as myricetin inhibit Aβ1-40, Aβ1-42, and α-synuclein aggregations, including their oligomerizations, which may exert protective effects against AD and Parkinson's disease. The purpose of this study was to clarify the detailed mechanism of the protective effect of myricetin against the neurotoxicity of HMW-Aβo in SH-SY5Y cells. To assess the effect of myricetin on HMW-Aβo-induced oxidative stress, we systematically examined the level of membrane oxidative damage by measuring cell membrane lipid peroxidation, membrane fluidity, and cell membrane potential, and the mitochondrial oxidative damage was evaluated by mitochondrial permeability transition (MPT), mitochondrial reactive oxygen species (ROS), and manganese-superoxide dismutase (Mn-SOD), and adenosine triphosphate (ATP) assay in SH-SY5Y cells. Myricetin has been found to increased cell viability by suppression of HMW-Aβo-induced membrane disruption in SH-SY5Y cells, as shown in reducing membrane phospholipid peroxidation and increasing membrane fluidity and membrane resistance. Myricetin has also been found to suppress HMW-Aβo-induced mitochondria dysfunction, as demonstrated in decreasing MPT, Mn-SOD, and ATP generation, raising mitochondrial membrane potential, and increasing mitochondrial-ROS generation. These results suggest that myricetin preventing HMW-Aβo-induced neurotoxicity through multiple antioxidant functions may be developed as a disease-modifying agent against AD.
Collapse
Affiliation(s)
- Atsushi Michael Kimura
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan; Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan.
| | - Taro Yasumoto
- Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | - Yukiko Mori
- Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | - Tatsunori Oguchi
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Yuya Tsuji
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Masakazu Umino
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Asami Umino
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Toru Nishikawa
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Tomio Inoue
- Department of Oral Physiology, School of Dentistry, Showa University, Tokyo, 142-8555, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, Division of Medical Pharmacology, School of Medicine, Showa University, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640, Japan
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles E. Young Drive South, Room 445, Los Angeles, CA, 90095, USA
| | - Kenjiro Ono
- Department of Internal Medicine, Division of Neurology, School of Medicine, Showa University, Tokyo, 142-8666, Japan.
| |
Collapse
|
37
|
Barek MA, Aziz MA, Jafrin S, Islam MS. Association of GOLPH2 gene polymorphisms (rs10868366 and rs7019241) with the risk of Alzheimer's disease: Evidence from a meta-analysis. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Targeting impaired nutrient sensing with repurposed therapeutics to prevent or treat age-related cognitive decline and dementia: A systematic review. Ageing Res Rev 2021; 67:101302. [PMID: 33609776 DOI: 10.1016/j.arr.2021.101302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dementia is a debilitating syndrome that significantly impacts individuals over the age of 65 years. There are currently no disease-modifying treatments for dementia. Impairment of nutrient sensing pathways has been implicated in the pathogenesis of dementia, and may offer a novel treatment approach for dementia. AIMS This systematic review collates all available evidence for Food and Drug Administration (FDA)-approved therapeutics that modify nutrient sensing in the context of preventing cognitive decline or improving cognition in ageing, mild cognitive impairment (MCI), and dementia populations. METHODS PubMed, Embase and Web of Science databases were searched using key search terms focusing on available therapeutics such as 'metformin', 'GLP1', 'insulin' and the dementias including 'Alzheimer's disease' and 'Parkinson's disease'. Articles were screened using Covidence systematic review software (Veritas Health Innovation, Melbourne, Australia). The risk of bias was assessed using the Cochrane Risk of Bias tool v 2.0 for human studies and SYRCLE's risk of bias tool for animal studies. RESULTS Out of 2619 articles, 114 were included describing 31 different 'modulation of nutrient sensing pathway' therapeutics, 13 of which specifically were utilized in human interventional trials for normal ageing or dementia. Growth hormone secretagogues improved cognitive outcomes in human mild cognitive impairment, and potentially normal ageing populations. In animals, all investigated therapeutic classes exhibited some cognitive benefits in dementia models. While the risk of bias was relatively low in human studies, this risk in animal studies was largely unclear. CONCLUSIONS Modulation of nutrient sensing pathway therapeutics, particularly growth hormone secretagogues, have the potential to improve cognitive outcomes. Overall, there is a clear lack of translation from animal models to human populations.
Collapse
|
39
|
Du X, Shi Q, Zhao Y, Xie Y, Li X, Liu Q, Iqbal J, Zhang H, Liu X, Shen L. Se-Methylselenocysteine (SMC) Improves Cognitive Deficits by Attenuating Synaptic and Metabolic Abnormalities in Alzheimer's Mice Model: A Proteomic Study. ACS Chem Neurosci 2021; 12:1112-1132. [PMID: 33689275 DOI: 10.1021/acschemneuro.0c00549] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Se-methylselenocysteine (SMC) is a major selenocompound in selenium (Se) enriched plants and has been found to ameliorate neuropathology and cognitive deficits in triple-transgenic mice model of Alzheimer's disease (3 × Tg-AD mice). To explore the underlying molecular mechanisms, the present study is designed to elucidate the protein changes in the cortex of SMC-treated 3 × Tg-AD mice. After SMC supplementation, proteomic analysis revealed that 181, 271, and 41 proteins were identified as differentially expressed proteins (DEPs) between 3 × Tg-AD mice vs wild type (AD/WT group), SMC-treated AD mice vs AD (AD + SMC/AD), and AD + SMC/WT group, respectively. Among these, 138 proteins in the diseased group were reversed by SMC treatment. The DEPs in AD/WT group and AD + SMC/AD group were mainly related to metabolism, synapses, and antioxidant proteins, while their levels were decreased in AD mice but up-regulated after treating with SMC. In addition, we found reduced ATP levels and destroyed synaptic structures in the AD mice brains, which were significantly ameliorated upon SMC treatment. Our study suggests that energy metabolism disorders, abnormal amino acid metabolism, synaptic dysfunction, and oxidative stress may be the key pathogenic phenomena of AD. SMC reversed the expression of proteins associated with them, which might be the main mechanism of its intervention in AD.
Collapse
Affiliation(s)
- Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qingqing Shi
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yuxi Zhao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yongli Xie
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xuexia Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Javed Iqbal
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen Bay Laboratory, Shenzhen 518055, P.R. China
| | - Xukun Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, P. R. China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
40
|
McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, Brown J, Anderson-Jackson L, Williams L, Latore L, Thompson R, Alexander-Lindo R. Cerebrospinal Fluid Biomarkers of Alzheimer's Disease: Current Evidence and Future Perspectives. Brain Sci 2021; 11:215. [PMID: 33578866 PMCID: PMC7916561 DOI: 10.3390/brainsci11020215] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer's disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer's disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer's disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer's disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.
Collapse
Affiliation(s)
- Donovan A. McGrowder
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Fabian Miller
- Department of Physical Education, Faculty of Education, The Mico University College, 1A Marescaux Road, Kingston 5, Jamaica;
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Kurt Vaz
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Cameil Wilson-Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| | - Melisa Anderson-Cross
- School of Allied Health and Wellness, College of Health Sciences, University of Technology, Kingston 7, Jamaica;
| | - Jabari Brown
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lennox Anderson-Jackson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Lowen Williams
- Department of Biotechnology, Faculty of Science and Technology, The University of the West Indies, Kingston 7, Jamaica;
| | - Lyndon Latore
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Rory Thompson
- Department of Pathology, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (K.V.); (J.B.); (L.A.-J.); (L.L.); (R.T.)
| | - Ruby Alexander-Lindo
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Kingston 7, Jamaica; (C.N.); (C.W.-C.); (R.A.-L.)
| |
Collapse
|
41
|
Proteomic Profiling of Cerebrum Mitochondria, Myelin Sheath, and Synaptosome Revealed Mitochondrial Damage and Synaptic Impairments in Association with 3 × Tg-AD Mice Model. Cell Mol Neurobiol 2021; 42:1745-1763. [PMID: 33560469 DOI: 10.1007/s10571-021-01052-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/29/2021] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common age-associated dementia with complex pathological hallmarks. Mitochondrion, synaptosome, and myelin sheath appear to be vulnerable and play a key role in the pathogenesis of AD. To clarify the early mechanism associated with AD, followed by subcellular components separation, we performed iTRAQ (isobaric tags for relative and absolute quantification)-based proteomics analysis to simultaneously investigate the differentially expressed proteins (DEPs) within the mitochondria, synaptosome, and myelin sheath in the cerebrum of the 6-month-old triple transgenic AD (3 × Tg-AD) and 6-month-old wild-type (WT) mice. A large number of DEPs between the AD and WT mice were identified. Most of them are related to mitochondria and synaptic dysfunction and cytoskeletal protein change. Differential expressions of Lrpprc, Nefl, and Sirpa were verified by Western blot analysis. The results suggest that decreased energy metabolism, impaired amino acid metabolism and neurotransmitter synthesis, increase compensatory fatty acid metabolism, up-regulated cytoskeletal protein expression, and oxidative stress are the early events of AD. Among these, mitochondrial damage, synaptic dysfunction, decreased energy metabolism, and abnormal amino acid metabolism are the most significant events. The results indicate that it is feasible to separate and simultaneously perform proteomics analysis on the three subcellular components.
Collapse
|
42
|
Breast Cancer-Derived Microvesicles Are the Source of Functional Metabolic Enzymes as Potential Targets for Cancer Therapy. Biomedicines 2021; 9:biomedicines9020107. [PMID: 33499132 PMCID: PMC7910888 DOI: 10.3390/biomedicines9020107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Membrane-derived extracellular vesicles, referred to as microvesicles (MVs), have been proposed to participate in several cancer diseases. In this study, MV fractions were isolated by differential ultracentrifugation from a metastatic breast cancer (BC) cell line MDA-MB-231 and a non-cancerous breast cell line MCF10A, then analyzed by nano-liquid chromatography coupled to tandem mass spectrometry. A total of 1519 MV proteins were identified from both cell lines. The data obtained were compared to previously analyzed proteins from small extracellular vesicles (sEVs), revealing 1272 proteins present in both MVs and sEVs derived from the MDA-MB-231 cell line. Among the 89 proteins unique to MDA-MB-231 MVs, three enzymes: ornithine aminotransferase (OAT), transaldolase (TALDO1) and bleomycin hydrolase (BLMH) were previously proposed as cancer therapy targets. These proteins were enzymatically validated in cells, sEVs, and MVs derived from both cell lines. The specific activity of OAT and TALDO1 was significantly higher in MDA-MB-231-derived MVs than in MCF10A MVs. BLMH was highly expressed in MDA-MB-231-derived MVs, compared to MCF10A MVs. This study shows that MVs carry functional metabolic enzymes and provides a framework for future studies of their biological role in BC and potential in therapeutic applications.
Collapse
|
43
|
Khan MJ, Desaire H, Lopez OL, Kamboh MI, Robinson RA. Why Inclusion Matters for Alzheimer's Disease Biomarker Discovery in Plasma. J Alzheimers Dis 2021; 79:1327-1344. [PMID: 33427747 PMCID: PMC9126484 DOI: 10.3233/jad-201318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND African American/Black adults have a disproportionate incidence of Alzheimer's disease (AD) and are underrepresented in biomarker discovery efforts. OBJECTIVE This study aimed to identify potential diagnostic biomarkers for AD using a combination of proteomics and machine learning approaches in a cohort that included African American/Black adults. METHODS We conducted a discovery-based plasma proteomics study on plasma samples (N = 113) obtained from clinically diagnosed AD and cognitively normal adults that were self-reported African American/Black or non-Hispanic White. Sets of differentially-expressed proteins were then classified using a support vector machine (SVM) to identify biomarker candidates. RESULTS In total, 740 proteins were identified of which, 25 differentially-expressed proteins in AD came from comparisons within a single racial and ethnic background group. Six proteins were differentially-expressed in AD regardless of racial and ethnic background. Supervised classification by SVM yielded an area under the curve (AUC) of 0.91 and accuracy of 86%for differentiating AD in samples from non-Hispanic White adults when trained with differentially-expressed proteins unique to that group. However, the same model yielded an AUC of 0.49 and accuracy of 47%for differentiating AD in samples from African American/Black adults. Other covariates such as age, APOE4 status, sex, and years of education were found to improve the model mostly in the samples from non-Hispanic White adults for classifying AD. CONCLUSION These results demonstrate the importance of study designs in AD biomarker discovery, which must include diverse racial and ethnic groups such as African American/Black adults to develop effective biomarkers.
Collapse
Affiliation(s)
- Mostafa J. Khan
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - M. Ilyas Kamboh
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Renã A.S. Robinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
44
|
Toljan K, Homolak J. Circadian changes in Alzheimer's disease: Neurobiology, clinical problems, and therapeutic opportunities. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:285-300. [PMID: 34225969 DOI: 10.1016/b978-0-12-819975-6.00018-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The understanding of Alzheimer's disease (AD) pathophysiology is an active area of research, and the traditional focus on hippocampus, amyloid and tau protein, and memory impairment has been expanded with components like neuroinflammation, insulin resistance, and circadian rhythm alterations. The bidirectional vicious cycle of neuroinflammation and neurodegeneration on a molecular level may cause functional deficits already long before the appearance of overt clinical symptoms. Located at the crossroads of metabolic, circadian, and hormonal signaling, the hypothalamus has been identified as another brain region affected by AD pathophysiology. Current findings on hypothalamic dysfunction open a broader horizon for studying AD pathogenesis and offer new opportunities for diagnosis and therapy. While treatments with cholinomimetics and memantine form a first line of pharmacological treatment, additional innovative research is pursued toward the development of antiinflammatory, growth factor, or antidiabetic types of medication. Following recent epidemiological data showing associations of AD incidence with modern societal and "life-style"-related risk factors, also nonpharmacological interventions, including sleep optimization, are being developed and some have been shown to be beneficial. Circadian aspects in AD are relevant from a pathophysiological standpoint, but they can also have an important role in pharmacologic and nonpharmacologic interventions, and appropriate timing of sleep, meals, and medication may boost therapeutic efficacy.
Collapse
Affiliation(s)
- Karlo Toljan
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States.
| | - Jan Homolak
- Department of Pharmacology, and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
45
|
Chircov C, Bîrcă AC, Grumezescu AM, Andronescu E. Biosensors-on-Chip: An Up-to-Date Review. Molecules 2020; 25:E6013. [PMID: 33353220 PMCID: PMC7765790 DOI: 10.3390/molecules25246013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, biosensors are designed to translate physical, chemical, or biological events into measurable signals, thus offering qualitative and/or quantitative information regarding the target analytes. While the biosensor field has received considerable scientific interest, integrating this technology with microfluidics could further bring significant improvements in terms of sensitivity and specificity, resolution, automation, throughput, reproducibility, reliability, and accuracy. In this manner, biosensors-on-chip (BoC) could represent the bridging gap between diagnostics in central laboratories and diagnostics at the patient bedside, bringing substantial advancements in point-of-care (PoC) diagnostic applications. In this context, the aim of this manuscript is to provide an up-to-date overview of BoC system development and their most recent application towards the diagnosis of cancer, infectious diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (E.A.)
| |
Collapse
|
46
|
sm-Rahman A, Lo CH, Ramic A, Jahan Y. Home-Based Care for People with Alzheimer's Disease and Related Dementias (ADRD) during COVID-19 Pandemic: From Challenges to Solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9303. [PMID: 33322696 PMCID: PMC7763150 DOI: 10.3390/ijerph17249303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/10/2023]
Abstract
There has been supporting evidence that older adults with underlying health conditions form the majority of the fatal cases in the current novel coronavirus disease (COVID-19) pandemic. While the impact of COVID-19 is affecting the general public, it is clear that these distressful experiences will be magnified in older adults, particularly people living with Alzheimer's disease and related dementia (ADRD), making them the most vulnerable group during this time. People with differing degrees of ADRD are especially susceptible to the virus, not only because of their difficulties in assessing the threat or remembering the safety measures, but also because of the likelihood to be subject to other risk factors, such as lack of proper care and psychological issues. Therefore, in this article, we will discuss the challenges related to home-based care for people with ADRD during a pandemic and propose a formulation of systematic solutions to address these challenges and to alleviate the social and economic impact resulting from the crisis.
Collapse
Affiliation(s)
- Atiqur sm-Rahman
- Department of Culture and Society, Division Ageing and Social Change, Linkoping University, 601 74 Norrkoping, Sweden
| | - Chih Hung Lo
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Azra Ramic
- Stroke Unit, Clinical Medicine, Vrinnevi Hospital, Norrköping-Region Östergötland, 603 79 Norrköping, Sweden;
| | - Yasmin Jahan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 739-8527, Japan;
| |
Collapse
|
47
|
Wiratpruk N, Noor A, McLean CA, Donnelly PS, Barnard PJ. Charge neutral rhenium tricarbonyl complexes of tridentate N-heterocyclic carbene ligands that bind to amyloid plaques of Alzheimer's disease. Dalton Trans 2020; 49:4559-4569. [PMID: 32202264 DOI: 10.1039/c9dt04687a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two tridentate ligand systems bearing N-heterocyclic carbene (NHC), amine and carboxylate donor groups coupled to benzothiazole- or stilbene-based amyloid binding moieties were synthesised. Reaction of the imidazolium salt containing pro-ligands with Re(CO)5Cl yielded the corresponding rhenium metal complexes which were characterised by NMR, and X-ray crystallography. These ligands are of interest for the potential preparation of technetium-99m imaging agents for Alzheimer's disease and the capacity of these rhenium complexes bind to amyloid fibrils composed of amyloid-β peptide and amyloid plaques in human frontal cortex brain tissue was evaluated using fluorescence microscopy. These studies show that the complexes bound efficiently to amyloid-β fibrils and some evidence of binding to amyloid-β plaques.
Collapse
Affiliation(s)
- Nuchareenat Wiratpruk
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia.
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Catriona A McLean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter J Barnard
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia.
| |
Collapse
|
48
|
Scholes HM, Cryar A, Kerr F, Sutherland D, Gethings LA, Vissers JPC, Lees JG, Orengo CA, Partridge L, Thalassinos K. Dynamic changes in the brain protein interaction network correlates with progression of Aβ42 pathology in Drosophila. Sci Rep 2020; 10:18517. [PMID: 33116184 PMCID: PMC7595221 DOI: 10.1038/s41598-020-74748-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is a progressive and devastating neurodegenerative condition for which there are no effective treatments. Understanding the molecular pathology of AD during disease progression may identify new ways to reduce neuronal damage. Here, we present a longitudinal study tracking dynamic proteomic alterations in the brains of an inducible Drosophila melanogaster model of AD expressing the Arctic mutant Aβ42 gene. We identified 3093 proteins from flies that were induced to express Aβ42 and age-matched healthy controls using label-free quantitative ion-mobility data independent analysis mass spectrometry. Of these, 228 proteins were significantly altered by Aβ42 accumulation and were enriched for AD-associated processes. Network analyses further revealed that these proteins have distinct hub and bottleneck properties in the brain protein interaction network, suggesting that several may have significant effects on brain function. Our unbiased analysis provides useful insights into the key processes governing the progression of amyloid toxicity and forms a basis for further functional analyses in model organisms and translation to mammalian systems.
Collapse
Affiliation(s)
- Harry M Scholes
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Adam Cryar
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Fiona Kerr
- Institute of Healthy Ageing, University College London, London, UK
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - David Sutherland
- Institute of Structural and Molecular Biology, University College London, London, UK
| | | | | | - Jonathan G Lees
- Institute of Structural and Molecular Biology, University College London, London, UK
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Christine A Orengo
- Institute of Structural and Molecular Biology, University College London, London, UK.
| | - Linda Partridge
- Institute of Healthy Ageing, University College London, London, UK.
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | | |
Collapse
|
49
|
Olasehinde TA, Olaniran AO, Okoh AI. Cholinesterase inhibitory activity, antioxidant properties, and phytochemical composition of Chlorococcum sp. extracts. J Food Biochem 2020; 45:e13395. [PMID: 32720328 DOI: 10.1111/jfbc.13395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022]
Abstract
In this study, Chlorococcum sp. was investigated for its cholinesterase inhibitory potentials and antioxidant activity. The algal sample was cultivated, harvested, and extracted sequentially using n-hexane, dichloromethane, and ethanol. The extracts were characterized using Fourier transmission infra-red (FTIR) and Gas Chromatography-Mass Spectrometry. The metal chelating, radical scavenging activities, as well as anticholinesterase potentials of the algal extract, was also investigated. FTIR characterization of the microalgal biomass revealed the presence of phenolic compounds, alkaloids, polysaccharides, and fatty acids. The extracts showed the presence of phytol, neophytadiene, butylated hydroxyl toluene, and 3-tert-butyl-4-hydroxyanisole. The ethanol extract showed the highest DPPH (IC50 = 147.40 µg/ml) and OH (IC50 = 493.90 µg/ml) radical scavenging and metal chelating (IC50 = 83.25 µg/ml) activities. Similarly, the ethanol extract (IC50 = 13.83 µg/ml) exhibited the highest acetylcholinesterase inhibitory activity, while the dichloromethane extract showed the highest butyrylcholinesterase inhibitory activity. All the extracts exhibited antioxidant properties and inhibitory effects against butyrylcholinesterase and acetylcholinesterase; however, ethanol extracts showed better activity. PRACTICAL APPLICATIONS: Biomass obtained from some microalgal species is commonly used as dietary supplements and nutraceuticals due to the presence of high-valued products. However, the antioxidant and anticholinesterase activities of biomass from Chlorococcum sp. have not been explored. Chlorococcum sp. extracts contain some antioxidants such as 3-tert-Butyl-4-hydroxyanisole, butylated hydroxytoluene, phytol, and neophytadiene. Characterization of the extracts also revealed the presence of phenolic compounds, polysaccharides, and fatty acids. These compounds may contribute to the observed antioxidant and anticholinesterase activities of Chlorococcum sp. The result of this study suggests that Chlorococcum sp. may contain some nutraceuticals which could be used as antioxidants and cholinesterase inhibitors.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa.,Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Oshodi, Lagos, Nigeria.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.,Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, Kwazulu-Natal, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, Kwazulu-Natal, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa
| |
Collapse
|
50
|
Soleimani Zakeri NS, Pashazadeh S, MotieGhader H. Gene biomarker discovery at different stages of Alzheimer using gene co-expression network approach. Sci Rep 2020; 10:12210. [PMID: 32699331 PMCID: PMC7376049 DOI: 10.1038/s41598-020-69249-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder. It is the most common type of dementia that has remained as an incurable disease in the world, which destroys the brain cells irreversibly. In this study, a systems biology approach was adopted to discover novel micro-RNA and gene-based biomarkers of the diagnosis of Alzheimer's disease. The gene expression data from three AD stages (Normal, Mild Cognitive Impairment, and Alzheimer) were used to reconstruct co-expression networks. After preprocessing and normalization, Weighted Gene Co-Expression Network Analysis (WGCNA) was used on a total of 329 samples, including 145 samples of Alzheimer stage, 80 samples of Mild Cognitive Impairment (MCI) stage, and 104 samples of the Normal stage. Next, three gene-miRNA bipartite networks were reconstructed by comparing the changes in module groups. Then, the functional enrichment analyses of extracted genes of three bipartite networks and miRNAs were done, respectively. Finally, a detailed analysis of the authentic studies was performed to discuss the obtained biomarkers. The outcomes addressed proposed novel genes, including MBOAT1, ARMC7, RABL2B, HNRNPUL1, LAMTOR1, PLAGL2, CREBRF, LCOR, and MRI1and novel miRNAs comprising miR-615-3p, miR-4722-5p, miR-4768-3p, miR-1827, miR-940 and miR-30b-3p which were related to AD. These biomarkers were proposed to be related to AD for the first time and should be examined in future clinical studies.
Collapse
Affiliation(s)
| | - Saeid Pashazadeh
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
| | - Habib MotieGhader
- Department of Computer Engineering, Gowgan Educational Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|