1
|
Clarke BE, Ziff OJ, Tyzack G, Petrić Howe M, Wang Y, Klein P, Smith CA, Hall CA, Helmy A, Howell M, Kelly G, Patani R. Human VCP mutant ALS/FTD microglia display immune and lysosomal phenotypes independently of GPNMB. Mol Neurodegener 2024; 19:90. [PMID: 39593143 PMCID: PMC11590569 DOI: 10.1186/s13024-024-00773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Microglia play crucial roles in maintaining neuronal homeostasis but have been implicated in contributing to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the role of microglia in ALS/FTD remains incompletely understood. METHODS Here, we generated highly enriched cultures of VCP mutant microglia derived from human induced pluripotent stem cells (hiPSCs) to investigate their cell autonomous and non-cell autonomous roles in ALS pathogenesis. We used RNA-sequencing, proteomics and functional assays to study hiPSC derived VCP mutant microglia and their effects on hiPSC derived motor neurons and astrocytes. RESULTS Transcriptomic, proteomic and functional analyses revealed immune and lysosomal dysfunction in VCP mutant microglia. Stimulating healthy microglia with the inflammatory inducer lipopolysaccharide (LPS) showed partial overlap with VCP mutant microglia in their reactive transformation. LPS-stimulated VCP mutant microglia displayed differential activation of inflammatory pathways compared with LPS-stimulated healthy microglia. Conserved gene expression changes were identified between VCP mutant microglia, SOD1 mutant mice microglia, and postmortem ALS spinal cord microglial signatures, including increased expression of the transmembrane glycoprotein GPNMB. While knockdown of GPNMB affected inflammatory and phagocytosis processes in microglia, this was not sufficient to ameliorate cell autonomous phenotypes in VCP mutant microglia. Secreted factors from VCP mutant microglia were sufficient to activate the JAK-STAT pathway in hiPSC derived motor neurons and astrocytes. CONCLUSIONS VCP mutant microglia undergo cell autonomous reactive transformation involving immune and lysosomal dysfunction that partially recapitulate key phenotypes of microglia from other ALS models and post mortem tissue. These phenotypes occur independently of GPNMB. Additionally, VCP mutant microglia elicit non cell autonomous responses in motor neurons and astrocytes involving the JAK-STAT pathway.
Collapse
Affiliation(s)
- Benjamin E Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Oliver J Ziff
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
| | - Giulia Tyzack
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Marija Petrić Howe
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yiran Wang
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Pierre Klein
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Claudia A Smith
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cameron A Hall
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
| |
Collapse
|
2
|
Odunsi A, Kapitonova MA, Woodward G, Rahmani E, Ghelichkhani F, Liu J, Rozovsky S. Selenoprotein K at the intersection of cellular pathways. Arch Biochem Biophys 2024; 764:110221. [PMID: 39571956 DOI: 10.1016/j.abb.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/08/2024]
Abstract
Selenoprotein K (selenok) is linked to the integrated stress response, which helps cells combat stressors and regain normal function. The selenoprotein contains numerous protein interaction hubs and post-translational modification sites and is involved in protein palmitoylation, vesicle trafficking, and the resolution of ER stress. Anchored to the endoplasmic reticulum (ER) membrane, selenok interacts with protein partners to influence their stability, localization, and trafficking, impacting various cellular functions such as calcium homeostasis, cellular migration, phagocytosis, gene expression, and immune response. Consequently, selenok expression level is linked to cancer and neurodegenerative diseases. Because it contains the reactive amino acid selenocysteine, selenok is likely to function as an enzyme. However, highly unusual for enzymes, the protein segment containing the selenocysteine lacks a stable secondary or tertiary structure, yet it includes multiple interaction sites for protein partners and post-translational modifications. Currently, the reason(s) for the presence of the rare selenocysteine in selenok is not known. Furthermore, of selenok's numerous interaction sites, only some have been sufficiently characterized, leaving many of selenok's potential protein partners to be discovered. In this review, we explore selenok's role in various cellular pathways and its impact on human health, thereby highlighting the links between its diverse cellular functions.
Collapse
Affiliation(s)
- Atinuke Odunsi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mariia A Kapitonova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - George Woodward
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Erfan Rahmani
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Farid Ghelichkhani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Jun Liu
- Asieris Pharmaceuticals, Palo Alto, CA, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.
| |
Collapse
|
3
|
Banik P, Ray K, Kamps J, Chen QY, Luesch H, Winklhofer KF, Tatzelt J. VCP/p97 mediates nuclear targeting of non-ER-imported prion protein to maintain proteostasis. Life Sci Alliance 2024; 7:e202302456. [PMID: 38570188 PMCID: PMC10992997 DOI: 10.26508/lsa.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Mistargeting of secretory proteins in the cytosol can trigger their aggregation and subsequent proteostasis decline. We have identified a VCP/p97-dependent pathway that directs non-ER-imported prion protein (PrP) into the nucleus to prevent the formation of toxic aggregates in the cytosol. Upon impaired translocation into the ER, PrP interacts with VCP/p97, which facilitates nuclear import mediated by importin-ß. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import are independent of ubiquitination. In vitro experiments revealed that VCP/p97 binds non-ubiquitinated PrP and prevents its aggregation. Inhibiting binding of PrP to VCP/p97, or transient proteotoxic stress, promotes the formation of self-perpetuating and partially proteinase resistant PrP aggregates in the cytosol, which compromised cellular proteostasis and disrupted further nuclear targeting of PrP. In the nucleus, RNAs keep PrP in a soluble and non-toxic conformation. Our study revealed a novel ubiquitin-independent role of VCP/p97 in the nuclear targeting of non-imported secretory proteins and highlights the impact of the chemical milieu in triggering protein misfolding.
Collapse
Affiliation(s)
- Papiya Banik
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Koustav Ray
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Qi-Yin Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, USA
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| |
Collapse
|
4
|
Gahlot P, Kravic B, Rota G, van den Boom J, Levantovsky S, Schulze N, Maspero E, Polo S, Behrends C, Meyer H. Lysosomal damage sensing and lysophagy initiation by SPG20-ITCH. Mol Cell 2024; 84:1556-1569.e10. [PMID: 38503285 DOI: 10.1016/j.molcel.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
Cells respond to lysosomal membrane permeabilization by membrane repair or selective macroautophagy of damaged lysosomes, termed lysophagy, but it is not fully understood how this decision is made. Here, we uncover a pathway in human cells that detects lipid bilayer perturbations in the limiting membrane of compromised lysosomes, which fail to be repaired, and then initiates ubiquitin-triggered lysophagy. We find that SPG20 binds the repair factor IST1 on damaged lysosomes and, importantly, integrates that with the detection of damage-associated lipid-packing defects of the lysosomal membrane. Detection occurs via sensory amphipathic helices in SPG20 before rupture of the membrane. If lipid-packing defects are extensive, such as during lipid peroxidation, SPG20 recruits and activates ITCH, which marks the damaged lysosome with lysine-63-linked ubiquitin chains to initiate lysophagy and thus triages the lysosome for destruction. With SPG20 being linked to neurodegeneration, these findings highlight the relevance of a coordinated lysosomal damage response for cellular homeostasis.
Collapse
Affiliation(s)
- Pinki Gahlot
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Bojana Kravic
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Giulia Rota
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Johannes van den Boom
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Sophie Levantovsky
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Nina Schulze
- Imaging Center Campus Essen, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Elena Maspero
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Simona Polo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
| | - Hemmo Meyer
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
5
|
Hao M, Lu P, Sotropa S, Manupati K, Yeo SK, Guan JL. In vivo CRISPR knockout screen identifies p47 as a suppressor of HER2+ breast cancer metastasis by regulating NEMO trafficking and autophagy flux. Cell Rep 2024; 43:113780. [PMID: 38363674 DOI: 10.1016/j.celrep.2024.113780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/14/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
Autophagy is a conserved cellular process, and its dysfunction is implicated in cancer and other diseases. Here, we employ an in vivo CRISPR screen targeting genes implicated in the regulation of autophagy to identify the Nsfl1c gene encoding p47 as a suppressor of human epidermal growth factor receptor 2 (HER2)+ breast cancer metastasis. p47 ablation specifically increases metastasis without promoting primary mammary tumor growth. Analysis of human breast cancer patient databases and tissue samples indicates a correlation of lower p47 expression levels with metastasis and decreased survival. Mechanistic studies show that p47 functions in the repair of lysosomal damage for autophagy flux and in the endosomal trafficking of nuclear factor κB essential modulator for lysosomal degradation to promote metastasis. Our results demonstrate a role and mechanisms of p47 in the regulation of breast cancer metastasis. They highlight the potential to exploit p47 as a suppressor of metastasis through multiple pathways in HER2+ breast cancer cells.
Collapse
Affiliation(s)
- Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Peixin Lu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sarah Sotropa
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kanakaraju Manupati
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
6
|
Hicks D, Giresh K, Wrischnik LA, Weiser DC. The PPP1R15 Family of eIF2-alpha Phosphatase Targeting Subunits (GADD34 and CReP). Int J Mol Sci 2023; 24:17321. [PMID: 38139150 PMCID: PMC10743859 DOI: 10.3390/ijms242417321] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.
Collapse
Affiliation(s)
- Danielle Hicks
- Department of Science, Mathematics and Engineering, Modesto Junior College, Modesto, CA 95350, USA
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Krithika Giresh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Lisa A. Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
7
|
Chu S, Xie X, Payan C, Stochaj U. Valosin containing protein (VCP): initiator, modifier, and potential drug target for neurodegenerative diseases. Mol Neurodegener 2023; 18:52. [PMID: 37545006 PMCID: PMC10405438 DOI: 10.1186/s13024-023-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.
Collapse
Affiliation(s)
- Siwei Chu
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Xinyi Xie
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Carla Payan
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada.
- Quantitative Life Sciences Program, McGill University, Montreal, Canada.
| |
Collapse
|
8
|
Jaffray EG, Tatham MH, Mojsa B, Liczmanska M, Rojas-Fernandez A, Yin Y, Ball G, Hay RT. The p97/VCP segregase is essential for arsenic-induced degradation of PML and PML-RARA. J Cell Biol 2023; 222:e202201027. [PMID: 36880596 PMCID: PMC10005898 DOI: 10.1083/jcb.202201027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 10/27/2022] [Accepted: 01/04/2023] [Indexed: 03/04/2023] Open
Abstract
Acute Promyelocytic Leukemia is caused by expression of the oncogenic Promyelocytic Leukemia (PML)-Retinoic Acid Receptor Alpha (RARA) fusion protein. Therapy with arsenic trioxide results in degradation of PML-RARA and PML and cures the disease. Modification of PML and PML-RARA with SUMO and ubiquitin precedes ubiquitin-mediated proteolysis. To identify additional components of this pathway, we performed proteomics on PML bodies. This revealed that association of p97/VCP segregase with PML bodies is increased after arsenic treatment. Pharmacological inhibition of p97 altered the number, morphology, and size of PML bodies, accumulated SUMO and ubiquitin modified PML and blocked arsenic-induced degradation of PML-RARA and PML. p97 localized to PML bodies in response to arsenic, and siRNA-mediated depletion showed that p97 cofactors UFD1 and NPLOC4 were critical for PML degradation. Thus, the UFD1-NPLOC4-p97 segregase complex is required to extract poly-ubiquitinated, poly-SUMOylated PML from PML bodies, prior to degradation by the proteasome.
Collapse
Affiliation(s)
- Ellis G. Jaffray
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael H. Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Barbara Mojsa
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Magda Liczmanska
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alejandro Rojas-Fernandez
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Yili Yin
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Graeme Ball
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
9
|
Lu G, Tan HWS, Schmauck-Medina T, Wang L, Chen J, Cho YL, Chen K, Zhang JZ, He W, Wu Y, Xia D, Zhou J, Fang EF, Fang L, Liu W, Shen HM. WIPI2 positively regulates mitophagy by promoting mitochondrial recruitment of VCP. Autophagy 2022; 18:2865-2879. [PMID: 35389758 PMCID: PMC9673930 DOI: 10.1080/15548627.2022.2052461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mammalian Atg18 ortholog WIPI2 is a key regulator of LC3 lipidation to promote autophagosome biogenesis during nonselective macroautophagy, while its functions in selective autophagy such as mitophagy remain largely unexplored. In this study, we explored the role of WIPI2 in PINK1-PRKN/parkin-mediated mitophagy. First, we found that WIPI2 is recruited to damaged mitochondria upon mitophagy induction. Second, loss of WIPI2 impedes mitochondrial damaging agents-induced mitophagy. Third, at molecular level, WIPI2 binds to and promotes AAA-ATPase VCP/p97 (valosin containing protein) to damaged mitochondria; and WIPI2 depletion blunts the recruitment of VCP to damaged mitochondria, leading to reduction in degradation of outer mitochondrial membrane (OMM) proteins and mitophagy. Finally, WIPI2 is implicated in cell fate decision as cells deficient in WIPI2 are largely resistant to cell death induced by mitochondrial damage. In summary, our study reveals a critical regulatory role of WIPI2 in mitochondrial recruitment of VCP to promote OMM protein degradation and eventual mitophagy.Abbreviations: ATG, autophagy related; CALCOCO2/NDP52, calcium binding and coiled-coil domain 2; CCCP, carbonyl cyanide chlorophenylhydrazone; CYCS, cytochrome c, somatic; HSPD1/HSP60, heat shock protein family D (Hsp60) member 1; IMM, inner mitochondrial membrane; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; NPLOC4, NPL4 homolog, ubiquitin recognition factor; OMM, outer mitochondrial membrane; OPTN, optineurin; PtdIns3P, phosphatidylinositol-3-phosphate; PINK1, PTEN induced kinase 1; PRKN/Parkin, parkin RBR E3 ubiquitin protein ligase; UBXN6/UBXD1, UBX domain protein 6; UFD1, ubiquitin recognition factor in ER associated degradation 1; VCP/p97, valosin containing protein; WIPI2, WD repeat domain, phosphoinositide interacting 2.
Collapse
Affiliation(s)
- Guang Lu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hayden Weng Siong Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tomas Schmauck-Medina
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Jiaqing Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yik-Lam Cho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kelie Chen
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Jing-Zi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School & Chemistry and Biomedicine Innovation Center of Nanjing University, Nanjing, Jiangsu, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yihua Wu
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Dajing Xia
- School of Public Health, Zhejiang University, Hangzhou, China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School & Chemistry and Biomedicine Innovation Center of Nanjing University, Nanjing, Jiangsu, China
| | - Wei Liu
- Department of Biochemistry, School of Medicine, Zhejiang University, Zhejiang, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China,CONTACT Han-Ming Shen Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
10
|
Kravić B, Bionda T, Siebert A, Gahlot P, Levantovsky S, Behrends C, Meyer H. Ubiquitin profiling of lysophagy identifies actin stabilizer CNN2 as a target of VCP/p97 and uncovers a link to HSPB1. Mol Cell 2022; 82:2633-2649.e7. [PMID: 35793674 DOI: 10.1016/j.molcel.2022.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/11/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Lysosomal membrane permeabilization (LMP) is an underlying feature of diverse conditions including neurodegeneration. Cells respond by extensive ubiquitylation of membrane-associated proteins for clearance of the organelle through lysophagy that is facilitated by the ubiquitin-directed AAA-ATPase VCP/p97. Here, we assessed the ubiquitylated proteome upon acute LMP and uncovered a large diversity of targets and lysophagy regulators. They include calponin-2 (CNN2) that, along with the Arp2/3 complex, translocates to damaged lysosomes and regulates actin filaments to drive phagophore formation. Importantly, CNN2 needs to be ubiquitylated during the process and removed by VCP/p97 for efficient lysophagy. Moreover, we identified the small heat shock protein HSPB1 that assists VCP/p97 in the extraction of CNN2 and show that other membrane regulators including SNAREs, PICALM, AGFG1, and ARL8B are ubiquitylated during lysophagy. Our data reveal a framework of how ubiquitylation and two effectors, VCP/p97 and HSPB1, cooperate to protect cells from the deleterious effects of LMP.
Collapse
Affiliation(s)
- Bojana Kravić
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Tihana Bionda
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Alexander Siebert
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Pinki Gahlot
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Sophie Levantovsky
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany.
| | - Hemmo Meyer
- Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
11
|
Christianson JC, Carvalho P. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. EMBO J 2022; 41:e109845. [PMID: 35170763 PMCID: PMC8922271 DOI: 10.15252/embj.2021109845] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, dynamic, and multifunctional organelle. ER protein homeostasis is essential for the coordination of its diverse functions and depends on ER-associated protein degradation (ERAD). The latter process selects target proteins in the lumen and membrane of the ER, promotes their ubiquitination, and facilitates their delivery into the cytosol for degradation by the proteasome. Originally characterized for a role in the degradation of misfolded proteins and rate-limiting enzymes of sterol biosynthesis, the many branches of ERAD now appear to control the levels of a wider range of substrates and influence more broadly the organization and functions of the ER, as well as its interactions with adjacent organelles. Here, we discuss recent mechanistic advances in our understanding of ERAD and of its consequences for the regulation of ER functions.
Collapse
Affiliation(s)
- John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesBotnar Research CentreUniversity of OxfordOxfordUK
| | - Pedro Carvalho
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
12
|
Krastev DB, Li S, Sun Y, Wicks AJ, Hoslett G, Weekes D, Badder LM, Knight EG, Marlow R, Pardo MC, Yu L, Talele TT, Bartek J, Choudhary JS, Pommier Y, Pettitt SJ, Tutt ANJ, Ramadan K, Lord CJ. The ubiquitin-dependent ATPase p97 removes cytotoxic trapped PARP1 from chromatin. Nat Cell Biol 2022; 24:62-73. [PMID: 35013556 PMCID: PMC8760077 DOI: 10.1038/s41556-021-00807-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors elicit antitumour activity in homologous recombination-defective cancers by trapping PARP1 in a chromatin-bound state. How cells process trapped PARP1 remains unclear. Using wild-type and a trapping-deficient PARP1 mutant combined with rapid immunoprecipitation mass spectrometry of endogenous proteins and Apex2 proximity labelling, we delineated mass spectrometry-based interactomes of trapped and non-trapped PARP1. These analyses identified an interaction between trapped PARP1 and the ubiquitin-regulated p97 ATPase/segregase. We found that following trapping, PARP1 is SUMOylated by PIAS4 and subsequently ubiquitylated by the SUMO-targeted E3 ubiquitin ligase RNF4, events that promote recruitment of p97 and removal of trapped PARP1 from chromatin. Small-molecule p97-complex inhibitors, including a metabolite of the clinically used drug disulfiram (CuET), prolonged PARP1 trapping and enhanced PARP inhibitor-induced cytotoxicity in homologous recombination-defective tumour cells and patient-derived tumour organoids. Together, these results suggest that p97 ATPase plays a key role in the processing of trapped PARP1 and the response of tumour cells to PARP inhibitors.
Collapse
Affiliation(s)
- Dragomir B Krastev
- The CRUK Gene Function Laboratory, London, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Shudong Li
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Yilun Sun
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Andrew J Wicks
- The CRUK Gene Function Laboratory, London, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Gwendoline Hoslett
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Daniel Weekes
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Luned M Badder
- The Breast Cancer Now Research Unit, King's College London, London, UK
| | - Eleanor G Knight
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Rebecca Marlow
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - Lu Yu
- Functional Proteomics Laboratory, The Institute of Cancer Research, London, UK
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Jiri Bartek
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Jyoti S Choudhary
- Functional Proteomics Laboratory, The Institute of Cancer Research, London, UK
| | - Yves Pommier
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory, London, UK.
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| | - Andrew N J Tutt
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| | - Kristijan Ramadan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, London, UK.
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
13
|
Secker C, Kostova S, Niederlechner H, Beetz S, Wendland I, Liebich MJ, Polzer O, Groh M, Schnoegl S, Trepte P, Wanker EE. CellFIE: CRISPR- and Cell Fusion-based Two-hybrid Interaction Mapping of Endogenous Proteins. J Mol Biol 2021; 433:167305. [PMID: 34655654 DOI: 10.1016/j.jmb.2021.167305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Numerous genetic methods facilitate the detection of binary protein-protein interactions (PPIs) by exogenous overexpression, which can lead to false results. Here, we describe CellFIE, a CRISPR- and cell fusion-based PPI detection method, which enables the mapping of interactions between endogenously tagged two-hybrid proteins. We demonstrate the specificity and reproducibility of CellFIE in a matrix mapping approach, validating the interactions of VCP with ASPL and UBXD1, and the self-interaction of TDP-43 under endogenous conditions. Furthermore, we show that CellFIE can be used to quantify changes of endogenous PPIs upon stress induction or drug treatment. For the first time, CellFIE facilitates systematic mapping of interactions between endogenously tagged proteins and represents a novel tool to characterize PPIs in live cells under dynamic conditions.
Collapse
Affiliation(s)
- Christopher Secker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany. https://twitter.com/Chris_Secker
| | - Simona Kostova
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Hannah Niederlechner
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stephanie Beetz
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ina Wendland
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Mara J Liebich
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Oliver Polzer
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Mirjam Groh
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sigrid Schnoegl
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Philipp Trepte
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Brain Development and Disease, Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
14
|
Tuzlakoğlu Öztürk M, Güllülü Ö. Dimerization underlies the aggregation propensity of intrinsically disordered coiled-coil domain-containing 124. Proteins 2021; 90:218-228. [PMID: 34369007 DOI: 10.1002/prot.26210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022]
Abstract
Coiled-coil domain-containing 124 (CCDC124) is a recently discovered ribosome-binding protein conserved in eukaryotes. CCDC124 has regulatory functions on the mediation of reversible ribosomal hibernation and translational recovery by direct attachment to large subunit ribosomal protein uL5, 25S rRNA backbone, and tRNA-binding P/A-site major groove. Moreover, it independently mediates cell division and cellular stress response by facilitating cytokinetic abscission and disulfide stress-dependent transcriptional regulation, respectively. However, the structural characterization and intracellular physiological status of CCDC124 remain unknown. In this study, we employed advanced in silico protein modeling and characterization tools to generate a native-like tertiary structure of CCDC124 and examine the disorder, low sequence complexity, and aggregation propensities, as well as high-order dimeric/oligomeric states. Subsequently, dimerization of CCDC124 was investigated with co-immunoprecipitation (CO-IP) analysis, immunostaining, and a recent live-cell protein-protein interaction method, bimolecular fluorescence complementation (BiFC). Results revealed CCDC124 as a highly disordered protein consisting of low complexity regions at the N-terminus and an aggregation sequence (151-IAVLSV-156) located in the middle region. Molecular docking and post-docking binding free energy analyses highlighted a potential involvement of V153 residue on the generation of high-order dimeric/oligomeric structures. Co-IP, immunostaining, and BiFC analyses were used to further confirm the dimeric state of CCDC124 predominantly localized at the cytoplasm. In conclusion, our findings revealed in silico structural characterization and in vivo subcellular physiological state of CCDC124, suggesting low-complexity regions located at the N-terminus of disordered CCDC124 may regulate the formation of aggregates or high-order dimeric/oligomeric states.
Collapse
Affiliation(s)
| | - Ömer Güllülü
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Frankfurt am Main, Germany.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
15
|
Kracht M, van den Boom J, Seiler J, Kröning A, Kaschani F, Kaiser M, Meyer H. Protein Phosphatase-1 Complex Disassembly by p97 is Initiated through Multivalent Recognition of Catalytic and Regulatory Subunits by the p97 SEP-domain Adapters. J Mol Biol 2020; 432:6061-6074. [PMID: 33058883 DOI: 10.1016/j.jmb.2020.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
The AAA-ATPase VCP/p97 cooperates with the SEP-domain adapters p37, UBXN2A and p47 in stripping inhibitor-3 (I3) from protein phosphatase-1 (PP1) for activation. In contrast to p97-mediated degradative processes, PP1 complex disassembly is ubiquitin-independent. It is therefore unclear how selective targeting is achieved. Using biochemical reconstitution and crosslink mass spectrometry, we show here that SEP-domain adapters use a multivalent substrate recognition strategy. An N-terminal sequence element predicted to form a helix, together with the SEP-domain, binds and engages the direct target I3 in the central pore of p97 for unfolding, while its partner PP1 is held by a linker between SHP box and UBX domain locked onto the peripheral N-domain of p97. Although the I3-binding element is functional in p47, p47 in vitro requires a transplant of the PP1-binding linker from p37 for activity stressing that both sites are essential to control specificity. Of note, unfolding is then governed by an inhibitory segment in the N-terminal region of p47, suggesting a regulatory function. Together, this study reveals how p97 adapters engage a protein complex for ubiquitin-independent disassembly while ensuring selectivity for one subunit.
Collapse
Affiliation(s)
- Matthias Kracht
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Johannes van den Boom
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Jonas Seiler
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Alexander Kröning
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Farnusch Kaschani
- Chemical Biology and Analytics Core Facility, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Markus Kaiser
- Chemical Biology and Analytics Core Facility, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Hemmo Meyer
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany.
| |
Collapse
|
16
|
van de Weijer ML, Krshnan L, Liberatori S, Guerrero EN, Robson-Tull J, Hahn L, Lebbink RJ, Wiertz EJHJ, Fischer R, Ebner D, Carvalho P. Quality Control of ER Membrane Proteins by the RNF185/Membralin Ubiquitin Ligase Complex. Mol Cell 2020; 79:768-781.e7. [PMID: 32738194 PMCID: PMC7482433 DOI: 10.1016/j.molcel.2020.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/06/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) are degraded by ER-associated degradation (ERAD). Although ERAD components involved in degradation of luminal substrates are well characterized, much less is known about quality control of membrane proteins. Here, we analyzed the degradation pathways of two short-lived ER membrane model proteins in mammalian cells. Using a CRISPR-Cas9 genome-wide library screen, we identified an ERAD branch required for quality control of a subset of membrane proteins. Using biochemical and mass spectrometry approaches, we showed that this ERAD branch is defined by an ER membrane complex consisting of the ubiquitin ligase RNF185, the ubiquitin-like domain containing proteins TMUB1/2 and TMEM259/Membralin, a poorly characterized protein. This complex cooperates with cytosolic ubiquitin ligase UBE3C and p97 ATPase in degrading their membrane substrates. Our data reveal that ERAD branches have remarkable specificity for their membrane substrates, suggesting that multiple, perhaps combinatorial, determinants are involved in substrate selection. The RNF185 ubiquitin ligase, Membralin, and TMUB1/2 assemble into an ERAD complex RNF185/Membralin complex targets membrane proteins, including CYP51A1 and TMUB2 RNF185/Membralin and TEB4 ERAD complexes recognize distinct substrate features TEB4 ERAD complex recognizes substrates through their transmembrane domain
Collapse
Affiliation(s)
- Michael L van de Weijer
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Logesvaran Krshnan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sabrina Liberatori
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Elena Navarro Guerrero
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Jacob Robson-Tull
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Lilli Hahn
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Robert Jan Lebbink
- Medical Microbiology, University Medical Center Utrecht, 3584 Utrecht, the Netherlands
| | - Emmanuel J H J Wiertz
- Medical Microbiology, University Medical Center Utrecht, 3584 Utrecht, the Netherlands
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Daniel Ebner
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
17
|
Fenech EJ, Lari F, Charles PD, Fischer R, Laétitia-Thézénas M, Bagola K, Paton AW, Paton JC, Gyrd-Hansen M, Kessler BM, Christianson JC. Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signalling. eLife 2020; 9:e57306. [PMID: 32614325 PMCID: PMC7332293 DOI: 10.7554/elife.57306] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
Ubiquitin ligases (E3s) embedded in the endoplasmic reticulum (ER) membrane regulate essential cellular activities including protein quality control, calcium flux, and sterol homeostasis. At least 25 different, transmembrane domain (TMD)-containing E3s are predicted to be ER-localised, but for most their organisation and cellular roles remain poorly defined. Using a comparative proteomic workflow, we mapped over 450 protein-protein interactions for 21 stably expressed, full-length E3s. Bioinformatic analysis linked ER-E3s and their interactors to multiple homeostatic, regulatory, and metabolic pathways. Among these were four membrane-embedded interactors of RNF26, a polytopic E3 whose abundance is auto-regulated by ubiquitin-proteasome dependent degradation. RNF26 co-assembles with TMEM43, ENDOD1, TMEM33 and TMED1 to form a complex capable of modulating innate immune signalling through the cGAS-STING pathway. This RNF26 complex represents a new modulatory axis of STING and innate immune signalling at the ER membrane. Collectively, these data reveal the broad scope of regulation and differential functionalities mediated by ER-E3s for both membrane-tethered and cytoplasmic processes.
Collapse
Affiliation(s)
- Emma J Fenech
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Federica Lari
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Philip D Charles
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
| | - Roman Fischer
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
| | - Marie Laétitia-Thézénas
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
| | - Katrin Bagola
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of AdelaideAdelaideAustralia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of AdelaideAdelaideAustralia
| | - Mads Gyrd-Hansen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - John C Christianson
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Botnar Research CentreOxfordUnited Kingdom
- Oxford Centre for Translational Myeloma Research, University of Oxford, Botnar Research CentreOxfordUnited Kingdom
| |
Collapse
|
18
|
Kastan JP, Dobrikova EY, Bryant JD, Gromeier M. CReP mediates selective translation initiation at the endoplasmic reticulum. SCIENCE ADVANCES 2020; 6:eaba0745. [PMID: 32537501 PMCID: PMC7269655 DOI: 10.1126/sciadv.aba0745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/13/2020] [Indexed: 05/16/2023]
Abstract
Eukaryotic protein synthesis control at multiple levels allows for dynamic, selective responses to diverse conditions, but spatial organization of translation initiation machinery as a regulatory principle has remained largely unexplored. Here we report on a role of constitutive repressor of eIF2α phosphorylation (CReP) in translation of poliovirus and the endoplasmic reticulum (ER)-resident chaperone binding immunoglobulin protein (BiP) at the ER. Functional, proximity-dependent labeling and cell fractionation studies revealed that CReP, through binding eIF2α, anchors translation initiation machinery at the ER and enables local protein synthesis in this compartment. This ER site was protected from the suppression of cytoplasmic protein synthesis by acute stress responses, e.g., phosphorylation of eIF2α(S51) or mTOR blockade. We propose that partitioning of translation initiation machinery at the ER enables cells to maintain active translation during stress conditions associated with global protein synthesis suppression.
Collapse
Affiliation(s)
- Jonathan P. Kastan
- Department of Neurosurgery, Duke University Medical Center, NC 27710, USA
| | - Elena Y. Dobrikova
- Department of Neurosurgery, Duke University Medical Center, NC 27710, USA
| | | | | |
Collapse
|
19
|
Sui X, Pan M, Li YM. Insights into the Design of p97-targeting Small Molecules from Structural Studies on p97 Functional Mechanism. Curr Med Chem 2020; 27:298-316. [PMID: 31584361 DOI: 10.2174/0929867326666191004162411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
p97, also known as valosin-containing protein or CDC48, is a member of the AAA+ protein family that is highly conserved in eukaryotes. It binds to various cofactors in the body to perform its protein-unfolding function and participates in DNA repair, degradation of subcellular membrane proteins, and protein quality control pathways, among other processes. Its malfunction can lead to many diseases, such as inclusion body myopathy, associated with Paget's disease of bone and/or frontotemporal dementia, amyotrophic lateral sclerosis disease, and others. In recent years, many small-molecule inhibitors have been deployed against p97, including bis (diethyldithiocarbamate)- copper and CB-5083, which entered the first phase of clinical tests but failed. One bottleneck in the design of p97 drugs is that its molecular mechanism remains unclear. This paper summarizes recent studies on the molecular mechanisms of p97, which may lead to insight into how the next generation of small molecules targeting p97 can be designed.
Collapse
Affiliation(s)
- Xin Sui
- Department of Chemistry, Tsinghua University, Beijing 100086, China
| | - Man Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
20
|
Abstract
p97 belongs to the functional diverse superfamily of AAA+ (ATPases Associated with diverse cellular Activities) ATPases and is characterized by an N-terminal regulatory domain and two stacked hexameric ATPase domains forming a central protein conducting channel. p97 is highly versatile and has key functions in maintaining protein homeostasis including protein quality control mechanisms like the ubiquitin proteasome system (UPS) and autophagy to disassemble polyubiquitylated proteins from chromatin, membranes, macromolecular protein complexes and aggregates which are either degraded by the proteasome or recycled. p97 can use energy derived from ATP hydrolysis to catalyze substrate unfolding and threading through its central channel. The function of p97 in a large variety of different cellular contexts is reflected by its simultaneous association with different cofactors, which are involved in substrate recognition and processing, thus leading to the formation of transient multi-protein complexes. Dysregulation in protein homeostasis and proteotoxic stress are often involved in the development of cancer and neurological diseases and targeting the UPS including p97 in cancer is a well-established pharmacological strategy. In this chapter we will describe structural and functional aspects of the p97 interactome in regulating diverse cellular processes and will discuss the role of p97 in targeted cancer therapy.
Collapse
|
21
|
Mitochondrial MUL1 E3 ubiquitin ligase regulates Hypoxia Inducible Factor (HIF-1α) and metabolic reprogramming by modulating the UBXN7 cofactor protein. Sci Rep 2020; 10:1609. [PMID: 32005965 PMCID: PMC6994496 DOI: 10.1038/s41598-020-58484-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/18/2019] [Indexed: 11/15/2022] Open
Abstract
MUL1 is a multifunctional E3 ubiquitin ligase anchored in the outer mitochondrial membrane with its RING finger domain facing the cytoplasm. MUL1 participates in various biological pathways involved in apoptosis, mitochondrial dynamics, and innate immune response. The unique topology of MUL1 enables it to “sense” mitochondrial stress in the intermembrane mitochondrial space and convey these signals through the ubiquitination of specific cytoplasmic substrates. We have identified UBXN7, the cofactor protein of the CRL2VHL ligase complex, as a specific substrate of MUL1 ligase. CRL2VHL ligase complex regulates HIF-1α protein levels under aerobic (normoxia) or anaerobic (hypoxia) conditions. Inactivation of MUL1 ligase leads to accumulation of UBXN7, with concomitant increase in HIF-1α protein levels, reduction in oxidative phosphorylation, and increased glycolysis. We describe a novel pathway that originates in the mitochondria and operates upstream of the CRL2VHL ligase complex. Furthermore, we delineate the mechanism by which the mitochondria, through MUL1 ligase, can inhibit the CRL2VHL complex leading to high HIF-1α protein levels and a metabolic shift to glycolysis under normoxic conditions.
Collapse
|
22
|
Koerver L, Papadopoulos C, Liu B, Kravic B, Rota G, Brecht L, Veenendaal T, Polajnar M, Bluemke A, Ehrmann M, Klumperman J, Jäättelä M, Behrends C, Meyer H. The ubiquitin-conjugating enzyme UBE2QL1 coordinates lysophagy in response to endolysosomal damage. EMBO Rep 2019; 20:e48014. [PMID: 31432621 PMCID: PMC6776906 DOI: 10.15252/embr.201948014] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
The autophagic clearance of damaged lysosomes by lysophagy involves extensive modification of the organelle with ubiquitin, but the underlying ubiquitination machinery is still poorly characterized. Here, we use an siRNA screening approach and identify human UBE2QL1 as a major regulator of lysosomal ubiquitination, lysophagy, and cell survival after lysosomal damage. UBE2QL1 translocates to permeabilized lysosomes where it associates with damage sensors, ubiquitination targets, and lysophagy effectors. UBE2QL1 knockdown reduces ubiquitination and accumulation of the critical autophagy receptor p62 and abrogates recruitment of the AAA-ATPase VCP/p97, which is essential for efficient lysophagy. Crucially, it affects association of LC3B with damaged lysosomes indicating that autophagosome formation was impaired. Already in unchallenged cells, depletion of UBE2QL1 leads to increased lysosomal damage, mTOR dissociation from lysosomes, and TFEB activation pointing to a role in lysosomal homeostasis. In line with this, mutation of the homologue ubc-25 in Caenorhabditis elegans exacerbates lysosome permeability in worms lacking the lysosome stabilizing protein SCAV-3/LIMP2. Thus, UBE2QL1 coordinates critical steps in the acute endolysosomal damage response and is essential for maintenance of lysosomal integrity.
Collapse
Affiliation(s)
- Lisa Koerver
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | | | - Bin Liu
- Cell Death and Metabolism UnitCenter for Autophagy, Recycling and DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
| | - Bojana Kravic
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | - Giulia Rota
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | - Lukas Brecht
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Tineke Veenendaal
- Section Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Mira Polajnar
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Anika Bluemke
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | - Michael Ehrmann
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| | - Judith Klumperman
- Section Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Marja Jäättelä
- Cell Death and Metabolism UnitCenter for Autophagy, Recycling and DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy)Ludwig‐Maximilians‐Universität MünchenMünchenGermany
| | - Hemmo Meyer
- Faculty of BiologyCentre for Medical BiotechnologyUniversity of Duisburg‐EssenEssenGermany
| |
Collapse
|
23
|
Ufd1 phosphorylation at serine 229 negatively regulates endoplasmic reticulum-associated degradation by inhibiting the interaction of Ufd1 with VCP. Biochem J 2019; 476:2561-2577. [PMID: 31477623 DOI: 10.1042/bcj20190254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/17/2022]
Abstract
Misfolded proteins in the endoplasmic reticulum (ER) are removed through multistep processes termed ER-associated degradation (ERAD). Valosin-containing protein (VCP) plays a crucial role in ERAD as the interaction of ubiquitin fusion degradation protein 1 (Ufd1) with VCP via its SHP box motif (228F-S-G-S-G-N-R-L235) is required for ERAD. However, the mechanisms by which the VCP-Ufd1 interaction is regulated are not well understood. Here, we found that the serine 229 residue located in the Ufd1 SHP box is phosphorylated in vitro and in vivo by cyclic adenosine monophosphate-dependent protein kinase A (PKA), with this process being enhanced by either forskolin (an adenylyl cyclase activator) or calyculin A (a protein phosphatase inhibitor). Moreover, a phosphomimetic mutant (S229D) of Ufd1 as well as treatment by forskolin, calyculin A, or activated PKA strongly reduced Ufd1 binding affinity for VCP. Consistent with this, the Ufd1 S229D mutant significantly inhibited ERAD leading to the accumulation of ERAD substrates such as a tyrosinase mutant (C89R) and 3-hydroxy-3-methylglutaryl coenzyme A reductase. However, a non-phosphorylatable Ufd1 mutant (S229A) retained VCP-binding ability and was less effective in blocking ERAD. Collectively, our results support that Ufd1 S229 phosphorylation status mediated by PKA serves as a key regulatory point for the VCP-Ufd1 interaction and functional ERAD.
Collapse
|
24
|
Wang B, Maxwell BA, Joo JH, Gwon Y, Messing J, Mishra A, Shaw TI, Ward AL, Quan H, Sakurada SM, Pruett-Miller SM, Bertorini T, Vogel P, Kim HJ, Peng J, Taylor JP, Kundu M. ULK1 and ULK2 Regulate Stress Granule Disassembly Through Phosphorylation and Activation of VCP/p97. Mol Cell 2019; 74:742-757.e8. [PMID: 30979586 PMCID: PMC6859904 DOI: 10.1016/j.molcel.2019.03.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/08/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
Disturbances in autophagy and stress granule dynamics have been implicated as potential mechanisms underlying inclusion body myopathy (IBM) and related disorders. Yet the roles of core autophagy proteins in IBM and stress granule dynamics remain poorly characterized. Here, we demonstrate that disrupted expression of the core autophagy proteins ULK1 and ULK2 in mice causes a vacuolar myopathy with ubiquitin and TDP-43-positive inclusions; this myopathy is similar to that caused by VCP/p97 mutations, the most common cause of familial IBM. Mechanistically, we show that ULK1/2 localize to stress granules and phosphorylate VCP, thereby increasing VCP's activity and ability to disassemble stress granules. These data suggest that VCP dysregulation and defective stress granule disassembly contribute to IBM-like disease in Ulk1/2-deficient mice. In addition, stress granule disassembly is accelerated by an ULK1/2 agonist, suggesting ULK1/2 as targets for exploiting the higher-order regulation of stress granules for therapeutic intervention of IBM and related disorders.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian A Maxwell
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joung Hyuck Joo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Youngdae Gwon
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - James Messing
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ashutosh Mishra
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Timothy I Shaw
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amber L Ward
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Honghu Quan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sadie Miki Sakurada
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tulio Bertorini
- Department of Neurology, University of Tennessee Heath Science Center, Memphis, TN 38163, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Mondira Kundu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
25
|
Ubiquitin-Independent Disassembly by a p97 AAA-ATPase Complex Drives PP1 Holoenzyme Formation. Mol Cell 2018; 72:766-777.e6. [PMID: 30344098 DOI: 10.1016/j.molcel.2018.09.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
The functional diversity of protein phosphatase-1 (PP1), with its countless substrates, relies on the ordered assembly of alternative PP1 holoenzymes. Here, we show that newly synthesized PP1 is first held by its partners SDS22 and inhibitor-3 (I3) in an inactive complex, which needs to be disassembled by the p97 AAA-ATPase to promote exchange to substrate specifiers. Unlike p97-mediated degradative processes that require the Ufd1-Npl4 ubiquitin adapters, p97 is targeted to PP1 by p37 and related adapter proteins. Reconstitution with purified components revealed direct interaction of the p37 SEP domain with I3 without the need for ubiquitination, and ATP-driven pulling of I3 into the central channel of the p97 hexamer, which triggers dissociation of I3 and SDS22. Thus, we establish regulatory ubiquitin-independent protein complex disassembly as part of the functional arsenal of p97 and define an unanticipated essential step in PP1 biogenesis that illustrates the molecular challenges of ordered subunit exchange.
Collapse
|
26
|
Krzyzosiak A, Sigurdardottir A, Luh L, Carrara M, Das I, Schneider K, Bertolotti A. Target-Based Discovery of an Inhibitor of the Regulatory Phosphatase PPP1R15B. Cell 2018; 174:1216-1228.e19. [PMID: 30057111 PMCID: PMC6108835 DOI: 10.1016/j.cell.2018.06.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/07/2018] [Accepted: 06/13/2018] [Indexed: 11/13/2022]
Abstract
Protein phosphorylation is a prevalent and ubiquitous mechanism of regulation. Kinases are popular drug targets, but identifying selective phosphatase inhibitors has been challenging. Here, we used surface plasmon resonance to design a method to enable target-based discovery of selective serine/threonine phosphatase inhibitors. The method targeted a regulatory subunit of protein phosphatase 1, PPP1R15B (R15B), a negative regulator of proteostasis. This yielded Raphin1, a selective inhibitor of R15B. In cells, Raphin1 caused a rapid and transient accumulation of its phosphorylated substrate, resulting in a transient attenuation of protein synthesis. In vitro, Raphin1 inhibits the recombinant R15B-PP1c holoenzyme, but not the closely related R15A-PP1c, by interfering with substrate recruitment. Raphin1 was orally bioavailable, crossed the blood-brain barrier, and demonstrated efficacy in a mouse model of Huntington's disease. This identifies R15B as a druggable target and provides a platform for target-based discovery of inhibitors of serine/threonine phosphatases.
Collapse
Affiliation(s)
- Agnieszka Krzyzosiak
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anna Sigurdardottir
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Laura Luh
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Marta Carrara
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Indrajit Das
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kim Schneider
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anne Bertolotti
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|