1
|
Osada N, Nagae M, Yamasaki T, Harduin-Lepers A, Kizuka Y. Regulation of human GnT-IV family activity by the lectin domain. Carbohydr Res 2024; 545:109285. [PMID: 39369636 DOI: 10.1016/j.carres.2024.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
N-Glycan branching critically regulates glycoprotein functions and is involved in various diseases. Among the glycosyltransferases involved in N-glycan branching is the human N-acetylglucosaminyltransferase-IV (GnT-IV) family, which has four members: GnT-IVa, GnT-IVb, GnT-IVc, and GnT-IVd. GnT-IVa and GnT-IVb have glycosyltransferase activity that generates the type-2 diabetes-related β1,4-GlcNAc branch on the α1,3-Man arm of N-glycans, whereas GnT-IVc and GnT-IVd do not. Recently, this enzyme family was found to have a unique lectin domain in the C-terminal region, which is essential for enzyme activity toward glycoprotein substrates but not toward free N-glycans. Furthermore, interaction between the lectin domain of GnT-IV and N-glycan attached to GnT-IV enables self-regulation of GnT-IV activity, indicating that the lectin domain plays a unique and pivotal role in the regulation of GnT-IV activity. In this review, we summarize the GnT-IV family's biological functions, selectivity for glycoprotein substrates, and regulation of enzymatic activity, with a focus on its unique C-terminal lectin domain.
Collapse
Affiliation(s)
- Naoko Osada
- Graduate School of Natural Science and Technology, Gifu University, Gifu, 501-1193, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, 565-0871, Japan
| | - Takahiro Yamasaki
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 -UGSF- Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Yasuhiko Kizuka
- Graduate School of Natural Science and Technology, Gifu University, Gifu, 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
2
|
Meng X, Liu D, Cao M, Wang W, Wang Y. Potentially causal association between immunoglobulin G N-glycans and cardiometabolic diseases: Bidirectional two-sample Mendelian randomization study. Int J Biol Macromol 2024; 279:135125. [PMID: 39208880 DOI: 10.1016/j.ijbiomac.2024.135125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Observational studies support that altered immunoglobulin G (IgG) N-glycosylation and inflammatory factors are associated with cardiometabolic diseases (CMDs); nevertheless, the causality between them remains unclear. METHODS Two-sample Mendelian randomization (MR) analyses were conducted to systematically investigate the bidirectional causality between IgG N-glycans and nine CMDs in both East Asians and Europeans. RESULTS In the forward MR analysis, the univariable MR analysis presented suggestive causality of 14 and eight genetically instrumented IgG N-glycans with CMDs in East Asians and Europeans, respectively; the multivariable MR analysis showed that ten and 11 pairs of glycan-CMD associations were identified in East Asian and European populations, respectively. In the reverse MR analysis, based on East Asians and Europeans, the univariable MR analysis presented suggestive causality of seven and 12 genetically instrumented CMDs with IgG N-glycans, respectively; the multivariable MR analysis presented that six and five CMD-glycan causality were found in East Asian and Europeans, respectively. CONCLUSIONS The comprehensive MR analyses provide suggestive evidence of bidirectional causality between IgG N-glycans and CMDs. This work helps to understand the molecular mechanism of the occurrence/progression of CMDs, optimize existing and develop new strategies to prevent CMDs, and contribute to the early identification of high-risk groups of CMDs.
Collapse
Affiliation(s)
- Xiaoni Meng
- Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Di Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Meiling Cao
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China; Centre for Precision Health, Edith Cowan University, Perth, WA 6027, Australia
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China; School of Public Health, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
3
|
Kim M, Park CS, Moon C, Kim J, Yang S, Jang L, Jang JY, Jeong CM, Lee HS, Kim K, Byeon H, Kim HH. Structural and quantitative comparison of viral infection-associated N-glycans in plasma from humans, pigs, and chickens: Greater similarity between humans and chickens than pigs. Antiviral Res 2024; 231:106009. [PMID: 39326504 DOI: 10.1016/j.antiviral.2024.106009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Host N-glycans play an essential role in the attachment, invasion, and infection processes of viruses, including zoonotic infectious diseases. The similarity of N-glycans in the trachea and lungs of humans and pigs facilitates the cross-species transmission of influenza viruses through respiratory tracts. In this study, the structure and quantity of N-glycans in the plasma of humans, pigs, and chickens were analyzed using liquid chromatography-quadrupole-Orbitrap-tandem mass spectrometry. N-glycans in humans (35), pigs (28), and chickens (53) were identified, including the most abundant, species-common, and species-specific N-glycans. Among the N-glycans (relative quantity >0.5%), the sialic acid derivative of N-acetylneuraminic acid was identified in humans (the sum of the relative quantities of each; 64.3%), pigs (45.5%), and chickens (64.4%), whereas N-glycolylneuraminic acid was only identified in pigs (18.1%). Sialylated N-glycan linkage isomers are the influenza virus receptors (α2-6 in humans, α2-3 and α2-6 in pigs, and α2-3 in chickens). Only α2-6 linkages (human, 58.2%; pig, 44.8%; and chicken, 60.6%) were more abundant than α2-3/α2-6 linkages (human, 4.6%; pig, 0.6%; and chicken, 3.4%) and only α2-3 linkages (human, 1.5%; pig, 0.1%; and chicken, 0.4%). Fucosylation, which can promote viral infection through immune modulation, was more abundant in pigs (76.1%) than in humans (36.4%) and chickens (16.7%). Bisecting N-acetylglucosamine, which can suppress viral infection by inhibiting sialylation, was identified in humans (10.3%) and chickens (16.9%), but not in pigs. These results indicate that plasma N-glycans are similar in humans and chickens. This is the first study to compare plasma N-glycans in humans, pigs, and chickens.
Collapse
Affiliation(s)
- Mirae Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chi Soo Park
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chulmin Moon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jieun Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Subin Yang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Leeseul Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ji Yeon Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chang Myeong Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Han Seul Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Kyuran Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Haeun Byeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ha Hyung Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
4
|
Zheng X, Li A, Qiu J, Yan G. Nitrogen starvation promotes production of the β-N-methylamino-L-alanine-containing proteins in marine diatoms. MARINE POLLUTION BULLETIN 2024; 209:117197. [PMID: 39486208 DOI: 10.1016/j.marpolbul.2024.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) produced by marine diatoms has been implicated in some neurological disorders, and there is a need to elucidate the biological processes involved in the production of BMAA-containing proteins. In this study, growth of seven diatoms was suppressed under nitrogen limitation, however the production of BMAA-containing proteins was significantly increased in six of them, up to 5.22-fold increase in Thalassiosira andamanica. These variations were associated with reduced concentration of dissolved inorganic nitrogen (DIN) and changes in photosynthetic efficiency. Analytical results of non-targeted metabolomics showed that the obvious changes in amino acids, lipids and sugars may help diatoms to adjust growth and physiological parameters. Combined with previous transcriptomic data, a decrease in N-acetyl-D-glucosamine (GlcNAc) leads to an increase in N-glycan terminal modifications, which in turn increases protein misfolding. In addition, the reduced efficiency of vesicular transport in the COPII system may have exacerbated the accumulation of BMAA-containing proteins.
Collapse
Affiliation(s)
- Xianyao Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
5
|
Lembo A, Molinaro A, De Castro C, Berti F, Biagini M. Impact of glycosylation on viral vaccines. Carbohydr Polym 2024; 342:122402. [PMID: 39048237 DOI: 10.1016/j.carbpol.2024.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Glycosylation is the most prominent modification important for vaccines and its specific pattern depends on several factors that need to be considered when developing a new biopharmaceutical. Tailor-made glycosylation can be exploited to develop more effective and safer vaccines; for this reason, a deep understanding of both glycoengineering strategies and glycans structures and functions is required. In this review we discuss the recent advances concerning glycoprotein expression systems and the explanation of glycans immunomodulation mechanisms. Furthermore, we highlight how glycans tune the immunological properties among different vaccines platforms (whole virus, recombinant protein, nucleic acid), also comparing commercially available formulations and describing the state-of-the-art analytical technologies for glycosylation analysis. The whole review stresses the aspect of glycoprotein glycans as a potential tool to overcome nowadays medical needs in vaccine field.
Collapse
Affiliation(s)
- Antonio Lembo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy; GSK, Siena, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Cristina De Castro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
6
|
Corcoran SR, Phelan JD, Choi J, Shevchenko G, Fenner RE, Yu X, Scheich S, Hsiao T, Morris VM, Papachristou EK, Kishore K, D'Santos CS, Ji Y, Pittaluga S, Wright GW, Urlaub H, Pan KT, Oellerich T, Muppidi J, Hodson DJ, Staudt LM. Molecular Determinants of Sensitivity to Polatuzumab Vedotin in Diffuse Large B-Cell Lymphoma. Cancer Discov 2024; 14:1653-1674. [PMID: 38683128 DOI: 10.1158/2159-8290.cd-23-0802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Polatuzumab vedotin (Pola-V) is an antibody-drug conjugate directed to the CD79B subunit of the B-cell receptor (BCR). When combined with conventional immunochemotherapy, Pola-V improves outcomes in diffuse large B-cell lymphoma (DLBCL). To identify determinants of Pola-V sensitivity, we used CRISPR-Cas9 screening for genes that modulated Pola-V toxicity for lymphomas or the surface expression of its target, CD79B. Our results reveal the striking impact of CD79B glycosylation on Pola-V epitope availability on the lymphoma cell surface and on Pola-V toxicity. Genetic, pharmacological, and enzymatic approaches that remove sialic acid from N-linked glycans enhanced lymphoma killing by Pola-V. Pola-V toxicity was also modulated by KLHL6, an E3 ubiquitin ligase that is recurrently inactivated in germinal center derived lymphomas. We reveal how KLHL6 targets CD79B for degradation in normal and malignant germinal center B cells, thereby determining expression of the surface BCR complex. Our findings suggest precision medicine strategies to optimize Pola-V as a lymphoma therapeutic. Significance: These findings unravel the molecular basis of response heterogeneity to Pola-V and identify approaches that might be deployed therapeutically to enhance the efficacy of CD79B-specific tumor killing. In addition, they reveal a novel post-translational mechanism used by normal and malignant germinal center B cells to regulate expression of the BCR. See related commentary by Leveille, p. 1577 See related article by Meriranta et al.
Collapse
Affiliation(s)
- Sean R Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Galina Shevchenko
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Rachel E Fenner
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Yanlong Ji
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - George W Wright
- Biometrics Research Program, National Cancer Institute, NIH, Bethesda, Maryland
| | - Henning Urlaub
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kuan-Ting Pan
- University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thomas Oellerich
- University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
7
|
Hashimoto Y, Kawade H, Bao W, Morii S, Nakano M, Nagae M, Murakami R, Tokoro Y, Nakashima M, Cai Z, Isaji T, Gu J, Nakajima K, Kizuka Y. The K346T mutant of GnT-III bearing weak in vitro and potent intracellular activity. Biochim Biophys Acta Gen Subj 2024; 1868:130663. [PMID: 38936637 DOI: 10.1016/j.bbagen.2024.130663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND N-Acetylglucosaminyltransferase-III (GnT-III, also designated MGAT3) catalyzes the formation of a specific N-glycan branch, bisecting GlcNAc, in the Golgi apparatus. Bisecting GlcNAc is a key residue that suppresses N-glycan maturation and is associated with the pathogenesis of cancer and Alzheimer's disease. However, it remains unclear how GnT-III recognizes its substrates and how GnT-III activity is regulated in cells. METHODS Using AlphaFold2 and structural comparisons, we predicted the key amino acid residues in GnT-III that interact with substrates in the catalytic pocket. We also performed in vitro activity assay, lectin blotting analysis and N-glycomic analysis using point mutants to assess their activity. RESULTS Our data suggested that E320 of human GnT-III is the catalytic center. More interestingly, we found a unique mutant, K346T, that exhibited lower in vitro activity and higher intracellular activity than wild-type GnT-III. The enzyme assays using various substrates showed that the substrate specificity of K346T was unchanged, whereas cycloheximide chase experiments revealed that the K346T mutant has a slightly shorter half-life, suggesting that the mutant is unstable possibly due to a partial misfolding. Furthermore, TurboID-based proximity labeling showed that the localization of the K346T mutant is shifted slightly to the cis side of the Golgi, probably allowing for prior action to competing galactosyltransferases. CONCLUSIONS The slight difference in K346T localization may be responsible for the higher biosynthetic activity despite the reduced activity. GENERAL SIGNIFICANCE Our findings underscore the importance of fine intra-Golgi localization and reaction orders of glycosyltransferases for the biosynthesis of complex glycan structures in cells.
Collapse
Affiliation(s)
- Yuta Hashimoto
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Haruka Kawade
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - WanXue Bao
- Glyco-Biochemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Reiko Murakami
- Glycoanalytical Chemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Yuko Tokoro
- Glyco-Biochemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Misaki Nakashima
- Glyco-Biochemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Zixuan Cai
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Kazuki Nakajima
- Glycoanalytical Chemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Yasuhiko Kizuka
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan; Glyco-Biochemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
8
|
Oliveira T, Zhang M, Chen CW, Packer NH, von Itzstein M, Heisterkamp N, Kolarich D. Remodelling of the glycome of B-cell precursor acute lymphoblastic leukemia cells developing drug-tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609211. [PMID: 39229073 PMCID: PMC11370571 DOI: 10.1101/2024.08.22.609211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Reduced responsiveness of precursor B-acute lymphoblastic leukemia (BCP-ALL) to chemotherapy can be first detected in the form of minimal residual disease leukemia cells that persist after 28 days of initial treatment. The ability of these cells to resist chemotherapy is partly due to the microenvironment of the bone marrow, which promotes leukemia cell growth and provides protection, particularly under these conditions of stress. It is unknown if and how the glycocalyx of such cells is remodelled during the development of tolerance to drug treatment, even though glycosylation is the most abundant cell surface post-translational modification present on the plasma membrane. To investigate this, we performed omics analysis of BCP-ALL cells that survived a 30-day vincristine chemotherapy treatment while in co-culture with bone marrow stromal cells. Proteomics showed decreased levels of some metabolic enzymes. Overall glycocalyx changes included a shift from Core-2 to less complex Core-1 O-glycans, and reduced overall sialylation, with a shift from α2-6 to α2-3 linked Neu5Ac. Interestingly, there was a clear increase in bisecting complex N-glycans with a concomitant increased mRNA expression of MGAT3 , the only enzyme known to form bisecting N-glycans. These small but reproducible quantitative differences suggest that individual glycoproteins become differentially glycosylated. Glycoproteomics confirmed glycosite-specific modulation of cell surface and lysosomal proteins in drug-tolerant BCP-ALL cells, including HLA-DRA, CD38, LAMP1 and PPT1. We conclude that drug-tolerant persister leukemia cells that grow under continuous chemotherapy stress have characteristic glycotraits that correlate with and perhaps contribute to their ability to survive and could be tested as neoantigens in drug-resistant leukemia.
Collapse
|
9
|
Tan Z, Ning L, Cao L, Zhou Y, Li J, Yang Y, Lin S, Ren X, Xue X, Kang H, Li X, Guan F. Bisecting GlcNAc modification reverses the chemoresistance via attenuating the function of P-gp. Theranostics 2024; 14:5184-5199. [PMID: 39267774 PMCID: PMC11388069 DOI: 10.7150/thno.93879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Rationale: Chemoresistance is a key factor contributing to the failure of anti-breast cancer chemotherapy. Although abnormal glycosylation is closely correlated with breast cancer progression, the function of glycoconjugates in chemoresistance remains poorly understood. Methods: Levels and regulatory roles of bisecting N-acetylglucosamine (GlcNAc) in chemoresistant breast cancer cells were determined in vitro and in vivo. Glycoproteomics guided identification of site-specific bisecting GlcNAc on P-glycoprotein (P-gp). Co-immunoprecipitation coupled mass spectrometry (Co-IP-MS) and proximity labelling MS identified the interactome of P-gp, and the biological function of site-specific bisecting GlcNAc was investigated by site/truncation mutation and structural simulations. Results: Bisecting GlcNAc levels were reduced in chemoresistant breast cancer cells, accompanied by an enhanced expression of P-gp. Enhanced bisecting GlcNAc effectively reversed chemoresistance. Mechanical study revealed that bisecting GlcNAc impaired the association between Ezrin and P-gp, leading to a decreased expression of membrane P-gp. Bisecting GlcNAc suppressed VPS4A-mediated P-gp recruitment into microvesicles, and chemoresistance transmission. Structural dynamics analysis suggested that bisecting GlcNAc at Asn494 introduced structural constraints that rigidified the conformation and suppressed the activity of P-gp. Conclusion: Our findings highlight the crucial role of bisecting GlcNAc in chemoresistance and suggest the possibility of reversing chemoresistance by modulating the specific glycosylation in breast cancer therapy.
Collapse
Affiliation(s)
- Zengqi Tan
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Lulu Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710069, P.R. China
| | - Lin Cao
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Yue Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Yunyun Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710069, P.R. China
| | - Xueting Ren
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710069, P.R. China
| | - Xiaobo Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710069, P.R. China
| | - Xiang Li
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, P.R. China
| |
Collapse
|
10
|
Jang L, Kim A, Park CS, Moon C, Kim M, Kim J, Yang S, Jang JY, Jeong CM, Lee HS, Park J, Kim K, Byeon H, Kim HH. Fucosylation and galactosylation in N-glycans of bovine intestinal alkaline phosphatase and their role in its enzymatic activity. Arch Biochem Biophys 2024; 758:110069. [PMID: 38914216 DOI: 10.1016/j.abb.2024.110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Bovine intestinal alkaline phosphatase (biALP), a membrane-bound plasma metalloenzyme, maintains intestinal homeostasis, regulates duodenal surface pH, and protects against infections caused by pathogenic bacteria. The N-glycans of biALP regulate its enzymatic activity, protein folding, and thermostability, but their structures are not fully reported. In this study, the structures and quantities of the N-glycans of biALP were analyzed by liquid chromatography-electrospray ionization-high energy collision dissociation-tandem mass spectrometry. In total, 48 N-glycans were identified and quantified, comprising high-mannose [6 N-glycans, 33.1 % (sum of relative quantities of each N-glycan)], hybrid (6, 11.9 %), and complex (36, 55.0 %) structures [bi- (13, 26.1 %), tri- (16, 21.5 %), and tetra-antennary (7, 7.4 %)]. These included bisecting N-acetylglucosamine (33, 56.6 %), mono-to tri-fucosylation (32, 53.3 %), mono-to tri-α-galactosylation (16, 20.7 %), and mono-to tetra-β-galactosylation (36, 58.5 %). No sialylation was identified. N-glycans with non-bisecting GlcNAc (9, 10.3 %), non-fucosylation (10, 13.6 %), non-α-galactosylation (26, 46.2 %), and non-β-galactosylation (6, 8.4 %) were also identified. The activity (100 %) of biALP was reduced to 37.3 ± 0.2 % (by de-fucosylation), 32.7 ± 2.9 % (by de-α-galactosylation), and 0.2 ± 0.2 % (by de-β-galactosylation), comparable to inhibition by 10-4 to 101 mM EDTA, a biALP inhibitor. These results indicate that fucosylated and galactosylated N-glycans, especially β-galactosylation, affected the activity of biALP. This study is the first to identify 48 diverse N-glycan structures and quantities of bovine as well as human intestinal ALP and to demonstrate the importance of the role of fucosylation and galactosylation for maintaining the activity of biALP.
Collapse
Affiliation(s)
- Leeseul Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ahyeon Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chi Soo Park
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chulmin Moon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Mirae Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Jieun Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Subin Yang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ji Yeon Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chang Myeong Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Han Seul Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Juhee Park
- Department of Pharmaceutical Regulatory Sciences, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Kyuran Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Haeun Byeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Ha Hyung Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Department of Pharmaceutical Regulatory Sciences, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
11
|
Tokoro Y, Nagae M, Nakano M, Harduin-Lepers A, Kizuka Y. LacdiNAc synthase B4GALNT3 has a unique PA14 domain and suppresses N-glycan capping. J Biol Chem 2024; 300:107450. [PMID: 38844136 PMCID: PMC11254600 DOI: 10.1016/j.jbc.2024.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Structural variation of N-glycans is essential for the regulation of glycoprotein functions. GalNAcβ1-4GlcNAc (LacdiNAc or LDN), a unique subterminal glycan structure synthesized by B4GALNT3 or B4GALNT4, is involved in the clearance of N-glycoproteins from the blood and maintenance of cell stemness. Such regulation of glycoprotein functions by LDN is largely different from that by the dominant subterminal structure, N-acetyllactosamine (Galβ1-4GlcNAc, LacNAc). However, the mechanisms by which B4GALNT activity is regulated and how LDN plays different roles from LacNAc remain unclear. Here, we found that B4GALNT3 and four have unique domain organization containing a noncatalytic PA14 domain, which is a putative glycan-binding module. A mutant lacking this domain dramatically decreases the activity toward various substrates, such as N-glycan, O-GalNAc glycan, and glycoproteins, indicating that this domain is essential for enzyme activity and forms part of the catalytic region. In addition, to clarify the mechanism underlying the functional differences between LDN and LacNAc, we examined the effects of LDN on the maturation of N-glycans, focusing on the related glycosyltransferases upstream and downstream of B4GALNT. We revealed that, unlike LacNAc synthesis, prior formation of bisecting GlcNAc in N-glycan almost completely inhibits LDN synthesis by B4GALNT3. Moreover, the presence of LDN negatively impacted the actions of many glycosyltransferases for terminal modifications, including sialylation, fucosylation, and human natural killer-1 synthesis. These findings demonstrate that LDN has significant impacts on N-glycan maturation in a completely different way from LacNAc, which could contribute to obtaining a comprehensive overview of the system regulating complex N-glycan biosynthesis.
Collapse
Affiliation(s)
- Yuko Tokoro
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Anne Harduin-Lepers
- University of Lille, CNRS, UMR 8576 -UGSF- Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| |
Collapse
|
12
|
Kizuka Y. Regulation of intracellular activity of N-glycan branching enzymes in mammals. J Biol Chem 2024; 300:107471. [PMID: 38879010 PMCID: PMC11328876 DOI: 10.1016/j.jbc.2024.107471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024] Open
Abstract
Most proteins in the secretory pathway are glycosylated, and N-glycans are estimated to be attached to over 7000 proteins in humans. As structural variation of N-glycans critically regulates the functions of a particular glycoprotein, it is pivotal to understand how structural diversity of N-glycans is generated in cells. One of the major factors conferring structural variation of N-glycans is the variable number of N-acetylglucosamine branches. These branch structures are biosynthesized by dedicated glycosyltransferases, including GnT-III (MGAT3), GnT-IVa (MGAT4A), GnT-IVb (MGAT4B), GnT-V (MGAT5), and GnT-IX (GnT-Vb, MGAT5B). In addition, the presence or absence of core modification of N-glycans, namely, core fucose (included as an N-glycan branch in this manuscript), synthesized by FUT8, also confers large structural variation on N-glycans, thereby crucially regulating many protein-protein interactions. Numerous biochemical and medical studies have revealed that these branch structures are involved in a wide range of physiological and pathological processes. However, the mechanisms regulating the activity of the biosynthetic glycosyltransferases are yet to be fully elucidated. In this review, we summarize the previous findings and recent updates regarding regulation of the activity of these N-glycan branching enzymes. We hope that such information will help readers to develop a comprehensive overview of the complex system regulating mammalian N-glycan maturation.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| |
Collapse
|
13
|
Wang H, Liu D, Meng X, Sun W, Li C, Lu H, Zheng D, Wu L, Sun S, Wang Y. Bidirectional Two-Sample Mendelian Randomization Study of Immunoglobulin G N-Glycosylation and Senescence-Associated Secretory Phenotype. Int J Mol Sci 2024; 25:6337. [PMID: 38928043 PMCID: PMC11203829 DOI: 10.3390/ijms25126337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Observational studies revealed changes in Immunoglobulin G (IgG) N-glycosylation during the aging process. However, it lacks causal insights and remains unclear in which direction causal relationships exist. The two-sample bidirectional Mendelian randomization (MR) design was adopted to explore causal associations between IgG N-glycans and the senescence-associated secretory phenotype (SASP). Inverse variance weighted (IVW) and Wald ratio methods were used as the main analyses, supplemented by sensitivity analyses. Forward MR analyses revealed causal associations between the glycan peak (GP) and SASP, including GP6 (odds ratio [OR] = 0.428, 95% confidence interval [CI] = 0.189-0.969) and GP17 (OR = 0.709, 95%CI = 0.504-0.995) with growth/differentiation factor 15 (GDF15), GP19 with an advanced glycosylation end-product-specific receptor (RAGE) (OR = 2.142, 95% CI = 1.384-3.316), and GP15 with matrix metalloproteinase 2 (MMP2) (OR = 1.136, 95% CI =1.008-1.282). The reverse MR indicated that genetic liability to RAGE was associated with increased levels of GP17 (OR = 1.125, 95% CI = 1.003-1.261) and GP24 (OR = 1.222, 95% CI = 1.046-1.428), while pulmonary and activation-regulated chemokines (PARC) exhibited causal associations with GP10 (OR = 1.269, 95% CI = 1.048-1.537) and GP15 (OR = 1.297, 95% CI = 1.072-1.570). The findings provided suggested evidence on the bidirectional causality between IgG N-glycans and SASP, which might reveal potential regulatory mechanisms.
Collapse
Affiliation(s)
- Haotian Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Di Liu
- Centre for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoni Meng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wenxin Sun
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Cancan Li
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Huimin Lu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Deqiang Zheng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lijuan Wu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shengzhi Sun
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Youxin Wang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
- Centre for Precision Medicine, Edith Cowan University, Perth 6027, Australia
| |
Collapse
|
14
|
Veličković D, Shapiro JP, Parikh SV, Rovin B, Toto RD, Vazquez MA, Poggio ED, O'Toole JF, Sedor JR, Alexandrov T, Jain S, Bitzer M, Hodgin J, Veličković M, Sharma K, Anderton CR. Protein N-glycans in Healthy and Sclerotic Glomeruli in Diabetic Kidney Disease. J Am Soc Nephrol 2024; 35:00001751-990000000-00327. [PMID: 38771634 PMCID: PMC11387035 DOI: 10.1681/asn.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Diabetes is expected to directly impact renal glycosylation, yet to date, there has not been a comprehensive evaluation of alterations in N-glycan composition in the glomeruli of patients with diabetic kidney disease (DKD). METHODS We used untargeted mass spectrometry imaging to identify N-glycan structures in healthy and sclerotic glomeruli in FFPE sections from needle biopsies of five patients with DKD and three healthy kidney samples. Regional proteomics was performed on glomeruli from additional biopsies from the same patients to compare the abundances of enzymes involved in glycosylation. Secondary analysis of single nuclei transcriptomics (snRNAseq) data was used to inform on transcript levels of glycosylation machinery in different cell types and states. RESULTS We detected 120 N-glycans, and among them identified twelve of these protein post-translated modifications that were significantly increased in glomeruli. All glomeruli-specific N-glycans contained an N-acetyllactosamine (LacNAc) epitope. Five N-glycan structures were highly discriminant between sclerotic and healthy glomeruli. Sclerotic glomeruli had an additional set of glycans lacking fucose linked to their core, and they did not show tetra-antennary structures that are common in healthy glomeruli. Orthogonal omics analyses revealed lower protein abundance and lower gene expression involved in synthesizing fucosylated and branched N-glycans in sclerotic podocytes. In snRNAseq and regional proteomics analyses, we observed that genes and/or proteins involved in sialylation and LacNAc synthesis were also downregulated in DKD glomeruli, but this alteration remained undetectable by our spatial N-glycomics assay. CONCLUSIONS Integrative spatial glycomics, proteomics, and transcriptomics revealed protein N-glycosylation characteristic of sclerotic glomeruli in DKD.
Collapse
Affiliation(s)
- Dušan Veličković
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington
| | - John P Shapiro
- Department of Nephrology, The Ohio State University, Wexner Medical Center, Columbus, Ohio
| | - Samir V Parikh
- Department of Nephrology, The Ohio State University, Wexner Medical Center, Columbus, Ohio
| | - Brad Rovin
- Department of Nephrology, The Ohio State University, Wexner Medical Center, Columbus, Ohio
| | - Robert D Toto
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Miguel A Vazquez
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Emilio D Poggio
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio
| | - John F O'Toole
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio
| | - John R Sedor
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- BioStudio, BioInnovation Institute, Copenhagen, Denmark
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St. Louis
| | - Markus Bitzer
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey Hodgin
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Marija Veličković
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington
| | - Kumar Sharma
- Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Christopher R Anderton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington
- Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
15
|
Zhuang X, Woods J, Ji Y, Scheich S, Mo F, Rajagopalan S, Coulibaly ZA, Voss M, Urlaub H, Staudt LM, Pan KT, Long EO. Functional genomics identifies N-acetyllactosamine extension of complex N-glycans as a mechanism to evade lysis by natural killer cells. Cell Rep 2024; 43:114105. [PMID: 38619967 PMCID: PMC11170631 DOI: 10.1016/j.celrep.2024.114105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/31/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Natural killer (NK) cells are primary defenders against cancer precursors, but cancer cells can persist by evading immune surveillance. To investigate the genetic mechanisms underlying this evasion, we perform a genome-wide CRISPR screen using B lymphoblastoid cells. SPPL3, a peptidase that cleaves glycosyltransferases in the Golgi, emerges as a top hit facilitating evasion from NK cytotoxicity. SPPL3-deleted cells accumulate glycosyltransferases and complex N-glycans, disrupting not only binding of ligands to NK receptors but also binding of rituximab, a CD20 antibody approved for treating B cell cancers. Notably, inhibiting N-glycan maturation restores receptor binding and sensitivity to NK cells. A secondary CRISPR screen in SPPL3-deficient cells identifies B3GNT2, a transferase-mediating poly-LacNAc extension, as crucial for resistance. Mass spectrometry confirms enrichment of N-glycans bearing poly-LacNAc upon SPPL3 loss. Collectively, our study shows the essential role of SPPL3 and poly-LacNAc in cancer immune evasion, suggesting a promising target for cancer treatment.
Collapse
Affiliation(s)
- Xiaoxuan Zhuang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - James Woods
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fei Mo
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sumati Rajagopalan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kuan-Ting Pan
- Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
16
|
Tsukamoto Y, Tsukamoto N, Saiki W, Tashima Y, Furukawa JI, Kizuka Y, Narimatsu Y, Clausen H, Takeuchi H, Okajima T. Characterization of galactosyltransferase and sialyltransferase genes mediating the elongation of the extracellular O-GlcNAc glycans. Biochem Biophys Res Commun 2024; 703:149610. [PMID: 38359610 DOI: 10.1016/j.bbrc.2024.149610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
O-GlcNAc is a unique post-translational modification found in cytoplasmic, nuclear, and mitochondrial proteins. In a limited number of extracellular proteins, O-GlcNAc modifications occur through the action of EOGT, which specifically modifies subsets of epidermal growth factor-like (EGF) domain-containing proteins such as Notch receptors. The abnormalities due to EOGT mutations in mice and humans and the increased EOGT expression in several cancers signify the importance of EOGT pathophysiology and extracellular O-GlcNAc. Unlike intracellular O-GlcNAc monosaccharides, extracellular O-GlcNAc extends to form elongated glycan structures. However, the enzymes involved in the O-GlcNAc glycan extension have not yet been reported. In our study, we comprehensively screened potential galactosyltransferase and sialyltransferase genes related to the canonical O-GlcNAc glycan pathway and revealed the essential roles of B4GALT1 and ST3GAL4 in O-GlcNAc glycan elongation in human HEK293 cells. These findings were confirmed by sequential glycosylation of Drosophila EGF20 in vitro by EOGT, β4GalT-1, and ST3Gal-IV. Thus, the findings from our study throw light on the specific glycosyltransferases that mediate O-GlcNAc glycan elongation in human HEK293 cells.
Collapse
Affiliation(s)
- Yohei Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Natsumi Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wataru Saiki
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Tashima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Jun-Ichi Furukawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan.
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.
| |
Collapse
|
17
|
He X, Wang B, Deng W, Cao J, Tan Z, Li X, Guan F. Impaired bisecting GlcNAc reprogrammed M1 polarization of macrophage. Cell Commun Signal 2024; 22:73. [PMID: 38279161 PMCID: PMC10811823 DOI: 10.1186/s12964-023-01432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/09/2023] [Indexed: 01/28/2024] Open
Abstract
The functions of macrophages are governed by distinct polarization phenotypes, which can be categorized as either anti-tumor/M1 type or pro-tumor/M2 type. Glycosylation is known to play a crucial role in various cellular processes, but its influence on macrophage polarization is not well-studied. In this study, we observed a significant decrease in bisecting GlcNAc during M0-M1 polarization, and impaired bisecting GlcNAc was found to drive M0-M1 polarization. Using a glycoproteomics strategy, we identified Lgals3bp as a specific glycoprotein carrying bisecting GlcNAc. A high level of bisecting GlcNAc modification facilitated the degradation of Lgals3bp, while a low level of bisecting GlcNAc stabilized Lgals3bp. Elevated levels of Lgals3bp promoted M1 polarization through the activation of the NF-кB pathway. Conversely, the activated NF-кB pathway significantly repressed the transcription of MGAT3, leading to reduced levels of bisecting GlcNAc modification on Lgals3bp. Overall, our study highlights the impact of glycosylation on macrophage polarization and suggests the potential of engineered macrophages via glycosylated modification. Video Abstract.
Collapse
Affiliation(s)
- Xin He
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Bowen Wang
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Wenli Deng
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Jinhua Cao
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Zengqi Tan
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, 710069, China.
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education; Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, No, 229, Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
18
|
Iwamoto S, Kobayashi T, Hanamatsu H, Yokota I, Teranishi Y, Iwamoto A, Kitagawa M, Ashida S, Sakurai A, Matsuo S, Myokan Y, Sugimoto A, Ushioda R, Nagata K, Gotoh N, Nakajima K, Nishikaze T, Furukawa JI, Itano N. Tolerable glycometabolic stress boosts cancer cell resilience through altered N-glycosylation and Notch signaling activation. Cell Death Dis 2024; 15:53. [PMID: 38225221 PMCID: PMC10789756 DOI: 10.1038/s41419-024-06432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
Chronic metabolic stress paradoxically elicits pro-tumorigenic signals that facilitate cancer stem cell (CSC) development. Therefore, elucidating the metabolic sensing and signaling mechanisms governing cancer cell stemness can provide insights into ameliorating cancer relapse and therapeutic resistance. Here, we provide convincing evidence that chronic metabolic stress triggered by hyaluronan production augments CSC-like traits and chemoresistance by partially impairing nucleotide sugar metabolism, dolichol lipid-linked oligosaccharide (LLO) biosynthesis and N-glycan assembly. Notably, preconditioning with either low-dose tunicamycin or 2-deoxy-D-glucose, which partially interferes with LLO biosynthesis, reproduced the promoting effects of hyaluronan production on CSCs. Multi-omics revealed characteristic changes in N-glycan profiles and Notch signaling activation in cancer cells exposed to mild glycometabolic stress. Restoration of N-glycan assembly with glucosamine and mannose supplementation and Notch signaling blockade attenuated CSC-like properties and further enhanced the therapeutic efficacy of cisplatin. Therefore, our findings uncover a novel mechanism by which tolerable glycometabolic stress boosts cancer cell resilience through altered N-glycosylation and Notch signaling activation.
Collapse
Affiliation(s)
- Shungo Iwamoto
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | - Hisatoshi Hanamatsu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ikuko Yokota
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| | - Yukiko Teranishi
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Akiho Iwamoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Miyu Kitagawa
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Sawako Ashida
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Ayane Sakurai
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Suguru Matsuo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Yuma Myokan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Aiyu Sugimoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- JT Biohistory Research Hall, Takatsuki, Osaka, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuki Nakajima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan
| | - Naoki Itano
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.
| |
Collapse
|
19
|
Xu X, Fukuda T, Takai J, Morii S, Sun Y, Liu J, Ohno S, Isaji T, Yamaguchi Y, Nakano M, Moriguchi T, Gu J. Exogenous l-fucose attenuates neuroinflammation induced by lipopolysaccharide. J Biol Chem 2024; 300:105513. [PMID: 38042483 PMCID: PMC10772726 DOI: 10.1016/j.jbc.2023.105513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.
Collapse
Affiliation(s)
- Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jun Takai
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
20
|
Macke AJ, Pachikov AN, Divita TE, Morris ME, LaGrange CA, Holzapfel MS, Kubyshkin AV, Zyablitskaya EY, Makalish TP, Eremenko SN, Qiu H, Riethoven JJM, Hemstreet GP, Petrosyan AA. Targeting the ATF6-Mediated ER Stress Response and Autophagy Blocks Integrin-Driven Prostate Cancer Progression. Mol Cancer Res 2023; 21:958-974. [PMID: 37314749 PMCID: PMC10527559 DOI: 10.1158/1541-7786.mcr-23-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/27/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Prostate cancer progression to the lethal metastatic castration-resistant phenotype (mCRPC) is driven by αv integrins and is associated with Golgi disorganization and activation of the ATF6 branch of unfolded protein response (UPR). Overexpression of integrins requires N-acetylglucosaminyltransferase-V (MGAT5)-mediated glycosylation and subsequent cluster formation with Galectin-3 (Gal-3). However, the mechanism underlying this altered glycosylation is missing. For the first time, using HALO analysis of IHC, we found a strong association of integrin αv and Gal-3 at the plasma membrane (PM) in primary prostate cancer and mCRPC samples. We discovered that MGAT5 activation is caused by Golgi fragmentation and mislocalization of its competitor, N-acetylglucosaminyltransferase-III, MGAT3, from Golgi to the endoplasmic reticulum (ER). This was validated in an ethanol-induced model of ER stress, where alcohol treatment in androgen-refractory PC-3 and DU145 cells or alcohol consumption in patient with prostate cancer samples aggravates Golgi scattering, activates MGAT5, and enhances integrin expression at PM. This explains known link between alcohol consumption and prostate cancer mortality. ATF6 depletion significantly blocks UPR and reduces the number of Golgi fragments in both PC-3 and DU145 cells. Inhibition of autophagy by hydroxychloroquine (HCQ) restores compact Golgi, rescues MGAT3 intra-Golgi localization, blocks glycan modification via MGAT5, and abrogates delivery of Gal-3 to the cell surface. Importantly, the loss of Gal-3 leads to reduced integrins at PM and their accelerated internalization. ATF6 depletion and HCQ treatment synergistically decrease integrin αv and Gal-3 expression and temper orthotopic tumor growth and metastasis. IMPLICATIONS Combined ablation of ATF6 and autophagy can serve as new mCRPC therapeutic.
Collapse
Affiliation(s)
- Amanda J. Macke
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA, 68198
- The Fred and Pamela Buffett Cancer Center, Omaha, NE, USA, 68198
| | - Artem N. Pachikov
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA, 68198
- The Fred and Pamela Buffett Cancer Center, Omaha, NE, USA, 68198
| | - Taylor E. Divita
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA, 68198
- The Fred and Pamela Buffett Cancer Center, Omaha, NE, USA, 68198
| | - Mary E. Morris
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA, 68198
| | - Chad A. LaGrange
- Division of Urologic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA, 68198
| | - Melissa S. Holzapfel
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA, 68198
| | - Anatoly V. Kubyshkin
- Department of Pathological Physiology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Evgeniya Y. Zyablitskaya
- Laboratory of Molecular Biology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Tatiana P. Makalish
- Laboratory of Molecular Biology, Medical Academy named after S. I. Georgievsky, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Sergey N. Eremenko
- Saint Luc’s Clinique, V. I. Vernadsky Crimean Federal University, Simferopol, Russia, 295051
| | - Haowen Qiu
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA, 68588
| | - Jean-Jack M. Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA, 68588
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, USA, 68588
| | - George P. Hemstreet
- Division of Urologic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA, 68198
- Omaha Western Iowa Health Care System Urology, VA Service, Department of Research Service, Omaha, NE, USA, 68105
| | - and Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA, 68198
- The Fred and Pamela Buffett Cancer Center, Omaha, NE, USA, 68198
| |
Collapse
|
21
|
Costa J, Hayes C, Lisacek F. Protein glycosylation and glycoinformatics for novel biomarker discovery in neurodegenerative diseases. Ageing Res Rev 2023; 89:101991. [PMID: 37348818 DOI: 10.1016/j.arr.2023.101991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Glycosylation is a common post-translational modification of brain proteins including cell surface adhesion molecules, synaptic proteins, receptors and channels, as well as intracellular proteins, with implications in brain development and functions. Using advanced state-of-the-art glycomics and glycoproteomics technologies in conjunction with glycoinformatics resources, characteristic glycosylation profiles in brain tissues are increasingly reported in the literature and growing evidence shows deregulation of glycosylation in central nervous system disorders, including aging associated neurodegenerative diseases. Glycan signatures characteristic of brain tissue are also frequently described in cerebrospinal fluid due to its enrichment in brain-derived molecules. A detailed structural analysis of brain and cerebrospinal fluid glycans collected in publications in healthy and neurodegenerative conditions was undertaken and data was compiled to create a browsable dedicated set in the GlyConnect database of glycoproteins (https://glyconnect.expasy.org/brain). The shared molecular composition of cerebrospinal fluid with brain enhances the likelihood of novel glycobiomarker discovery for neurodegeneration, which may aid in unveiling disease mechanisms, therefore, providing with novel therapeutic targets as well as diagnostic and progression monitoring tools.
Collapse
Affiliation(s)
- Júlia Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Catherine Hayes
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
| | - Frédérique Lisacek
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland; Section of Biology, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
22
|
Dang L, Li P, Dan W, Liu H, Shen J, Zhu B, Jia L, Sun S. Glycoproteomic analysis of regulatory effects of bisecting N-glycans on N-glycan biosynthesis and protein expressions in human HK-2 cells. Carbohydr Res 2023; 531:108894. [PMID: 37421876 DOI: 10.1016/j.carres.2023.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/02/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Bisecting N-glycan is known to be a metastasis suppressor and plays a regulatory role in the biosynthesis of N-glycans. Previous studies have shown that bisecting N-glycans are capable of modulating both the branching and terminal modifications of glycans. However, these effects have been investigated mainly by glycomic approaches and it remains unclear how they alter when glycans are attached to different glycosites of proteins. Here, we systematically investigated the regulatory roles of bisecting N-glycans in human HK-2 cells using StrucGP, a strategy we developed for structural interpretation of site-specific N-glycans on glycoproteins. The glycoproteomics analysis showed that most of bisecting N-glycans are complex type and often occur in company with core fucosylation. With the overexpression and knockdown of MGAT3, the only enzyme responsible for bisecting N-glycan synthesis, we found that bisecting N-glycans can impact the biosynthesis of N-glycans from multiple aspects, including glycan types, branching, sialylation, fucosylation (different effects for core and terminal fucosylation) as well as the presence of terminal N-acetylglucosamine. Furthermore, gene ontology analysis suggested that most proteins with bisecting N-glycans located in the extracellular region or membrane, where they function mostly in cell adhesion, extracellular matrix regulation and cell signaling. Finally, we showed that overexpression of bisecting N-glycans had a broad impact on the protein expressions of HK-2 cells, involving multiple biological processes. Taken together, our work systematically demonstrated the expression profiles of bisecting N-glycans, and their regulatory effects on the biosynthesis of N-glycans and protein expressions, which provide valuable information for the functional elucidation of bisecting N-glycans.
Collapse
Affiliation(s)
- Liuyi Dang
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China
| | - Pengfei Li
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China
| | - Wei Dan
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China
| | - Huanhuan Liu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China
| | - Bojing Zhu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China
| | - Li Jia
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China.
| |
Collapse
|
23
|
Čaval T, Alisson-Silva F, Schwarz F. Roles of glycosylation at the cancer cell surface: opportunities for large scale glycoproteomics. Theranostics 2023; 13:2605-2615. [PMID: 37215580 PMCID: PMC10196828 DOI: 10.7150/thno.81760] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Cell surface glycosylation has a variety of functions, and its dysregulation in cancer contributes to impaired signaling, metastasis and the evasion of the immune responses. Recently, a number of glycosyltransferases that lead to altered glycosylation have been linked to reduced anti-tumor immune responses: B3GNT3, which is implicated in PD-L1 glycosylation in triple negative breast cancer, FUT8, through fucosylation of B7H3, and B3GNT2, which confers cancer resistance to T cell cytotoxicity. Given the increased appreciation of the relevance of protein glycosylation, there is a critical need for the development of methods that allow for an unbiased interrogation of cell surface glycosylation status. Here we provide an overview of the broad changes in glycosylation at the surface of cancer cell and describe selected examples of receptors with aberrant glycosylation leading to functional changes, with emphasis on immune checkpoint inhibitors, growth-promoting and growth-arresting receptors. Finally, we posit that the field of glycoproteomics has matured to an extent where large-scale profiling of intact glycopeptides from the cell surface is feasible and is poised for discovery of new actionable targets against cancer.
Collapse
|
24
|
Ohkawa Y, Kitano M, Maeda K, Nakano M, Kanto N, Kizuka Y, Seike M, Azuma A, Yamaguchi Y, Ookawara T, Miyoshi E, Taniguchi N. Core Fucosylation Is Required for the Secretion of and the Enzymatic Activity of SOD3 in Nonsmall-Cell Lung Cancer Cells. Antioxid Redox Signal 2023; 38:1201-1211. [PMID: 36606688 DOI: 10.1089/ars.2022.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aims: The anticancer function of superoxide dismutases (SODs) is still controversial. SOD3 is an extracellular superoxide dismutase and contains a single N-glycan chain. The role played by the N-glycosylation of SOD3, as it relates to lung cancer, is poorly understood. For this, we performed the structural and functional analyses of the N-glycan of SOD3 in lung cancer. Results: We report herein that the fucose structure of the N-glycan in SOD3 was increased in the sera of patients with lung cancer. In cell lines of non-small lung cancer cell (NSCLC), we also found a high level of the core fucose structure in the N-glycan of SOD3, as determined by lectin blotting and mass spectrometry analysis. To address the roles of the core fucose structure of SOD3, we generated FUT8 (α1,6-fucosyltransferase) gene knockout A549 cells. Using these cells, we found that the core fucose structure of SOD3 was required for its secretion and enzymatic activity, which contributes to the suppression of cell growth of NSCLC cells. Innovation: The core fucosylation is required for the secretion and enzymatic activity of SOD3, which contributes to anti-tumor functions such as the suppression of cell growth of NSCLC. Conclusion: The N-glycans, especially those with core fucose structures, regulate the anti-tumor functions of SOD3 against NSCLC.
Collapse
Affiliation(s)
- Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Masato Kitano
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.,Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kento Maeda
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Noriko Kanto
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Japan
| | - Arata Azuma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomomi Ookawara
- Laboratory of Biochemistry, School of Pharmacy, Hyogo Medical University, Kobe, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
25
|
Meng X, Wang F, Gao X, Wang B, Xu X, Wang Y, Wang W, Zeng Q. Association of IgG N-glycomics with prevalent and incident type 2 diabetes mellitus from the paradigm of predictive, preventive, and personalized medicine standpoint. EPMA J 2023; 14:1-20. [PMID: 36866157 PMCID: PMC9971369 DOI: 10.1007/s13167-022-00311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Objectives Type 2 diabetes mellitus (T2DM), a major metabolic disorder, is expanding at a rapidly rising worldwide prevalence and has emerged as one of the most common chronic diseases. Suboptimal health status (SHS) is considered a reversible intermediate state between health and diagnosable disease. We hypothesized that the time frame between the onset of SHS and the clinical manifestation of T2DM is the operational area for the application of reliable risk assessment tools, such as immunoglobulin G (IgG) N-glycans. From the viewpoint of predictive, preventive, and personalized medicine (PPPM/3PM), the early detection of SHS and dynamic monitoring by glycan biomarkers could provide a window of opportunity for targeted prevention and personalized treatment of T2DM. Methods Case-control and nested case-control studies were performed and consisted of 138 and 308 participants, respectively. The IgG N-glycan profiles of all plasma samples were detected by an ultra-performance liquid chromatography instrument. Results After adjustment for confounders, 22, five, and three IgG N-glycan traits were significantly associated with T2DM in the case-control setting, baseline SHS, and baseline optimal health participants from the nested case-control setting, respectively. Adding the IgG N-glycans to the clinical trait models, the average area under the receiver operating characteristic curves (AUCs) of the combined models based on repeated 400 times fivefold cross-validation differentiating T2DM from healthy individuals were 0.807 in the case-control setting and 0.563, 0.645, and 0.604 in the pooled samples, baseline SHS, and baseline optimal health samples of nested case-control setting, respectively, which presented moderate discriminative ability and were generally better than models with either glycans or clinical features alone. Conclusions This study comprehensively illustrated that the observed altered IgG N-glycosylation, i.e., decreased galactosylation and fucosylation/sialylation without bisecting GlcNAc, as well as increased galactosylation and fucosylation/sialylation with bisecting GlcNAc, reflects a pro-inflammatory state of T2DM. SHS is an important window period of early intervention for individuals at risk for T2DM; glycomic biosignatures as dynamic biomarkers have the ability to identify populations at risk for T2DM early, and the combination of evidence could provide suggestive ideas and valuable insight for the PPPM of T2DM. Supplementary information The online version contains supplementary material available at 10.1007/s13167-022-00311-3.
Collapse
Affiliation(s)
- Xiaoni Meng
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen, Fengtai District, Beijing, 100069 China
| | - Fei Wang
- Health Management Institute, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People’s Liberation Army General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853 China
| | - Xiangyang Gao
- Health Management Institute, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People’s Liberation Army General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853 China
| | - Biyan Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen, Fengtai District, Beijing, 100069 China
| | - Xizhu Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen, Fengtai District, Beijing, 100069 China
| | - Wei Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, 10 Youanmen, Fengtai District, Beijing, 100069 China
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027 Australia
| | - Qiang Zeng
- Health Management Institute, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People’s Liberation Army General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853 China
| |
Collapse
|
26
|
Song W, Liang C, Sun Y, Morii S, Yomogida S, Isaji T, Fukuda T, Hang Q, Hara A, Nakano M, Gu J. Expression of GnT-III decreases chemoresistance via negatively regulating P-glycoprotein expression: Involvement of the TNFR2-NF-κB signaling pathway. J Biol Chem 2023; 299:103051. [PMID: 36813234 PMCID: PMC10033316 DOI: 10.1016/j.jbc.2023.103051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
The phenomenon of multidrug resistance (MDR) is called chemoresistance with respect to the treatment of cancer, and it continues to be a major challenge. The role of N-glycosylation in chemoresistance, however, remains poorly understood. Here, we established a traditional model for adriamycin resistance in K562 cells, which are also known as K562/adriamycin-resistant (ADR) cells. Lectin blot, mass spectrometry, and RT-PCR analysis showed that the expression levels of N-acetylglucosaminyltransferase III (GnT-III) mRNA and its products, bisected N-glycans, are significantly decreased in K562/ADR cells, compared with the levels in parent K562 cells. By contrast, the expression levels of both P-glycoprotein (P-gp) and its intracellular key regulator, NF-κB signaling, are significantly increased in K562/ADR cells. These upregulations were sufficiently suppressed by the overexpression of GnT-III in K562/ADR cells. We found that the expression of GnT-III consistently decreased chemoresistance for doxorubicin and dasatinib, as well as activation of the NF-κB pathway by tumor necrosis factor (TNF) α, which binds to two structurally distinct glycoproteins, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), on the cell surface. Interestingly, our immunoprecipitation analysis revealed that only TNFR2, but not TNFR1, contains bisected N-glycans. The lack of GnT-III strongly induced TNFR2's autotrimerization without ligand stimulation, which was rescued by the overexpression of GnT-III in K562/ADR cells. Furthermore, the deficiency of TNFR2 suppressed P-gp expression while it increased GnT-III expression. Taken together, these results clearly show that GnT-III negatively regulates chemoresistance via the suppression of P-gp expression, which is regulated by the TNFR2-NF/κB signaling pathway.
Collapse
Affiliation(s)
- Wanli Song
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Caixia Liang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Sendai, Miyagi, Japan
| | - Shin Yomogida
- Division of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Akiyoshi Hara
- Division of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
27
|
Kaplonek P, Cizmeci D, Lee JSL, Shin SA, Fischinger S, Gobeil P, Pillet S, Charland N, Ward BJ, Alter G. Robust induction of functional humoral response by a plant-derived Coronavirus-like particle vaccine candidate for COVID-19. NPJ Vaccines 2023; 8:13. [PMID: 36781879 PMCID: PMC9924894 DOI: 10.1038/s41541-023-00612-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Despite the success of existing COVID-19 vaccine platforms, the persistent limitations in global deployment of vaccines and waning immunity exhibited by many of the currently deployed vaccine platforms have led to perpetual outbreaks of SARS-CoV-2 variants of concern. Thus, there is an urgent need to develop new durable vaccine candidates, to expand the global vaccine pipeline, and provide safe and effective solutions for every country worldwide. Here we deeply profiled the functional humoral response induced by two doses of AS03-adjuvanted and non-adjuvanted plant-derived Coronavirus-like particle (CoVLP) vaccine candidate from the phase 1 clinical trial, at peak immunogenicity and six months post-vaccination. AS03-adjuvanted CoVLP induced robust and durable SARS-CoV-2 specific humoral immunity, marked by strong IgG1antibody responses, potent FcγR binding, and antibody effector function. Contrary to a decline in neutralizing antibody titers, the FcγR2A-receptor binding capacity and antibody-mediated effector functions, such as opsonophagocytosis, remained readily detectable for at least six months.
Collapse
Affiliation(s)
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Sally A Shin
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Brian J Ward
- Medicago Inc., Quebec City, QC, Canada.
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada.
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
28
|
Shedding of N-acetylglucosaminyltransferase-V is regulated by maturity of cellular N-glycan. Commun Biol 2022; 5:743. [PMID: 35915223 PMCID: PMC9343384 DOI: 10.1038/s42003-022-03697-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
The number of N-glycan branches on glycoproteins is closely related to the development and aggravation of various diseases. Dysregulated formation of the branch produced by N-acetylglucosaminyltransferase-V (GnT-V, also called as MGAT5) promotes cancer growth and malignancy. However, it is largely unknown how the activity of GnT-V in cells is regulated. Here, we discover that the activity of GnT-V in cells is selectively upregulated by changing cellular N-glycans from mature to immature forms. Our glycomic analysis further shows that loss of terminal modifications of N-glycans resulted in an increase in the amount of the GnT-V-produced branch. Mechanistically, shedding (cleavage and extracellular secretion) of GnT-V mediated by signal peptide peptidase-like 3 (SPPL3) protease is greatly inhibited by blocking maturation of cellular N-glycans, resulting in an increased level of GnT-V protein in cells. Alteration of cellular N-glycans hardly impairs expression or localization of SPPL3; instead, SPPL3-mediated shedding of GnT-V is shown to be regulated by N-glycans on GnT-V, suggesting that the level of GnT-V cleavage is regulated by its own N-glycan structures. These findings shed light on a mechanism of secretion-based regulation of GnT-V activity. Cleavage of the glycan-branching enzyme N-acetylglucosaminyltransferase-V (GnT-V) by signal peptide peptidase-like 3 (SPPL3) protease and extracellular secretion of active glycan GnT-V depend on GnT-V’s own glycosylation state.
Collapse
|
29
|
Guan B, Gao Y, Chai Y, Xiakouna A, Chen X, Cao X, Yue X. Glycoproteomics reveal differences in site-specific N-glycosylation of whey proteins between donkey colostrum and mature milk. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Zhu B, Chen Z, Shen J, Xu Y, Lan R, Sun S. Structural- and Site-Specific N-Glycosylation Characterization of COVID-19 Virus Spike with StrucGP. Anal Chem 2022; 94:12274-12279. [PMID: 36036581 PMCID: PMC9454267 DOI: 10.1021/acs.analchem.2c02265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
The spike (S) protein plays a key role in COVID-19 (SARS-CoV-2) infection and host-cell entry. Previous studies have systematically analyzed site-specific glycan compositions as well as many important structural motifs of the S protein. Here, we further provide structural-clear N-glycosylation of the S protein at a site-specific level by using our recently developed structural- and site-specific N-glycoproteomics sequencing algorithm, StrucGP. In addition to the common N-glycans as detected in previous studies, many uncommon glycosylation structures such as LacdiNAc structures, Lewis structures, Mannose 6-phosphate (M6P) residues, and bisected core structures were unambiguously mapped at a total of 20 glycosites in the S protein trimer and protomer. These data further support the glycosylation structural-functional investigations of the COVID-19 virus spike.
Collapse
Affiliation(s)
- Bojing Zhu
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province 710069, China
| | - Zexuan Chen
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province 710069, China
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province 710069, China
| | - Yintai Xu
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province 710069, China
| | - Rongxia Lan
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province 710069, China
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi’an, Shaanxi Province 710069, China
| |
Collapse
|
31
|
Olejnik B, Ferens-Sieczkowska M. Seminal Plasma Glycoproteins as Potential Ligands of Lectins Engaged in Immunity Regulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10489. [PMID: 36078205 PMCID: PMC9518496 DOI: 10.3390/ijerph191710489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution, chronic stress, and unhealthy lifestyle are factors that negatively affect reproductive potential. Currently, 15-20% of couples in industrialized countries face the problem of infertility. This growing health and social problem prompts researchers to explore the regulatory mechanisms that may be important for successful fertilization. In recent years, more attention has been paid to male infertility factors, including the impact of seminal plasma components on regulation of the female immune response to allogenic sperm, embryo and fetal antigens. Directing this response to the tolerogenic pathway is crucial to achieve a healthy pregnancy. According to the fetoembryonic defense hypothesis, the regulatory mechanism may be associated with the interaction of lectins and immunomodulatory glycoepitopes. Such interactions may involve lectins of dendritic cells and macrophages, recruited to the cervical region immediately after intercourse. Carbohydrate binding receptors include C type lectins, such as DC-SIGN and MGL, as well as galectins and siglecs among others. In this article we discuss the expression of the possible lectin ligands, highly fucosylated and high mannose structures, which may be recognized by DC-SIGN, glycans of varying degrees of sialylation, which may differ in their interaction with siglecs, as well as T and Tn antigens in O-glycans.
Collapse
|
32
|
Chen Q, Zhang Y, Zhang K, Liu J, Pan H, Wang X, Li S, Hu D, Lin Z, Zhao Y, Hou G, Guan F, Li H, Liu S, Ren Y. Profiling the Bisecting N-acetylglucosamine Modification in Amniotic Membrane via Mass Spectrometry. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:648-656. [PMID: 35123071 PMCID: PMC9880894 DOI: 10.1016/j.gpb.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 01/31/2023]
Abstract
Bisecting N-acetylglucosamine (GlcNAc), a GlcNAc linked to the core β-mannose residue via a β1,4 linkage, is a special type of N-glycosylation that has been reported to be involved in various biological processes, such as cell adhesion and fetal development. This N-glycan structure is abundant in human trophoblasts, which is postulated to be resistant to natural killer cell-mediated cytotoxicity, enabling a mother to nourish a fetus without rejection. In this study, we hypothesized that the human amniotic membrane, which serves as the last barrier for the fetus, may also express bisected-type glycans. To test this hypothesis, glycomic analysis of the human amniotic membrane was performed, and bisected N-glycans were detected. Furthermore, our proteomic data, which have been previously employed to explore human missing proteins, were analyzed and the presence of bisecting GlcNAc-modified peptides was confirmed. A total of 41 glycoproteins with 43 glycopeptides were found to possess a bisecting GlcNAc, and 25 of these glycoproteins were reported to exhibit this type of modification for the first time. These results provide insights into the potential roles of bisecting GlcNAc modification in the human amniotic membrane, and can be beneficial to functional studies on glycoproteins with bisecting GlcNAc modifications and functional studies on immune suppression in human placenta.
Collapse
Affiliation(s)
| | | | | | - Jie Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Siqi Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Dandan Hu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Yun Zhao
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Feng Guan
- Joint International Research Laboratory of Glycobiology and Medical Chemistry, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Hong Li
- Shenzhen Seventh People's Hospital, Shenzhen 518081, China
| | - Siqi Liu
- BGI-Shenzhen, Shenzhen 518083, China,Corresponding authors.
| | - Yan Ren
- BGI-Shenzhen, Shenzhen 518083, China,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,Corresponding authors.
| |
Collapse
|
33
|
Cao X, Wang S, Gadi MR, Liu D, Wang PG, Wan XF, Zhang J, Chen X, Pepi LE, Azadi P, Li L. Systematic synthesis of bisected N-glycans and unique recognitions by glycan-binding proteins. Chem Sci 2022; 13:7644-7656. [PMID: 35872821 PMCID: PMC9241959 DOI: 10.1039/d1sc05435j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
Bisected N-glycans represent a unique class of protein N-glycans that play critical roles in many biological processes. Herein, we describe the systematic synthesis of these structures. A bisected N-glycan hexasaccharide was chemically assembled with two orthogonal protecting groups attached at the C2 of the branching mannose residues, followed by sequential installation of GlcNAc and LacNAc building blocks to afford two asymmetric bisecting "cores". Subsequent enzymatic modular extension of the "cores" yielded a comprehensive library of biantennary N-glycans containing the bisecting GlcNAc and presenting 6 common glycan determinants in a combinatorial fashion. These bisected N-glycans and their non-bisected counterparts were used to construct a distinctive glycan microarray to study their recognition by a wide variety of glycan-binding proteins (GBPs), including plant lectins, animal lectins, and influenza A virus hemagglutinins. Significantly, the bisecting GlcNAc could bestow (PHA-L, rDCIR2), enhance (PHA-E), or abolish (ConA, GNL, anti-CD15s antibody, etc.) N-glycan recognition of specific GBPs, and is tolerated by many others. In summary, synthesized compounds and the unique glycan microarray provide ideal standards and tools for glycoanalysis and functional glycomic studies. The microarray data provide new information regarding the fine details of N-glycan recognition by GBPs, and in turn improve their applications.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department of Chemistry, Georgia State UniversityAtlantaGAUSA
| | - Shuaishuai Wang
- Department of Chemistry, Georgia State UniversityAtlantaGAUSA
| | | | - Ding Liu
- Department of Chemistry, Georgia State UniversityAtlantaGAUSA
| | - Peng G. Wang
- Department of Chemistry, Georgia State UniversityAtlantaGAUSA
| | - Xiu-Feng Wan
- MU Center for Research on Influenza Systems Biology (CRISB), University of MissouriColumbiaMOUSA,Department of Molecular Microbiology and Immunology, School of Medicine, University of MissouriColumbiaMOUSA,Bond Life Sciences Center, University of MissouriColumbiaMOUSA,Department of Electrical Engineering & Computer Science, College of Engineering, University of MissouriColumbiaMOUSA
| | | | - Xi Chen
- Department of Chemistry, University of CaliforniaOne Shields AvenueDavisCAUSA
| | - Lauren E. Pepi
- Complex Carbohydrate Research Center, University of GeorgiaAthensGAUSA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of GeorgiaAthensGAUSA
| | - Lei Li
- Department of Chemistry, Georgia State UniversityAtlantaGAUSA
| |
Collapse
|
34
|
Fadda E. Molecular simulations of complex carbohydrates and glycoconjugates. Curr Opin Chem Biol 2022; 69:102175. [PMID: 35728307 DOI: 10.1016/j.cbpa.2022.102175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Complex carbohydrates (glycans) are the most abundant and versatile biopolymers in nature. The broad diversity of biochemical functions that carbohydrates cover is a direct consequence of the variety of 3D architectures they can adopt, displaying branched or linear arrangements, widely ranging in sizes, and with the highest diversity of building blocks of any other natural biopolymer. Despite this unparalleled complexity, a common denominator can be found in the glycans' inherent flexibility, which hinders experimental characterization, but that can be addressed by high-performance computing (HPC)-based molecular simulations. In this short review, I present and discuss the state-of-the-art of molecular simulations of complex carbohydrates and glycoconjugates, highlighting methodological strengths and weaknesses, important insights through emblematic case studies, and suggesting perspectives for future developments.
Collapse
Affiliation(s)
- Elisa Fadda
- Department of Chemistry and Hamilton Institute, Maynooth University, Ireland.
| |
Collapse
|
35
|
Vibhute AM, Tanaka HN, Mishra SK, Osuka RF, Nagae M, Yonekawa C, Korekane H, Doerksen RJ, Ando H, Kizuka Y. Structure-based design of UDP-GlcNAc analogs as candidate GnT-V inhibitors. Biochim Biophys Acta Gen Subj 2022; 1866:130118. [PMID: 35248671 PMCID: PMC9947920 DOI: 10.1016/j.bbagen.2022.130118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND N-Glycan branching regulates various functions of glycoproteins. N-Acetylglucosaminyltransferase V (GnT-V) is a GlcNAc transferase that acts on N-glycans and the GnT-V-producing branch is highly related to cancer progression. This indicates that specific GnT-V inhibitors may be drug candidates for cancer treatment. To design novel GnT-V inhibitors, we focused on the unique and weak recognition of the donor substrate UDP-GlcNAc by GnT-V. On the basis of the catalytic pocket structure, we hypothesized that UDP-GlcNAc analogs with increasing hydrophobicity may be GnT-V inhibitors. METHODS We chemically synthesized 10 UDP-GlcNAc analogs in which one or two phosphate groups were replaced with hydrophobic groups. To test these compounds, we set up an HPLC-based enzyme assay system for all N-glycan-branching GlcNAc transferases in which GnT-I-V activity was measured using purified truncated enzymes. Using this system, we assessed the inhibitory effects of the synthesized compounds on GnT-V and their specificity. RESULTS Several UDP-GlcNAc analogs inhibited GnT-V activity, although the inhibition potency was modest. Compared with other GnTs, these compounds showed a preference for GnT-V, which suggested that GnT-V was relatively tolerant of hydrophobicity in the donor substrate. Docking models of the inhibitory compounds with GnT-V suggested the mechanisms of how these compounds interacted with GnT-V and inhibited its action. CONCLUSIONS Chemical modification of the donor substrate may be a promising strategy to develop selective inhibitors of GnT-V. GENERAL SIGNIFICANCE Our findings provide new insights into the design of GnT inhibitors and how GnTs recognize the donor substrate.
Collapse
Affiliation(s)
- Amol M Vibhute
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Hide-Nori Tanaka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| | - Sushil K Mishra
- Glycoscience Center of Research Excellence, Department of BioMolecular Sciences, University of Mississippi, MS 38677, USA
| | - Reina F Osuka
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Chizuko Yonekawa
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Hiroaki Korekane
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Wako 351-0198, Japan
| | - Robert J Doerksen
- Glycoscience Center of Research Excellence, Department of BioMolecular Sciences, University of Mississippi, MS 38677, USA
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
36
|
Advances of research of Fc-fusion protein that activate NK cells for tumor immunotherapy. Int Immunopharmacol 2022; 109:108783. [PMID: 35561479 DOI: 10.1016/j.intimp.2022.108783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022]
Abstract
The rapid development of bioengineering technology has introduced Fc-fusion proteins, representing a novel kind of recombinant protein, as promising biopharmaceutical products in tumor therapy. Numerous related anti-tumor Fc-fusion proteins have been investigated and are in different stages of development. Fc-fusion proteins are constructed by fusing the Fc-region of the antibody with functional proteins or peptides. They retain the bioactivity of the latter and partial properties of the former. This structural and functional advantage makes Fc-fusion proteins an effective tool in tumor immunotherapy, especially for the recruitment and activation of natural killer (NK) cells, which play a critical role in tumor immunotherapy. Even though tumor cells have developed mechanisms to circumvent the cytotoxic effect of NK cells or induce defective NK cells, Fc-fusion proteins have been proven to effectively activate NK cells to kill tumor cells in different ways, such as antibody-dependent cell-mediated cytotoxicity (ADCC), activate NK cells in different ways in order to promote killing of tumor cells. In this review, we focus on NK cell-based immunity for cancers and current research progress of the Fc-fusion proteins for anti-tumor therapy by activating NK cells.
Collapse
|
37
|
Meng X, Wang B, Xu X, Song M, Hou H, Wang W, Wang Y. Glycomic biomarkers are instrumental for suboptimal health status management in the context of predictive, preventive, and personalized medicine. EPMA J 2022; 13:195-207. [DOI: 10.1007/s13167-022-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/29/2022] [Indexed: 12/08/2022]
|
38
|
Klarić TS, Lauc G. The dynamic brain N-glycome. Glycoconj J 2022; 39:443-471. [PMID: 35334027 DOI: 10.1007/s10719-022-10055-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 01/17/2023]
Abstract
The attachment of carbohydrates to other macromolecules, such as proteins or lipids, is an important regulatory mechanism termed glycosylation. One subtype of protein glycosylation is asparagine-linked glycosylation (N-glycosylation) which plays a key role in the development and normal functioning of the vertebrate brain. To better understand the role of N-glycans in neurobiology, it's imperative we analyse not only the functional roles of individual structures, but also the collective impact of large-scale changes in the brain N-glycome. The systematic study of the brain N-glycome is still in its infancy and data are relatively scarce. Nevertheless, the prevailing view has been that the neuroglycome is inherently restricted with limited capacity for variation. The development of improved methods for N-glycomics analysis of brain tissue has facilitated comprehensive characterisation of the complete brain N-glycome under various experimental conditions on a larger scale. Consequently, accumulating data suggest that it's more dynamic than previously recognised and that, within a general framework, it has a given capacity to change in response to both intrinsic and extrinsic stimuli. Here, we provide an overview of the many factors that can alter the brain N-glycome, including neurodevelopment, ageing, diet, stress, neuroinflammation, injury, and disease. Given this emerging evidence, we propose that the neuroglycome has a hitherto underappreciated plasticity and we discuss the therapeutic implications of this regarding the possible reversal of pathological changes via interventions. We also briefly review the merits and limitations of N-glycomics as an analytical method before reflecting on some of the outstanding questions in the field.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
39
|
Lavado-García J, Zhang T, Cervera L, Gòdia F, Wuhrer M. Differential N- and O-glycosylation signatures of HIV-1 Gag virus-like particles and coproduced extracellular vesicles. Biotechnol Bioeng 2022; 119:1207-1221. [PMID: 35112714 PMCID: PMC9303603 DOI: 10.1002/bit.28051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Abstract
HIV-1 virus-like particles (VLPs) are nanostructures derived from the self-assembly and cell budding of Gag polyprotein. Mimicking the native structure of the virus and being non-infectious, they represent promising candidates for the development of new vaccines as they elicit a strong immune response. In addition to this, the bounding membrane can be functionalized with exogenous antigens to target different diseases. Protein glycosylation depends strictly on the production platform and expression system used and the displayed glycosylation patterns may influence down-stream processing as well as the immune response. One of the main challenges for the development of Gag VLP production bioprocess is the separation of VLPs and coproduced extracellular vesicles (EVs). In this work, porous graphitized carbon separation method coupled with mass spectrometry was used to characterize the N- and O- glycosylation profiles of Gag VLPs produced in HEK293 cells. We identified differential glycan signatures between VLPs and EVs that could pave the way for further separation and purification strategies in order to optimize downstream processing and move forward in VLP-based vaccine production technology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Cervera
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
40
|
Xin M, You S, Xu Y, Shi W, Zhu B, Shen J, Wu J, Li C, Chen Z, Su Y, Shi J, Sun S. Precision glycoproteomics reveals distinctive N-glycosylation in human spermatozoa. Mol Cell Proteomics 2022; 21:100214. [PMID: 35183770 PMCID: PMC8958358 DOI: 10.1016/j.mcpro.2022.100214] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/22/2022] [Accepted: 02/06/2022] [Indexed: 12/21/2022] Open
Abstract
Spermatozoon represents a very special cell type in human body, and glycosylation plays essential roles in its whole life including spermatogenesis, maturation, capacitation, sperm–egg recognition, and fertilization. In this study, by mapping the most comprehensive N-glycoproteome of human spermatozoa using our recently developed site-specific glycoproteomic approaches, we show that spermatozoa contain a number of distinctive glycoproteins, which are mainly involved in spermatogenesis, acrosome reaction and sperm:oocyte membrane binding, and fertilization. Heavy fucosylation is observed on 14 glycoproteins mostly located at extracellular and cell surface regions in spermatozoa but not in other tissues. Sialylation and Lewis epitopes are enriched in the biological process of immune response in spermatozoa, while bisected core structures and LacdiNAc structures are highly expressed in acrosome. These data deepen our knowledge about glycosylation in spermatozoa and lay the foundation for functional study of glycosylation and glycan structures in male infertility. A precision site-specific glycoproteome is documented in human spermatozoa. Distinctive glycoproteins and heavy fucosylation are detected in spermatozoa. Sialylation and Lewis epitopes are related to immune response of spermatozoa. Bisected core structures and LacdiNAc are enriched on acrosome of spermatozoa.
Collapse
|
41
|
Williams SE, Noel M, Lehoux S, Cetinbas M, Xavier RJ, Sadreyev RI, Scolnick EM, Smoller JW, Cummings RD, Mealer RG. Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues. Nat Commun 2022; 13:275. [PMID: 35022400 PMCID: PMC8755730 DOI: 10.1038/s41467-021-27781-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/08/2021] [Indexed: 01/14/2023] Open
Abstract
Glycosylation is essential to brain development and function, but prior studies have often been limited to a single analytical technique and excluded region- and sex-specific analyses. Here, using several methodologies, we analyze Asn-linked and Ser/Thr/Tyr-linked protein glycosylation between brain regions and sexes in mice. Brain N-glycans are less complex in sequence and variety compared to other tissues, consisting predominantly of high-mannose and fucosylated/bisected structures. Most brain O-glycans are unbranched, sialylated O-GalNAc and O-mannose structures. A consistent pattern is observed between regions, and sex differences are minimal compared to those in plasma. Brain glycans correlate with RNA expression of their synthetic enzymes, and analysis of glycosylation genes in humans show a global downregulation in the brain compared to other tissues. We hypothesize that this restricted repertoire of protein glycans arises from their tight regulation in the brain. These results provide a roadmap for future studies of glycosylation in neurodevelopment and disease.
Collapse
Affiliation(s)
- Sarah E Williams
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramnik J Xavier
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward M Scolnick
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert G Mealer
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA.
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Towards Mapping of the Human Brain N-Glycome with Standardized Graphitic Carbon Chromatography. Biomolecules 2022; 12:biom12010085. [PMID: 35053234 PMCID: PMC8774104 DOI: 10.3390/biom12010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
The brain N-glycome is known to be crucial for many biological functions, including its involvement in neuronal diseases. Although large structural studies of brain N-glycans were recently carried out, a comprehensive isomer-specific structural analysis has still not been achieved, as indicated by the recent discovery of novel structures with galactosylated bisecting GlcNAc. Here, we present a detailed, isomer-specific analysis of the human brain N-glycome based on standardized porous graphitic carbon (PGC)-LC-MS/MS. To achieve this goal, we biosynthesized glycans with substitutions typically occurring in the brain N-glycome and acquired their normalized retention times. Comparison of these values with the standardized retention times of neutral and desialylated N-glycan fractions of the human brain led to unambiguous isomer specific assignment of most major peaks. Profound differences in the glycan structures between naturally neutral and desialylated glycans were found. The neutral and sialylated N-glycans derive from diverging biosynthetic pathways and are biosynthetically finished end products, rather than just partially processed intermediates. The focus on structural glycomics defined the structure of human brain N-glycans, amongst these are HNK-1 containing glycans, a bisecting sialyl-lactose and structures with fucose and N-acetylgalactosamine on the same arm, the so-called LDNF epitope often associated with parasitic worms.
Collapse
|
43
|
Tvaroška I. Glycosyltransferases as targets for therapeutic intervention in cancer and inflammation: molecular modeling insights. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Recent advances and trends in sample preparation and chemical modification for glycan analysis. J Pharm Biomed Anal 2022; 207:114424. [PMID: 34653745 DOI: 10.1016/j.jpba.2021.114424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Growing significance of glycosylation in protein functions has accelerated the development of methodologies for detection, identification, and characterization of protein glycosylation. In the past decade, glycobiology research has been advanced by innovative techniques with further progression in the post-genome era. Although significant technical progress has been made in terms of analytical throughput, comprehensiveness, and sensitivity, most methods for glycosylation analysis still require laborious and time-consuming sample preparation tasks. Additionally, sample preparation methods that are focused on specific glycan(s) require an in-depth understanding of various issues in glycobiology. In this review, modern sample preparation and chemical modification methods for the structural and quantitative glycan analyses together with the challenges and advantages of recent sample preparation methods are summarized. The techniques presented herein can facilitate the exploration of biomarkers, understanding of unknown glycan functions, and development of biopharmaceuticals.
Collapse
|
45
|
Lim SY, Hendra C, Yeo XH, Tan XY, Ng BH, Laserna AKC, Tan SH, Chan MYY, Khan SH, Chen SM, Li SFY. N-glycan profiles of acute myocardial infarction patients reveal potential biomarkers for diagnosis, severity assessment, and treatment monitoring. Glycobiology 2021; 32:469-482. [PMID: 34939124 DOI: 10.1093/glycob/cwab129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/08/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022] Open
Abstract
Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide. Diagnostic challenges remain in this highly time-sensitive condition. Using capillary electrophoresis-laser-induced fluorescence, we analyzed the blood plasma N-glycan profile in a cohort study comprising 103 patients with AMI and 69 controls. Subsequently, the data generated was subjected to classification modeling to identify potential AMI biomarkers. An area under the Receiving Operating Characteristic curve (AUCROC) of 0.81 was obtained when discriminating AMI versus non-MI patients. We postulate that the glycan profile involves a switch from a pro- to an anti-inflammatory state in the AMI pathophysiology. This was supported by significantly decreased levels in galactosylation, alongside increased levels in sialylation, afucosylation, and GlcNAc bisection levels in the blood plasma of AMI patients. By substantiating the glycomics analysis with immunoglobulin G (IgG) protein measurements, robustness of the glycan-based classifiers was demonstrated. Changes in AMI-related IgG activities were also confirmed to be associated with alterations at the glycosylation level. Additionally, a glycan-biomarker panel (GBP) derived from glycan features and current clinical biomarkers performed remarkably (AUCROC = 0.90, sensitivity = 0.579 at 5 percent false positive rate) when discriminating between patients with ST-segment elevation MI (n = 84) and non-ST-segment elevation MI (n = 19). Moreover, by applying the model trained using glycomics information, AMI and controls can still be discriminated at one and six months after baseline. Thus, glycomics biomarkers could potentially serve as a valuable complementary test to current diagnostic biomarkers. Additional research on their utility and associated biomechanisms via a large-scale study is recommended.
Collapse
Affiliation(s)
- Si Ying Lim
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Christopher Hendra
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077.,Institute of Data Science, National University of Singapore, Innovation 4.0, 3 Research Link, Singapore 117602
| | - Xin Hao Yeo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Xin Yi Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Bao Hui Ng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | | | - Sock Hwee Tan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077
| | - Mark Yan Yee Chan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077
| | - Shaheer H Khan
- Thermo Fisher Scientific, 180 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | - Shiaw-Min Chen
- Thermo Fisher Scientific, 180 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | - Sam Fong Yau Li
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
46
|
Helm J, Grünwald-Gruber C, Thader A, Urteil J, Führer J, Stenitzer D, Maresch D, Neumann L, Pabst M, Altmann F. Bisecting Lewis X in Hybrid-Type N-Glycans of Human Brain Revealed by Deep Structural Glycomics. Anal Chem 2021; 93:15175-15182. [PMID: 34723506 PMCID: PMC8600501 DOI: 10.1021/acs.analchem.1c03793] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The importance of
protein glycosylation in the biomedical field
requires methods that not only quantitate structures by their monosaccharide
composition, but also resolve and identify the many isomers expressed
by mammalian cells. The art of unambiguous identification of isomeric
structures in complex mixtures, however, did not yet catch up with
the fast pace of advance of high-throughput glycomics. Here, we present
a strategy for deducing structures with the help of a deci-minute
accurate retention time library for porous graphitic carbon chromatography
with mass spectrometric detection. We implemented the concept for
the fundamental N-glycan type consisting of five
hexoses, four N-acetylhexosamines and one fucose
residue. Nearly all of the 40 biosynthetized isomers occupied unique
elution positions. This result demonstrates the unique isomer selectivity
of porous graphitic carbon. With the help of a rather tightly spaced
grid of isotope-labeled internal N-glycan, standard
retention times were transposed to a standard chromatogram. Application
of this approach to animal and human brain N-glycans
immediately identified the majority of structures as being of the
bisected type. Most notably, it exposed hybrid-type glycans with galactosylated
and even Lewis X containing bisected N-acetylglucosamine,
which have not yet been discovered in a natural source. Thus, the
time grid approach implemented herein facilitated discovery of the
still missing pieces of the N-glycome in our most
noble organ and suggests itself—in conjunction with collision
induced dissociation—as a starting point for the overdue development
of isomer-specific deep structural glycomics.
Collapse
Affiliation(s)
- Johannes Helm
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Andreas Thader
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Jonathan Urteil
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Johannes Führer
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - David Stenitzer
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Laura Neumann
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Martin Pabst
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
47
|
Kawade H, Morise J, Mishra SK, Tsujioka S, Oka S, Kizuka Y. Tissue-Specific Regulation of HNK-1 Biosynthesis by Bisecting GlcNAc. Molecules 2021; 26:5176. [PMID: 34500611 PMCID: PMC8434142 DOI: 10.3390/molecules26175176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023] Open
Abstract
Human natural killer-1 (HNK-1) is a sulfated glyco-epitope regulating cell adhesion and synaptic functions. HNK-1 and its non-sulfated forms, which are specifically expressed in the brain and the kidney, respectively, are distinctly biosynthesized by two homologous glycosyltransferases: GlcAT-P in the brain and GlcAT-S in the kidney. However, it is largely unclear how the activity of these isozymes is regulated in vivo. We recently found that bisecting GlcNAc, a branching sugar in N-glycan, suppresses both GlcAT-P activity and HNK-1 expression in the brain. Here, we observed that the expression of non-sulfated HNK-1 in the kidney is unexpectedly unaltered in mutant mice lacking bisecting GlcNAc. This suggests that the biosynthesis of HNK-1 in the brain and the kidney are differentially regulated by bisecting GlcNAc. Mechanistically, in vitro activity assays demonstrated that bisecting GlcNAc inhibits the activity of GlcAT-P but not that of GlcAT-S. Furthermore, molecular dynamics simulation showed that GlcAT-P binds poorly to bisected N-glycan substrates, whereas GlcAT-S binds similarly to bisected and non-bisected N-glycans. These findings revealed the difference of the highly homologous isozymes for HNK-1 synthesis, highlighting the novel mechanism of the tissue-specific regulation of HNK-1 synthesis by bisecting GlcNAc.
Collapse
Affiliation(s)
- Haruka Kawade
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan;
| | - Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (J.M.); (S.T.); (S.O.)
| | - Sushil K. Mishra
- Glycoscience Center of Research Excellence, The University of Mississippi, Oxford, MS 38677, USA;
| | - Shuta Tsujioka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (J.M.); (S.T.); (S.O.)
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (J.M.); (S.T.); (S.O.)
| | - Yasuhiko Kizuka
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan;
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
48
|
Peptide Sequence Mapping around Bisecting GlcNAc-Bearing N-Glycans in Mouse Brain. Int J Mol Sci 2021; 22:ijms22168579. [PMID: 34445285 PMCID: PMC8395275 DOI: 10.3390/ijms22168579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
N-glycosylation is essential for many biological processes in mammals. A variety of N-glycan structures exist, of which, the formation of bisecting N-acetylglucosamine (GlcNAc) is catalyzed by N-acetylglucosaminyltransferase-III (GnT-III, encoded by the Mgat3 gene). We previously identified various bisecting GlcNAc-modified proteins involved in Alzheimer's disease and cancer. However, the mechanisms by which GnT-III acts on the target proteins are unknown. Here, we performed comparative glycoproteomic analyses using brain membranes of wild type (WT) and Mgat3-deficient mice. Target glycoproteins of GnT-III were enriched with E4-phytohemagglutinin (PHA) lectin, which recognizes bisecting GlcNAc, and analyzed by liquid chromatograph-mass spectrometry. We identified 32 N-glycosylation sites (Asn-Xaa-Ser/Thr, Xaa ≠ Pro) that were modified with bisecting GlcNAc. Sequence alignment of identified N-glycosylation sites that displayed bisecting GlcNAc suggested that GnT-III does not recognize a specific primary amino acid sequence. The molecular modeling of GluA1 as one of the good cell surface substrates for GnT-III in the brain, indicated that GnT-III acts on N-glycosylation sites located in a highly flexible and mobile loop of GluA1. These results suggest that the action of GnT-III is partially affected by the tertiary structure of target proteins, which can accommodate bisecting GlcNAc that generates a bulky flipped-back conformation of the modified glycans.
Collapse
|
49
|
Barboza M, Solakyildirim K, Knotts TA, Luke J, Gareau MG, Raybould HE, Lebrilla CB. Region-Specific Cell Membrane N-Glycome of Functional Mouse Brain Areas Revealed by nanoLC-MS Analysis. Mol Cell Proteomics 2021; 20:100130. [PMID: 34358619 PMCID: PMC8426282 DOI: 10.1016/j.mcpro.2021.100130] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
N-glycosylation is a ubiquitous posttranslational modification that affects protein structure and function, including those of the central nervous system. N-glycans attached to cell membrane proteins play crucial roles in all aspects of biology, including embryogenesis, development, cell-cell recognition and adhesion, and cell signaling and communication. Although brain function and behavior are known to be regulated by the N-glycosylation state of numerous cell surface glycoproteins, our current understanding of brain glycosylation is limited, and glycan variations associated with functional brain regions remain largely unknown. In this work, we used a well-established cell surface glycomic nanoLC-Chip-Q-TOF platform developed in our laboratory to characterize the N-glycome of membrane fractions enriched in cell surface glycoproteins obtained from specific functional brain areas. We report the cell membrane N-glycome of two major developmental divisions of mice brain with specific and distinctive functions, namely the forebrain and hindbrain. Region-specific glycan maps were obtained with ∼120 N-glycan compositions in each region, revealing significant differences in "brain-type" glycans involving high mannose, bisecting, and core and antenna fucosylated species. Additionally, the cell membrane N-glycome of three functional regions of the forebrain and hindbrain, the cerebral cortex, hippocampus, and cerebellum, was characterized. In total, 125 N-glycan compositions were identified, and their region-specific expression profiles were characterized. Over 70 N-glycans contributed to the differentiation of the cerebral cortex, hippocampus, and cerebellum N-glycome, including bisecting and branched glycans with varying degrees of core and antenna fucosylation and sialylation. This study presents a comprehensive spatial distribution of the cell-membrane enriched N-glycomes associated with five discrete anatomical and functional brain areas, providing evidence for the presence of a previously unknown brain glyco-architecture. The region-specific molecular glyco fingerprints identified here will enable a better understanding of the critical biological roles that N-glycans play in the specialized functional brain areas in health and disease.
Collapse
Affiliation(s)
- Mariana Barboza
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, USA; Department of Chemistry, University of California Davis, Davis, California, USA.
| | - Kemal Solakyildirim
- Department of Chemistry, University of California Davis, Davis, California, USA; Department of Chemistry, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Trina A Knotts
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Jonathan Luke
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Melanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Helen E Raybould
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, California, USA; Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
50
|
Chalk R, Greenland WEP, Moreira T, Coker J, Mukhopadhyay SMM, Williams E, Manning C, Bohstedt T, McCrorie R, Fernandez-Cid A, Burgess-Brown NA. Identification, mapping and relative quantitation of SARS-CoV-2 Spike glycopeptides by Mass-Retention Time Fingerprinting. Commun Biol 2021; 4:934. [PMID: 34345007 PMCID: PMC8333269 DOI: 10.1038/s42003-021-02455-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 07/14/2021] [Indexed: 11/09/2022] Open
Abstract
We describe an analytical method for the identification, mapping and relative quantitation of glycopeptides from SARS-CoV-2 Spike protein. The method may be executed using a LC-TOF mass spectrometer, requires no specialized knowledge of glycan analysis and exploits the differential resolving power of reverse phase HPLC. While this separation technique resolves peptides with high efficiency, glycans are resolved poorly, if at all. Consequently, glycopeptides consisting of the same peptide bearing different glycan structures will all possess very similar retention times and co-elute. Rather than a disadvantage, we show that shared retention time can be used to map multiple glycan species to the same peptide and location. In combination with MSMS and pseudo MS3, we have constructed a detailed mass-retention time database for Spike glycopeptides. This database allows any accurate mass LC-MS laboratory to reliably identify and quantify Spike glycopeptides from a single overnight elastase digest in less than 90 minutes.
Collapse
Affiliation(s)
- Rod Chalk
- Centre for Medicines Discovery, ORCRB, University of Oxford, Oxford, UK.
| | | | - Tiago Moreira
- Centre for Medicines Discovery, ORCRB, University of Oxford, Oxford, UK
| | - Jesse Coker
- Centre for Medicines Discovery, ORCRB, University of Oxford, Oxford, UK
| | | | - Eleanor Williams
- Centre for Medicines Discovery, ORCRB, University of Oxford, Oxford, UK
| | - Charlotte Manning
- Centre for Medicines Discovery, ORCRB, University of Oxford, Oxford, UK
| | - Tina Bohstedt
- Centre for Medicines Discovery, ORCRB, University of Oxford, Oxford, UK
| | - Rama McCrorie
- Centre for Medicines Discovery, ORCRB, University of Oxford, Oxford, UK
| | | | | |
Collapse
|