1
|
Pintarič M, Štuhec A, Tratnik E, Langerholc T. Spent Mushroom Substrate Improves Microbial Quantities and Enzymatic Activity in Soils of Different Farming Systems. Microorganisms 2024; 12:1521. [PMID: 39203364 PMCID: PMC11356570 DOI: 10.3390/microorganisms12081521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Organic fertilizers, such as spent mushroom substrate (SMS), improve soil fertility, but studies comparing their effects on different agricultural soils are limited. In this study, the effects of standard, SMS and composed fertilizers on soils from conventional-integrated, organic and biodynamic farming were investigated. Soil samples were analyzed for microorganisms and the activity of β-glucosidase (β-GLU), β-1,4-N-acetylglucosaminidase (NAG), urease (URE), arylamidase (ARN), phosphatase (PHOS), acid phosphatase (PAC), alkaline phosphatase (PAH) and arylsulphatase (ARS). Biodynamic soil showed the highest microbial counts and enzyme activities, followed by organic and conventional soils. SMS significantly increased the number of microorganisms and enzyme activities, especially in biodynamic and organic soils. Seasonal variations affected all microorganisms and most enzymes in all soils, except NAG in conventional and organic soils. Biodynamic soil showed stable activity of enzymes and microorganisms throughout the year, indicating greater stability. This study concludes that soil microorganisms and enzyme activities respond differently to fertilization depending on the soil type, with SMS demonstrating beneficial effects in all tested soils.
Collapse
Affiliation(s)
- Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (A.Š.); (E.T.); (T.L.)
| | | | | | | |
Collapse
|
2
|
Tran HT, Lin C, Bui XT, Ngo HH, Cheruiyot NK, Hoang HG, Vu CT. Aerobic composting remediation of petroleum hydrocarbon-contaminated soil. Current and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142250. [PMID: 33207468 DOI: 10.1016/j.scitotenv.2020.142250] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
This article provides a comprehensive review on aerobic composting remediation of soil contaminated with total petroleum hydrocarbons (TPHs). The studies reviewed have demonstrated that composting technology can be applied to treat TPH contamination (as high as 380,000 mg kg-1) in clay, silt, and sandy soils successfully. Most of these studies reported more than 70% removal efficiency, with a maximum of 99%. During the composting process, the bacteria use TPHs as carbon and energy sources, whereas the fungi produce enzymes that can catalyze oxidation reactions of TPHs. The mutualistic and competitive interactions between the bacteria and fungi are believed to sustain a robust biodegradation system. The highest biodegradation rate is observed during the thermophilic phase. However, the presence of a diverse and dynamic microbial community ensures that TPH degradation occurs in the entire composting process. Initial concentration, soil type, soil/compost ratio, aeration rate, moisture content, C/N ratio, pH, and temperature affect the composting process and should be monitored and controlled to ensure successful degradation. Nevertheless, there is insufficient research on optimizing these operational parameters, especially for large-scale composting. Also, toxic and odorous gas emissions during degradation of TPHs, usually unaddressed, can be potential air pollution sources and need further insightful characterization and mitigation/control research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam.
| | - Huu-Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Nicholas Kiprotich Cheruiyot
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Hong-Giang Hoang
- College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chi-Thanh Vu
- Department of Civil and Environmental Engineering, The University of Alabama in Huntsville, AL 35899, USA
| |
Collapse
|
3
|
Zhou J, Ge W, Zhang X, Wu J, Chen Q, Ma D, Chai C. Effects of spent mushroom substrate on the dissipation of polycyclic aromatic hydrocarbons in agricultural soil. CHEMOSPHERE 2020; 259:127462. [PMID: 32590177 DOI: 10.1016/j.chemosphere.2020.127462] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Spent mushroom substrate (SMS) is an agricultural waste with a high potential for polycyclic aromatic hydrocarbons (PAH) removal in aged contaminated soils. In this study, fresh and air-dried Pleurotus ostreatus, Pleurotus eryngii, and Auricularia auricular SMSs were used to remove PAHs in agricultural soil under 60-day incubation. The potential of SMS in PAH dissipation was studied by detecting the dissipation rate and the soil physicochemical index, enzyme activity, PAH-degradation bacterial biomass, and microbial diversity. Results showed that SMS significantly enhanced the dissipation of PAHs and fresh SMS had a better effect than air-dried SMS. The highest dissipation rate of 16 PAHs was 34.5%, which was observed in soil amended with fresh P. eryngii SMS, and the PAH dissipation rates with low and high molecular weights were 41.3% and 19.4%, respectively. By comparison, fresh P. eryngii SMS presented high nutrient contents, which promoted the development of PAH-degrading bacteria and changed the soil bacterial community involved in degradation, thereby promoting the PAH dissipation. The lignin-degrading enzymes in fresh SMS were abundant, and the laccase and manganese peroxidase activities in the treatment of fresh P. eryngii SMS was higher than those in other treatments. Fresh P. eryngii SMS improved the relative abundance of Microbacterium, Rhizobium, and Pseudomonas in soil, which were all related to PAH degradation. Consequently, adding fresh P. eryngii SMS was an effective method for remediating aged PAH-contaminated agricultural soils.
Collapse
Affiliation(s)
- Jiajing Zhou
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- Shandong Province Key Laboratory of Applied Mycology, Qingdao, 266109, China
| | - Xiaomei Zhang
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Juan Wu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qinghua Chen
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dong Ma
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Chai
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China; Shandong Province Key Laboratory of Applied Mycology, Qingdao, 266109, China.
| |
Collapse
|
4
|
Liu X, Ge W, Zhang X, Chai C, Wu J, Xiang D, Chen X. Biodegradation of aged polycyclic aromatic hydrocarbons in agricultural soil by Paracoccus sp. LXC combined with humic acid and spent mushroom substrate. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120820. [PMID: 31271936 DOI: 10.1016/j.jhazmat.2019.120820] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Paracoccus sp. LXC combined with humic acid (HA) and spent mushroom substrate (SMS) obtained from Auricularia auricular and Sarcomyxa edulis was tested for the remediation of agricultural soil contaminated with aged polycyclic aromatic hydrocarbons (PAHs). The biomass and diversity of bacteria and fungi and the soil enzyme activity were analyzed. PAH removal and dissipation kinetics were examined. The highest degradation rate of PAHs was 56.5% when soil was amended with Paracoccus sp. LXC combined with HA and unsterilized SMS from A. auricular. The half-life of PAHs decreased from 2323.3 days in natural attenuation to 66.6-277.2 days in amended treatments. Soil treated with Paracoccus sp. LXC combined with HA and SMS from A. auricular acquired high contents of organic matter and nutrients. HA and SMS aided the growth of PAH-degrading bacteria and promoted the diversity of bacteria but not of fungi. The degradation rate of PAHs was mainly correlated positively with soil laccase activity. Low- and middle-molecular-weight PAHs were significantly removed by Paracoccus sp. LXC, HA and SMS. High-molecular-weight PAHs were removed by SMS but not by Paracoccus sp. LXC. Biodegradation by Paracoccus sp. LXC combined with HA and SMS is a promising choice for remediating aged PAH-contaminated agricultural soils.
Collapse
Affiliation(s)
- Xiuchu Liu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaomei Zhang
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Chai
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Juan Wu
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dan Xiang
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyu Chen
- Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
5
|
Wang X, Liu S, Chen M, Yu C, Zhao Y, Yang H, Zha L, Li Z. Low Temperature (15 °C) Reduces Bacterial Diversity and Prolongs the Preservation Time of Volvariella volvacea. Microorganisms 2019; 7:microorganisms7100475. [PMID: 31635138 PMCID: PMC6843861 DOI: 10.3390/microorganisms7100475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Straw mushroom (Volvariella volvacea) is the most commonly cultivated edible fungus in the world, but the challenges associated with the preservation have limited its marketability. Microbiology, especially bacteria, play a key role in the deterioration of food, this study aimed to reveal the succession of the bacterial community on the surfaces of V. volvacea fruit bodies under different temperature conditions. We amplified 16S rRNA genes of V4 regions, obtained the bacterial species information by using high-throughput sequencing technology, and analyzed the effects of environmental temperature and preservation time on bacterial communities. The relative abundances of Firmicutes, Bacilli, and Bacillales increased significantly when straw mushrooms began to rot. Furthermore, the relative abundances of Paenibacillus, Lysinibacillus and Solibacillus, which belong to Bacillales, increased with the decay of straw mushroom. The Shannon and Simpson indices of V. volvacea stored at 30 °C were significantly higher than those of V. volvacea stored at 15 °C, which indicates that a high temperature contributes to the improvement in the species diversity. According to the linear discriminant analysis (LDA) effect size (LEfSe) results, the number of biomarkers in the 30 °C group (32, 42.11%) was significantly higher than that in the 15 °C group (17, 22.37%), indicating that a high temperature has a clustering effect on some bacterial communities. A Spearman correlation analysis showed that Pseudomonas, Stenotrophomonas and Solibacillus promoted the decay of straw mushroom. In conclusion, a high temperature increases the bacterial diversity on the straw mushroom surfaces and has a clustering effect on the bacterial communities. The bacterial community consisting of Firmicutes, Bacilli, Bacillales, Paenibacillus, Lysinibacillus, Pseudomonas, Stenotrophomonas and Solibacillus could promote the decay of straw mushroom, so new preservation materials research can focus on inhibiting anaerobic and decay-causing bacteria to prolong preservation time.
Collapse
Affiliation(s)
- Xiuling Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Shunjie Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Huanling Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
6
|
Sanz-Montero ME, Cabestrero Ó, Sánchez-Román M. Microbial Mg-rich Carbonates in an Extreme Alkaline Lake (Las Eras, Central Spain). Front Microbiol 2019; 10:148. [PMID: 30800103 PMCID: PMC6376964 DOI: 10.3389/fmicb.2019.00148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/21/2019] [Indexed: 11/13/2022] Open
Abstract
This paper provides strong evidence for the contribution of the phylum Firmicutes in mediating the primary precipitation of Mg-rich carbonates (hydromagnesite, dolomite, magnesite, and nesquehonite) in recent microbialites from a highly alkaline and ephemeral inland lake (Las Eras, Central Spain). The carbonate mineral precipitation occurs sequentially as the microbial mats decay. Scanning electron microscopy (SEM) provided solid proof that hydromagnesite nucleation is initiated on the exopolymeric substances (EPS) and the microbial cells associated to the microbial mat degradation areas. The progressive mineralization of the EPS and bacterial cells by hydromagnesite plate-like crystals on their surface, results in the entombment of the bacteria and formation of radiating aggregates of hydromagnesite crystals. The hydrous phases, mostly hydromagnesite, were produced at a high percentage in the first stages of the microbial degradation of organic matter. When the availability of organic substrates declines, the heterotrophs tend to reduce their number and metabolic activity, remain dormant. At this stage, the anhydrous phases, dolomite and magnesite, nucleate on bacterial nanoglobules and/or collapsed cells. Evidence for the sequential formation of the Mg-rich carbonates trough the decay of organic matter by a fermentative EPS-forming bacterium isolated from the microbialites, Desemzia incerta, is drawn through a comparative analysis of carbonate formation in both natural and experimental settings. This study will help to constrain potential mechanisms of carbonate formation in natural systems, which are of fundamental importance not only for understanding modern environments but also as a window into the geologic past of Earth and potentially Mars.
Collapse
Affiliation(s)
- M. Esther Sanz-Montero
- Department of Mineralogy and Petrology, Faculty of Geological Science, Complutense University of Madrid, Madrid, Spain
| | - Óscar Cabestrero
- Department of Mineralogy and Petrology, Faculty of Geological Science, Complutense University of Madrid, Madrid, Spain
| | - Mónica Sánchez-Román
- Department of Geology and Geochemistry, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Microbial Community Dynamics During the Composting Process of Animal Manure as Analyzed by Molecular Biological Methods. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2019. [DOI: 10.1007/978-3-030-10777-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Vieira F, Pecchia J, Segato F, Polikarpov I. Exploring oyster mushroom (Pleurotus ostreatus
) substrate preparation by varying phase I composting time: changes in bacterial communities and physicochemical composition of biomass impacting mushroom yields. J Appl Microbiol 2018; 126:931-944. [DOI: 10.1111/jam.14168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/26/2018] [Accepted: 11/19/2018] [Indexed: 11/27/2022]
Affiliation(s)
- F.R. Vieira
- Departamento de Engenharia Rural; Universidade Estadual Paulista ‘Júlio de Mesquita Filho’; Botucatu São Paulo Brazil
- Department of Plant Pathology and Environmental Microbiology; The Pennsylvania State University; University Park PA USA
| | - J.A. Pecchia
- Department of Plant Pathology and Environmental Microbiology; The Pennsylvania State University; University Park PA USA
| | - F. Segato
- Departmento de Biotecnologia; Escola de Engenharia de Lorena; Universidade de São Paulo; Lorena São Paulo Brazil
| | - I. Polikarpov
- Departamento de Física e Ciências Interdiciplinares; Instituto de Física de São Carlos; Universidade de São Paulo; São Carlos São Paulo Brazil
| |
Collapse
|
9
|
Zhang B, Yan L, Li Q, Zou J, Tan H, Tan W, Peng W, Li X, Zhang X. Dynamic succession of substrate-associated bacterial composition and function during Ganoderma lucidum growth. PeerJ 2018; 6:e4975. [PMID: 29915697 PMCID: PMC6004108 DOI: 10.7717/peerj.4975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/24/2018] [Indexed: 11/20/2022] Open
Abstract
Background Ganoderma lucidum, a valuable medicinal fungus, is widely distributed in China. It grows alongside with a complex microbial ecosystem in the substrate. As sequencing technology advances, it is possible to reveal the composition and functions of substrate-associated bacterial communities. Methods We analyzed the bacterial community dynamics in the substrate during the four typical growth stages of G. lucidum using next-generation sequencing. Results The physicochemical properties of the substrate (e.g. acidity, moisture, total nitrogen, total phosphorus and total potassium) changed between different growth stages. A total of 598,771 sequences from 12 samples were obtained and assigned to 22 bacterial phyla. Proteobacteria and Firmicutes were the dominant phyla. Bacterial community composition and diversity significantly differed between the elongation stage and the other three growth stages. LEfSe analysis revealed a large number of bacterial taxa (e.g. Bacteroidetes, Acidobacteria and Nitrospirae) with significantly higher abundance at the elongation stage. Functional pathway prediction uncovered significant abundance changes of a number of bacterial functional pathways between the elongation stage and other growth stages. At the elongation stage, the abundance of the environmental information processing pathway (mainly membrane transport) decreased, whereas that of the metabolism-related pathways increased. Discussion The changes in bacterial community composition, diversity and predicted functions were most likely related to the changes in the moisture and nutrient conditions in the substrate with the growth of G. lucidum, particularly at the elongation stage. Our findings shed light on the G. lucidum-bacteria-substrate relationships, which should facilitate the industrial cultivation of G. lucidum.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China.,Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lijuan Yan
- Chair for Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Qiang Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,College of Life Sciences, Sichuan University, Chengdu, China
| | - Jie Zou
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Hao Tan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Wei Tan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Weihong Peng
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Vieira FR, Pecchia JA. An Exploration into the Bacterial Community under Different Pasteurization Conditions during Substrate Preparation (Composting-Phase II) for Agaricus bisporus Cultivation. MICROBIAL ECOLOGY 2018; 75:318-330. [PMID: 28730353 DOI: 10.1007/s00248-017-1026-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Substrate preparation (i.e., composting) for Agaricus bisporus cultivation is the most critical point of mushroom production. Among many factors involved in the composting process, the microbial ecology of the system is the underlying drive of composting and can be influenced by composting management techniques. Pasteurization temperature at the beginning of phase II, in theory, may influence the bacterial community and subsequently the "selectivity" and nutrition of the final substrate. Therefore, this hypothesis was tested by simulation in bioreactors under different pasteurization conditions (57 °C/6 h, 60 °C/2 h, and 68 °C/2 h), simulating conditions adopted by many producers. Bacterial diversity, based on 16S ribosomal RNA obtained by high-throughput sequencing and classified in operational taxonomic units (OTUs), was greater than previously reported using culture-dependent methods. Alpha diversity estimators show a lower diversity of OTUs under a high-temperature pasteurization condition. Bacillales order shows a relatively higher OTU abundance under a high-pasteurization temperature, which also was related to high ammonia emission measurements. On the other hand, beta diversity analysis showed no significantly changes in the bacterial community structure under different conditions. Agaricus bisporus mycelium growth during a standard spawn run period was significantly slower in the compost pasteurized at high temperature. Since the bacterial community structure was not greatly affected by different pasteurization conditions but by-products left (e.g., ammonia) at the end of compost conditioning varied, further studies need to be conducted to determine the functional role of the microbial communities found during substrate preparation for Agaricus bisporus cultivation.
Collapse
Affiliation(s)
- Fabricio Rocha Vieira
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
- Departamento de Engenharia Rural, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, Brazil
| | - John Andrew Pecchia
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
11
|
Bacterial community shift for monitoring the co-composting of oil palm empty fruit bunch and palm oil mill effluent anaerobic sludge. ACTA ACUST UNITED AC 2017; 44:869-877. [DOI: 10.1007/s10295-017-1916-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/31/2017] [Indexed: 11/26/2022]
Abstract
Abstract
A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.
Collapse
|
12
|
Magdziak Z, Mleczek M, Gąsecka M, Drzewiecka K, Kaczmarek Z, Siwulski M, Goliński P. Agaricus bisporus compost improves the potential of Salix purpurea × viminalis hybrid for copper accumulation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:768-76. [PMID: 26709965 DOI: 10.1080/15226514.2015.1131238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The aim of the study was to determine the ability of spent mushroom compost (SMC) from the production of Agaricus bisporus (A. bisporus) to stimulate the growth and efficiency of copper (Cu) accumulation by Salix purpurea × viminalis hybrid. Roots, shoots and leaves were analysed in terms of total Cu content and selected biometric parameters. Due to the absence of information regarding the physiological response of the studied plant, low molecular weight organic acids (LMWOAs), phenolic compounds and salicylic acid (SA) contents were investigated. The obtained results clearly demonstrate the effectiveness (usefulness) of SMC in promoting the growth and stimulation of Cu accumulation by the studied Salix taxon. The highest Cu content in roots and shoots was found at the 10% SMC addition (507±22 and 380±11 mg kg(-1) DW, respectively), while there was a reduction of the content in leaves and young shoots (109±8 and 124±7 mg kg(-1) DW, respectively). In terms of physiological response, lowered secretion of LMWOAs, biosynthesis of phenolic compounds and SA, as well as accumulation of soluble sugars in Salix leaves was observed with SMC addition. Simultaneously, an elevation of the total phenolic content in leaves of plants cultivated with SMC was observed, considered as antioxidant biomolecules.
Collapse
Affiliation(s)
- Z Magdziak
- a Poznań University of Life Sciences , Department of Chemistry , Wojska Polskiego , Poznań , Poland
| | - M Mleczek
- a Poznań University of Life Sciences , Department of Chemistry , Wojska Polskiego , Poznań , Poland
| | - M Gąsecka
- a Poznań University of Life Sciences , Department of Chemistry , Wojska Polskiego , Poznań , Poland
| | - K Drzewiecka
- a Poznań University of Life Sciences , Department of Chemistry , Wojska Polskiego , Poznań , Poland
| | - Z Kaczmarek
- b Polish Academy of Sciences, Institute of Plant Genetics , Strzeszyńska , Poznań , Poland
| | - M Siwulski
- c Poznań University of Life Sciences , Department of Vegetable Crops , Dąbrowskiego , Poznań , Poland
| | - P Goliński
- a Poznań University of Life Sciences , Department of Chemistry , Wojska Polskiego , Poznań , Poland
| |
Collapse
|
13
|
García-Delgado C, D'Annibale A, Pesciaroli L, Yunta F, Crognale S, Petruccioli M, Eymar E. Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 508:20-28. [PMID: 25437949 DOI: 10.1016/j.scitotenv.2014.11.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Different applications of spent Agaricus bisporus substrate (SAS), a widespread agro-industrial waste, were investigated with respect to the remediation of a historically polluted soil with Polycyclic Aromatic Hydrocarbons (PAH). In one treatment, the waste was sterilized (SSAS) prior to its application in order to assess its ability to biostimulate, as an organic amendment, the resident soil microbiota and ensuing contaminant degradation. For the other treatments, two bioaugmentation approaches were investigated; the first involved the use of the waste itself and thus implied the application of A. bisporus and the inherent microbiota of the waste. In the second treatment, SAS was sterilized and inoculated again with the fungus to assess its ability to act as a fungal carrier. All these treatments were compared with natural attenuation in terms of their impact on soil heterotrophic and PAH-degrading bacteria, fungal growth, biodiversity of soil microbiota and ability to affect PAH bioavailability and ensuing degradation and detoxification. Results clearly showed that historically PAH contaminated soil was not amenable to natural attenuation. Conversely, the addition of sterilized spent A. bisporus substrate to the soil stimulated resident soil bacteria with ensuing high removals of 3-ring PAH. Both augmentation treatments were more effective in removing highly condensed PAH, some of which known to possess a significant carcinogenic activity. Regardless of the mode of application, the present results strongly support the adequacy of SAS for environmental remediation purposes and open the way to an attractive recycling option of this waste.
Collapse
Affiliation(s)
- Carlos García-Delgado
- Department of Agricultural Chemistry and Food Sciences, University Autónoma of Madrid, 28049 Madrid, Spain.
| | - Alessandro D'Annibale
- Department for Innovation in Biological, Agro-Food and Forest systems [DIBAF], University of Tuscia, 01100 Viterbo, Italy.
| | - Lorena Pesciaroli
- Department for Innovation in Biological, Agro-Food and Forest systems [DIBAF], University of Tuscia, 01100 Viterbo, Italy.
| | - Felipe Yunta
- Department of Geology and Geochemistry, University Autónoma of Madrid, 28049 Madrid, Spain.
| | - Silvia Crognale
- Department for Innovation in Biological, Agro-Food and Forest systems [DIBAF], University of Tuscia, 01100 Viterbo, Italy.
| | - Maurizio Petruccioli
- Department for Innovation in Biological, Agro-Food and Forest systems [DIBAF], University of Tuscia, 01100 Viterbo, Italy.
| | - Enrique Eymar
- Department of Agricultural Chemistry and Food Sciences, University Autónoma of Madrid, 28049 Madrid, Spain.
| |
Collapse
|
14
|
Weil JD, Cutter CN, Beelman RB, LaBorde LF. Inactivation of human pathogens during phase II composting of manure-based mushroom growth substrate. J Food Prot 2013; 76:1393-400. [PMID: 23905795 DOI: 10.4315/0362-028x.jfp-12-508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Commercial production of white button mushrooms (Agaricus bisporus) requires a specialized growth substrate prepared from composted agricultural by-products. Because horse and poultry manures are widely used in substrate formulations, there is a need to determine the extent to which the composting process is capable of eliminating human pathogens. In this study, partially composted substrate was inoculated with a pathogen cocktail (log 10⁶ to 10⁸ CFU/g) containing Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella. Pathogen and indicator-organism reductions were followed at temperatures that typically occurred during a standard 6-day phase II pasteurization and conditioning procedure. Controlled-temperature water bath studies at 48.8, 54.4, and 60°C demonstrated complete destruction of the three pathogens after 36.0, 8.0, and 0.5 h, respectively. Destruction of L. monocytogenes and E. coli O157:H7 at 54.4°C occurred more slowly than E. coli, total coliforms, Enterobacteriaceae, and Salmonella. Microbial reductions that occurred during a standard 6-day phase II pasteurization and conditioning treatment were studied in a small-scale mushroom production research facility. After phase II composting, E. coli, coliforms, and Enterobacteriaceae were below detectable levels, and inoculated pathogens were not detected by direct plating or by enrichment. The results of this study show that a phase II composting process can be an effective control measure for eliminating risks associated with the use of composted animal manures during mushroom production. Growers are encouraged to validate and verify their own composting processes through periodic microbial testing for pathogens and to conduct studies to assure uniform distribution of substrate temperatures during phase II.
Collapse
Affiliation(s)
- Jennifer D Weil
- Department of Food Science, The Pennsylvania State University, 202 Food Science Building, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
15
|
Chandna P, Nain L, Singh S, Kuhad RC. Assessment of bacterial diversity during composting of agricultural byproducts. BMC Microbiol 2013; 13:99. [PMID: 23651653 PMCID: PMC3651732 DOI: 10.1186/1471-2180-13-99] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/18/2013] [Indexed: 11/30/2022] Open
Abstract
Background Composting is microbial decomposition of biodegradable materials and it is governed by physicochemical, physiological and microbiological factors. The importance of microbial communities (bacteria, actinomycetes and fungi) during composting is well established. However, the microbial diversity during composting may vary with the variety of composting materials and nutrient supplements. Therefore, it is necessary to study the diversity of microorganisms during composting of different agricultural byproducts like wheat bran, rice bran, rice husk, along with grass clippings and bulking agents. Here it has been attempted to assess the diversity of culturable bacteria during composting of agricultural byproducts. Results The culturable bacterial diversity was assessed during the process by isolating the most prominent bacteria. Bacterial population was found to be maximum during the mesophilic phase, but decreased during the thermophilic phase and declined further in the cooling and maturation phase of composting. The bacterial population ranged from 105 to 109 cfu g-1 compost. The predominant bacteria were characterized biochemically, followed by 16S rRNA gene sequencing. The isolated strains, both Gram-positive and Gram-negative groups belonged to the order Burkholderiales, Enterobacteriales, Actinobacteriales and Bacillales, which includes genera e.g. Staphylococcus, Serratia, Klebsiella, Enterobacter, Terribacillus, Lysinibacillus Kocuria, Microbacterium, Acidovorax and Comamonas. Genera like Kocuria, Microbacterium, Acidovorax, Comamonas and some new species of Bacillus were also identified for the first time from the compost made from agricultural byproducts. Conclusion The use of appropriate nitrogen amendments and bulking agents in composting resulted in good quality compost. The culture based strategy enabled us to isolate some novel bacterial isolates like Kocuria, Microbacterium, Acidovorax and Comamonas first time from agro-byproducts compost. These bacteria can be used as potential compost inoculants for accelerating composting process.
Collapse
Affiliation(s)
- Piyush Chandna
- Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | | | | | | |
Collapse
|
16
|
Singh R, Ahlawat OP, Rajor A. Identification of the potential of microbial combinations obtained from spent mushroom cultivation substrates for use in textile effluent decolorization. BIORESOURCE TECHNOLOGY 2012; 125:217-225. [PMID: 23026337 DOI: 10.1016/j.biortech.2012.08.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
The study presents variation in microbial population of Agaricus bisporus, Pleurotus sajor-caju and Volvariella volvacea spent substrates (SMS) along with ligninolytic enzymes activity and textile effluent decolorization potential of microorganisms isolated from these. The effect of temperature, pH, carbon sources and immobilizing agents on effluent decolorization using different combinations of these microorganisms has also been studied. SMS of P. sajor-caju harbored highest population and diversity of bacteria and fungi compared to other SMSs. Schizophyllum commune and Pezizomycotina sp. from P. sajor-caju SMS, exhibited highest activities of laccase (11.8 and 8.32U mL(-1)) and lignin peroxidase (339 and 318 UL(-1)), while Pseudomonas fluorescens of Manganese peroxidase. Highest decolorization was in presence of glucose and sucrose at 30°C, and microbial consortium comprised of the immobilized forms of S. commune and Pezizomycotina sp. on wheat straw and broth cultures of P. fluorescens, Bacillus licheniformis and Bacillus pumilus.
Collapse
Affiliation(s)
- Rajender Singh
- Directorate of Mushroom Research (ICAR), Solan 173213, HP, India.
| | | | | |
Collapse
|
17
|
Chandna P, Mallik S, Kuhad RC. Assessment of bacterial diversity in agricultural by-product compost by sequencing of cultivated isolates and amplified rDNA restriction analysis. Appl Microbiol Biotechnol 2012; 97:6991-7003. [PMID: 23053087 DOI: 10.1007/s00253-012-4434-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
Abstract
An investigation of bacterial diversity in compost was performed using molecular chronometer in order to reveal its phylogeny. Thirty-three bacterial isolates isolated from compost were analyzed by 16S rRNA gene sequencing which revealed phylogenetic lineage of class Bacilli, γ, β-Proteobacteria, and Actinobacteria. Among these lineages, isolates belonging to class Bacilli consisted of species from genera Staphylococcus, Bacillus, Terribacillus, and Lysinibacillus. From phylum Actinobacteria: Microbacterium barkeri and Kocuria sp. were identified. Other bacterial groups had phylogenetic linkage with genera Comamonas and Acidovorax (class β-Proteobacteria); Serratia, Klebsiella, and Enterobacter (class γ-Proteobacteria). Similar isolates were analyzed through ARDRA. Amplified product of 16S rRNA gene from each isolates was subjected to cleavage by enzymes HpaII, HinfI, and MspI in separate reaction tubes. HpaII generated 2-6 bands ranging from 90-688 bp, HinfI generated 2-5 bands of 71-1,038 bp, and MspI 2-7 bands of 69-793 bp. The restriction patterns from HpaII, HinfI, and MspI were normalized separately and combined by means of pattern recognition software "Diversity Database." HpaII had highest discrimination index (0.72) than HinfI (0.68) and MspI (0.65), and the combination of all three showed discrimination index (0.69). Numerical analysis of ARDRA patterns demonstrated sufficient phylogenetic information for characterizing bacterial diversity. Phylogenetic relationship obtained among isolates through ARDRA was compared with 16S rRNA gene sequence and ARDRA results showed sufficiently similar 16S rRNA gene sequence analysis, but not an overlapping. It has been observed that ARDRA technique facilitates the identification of bacteria in less than 36 h as compared to traditional 16S rRNA gene sequencing.
Collapse
Affiliation(s)
- Piyush Chandna
- Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, 110 021, India
| | | | | |
Collapse
|
18
|
Wang P, Liu Y, Yin Y, Jin H, Wang S, Xu F, Zhao S, Geng X. Diversity of microorganisms isolated from the soil sample surround Chroogomphus rutilus in the Beijing region. Int J Biol Sci 2011; 7:209-20. [PMID: 21448282 PMCID: PMC3053533 DOI: 10.7150/ijbs.7.209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 02/27/2011] [Indexed: 11/14/2022] Open
Abstract
Artificially cultivating Chroogomphus rutilus is too inefficient to be commercially feasible. Furthermore, isolating C. rutilus mycelia in the wild is difficult. Thus, it is important to determine the natural habitat of its fruiting body. This study focused on the ecology of the C. rutilus habitat to isolate and classify beneficial microorganisms that could affect its growth, which could be used in future research on artificial cultivation. In total, 342 isolates were isolated from soil samples collected around a C. rutilus colony in the Beijing region. Of these, 22 bacterial and 14 fungal isolates were selected for sequencing and phylogenetic analysis, based on their growth characteristics and colony morphology. Using 16S rRNA gene sequence analysis, the bacterial isolates were divided into two monophyletic clusters which had significant hits to the genera Bacillus and Pseudomonas, respectively. Using internal transcribed spacer (ITS) sequence analysis, fungal isolates were divided into four monophyletic clusters: Penicillium, Trichoderma, Mortierella, and Bionectria. Moreover, the phylogenetic diversity of these isolates was analysed. The results indicated that numerous microorganisms were present in C. rutilus habitat. This was the first reported examination of the microbiological ecology of C. rutilus.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Science, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Weidhaas J, Macbeth T, Olsen R, Sadowsky M, Norat D, Harwood V. Identification of a
Brevibacterium
marker gene specific to poultry litter and development of a quantitative PCR assay. J Appl Microbiol 2010; 109:334-47. [DOI: 10.1111/j.1365-2672.2010.04666.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | - M.J. Sadowsky
- Department of Soil, Water, and Climate and BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - D. Norat
- Department of Soil, Water, and Climate and BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - V.J. Harwood
- Department of Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
20
|
Vajna B, Nagy A, Sajben E, Manczinger L, Szijártó N, Kádár Z, Bordás D, Márialigeti K. Microbial community structure changes during oyster mushroom substrate preparation. Appl Microbiol Biotechnol 2009; 86:367-75. [DOI: 10.1007/s00253-009-2371-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 11/11/2009] [Accepted: 11/18/2009] [Indexed: 11/24/2022]
|
21
|
Liew PWY, Jong BC, Goh CM, Ahmad M. Bacterial diversity associated with empty oil palm fruit bunch compost as revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. J GEN APPL MICROBIOL 2009; 55:233-40. [PMID: 19590151 DOI: 10.2323/jgam.55.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Pauline Woan Ying Liew
- Agrotechnology and Bioscience Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | | | | | | |
Collapse
|
22
|
Székely AJ, Sipos R, Berta B, Vajna B, Hajdú C, Márialigeti K. DGGE and T-RFLP analysis of bacterial succession during mushroom compost production and sequence-aided T-RFLP profile of mature compost. MICROBIAL ECOLOGY 2009; 57:522-533. [PMID: 18654815 DOI: 10.1007/s00248-008-9424-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 06/30/2008] [Indexed: 05/26/2023]
Abstract
The amount of button mushroom (Agaricus bisporus) harvested from compost is largely affected by the microbial processes taking place during composting and the microbes inhabiting the mature compost. In this study, the microbial changes during the stages of this specific composting process were monitored, and the dominant bacteria of the mature compost were identified to reveal the microbiological background of the favorable properties of the heat-treated phase II mushroom compost. 16S ribosomal deoxyribonucleic acid (rDNA)-based denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) molecular fingerprinting methods were used to track the succession of microbial communities in summer and winter composting cycles. DNA from individual DGGE bands were reamplified and subjected to sequence analysis. Principal component analysis of fingerprints of the composting processes showed intensive changes in bacterial community during the 22-day procedure. Peak temperature samples grouped together and were dominated by Thermus thermophilus. Mature compost patterns were almost identical by both methods (DGGE, T-RFLP). To get an in-depth analysis of the mature compost bacterial community, the sequence data from cultivation of the bacteria and cloning of environmental 16S rDNA were uniquely coupled with the output of the environmental T-RFLP fingerprints (sequence-aided T-RFLP). This method revealed the dominance of a supposedly cellulose-degrading consortium composed of phylotypes related to Pseudoxanthomonas, Thermobifida, and Thermomonospora.
Collapse
Affiliation(s)
- Anna J Székely
- Department of Microbiology, Eötvös Loránd University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
23
|
Adams JDW, Frostick LE. Analysis of bacterial activity, biomass and diversity during windrow composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2009; 29:598-605. [PMID: 18977649 DOI: 10.1016/j.wasman.2008.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 06/11/2008] [Accepted: 06/27/2008] [Indexed: 05/27/2023]
Abstract
Two contrasting compost windrows were monitored for various physical, chemical and microbiological parameters for a period of 106 days. The different input materials and management practises gave rise to different temperature, moisture, and oxygen consumption profiles as composting proceeded. However, despite the different composting conditions, the specific respiratory activity, as determined by oxygen consumption per bacterial cell, was remarkably similar for both windrows. Further investigations into diversity dynamics were done through DGGE and cloning and sequencing of bacterial 16S rDNA PCR products. Although sequence analysis showed differing bacterial communities across time and between the different windrows, similarities in the progression were noted. The majority of sequences recovered from the first sampling period (day 1) were highly similar to previously isolated organisms. The clone libraries from the last sampling period (day 106) contained organisms that showed lower homology to their closest relatives, often with other uncultured organisms, and in phyla that contain few cultured representatives. These data suggest that specific respiratory activity may be an important driver of bacterial diversity in composting environments.
Collapse
Affiliation(s)
- J D W Adams
- Environmental Technologies Centre of Industrial Collaboration, Department of Geography, University of Hull, Cohen Building, Cottingham Road, Hull HU6 7RX, UK.
| | | |
Collapse
|
24
|
Kashama J, Prince V, Simao-Beaunoir AM, Beaulieu C. Carbon utilization profiles of bacteria colonizing the headbox water of two paper machines in a Canadian mill. J Ind Microbiol Biotechnol 2009; 36:391-9. [PMID: 19137341 DOI: 10.1007/s10295-008-0509-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
Forty-one bacterial strains isolated from the headbox water of two machines in a Canadian paper mill were associated with the genera Asticcacaulis, Acidovorax, Bacillus, Exiguobacterium, Hydrogenophaga, Pseudomonas, Pseudoxanthomonas, Staphylococcus, Stenotrophomonas based on the sequence of their 16S rRNA genes. The metabolic profile of these strains were determined using Biolog EcoPlate, and the bacteria were divided into four metabolic groups. Metabolic profiles of the bacterial communities colonizing the headbox water of two paper machines was also determined weekly over a 1 year period. The only compound that was not reduced by the bacterial community was 2-hydroxybenzoic acid. Utilization frequency of the other carbon sources in the Biolog EcoPlate ranged from 3 to 100%. The metabolic profiles of the bacterial community did not vary considerably between the two paper machines. However, the metabolic profile varied among the sampling dates.
Collapse
Affiliation(s)
- Johnny Kashama
- Centre d'Etude et de Valorisation de la Diversité Microbienne, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | | | | | | |
Collapse
|
25
|
Kim MK, Math RK, Cho KM, Shin KJ, Kim JO, Ryu JS, Lee YH, Yun HD. Effect of Pseudomonas sp. P7014 on the growth of edible mushroom Pleurotus eryngii in bottle culture for commercial production. BIORESOURCE TECHNOLOGY 2008; 99:3306-8. [PMID: 17698350 DOI: 10.1016/j.biortech.2007.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 06/21/2007] [Accepted: 06/21/2007] [Indexed: 05/16/2023]
Abstract
Addition of bacterial culture strain P7014 and its supernatant to the mushroom growing media resulted in mushroom mycelia run faster. Mycelial growth rate of Pleurotus eryngii was increased up to 1.6 fold and primordial formation was induced one day earlier. Moreover, it was supposed that addition of bacteria had beneficial applications for commercial mushroom production, which appreciably reduced total number of days for cultivation of about 5+/-2 days compared with uninoculated, which took 55+/-2 days.
Collapse
Affiliation(s)
- Min Keun Kim
- Division of Plant Environmental Research, Gyeongsangnam-do Agricultural Research and Extension Service, Chinju 660-360, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rusznyák A, Szabó G, Pollák B, Vágány V, Palatinszky M. Diversity of reed (Phragmites australis) stem biofilm bacterial communities in two Hungarian soda lakes. Acta Microbiol Immunol Hung 2007; 54:339-52. [PMID: 18088008 DOI: 10.1556/amicr.54.2007.4.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
From reed biofilm samples of Kelemen-szék (Kiskunság National Park, KNP) and Nagy-Vadas (Hortobágy National Park, HNP) altogether 260 bacterial isolates were gained after serial dilutions and plating onto different media. Following a primary selection 164 strains were investigated by "traditional" phenotypic tests and clustered by numerical analysis. Fifty-six representative strains were selected to ARDRA and 16S rDNA sequence analysis for identification. Strains were identified as members of genera Agrobacterium, Paracoccus, Halomonas, Pseudomonas, Bacillus, Planococcus and Nesterenkonia. The species diversity was also investigated by a cultivation independent method. A clone library was constructed using the community DNA isolated from the biofilm sample of Kelemen-szék. Screening of the 140 bacterial clones resulted in 45 different ARDRA groups. Sequence analysis of the representatives revealed a great phylogenetic diversity. A considerable majority of the clones was affiliated with uncultured bacterial clones (with sequence similarity between 93 and 99%) originating from diverse environmental samples (for example salt marshes, compost or wastewater treatment plants). The DNA sequences of other clones showed the presence of genera Flavobacterium, Sphingobacterium, Pseudomonas and Agrobacterium.
Collapse
Affiliation(s)
- Anna Rusznyák
- 1 Eötvös Loránd University Department of Microbiology Pázmány P. sétány 1/C H-1117 Budapest Hungary
| | - Gitta Szabó
- 1 Eötvös Loránd University Department of Microbiology Pázmány P. sétány 1/C H-1117 Budapest Hungary
| | - Beatrix Pollák
- 1 Eötvös Loránd University Department of Microbiology Pázmány P. sétány 1/C H-1117 Budapest Hungary
| | - Viktória Vágány
- 1 Eötvös Loránd University Department of Microbiology Pázmány P. sétány 1/C H-1117 Budapest Hungary
| | - M. Palatinszky
- 1 Eötvös Loránd University Department of Microbiology Pázmány P. sétány 1/C H-1117 Budapest Hungary
| |
Collapse
|
27
|
Leisner JJ, Laursen BG, Prévost H, Drider D, Dalgaard P. Carnobacterium: positive and negative effects in the environment and in foods. FEMS Microbiol Rev 2007; 31:592-613. [PMID: 17696886 PMCID: PMC2040187 DOI: 10.1111/j.1574-6976.2007.00080.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The genus Carnobacterium contains nine species, but only C. divergens and C. maltaromaticum are frequently isolated from natural environments and foods. They are tolerant to freezing/thawing and high pressure and able to grow at low temperatures, anaerobically and with increased CO2 concentrations. They metabolize arginine and various carbohydrates, including chitin, and this may improve their survival in the environment. Carnobacterium divergens and C. maltaromaticum have been extensively studied as protective cultures in order to inhibit growth of Listeria monocytogenes in fish and meat products. Several carnobacterial bacteriocins are known, and parameters that affect their production have been described. Currently, however, no isolates are commercially applied as protective cultures. Carnobacteria can spoil chilled foods, but spoilage activity shows intraspecies and interspecies variation. The responsible spoilage metabolites are not well characterized, but branched alcohols and aldehydes play a partial role. Their production of tyramine in foods is critical for susceptible individuals, but carnobacteria are not otherwise human pathogens. Carnobacterium maltaromaticum can be a fish pathogen, although carnobacteria are also suggested as probiotic cultures for use in aquaculture. Representative genome sequences are not yet available, but would be valuable to answer questions associated with fundamental and applied aspects of this important genus.
Collapse
Affiliation(s)
- Jørgen J Leisner
- Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Grønnegårdsvej 15, DK-1870 Frederiksberg C., Denmark.
| | | | | | | | | |
Collapse
|
28
|
Guo Y, Zhu N, Zhu S, Deng C. Molecular phylogenetic diversity of bacteria and its spatial distribution in composts. J Appl Microbiol 2007; 103:1344-54. [PMID: 17897238 DOI: 10.1111/j.1365-2672.2007.03367.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To investigate microbial diversity of swine manure composts in the initial stage and the spatial distribution due to gradient effect. METHODS AND RESULTS Samples in different locations of a composting pile were taken and analysed by using a culture-independent approach. Total community DNA was extracted and bacterial 16S rRNA genes were subsequently amplified, cloned, restriction fragment length polymorphism-screened and sequenced. Thirty-three unique sequence types were found among the 110 analysed positive clones from superstratum sample; 56 among 122 from middle-level sample and 32 among 114 from substrate sample, respectively. The sequences related to Clostridium sp. were most common in the composts. One hundred and thirteen out of 121 16S rDNA sequence types displayed homology with those in the GenBank database. Seven 16S rDNA sequence types were not closely related to any known species. The middle-level sample had the highest microbial diversity, containing unique sequences related to Lactosphaera pasteurii, Firmicutes sp., Aerococcus sp., Megasphaera sp. and Stenotrophomonas sp. CONCLUSIONS Pile temperature significantly affected microbial community in the initial stage of the composting. Microbial community in different locations is quite different resulting from gradient effect. SIGNIFICANCE AND IMPACT OF THE STUDY Results of this study reveal high bacterial diversity in manure composts, and provide molecular evidence to support gradient effect on microbial diversity in initial stage as well.
Collapse
Affiliation(s)
- Y Guo
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | | | | | | |
Collapse
|
29
|
Cardinale M, Puglia AM, Grube M. Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol Ecol 2006; 57:484-95. [PMID: 16907761 DOI: 10.1111/j.1574-6941.2006.00133.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The bacterial communities associated with 11 different lichen samples (belonging to eight different species) from different habitats were investigated. The culturable aerobic-heterotrophic fraction of the bacterial communities was isolated from nine lichen samples on protein-rich and sugar-rich/N-free media. Thirty-four bacterial isolates were purified and pooled into groups (phylotypes) by analysis of the ribosomal internal transcribed spacer polymorphism. Twenty five phylotypes were identified, each comprising between one and three isolates. One isolate of each phylotype was partially sequenced and the resulting 16S rRNA gene sequences were compared in a phylogenetic analysis. Three genera of Firmicutes, four of Actinobacteria and three of Proteobacteria were identified. Two phylotypes, belonging to the phyla Actinobacteria and Proteobacteria, respectively, were not identified at genus level. Some bacterial taxa were retrieved frequently in different lichen species sampled in the same or different sites. Paenibacillus and Burkholderia phylotypes seem to be common in lichens. Luteibactor rhizovicina was found in three different lichens of two different regions. In a cultivation-independent approach, total DNA was extracted from 11 lichen samples. Molecular fingerprints of the bacterial communities were obtained by PCR-amplification of the internal transcribed spacer region, and sequencing of selected bands indicated the presence of additional bacteria.
Collapse
Affiliation(s)
- Massimiliano Cardinale
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università degli Studi di Palermo, Palermo, Italy
| | | | | |
Collapse
|