1
|
Difference in Intestinal Flora and Characteristics of Plasma Metabonomics in Pneumoconiosis Patients. Metabolites 2022; 12:metabo12100917. [PMID: 36295819 PMCID: PMC9609413 DOI: 10.3390/metabo12100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022] Open
Abstract
From the two perspectives of intestinal flora and plasma metabolomics, the mechanism of occurrence and development of pneumoconiosis was explored to provide a new target for the prevention and treatment of pneumoconiosis. In this study, 16S ribosome DNA (16SrDNA) gene sequencing technology was used to analyze the differences in intestinal flora of each research group through operational taxonomic units (OUT) analysis, cluster analysis, principal component analysis (PCA), partial least square discriminant analysis (PLS-DA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and other analytical methods were used to analyze the differences in plasma metabolites between the study groups. Metabonomics analysis showed that the plasma metabolites of pneumoconiosis patients were significantly different from those of normal people. Fold change > 2; vip > 1; p < 0.05 were the screening criteria. In the positive and negative mode, we screened ten types of differential metabolites. These ten metabolites were upregulated to varying degrees in the pneumoconiosis patients. Seven metabolic pathways were obtained by analyzing the metabolic pathways of different metabolites. Among them, the aminoacyl tRNA biosynthesis pathway changed most obviously. The α diversity of two groups of intestinal flora was analyzed using the 16SrDNA technique. The results showed that there was no significant difference in ACE, Chao1, Shannon, or Simpson in the two groups (p > 0.05). Beta diversity analysis showed that there were differences in microbial communities. In pneumoconiosis patients, the abundance of Prevotellaceae increased, and the other nine species decreased. Compared to the control group, the abundance of Prevotellaceae in the intestinal flora of pneumoconiosis increased, and the abundance of the other nine species decreased. Compared to controls, ten substances in the plasma metabolites of pneumoconiosis patients were upregulated. Seven metabolic pathways were obtained by analyzing the metabolic pathways of different metabolites. Among them, the aminoacyl tRNA biosynthesis pathway changed most significantly. This provided a theoretical basis for further study on the pathogenesis, early prevention, and treatment of pneumoconiosis.
Collapse
|
2
|
Meldrum K, Evans SJ, Vogel U, Tran L, Doak SH, Clift MJD. The influence of exposure approaches to in vitro lung epithelial barrier models to assess engineered nanomaterial hazard. Nanotoxicology 2022; 16:114-134. [PMID: 35343373 DOI: 10.1080/17435390.2022.2051627] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exposure to engineered nanomaterials (ENM) poses a potential health risk to humans through long-term, repetitive low-dose exposures. Currently, this is not commonplace within in vitro lung cell cultures. Therefore, the purpose of this study was to consider the optimal exposure approach toward determining the stability, sensitivity and validity of using in vitro lung cell mono- and co-cultures to determine ENM hazard. A range of exposure scenarios were conducted with DQ12 (previously established as a positive particle control) (historic and re-activated), TiO2 (JRC NM-105) and BaSO4 (JRC NM-220) on both monocultures of A549 cells as well as co-cultures of A549 cells and differentiated THP-1 cells. Cell cultures were exposed to either a single, or a repeated exposure over 24, 48- or 72-hours at in vivo extrapolated concentrations of 0-5.2 µg/cm2, 0-6 µg/cm2 and 0-1µg/cm2. The focus of this study was the pro-inflammatory, cytotoxic and genotoxic response elicited by these ENMs. Exposure to DQ12 caused pro-inflammatory responses after 48 hours repeat exposures, as well as increases in micronucleus frequency. Neither TiO2 nor BaSO4 elicited a pro-inflammatory response at this time point. However, there was induction of IL-6 after 24 hours TiO2 exposure. In conclusion, it is important to consider the appropriateness of the positive control implemented, the cell culture model, the time of exposure as well as the type of exposure (bolus or fractionated) before establishing if an in vitro model is appropriate to determine the level of response to the specific ENM of interest.
Collapse
Affiliation(s)
- Kirsty Meldrum
- In Vitro Toxicology Group, Swansea University, Swansea, UK
| | | | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Lang Tran
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Swansea University, Swansea, UK
| | | |
Collapse
|
3
|
Zhang X, Zhang Z, Wang P, Xiao S, Han K, Tang Y, Liu H, Bai Y, Jin Y, Li J, Li X, Xia Q, Shen F. Comparison of properties of dust in alveolar of rats and the workplace. Exp Lung Res 2021; 47:239-249. [PMID: 33896309 DOI: 10.1080/01902148.2021.1916649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The purpose of this study was to analyze the α-SiO2 content, composition, dispersion, morphology, and free radical content of dust between the alveolar and the workplace, to explore the possible changes in the properties (especially the pathogenicity) of dust after it enters the lung. METHODS We collected the dust in the workplace in HANDAN Coal mine. They were selected by a 400 mesh sieve and was made a suspension of 50 mg/ml, which would be used to perfuse into the trachea of rats. When one week, four weeks, eight weeks, fourteen weeks, twenty weeks after perfusing, we harvested dust in rats alveolar through lung lavage for further processing. RESULTS In the animal test, typical fibrous nodules appeared 20 weeks after dust exposure. No inflammatory reaction was observed in the saline group. The results of animal experiments showed that there was no significant difference in the content of α-SiO2 between dust in the workplace and the lung lavage (P > 0.05). The content of the Fe element gradually increased with dust exposure time. The 12 elements of Al, Mg, Si, Pb, Mn, Ni, Zn, Cu, Cr, Sb, Cd, and AS were reduced in the experiment group compared with the workplace group. The shape of the dust in the workplace was mostly spherical. The shape of the dust extracted from the lung lavage fluid was mostly blocky and angular, and a few dust edges were sharp, and more than 80% of the particle size was smaller than 5 μm, while less than 1% of the particle size was larger than 10 μm. The amount of hydroxyl radical released by lung lavage dust in phosphate buffer was higher than that of the workplace dust. CONCLUSIONS After the dust entered the alveoli, the content of α-SiO2 in the dust did not change with dust exposure time, while the content of elements in the dust, the morphology, and dispersion of the dust changed. The ability of dust in alveoli to produce hydroxyl radicals in phosphate buffer was higher than that in the workplace.
Collapse
Affiliation(s)
- Xu Zhang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Zheng Zhang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Peng Wang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Shuyu Xiao
- Tangshan Center of Disease Control and Prevention, Food Hygiene Department, Tangshan, Hebei, P.R. China
| | - Ke Han
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Yali Tang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Heliang Liu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Yuping Bai
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Yulan Jin
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Jinlong Li
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Xiaoming Li
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Qingan Xia
- Tangshan City workers' Hospital, Department of Pathology, Tangshan, Hebei, P.R. China
| | - Fuhai Shen
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| |
Collapse
|
4
|
Jan R, Roy R, Bhor R, Pai K, Satsangi PG. Toxicological screening of airborne particulate matter in atmosphere of Pune: Reactive oxygen species and cellular toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:113724. [PMID: 32078875 DOI: 10.1016/j.envpol.2019.113724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Present study screened the toxicological assessment of airborne particulate matter (PM), mechanistic investigation, relationship between the physicochemical characteristics and its associated toxic response. The average concentration of both PM10 and PM2.5 exceeded the Indian National Ambient Air Quality Standards. In present study, PM bound metals; Fe, Cu, Cr, Ni, Mn, Pb, Cd, Zn, Sr and Co have been taken into account with total metal concentration of 0.83 and 0.44 μg m-3 of PM10 and PM2.5 mass concentrations, respectively. The contribution of redox active metals (Fe, Cu, Cr, Ni and Mn) in PM was more as compared to non-redox metals (Pb, Cd and Co) indicating significant risk to the exposed population as these metals possess the ability to produce reactive oxygen species (ROS) which are responsible for various diseases. The cytotoxicity profiles of PM samples determined by MTT assay on two different cell lines (A549 and PBMC) exhibited dose-dependent effects after 24 h exposure, but the consequences differ with respect to particle size and sampling periods. A significant decrease in cell viability with varying PM concentrations (20, 40, 60, 80 and 100 μg ml-1) with respect to control was found in both cell lines. Incubation of RBC suspension with PM samples caused pronounced disruption of RBC and thus exhibited substantial hemolytic behavior. PM samples showed a range of potency to produce reactive oxygen species (ROS). Almost all PM samples increased the level of pro-inflammatory mediator (Nitric oxide) when compared to corresponding unexposed controls suggesting the important role of reactive nitrogen species in induction of cellular toxicity.
Collapse
Affiliation(s)
- Rohi Jan
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Ritwika Roy
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Renuka Bhor
- Department of Zoology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Kalpana Pai
- Department of Zoology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - P Gursumeeran Satsangi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India.
| |
Collapse
|
5
|
Riediker M, Zink D, Kreyling W, Oberdörster G, Elder A, Graham U, Lynch I, Duschl A, Ichihara G, Ichihara S, Kobayashi T, Hisanaga N, Umezawa M, Cheng TJ, Handy R, Gulumian M, Tinkle S, Cassee F. Particle toxicology and health - where are we? Part Fibre Toxicol 2019; 16:19. [PMID: 31014371 PMCID: PMC6480662 DOI: 10.1186/s12989-019-0302-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Particles and fibres affect human health as a function of their properties such as chemical composition, size and shape but also depending on complex interactions in an organism that occur at various levels between particle uptake and target organ responses. While particulate pollution is one of the leading contributors to the global burden of disease, particles are also increasingly used for medical purposes. Over the past decades we have gained considerable experience in how particle properties and particle-bio interactions are linked to human health. This insight is useful for improved risk management in the case of unwanted health effects but also for developing novel medical therapies. The concepts that help us better understand particles' and fibres' risks include the fate of particles in the body; exposure, dosimetry and dose-metrics and the 5 Bs: bioavailability, biopersistence, bioprocessing, biomodification and bioclearance of (nano)particles. This includes the role of the biomolecule corona, immunity and systemic responses, non-specific effects in the lungs and other body parts, particle effects and the developing body, and the link from the natural environment to human health. The importance of these different concepts for the human health risk depends not only on the properties of the particles and fibres, but is also strongly influenced by production, use and disposal scenarios. CONCLUSIONS Lessons learned from the past can prove helpful for the future of the field, notably for understanding novel particles and fibres and for defining appropriate risk management and governance approaches.
Collapse
Affiliation(s)
- Michael Riediker
- Swiss Centre for Occupational and Environmental Health (SCOEH), Binzhofstrasse 87, CH-8404 Winterthur, Switzerland
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wolfgang Kreyling
- Institute of Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Munich Germany
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester, Rochester, NY USA
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, NY USA
| | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Albert Duschl
- Department of Biosciences, Allergy Cancer BioNano Research Centre, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | - Richard Handy
- School of Biological Sciences, Plymouth University, Plymouth, UK
| | - Mary Gulumian
- National Institute for Occupational Health and Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Sally Tinkle
- Science and Technology Policy Institute, Washington, DC USA
| | - Flemming Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Studies (IRAS), Utrrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Boyles MSP, Brown D, Knox J, Horobin M, Miller MR, Johnston HJ, Stone V. Assessing the bioactivity of crystalline silica in heated high-temperature insulation wools. Inhal Toxicol 2018; 30:255-272. [PMID: 30328741 PMCID: PMC6334780 DOI: 10.1080/08958378.2018.1513610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High-Temperature Insulation Wools (HTIW), such as alumino silicate wools (Refractory Ceramic Fibers) and Alkaline Earth Silicate wools, are used in high-temperature industries for thermal insulation. These materials have an amorphous glass-like structure. In some applications, exposure to high temperatures causes devitrification resulting in the formation of crystalline species including crystalline silica. The formation of this potentially carcinogenic material raises safety concerns regarding after-use handling and disposal. This study aims to determine whether cristobalite formed in HTIW is bioactive in vitro. Mouse macrophage (J774A.1) and human alveolar epithelial (A549) cell lines were exposed to pristine HTIW of different compositions, and corresponding heat-treated samples. Cell death, cytokine release, and reactive oxygen species (ROS) formation were assessed in both cell types. Cell responses to aluminum lactate-coated fibers were assessed to determine if responses were caused by crystalline silica. DQ12 α-quartz was used as positive control, and TiO2 as negative control. HTIW did not induce cell death or intracellular ROS, and their ability to induce pro-inflammatory mediator release was low. In contrast, DQ12 induced cytotoxicity, a strong pro-inflammatory response and ROS generation. The modest pro-inflammatory mediator responses of HTIW did not always coincide with the formation of cristobalite in heated fibers; therefore, we cannot confirm that devitrification of HTIW results in bioactive cristobalite in vitro. In conclusion, the biological responses to HTIW observed were not attributable to a single physicochemical characteristic; instead, a combination of physicochemical characteristics (cristobalite content, fiber chemistry, dimensions and material solubility) appear to contribute to induction of cellular responses.
Collapse
Affiliation(s)
- Matthew S P Boyles
- a Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh , UK
| | - David Brown
- a Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh , UK
| | - Jilly Knox
- b Morgan Advanced Materials, Thermal Ceramics , Bromborough, UK
| | - Michael Horobin
- b Morgan Advanced Materials, Thermal Ceramics , Bromborough, UK
| | - Mark R Miller
- c Centre for Cardiovascular Science , University of Edinburgh , Edinburgh , UK
| | - Helinor J Johnston
- a Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh , UK
| | - Vicki Stone
- a Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh , UK
| |
Collapse
|
7
|
Bhagat J. Combinations of genotoxic tests for the evaluation of group 1 IARC carcinogens. J Appl Toxicol 2017; 38:81-99. [PMID: 28695982 DOI: 10.1002/jat.3496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/10/2023]
Abstract
Many of the known human carcinogens are potent genotoxins that are efficiently detected as carcinogens in human populations but certain types of compounds such as immunosuppressants, sex hormones, etc. act via non-genotoxic mechanism. The absence of genotoxicity and the diversity of modes of action of non-genotoxic carcinogens make predicting their carcinogenic potential extremely challenging. There is evidence that combinations of different short-term tests provide a better and efficient prediction of human genotoxic and non-genotoxic carcinogens. The purpose of this study is to summarize the in vivo and in vitro comet assay (CMT) results of group 1 carcinogens selected from the International Agency for Research on Cancer and to discuss the utility of the comet assay along with other genotoxic assays such as Ames, in vivo micronucleus (MN), and in vivo chromosomal aberration (CA) test. Of the 62 agents for which valid genotoxic data were available, 38 of 61 (62.3%) were Ames test positive, 42 of 60 (70%) were in vivo MN test positive and 36 of 45 (80%) were positive for the in vivo CA test. Higher sensitivity was seen in in vivo CMT (90%) and in vitro CMT (86.9%) assay. Combination of two tests has greater sensitivity than individual tests: in vivo MN + in vivo CA (88.6%); in vivo MN + in vivo CMT (92.5%); and in vivo MN + in vitro CMT (95.6%). Combinations of in vivo or in vitro CMT with other tests provided better sensitivity. In vivo CMT in combination with in vivo CA provided the highest sensitivity (96.7%).
Collapse
Affiliation(s)
- Jacky Bhagat
- Department of Zoology, Goa University, Taleigao Plateau, Goa 403206, India
| |
Collapse
|
8
|
Pavan C, Fubini B. Unveiling the Variability of “Quartz Hazard” in Light of Recent Toxicological Findings. Chem Res Toxicol 2016; 30:469-485. [DOI: 10.1021/acs.chemrestox.6b00409] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cristina Pavan
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Turin, Italy
- “G. Scansetti” Interdepartmental
Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Via P. Giuria 9, 10125 Turin, Italy
| | - Bice Fubini
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Turin, Italy
- “G. Scansetti” Interdepartmental
Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Via P. Giuria 9, 10125 Turin, Italy
| |
Collapse
|
9
|
Di Benedetto F, Gazzano E, Tomatis M, Turci F, Pardi LA, Bronco S, Fornaciai G, Innocenti M, Montegrossi G, Muniz Miranda M, Zoleo A, Capacci F, Fubini B, Ghigo D, Romanelli M. Physico-chemical properties of quartz from industrial manufacturing and its cytotoxic effects on alveolar macrophages: The case of green sand mould casting for iron production. JOURNAL OF HAZARDOUS MATERIALS 2016; 312:18-27. [PMID: 27015375 DOI: 10.1016/j.jhazmat.2016.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/17/2016] [Accepted: 03/05/2016] [Indexed: 06/05/2023]
Abstract
Industrial processing of materials containing quartz induces physico-chemical modifications that contribute to the variability of quartz hazard in different plants. Here, modifications affecting a quartz-rich sand during cast iron production, have been investigated. Composition, morphology, presence of radicals associated to quartz and reactivity in free radical generation were studied on a raw sand and on a dust recovered after mould dismantling. Additionally, cytotoxicity of the processed dust and ROS and NO generation were evaluated on MH-S macrophages. Particle morphology and size were marginally affected by casting processing, which caused only a slight increase of the amount of respirable fraction. The raw sand was able to catalyze OH and CO2(-) generation in cell-free test, even if in a lesser extent than the reference quartz (Min-U-Sil), and shows hAl radicals, conventionally found in any quartz-bearing raw materials. Enrichment in iron and extensive coverage with amorphous carbon were observed during processing. They likely contributed, respectively, to increasing the ability of processed dust to release CO2- and to suppressing OH generation respect to the raw sand. Carbon coverage and repeated thermal treatments during industrial processing also caused annealing of radiogenic hAl defects. Finally, no cellular responses were observed with the respirable fraction of the processed powder.
Collapse
Affiliation(s)
- Francesco Di Benedetto
- Department of Earth Sciences, Università di Firenze, Firenze, Italy; Institute of Geosciences and Earth Resources (CNR-IGG), Florence, Italy.
| | - Elena Gazzano
- Department of Oncology, Università degli studi di Torino, Torino, Italy; "G. Scansetti" Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, Università degli studi di Torino, Torino, Italy
| | - Maura Tomatis
- "G. Scansetti" Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, Università degli studi di Torino, Torino, Italy; Department of Chemistry, Università degli studi di Torino, Torino, Italy
| | - Francesco Turci
- "G. Scansetti" Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, Università degli studi di Torino, Torino, Italy; Department of Chemistry, Università degli studi di Torino, Torino, Italy
| | - Luca A Pardi
- Institute for Chemical and Physical processes (CNR-IPCF), Pisa, Italy
| | - Simona Bronco
- Institute for Chemical and Physical processes (CNR-IPCF), Pisa, Italy
| | | | - Massimo Innocenti
- Department of Chemistry, Università di Firenze, Sesto Fiorentino, Italy
| | | | | | - Alfonso Zoleo
- Department of Chemical Sciences, Università di Padova, Padova, Italy
| | | | - Bice Fubini
- "G. Scansetti" Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, Università degli studi di Torino, Torino, Italy; Department of Chemistry, Università degli studi di Torino, Torino, Italy
| | - Dario Ghigo
- Department of Oncology, Università degli studi di Torino, Torino, Italy; "G. Scansetti" Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, Università degli studi di Torino, Torino, Italy
| | | |
Collapse
|
10
|
Guidi P, Nigro M, Bernardeschi M, Lucchesi P, Scarcelli V, Frenzilli G. Does the crystal habit modulate the genotoxic potential of silica particles? A cytogenetic evaluation in human and murine cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 792:46-52. [PMID: 26433261 DOI: 10.1016/j.mrgentox.2015.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/07/2015] [Accepted: 07/10/2015] [Indexed: 11/17/2022]
Abstract
Crystalline silica inhaled from occupational sources has been classified by IARC as carcinogenic to humans; in contrast, for amorphous silica, epidemiological and experimental evidence remains insufficient. The genotoxicity of crystalline silica is still debated because of the inconsistency of experimental results ("variability of silica hazard"), often related to the features of the particle surfaces. We have assessed the role of crystal habit in the genotoxicity of silica powders. Pure quartz (crystalline) and vitreous silica (amorphous), sharing the same surface features, were used in an in vitro study with human pulmonary epithelial (A549) and murine macrophage (RAW264.7) cell lines, representative of occupational and environmental exposures. Genotoxicity was evaluated by the comet and micronucleus assays, and cytotoxicity by the trypan blue method. Cells were treated with silica powders for 4 and 24h. Quartz but not vitreous silica caused cell death and DNA damage in RAW264.7 cells. A549 cells were relatively resistant to both powders. Our results support the view that crystal habit per se plays a pivotal role in modulating the biological responses to silica particles.
Collapse
Affiliation(s)
- P Guidi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| | - M Nigro
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy.
| | - M Bernardeschi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| | - P Lucchesi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| | - V Scarcelli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| | - G Frenzilli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126 Pisa, Italy
| |
Collapse
|
11
|
Øvrevik J, Refsnes M, Låg M, Holme JA, Schwarze PE. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms. Biomolecules 2015; 5:1399-440. [PMID: 26147224 PMCID: PMC4598757 DOI: 10.3390/biom5031399] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022] Open
Abstract
Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS) with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.
Collapse
Affiliation(s)
- Johan Øvrevik
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Per E Schwarze
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| |
Collapse
|
12
|
Michel C, Herzog S, de Capitani C, Burkhardt-Holm P, Pietsch C. Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro. PLoS One 2014; 9:e100856. [PMID: 24991818 PMCID: PMC4081506 DOI: 10.1371/journal.pone.0100856] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/30/2014] [Indexed: 11/30/2022] Open
Abstract
Worldwide increases in fluvial fine sediment are a threat to aquatic animal health. Fluvial fine sediment is always a mixture of particles whose mineralogical composition differs depending on the sediment source and catchment area geology. Nonetheless, whether particle impact in aquatic organisms differs between mineral species remains to be investigated. This study applied an in vitro approach to evaluate cytotoxicity and uptake of four common fluvial mineral particles (quartz, feldspar, mica, and kaolin; concentrations: 10, 50, 250 mg L−1) in the rainbow trout epithelial gill cell line RTgill-W1. Cells were exposed for 24, 48, 72, and 96 h. Cytotoxicity assays for cell membrane integrity (propidium iodide assay), oxidative stress (H2DCF-DA assay), and metabolic activity (MTT assay) were applied. These assays were complemented with cell counts and transmission electron microscopy. Regardless of mineral species, particles ≤2 µm in diameter were taken up by the cells, suggesting that particles of all mineral species came into contact and interacted with the cells. Not all particles, however, caused strong cytotoxicity: Among all assays the tectosilicates quartz and feldspar caused sporadic maximum changes of 0.8–1.2-fold compared to controls. In contrast, cytotoxicity of the clay particles was distinctly stronger and even differed between the two particle types: mica induced concentration-dependent increases in free radicals, with consistent 1.6–1.8-fold-changes at the 250 mg L−1 concentration, and a dilated endoplasmic reticulum. Kaolin caused concentration-dependent increases in cell membrane damage, with consistent 1.3–1.6-fold increases at the 250 mg L−1 concentration. All effects occurred in the presence or absence of 10% fetal bovine serum. Cell numbers per se were marginally affected. Results indicate that (i.) natural mineral particles can be cytotoxic to gill epithelial cells, (ii.) their cytotoxic potential differs between mineral species, with clay particles being more cytotoxic, and (iii.) some clays might induce effects comparable to engineered nanoparticles.
Collapse
Affiliation(s)
- Christian Michel
- Man-Society-Environment (Programm MGU), Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Simon Herzog
- Man-Society-Environment (Programm MGU), Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Christian de Capitani
- Mineralogy-Petrography, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Patricia Burkhardt-Holm
- Man-Society-Environment (Programm MGU), Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- * E-mail:
| | - Constanze Pietsch
- Man-Society-Environment (Programm MGU), Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Ghiazza M, Tomatis M, Doublier S, Grendene F, Gazzano E, Ghigo D, Fubini B. Carbon in Intimate Contact with Quartz Reduces the Biological Activity of Crystalline Silica Dusts. Chem Res Toxicol 2012; 26:46-54. [DOI: 10.1021/tx300299v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mara Ghiazza
- “G. Scansetti”
Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Italy
| | - Maura Tomatis
- “G. Scansetti”
Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Italy
| | - Sophie Doublier
- “G. Scansetti”
Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Italy
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126, Italy
| | - Francesca Grendene
- “G. Scansetti”
Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Italy
| | - Elena Gazzano
- “G. Scansetti”
Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Italy
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126, Italy
| | - Dario Ghigo
- “G. Scansetti”
Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Italy
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126, Italy
| | - Bice Fubini
- “G. Scansetti”
Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates, University of Torino, Italy
| |
Collapse
|
14
|
Gazzano E, Ghiazza M, Polimeni M, Bolis V, Fenoglio I, Attanasio A, Mazzucco G, Fubini B, Ghigo D. Physicochemical determinants in the cellular responses to nanostructured amorphous silicas. Toxicol Sci 2012; 128:158-70. [PMID: 22491428 DOI: 10.1093/toxsci/kfs128] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Amorphous silicas, opposite to crystalline polymorphs, have been regarded so far as nonpathogenic, but few studies have addressed the toxicity of the wide array of amorphous silica forms. With the advent of nanotoxicology, there has been a rising concern about the safety of silica nanoparticles to be used in nanomedicine. Here, we report a study on the toxicity of amorphous nanostructured silicas obtained with two different preparation procedures (pyrolysis vs. precipitation), the pyrogenic in two very different particle sizes, in order to assess the role of size and origin on surface properties and on the cell damage, oxidative stress, and inflammatory response elicited in murine alveolar macrophages. A quartz dust was employed as positive control and monodispersed silica spheres as negative control. Pyrogenic silicas were remarkably more active than the precipitated one as to cytotoxicity, reactive oxygen species production, lipid peroxidation, nitric oxide synthesis, and production of tumor necrosis factor-α, when compared both per mass and per unit surface. Between the two pyrogenic silicas, the larger one was the more active. Silanols density is the major difference in surface composition among the three silicas, being much larger than the precipitated one as indicated by joint calorimetric and infrared spectroscopy analysis. We assume here that full hydroxylation of a silica surface, with consequent stable coverage by water molecules, reduces/inhibits toxic behavior. The preparation route appears thus determinant in yielding potentially toxic materials, although the smallest size does not always correspond to an increased toxicity.
Collapse
Affiliation(s)
- Elena Gazzano
- G. Scansetti Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, Department of Chemistry, University of Torino, 10125 Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Borm PJA, Tran L, Donaldson K. The carcinogenic action of crystalline silica: A review of the evidence supporting secondary inflammation-driven genotoxicity as a principal mechanism. Crit Rev Toxicol 2011; 41:756-70. [DOI: 10.3109/10408444.2011.576008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Fubini B, Ghiazza M, Fenoglio I. Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 2011; 4:347-63. [PMID: 20858045 DOI: 10.3109/17435390.2010.509519] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanotoxicology studies require investigations of several physico-chemical aspects of the particle/body fluid interaction, here described by reviewing recent literature in the light of new experimental data. Current characterization mostly covers morphology and metric-related characteristics (form, chemical composition, specific surface area, primary particle size and size distribution), and is mandatory in any experimental study. To unveil toxicity mechanisms, several other physico-chemical properties relevant to (geno) toxicity need to be assessed, typically the release or quenching of radical/ROS (Reactive Oxygen Species), the presence of active metal ions, evidence of structural defects. Major tasks for physical chemists working on nanoparticles-induced genotoxicity are described with some examples: (i), Tailored preparation of the same material in different sizes; (ii) particle modification changing a single property at a time; and (iii) identification of appropriate reference materials. Phenomena occurring during the contact between nanoparticles and cellular media or biological fluids (dispersion, agglomeration/aggregation, protein adsorption) are discussed in relation to the surface properties of the nanoparticles considered.
Collapse
Affiliation(s)
- Bice Fubini
- Department of Chemistry IFM, Interdepartmental Centers G. Scansetti for Studies on Asbestos and other Toxic Particulates and Nanostructured Interfaces and Surfaces (NIS), University of Torino, Torino, Italy.
| | | | | |
Collapse
|
17
|
Ghiazza M, Scherbart AM, Fenoglio I, Grendene F, Turci F, Martra G, Albrecht C, Schins RPF, Fubini B. Surface Iron Inhibits Quartz-Induced Cytotoxic and Inflammatory Responses in Alveolar Macrophages. Chem Res Toxicol 2010; 24:99-110. [DOI: 10.1021/tx1003003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mara Ghiazza
- Dip. di Chimica IFM, “G. Scansetti” Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, and NIS Interdepartmental Center. University of Torino, via Pietro Giuria 7, 10125 Torino, Italy
- Particle Research Group, Institut für Umweltmedizinische Forschung (IUF) at the Heinrich-Heine University, Düsseldorf, Germany
| | - Agnes M. Scherbart
- Dip. di Chimica IFM, “G. Scansetti” Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, and NIS Interdepartmental Center. University of Torino, via Pietro Giuria 7, 10125 Torino, Italy
- Particle Research Group, Institut für Umweltmedizinische Forschung (IUF) at the Heinrich-Heine University, Düsseldorf, Germany
| | - Ivana Fenoglio
- Dip. di Chimica IFM, “G. Scansetti” Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, and NIS Interdepartmental Center. University of Torino, via Pietro Giuria 7, 10125 Torino, Italy
- Particle Research Group, Institut für Umweltmedizinische Forschung (IUF) at the Heinrich-Heine University, Düsseldorf, Germany
| | - Francesca Grendene
- Dip. di Chimica IFM, “G. Scansetti” Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, and NIS Interdepartmental Center. University of Torino, via Pietro Giuria 7, 10125 Torino, Italy
- Particle Research Group, Institut für Umweltmedizinische Forschung (IUF) at the Heinrich-Heine University, Düsseldorf, Germany
| | - Francesco Turci
- Dip. di Chimica IFM, “G. Scansetti” Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, and NIS Interdepartmental Center. University of Torino, via Pietro Giuria 7, 10125 Torino, Italy
- Particle Research Group, Institut für Umweltmedizinische Forschung (IUF) at the Heinrich-Heine University, Düsseldorf, Germany
| | - Gianmario Martra
- Dip. di Chimica IFM, “G. Scansetti” Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, and NIS Interdepartmental Center. University of Torino, via Pietro Giuria 7, 10125 Torino, Italy
- Particle Research Group, Institut für Umweltmedizinische Forschung (IUF) at the Heinrich-Heine University, Düsseldorf, Germany
| | - Catrin Albrecht
- Dip. di Chimica IFM, “G. Scansetti” Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, and NIS Interdepartmental Center. University of Torino, via Pietro Giuria 7, 10125 Torino, Italy
- Particle Research Group, Institut für Umweltmedizinische Forschung (IUF) at the Heinrich-Heine University, Düsseldorf, Germany
| | - Roel P. F. Schins
- Dip. di Chimica IFM, “G. Scansetti” Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, and NIS Interdepartmental Center. University of Torino, via Pietro Giuria 7, 10125 Torino, Italy
- Particle Research Group, Institut für Umweltmedizinische Forschung (IUF) at the Heinrich-Heine University, Düsseldorf, Germany
| | - Bice Fubini
- Dip. di Chimica IFM, “G. Scansetti” Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, and NIS Interdepartmental Center. University of Torino, via Pietro Giuria 7, 10125 Torino, Italy
- Particle Research Group, Institut für Umweltmedizinische Forschung (IUF) at the Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
18
|
Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S. Role of oxidative damage in toxicity of particulates. Free Radic Res 2010; 44:1-46. [PMID: 19886744 DOI: 10.3109/10715760903300691] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Particulates are small particles of solid or liquid suspended in liquid or air. In vitro studies show that particles generate reactive oxygen species, deplete endogenous antioxidants, alter mitochondrial function and produce oxidative damage to lipids and DNA. Surface area, reactivity and chemical composition play important roles in the oxidative potential of particulates. Studies in animal models indicate that particles from combustion processes (generated by combustion of wood or diesel oil), silicate, titanium dioxide and nanoparticles (C60 fullerenes and carbon nanotubes) produce elevated levels of lipid peroxidation products and oxidatively damaged DNA. Biomonitoring studies in humans have shown associations between exposure to air pollution and wood smoke particulates and oxidative damage to DNA, deoxynucleotides and lipids measured in leukocytes, plasma, urine and/or exhaled breath. The results indicate that oxidative stress and elevated levels of oxidatively altered biomolecules are important intermediate endpoints that may be useful markers in hazard characterization of particulates.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environment Health, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ghiazza M, Polimeni M, Fenoglio I, Gazzano E, Ghigo D, Fubini B. Does Vitreous Silica Contradict the Toxicity of the Crystalline Silica Paradigm? Chem Res Toxicol 2010; 23:620-9. [DOI: 10.1021/tx900369x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mara Ghiazza
- Interdepartmental Center “G. Scansetti” for Studies on Asbestos and Other Toxic Particulates and Department of Chemistry IFM and Interdipartmental Centre for Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy, and Department of Genetics, Biology and Biochemistry, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Manuela Polimeni
- Interdepartmental Center “G. Scansetti” for Studies on Asbestos and Other Toxic Particulates and Department of Chemistry IFM and Interdipartmental Centre for Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy, and Department of Genetics, Biology and Biochemistry, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Ivana Fenoglio
- Interdepartmental Center “G. Scansetti” for Studies on Asbestos and Other Toxic Particulates and Department of Chemistry IFM and Interdipartmental Centre for Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy, and Department of Genetics, Biology and Biochemistry, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Elena Gazzano
- Interdepartmental Center “G. Scansetti” for Studies on Asbestos and Other Toxic Particulates and Department of Chemistry IFM and Interdipartmental Centre for Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy, and Department of Genetics, Biology and Biochemistry, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Dario Ghigo
- Interdepartmental Center “G. Scansetti” for Studies on Asbestos and Other Toxic Particulates and Department of Chemistry IFM and Interdipartmental Centre for Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy, and Department of Genetics, Biology and Biochemistry, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino, Italy
| | - Bice Fubini
- Interdepartmental Center “G. Scansetti” for Studies on Asbestos and Other Toxic Particulates and Department of Chemistry IFM and Interdipartmental Centre for Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy, and Department of Genetics, Biology and Biochemistry, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino, Italy
| |
Collapse
|
20
|
Demircigil GC, Coskun E, Vidinli N, Erbay Y, Yilmaz M, Cimrin A, Schins RP, Borm PJ, Burgaz S. Increased micronucleus frequencies in surrogate and target cells from workers exposed to crystalline silica-containing dust. Mutagenesis 2009; 25:163-9. [PMID: 19939883 DOI: 10.1093/mutage/gep057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mining, crushing, grinding, sandblasting and construction are high-risk activities with regard to crystalline silica exposure, especially in developing countries. Respirable crystalline silica (quartz and cristobalite) inhaled from occupational sources has been reclassified as a human carcinogen in 1997 by the International Agency for Research on Cancer. However, the biological activity of crystalline silica has been found to be variable among different industries, and this has formed the basis for further in vivo/in vitro mechanistic research and epidemiologic studies. This study was conducted for genotoxicity evaluation in a population of workers (e.g. glass industry workers, sandblasters, and stone grinders) mainly exposed to crystalline silica in four different workplaces in Turkey. The micronucleus (MN) assay was applied both in peripheral blood lymphocytes (PBL) as a surrogate tissue and in nasal epithelial cells (NEC) as a target tissue of the respiratory tract. Our study revealed significantly higher MN frequencies in the workers (n = 50) versus the control group (n = 29) (P < 0.001) and indicated a significant effect of occupational exposure on MN induction in both of the tissues. For the NEC target tissue, the difference in MN frequencies between the workers and control group was 3-fold, whereas in peripheral tissue, it was 2-fold. Respirable dust and crystalline silica levels exceeding limit values and mineralogical/elemental dust composition of the dust of at least 70% SiO(2) were used as markers of crystalline silica exposure in each of the workplaces. Moreover, 24% of the current workers were found to have early radiographical changes (profusion category of 1). In conclusion, although the PBL are not primary target cells for respiratory particulate toxicants, an evident increase in MN frequencies in this surrogate tissue was observed, alongside with a significant increase in NEC and may be an indicator of the accumulated genetic damage associated with crystalline silica exposure.
Collapse
|
21
|
Ghiazza M, Gazzano E, Bonelli B, Fenoglio I, Polimeni M, Ghigo D, Garrone E, Fubini B. Formation of a Vitreous Phase at the Surface of Some Commercial Diatomaceous Earth Prevents the Onset of Oxidative Stress Effects. Chem Res Toxicol 2008; 22:136-45. [DOI: 10.1021/tx800270g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mara Ghiazza
- Interdepartmental Center “G. Scansetti” for Studies on Asbestos and Other Toxic Particulates, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali and Centre of Excellence of Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Genetica, Biologia e Biochimica, Università degli Studi di Torino, 10126 Torino, Italy, Dipartimento di Scienza dei Materiali e Ingegneria Chimica
| | - Elena Gazzano
- Interdepartmental Center “G. Scansetti” for Studies on Asbestos and Other Toxic Particulates, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali and Centre of Excellence of Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Genetica, Biologia e Biochimica, Università degli Studi di Torino, 10126 Torino, Italy, Dipartimento di Scienza dei Materiali e Ingegneria Chimica
| | - Barbara Bonelli
- Interdepartmental Center “G. Scansetti” for Studies on Asbestos and Other Toxic Particulates, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali and Centre of Excellence of Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Genetica, Biologia e Biochimica, Università degli Studi di Torino, 10126 Torino, Italy, Dipartimento di Scienza dei Materiali e Ingegneria Chimica
| | - Ivana Fenoglio
- Interdepartmental Center “G. Scansetti” for Studies on Asbestos and Other Toxic Particulates, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali and Centre of Excellence of Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Genetica, Biologia e Biochimica, Università degli Studi di Torino, 10126 Torino, Italy, Dipartimento di Scienza dei Materiali e Ingegneria Chimica
| | - Manuela Polimeni
- Interdepartmental Center “G. Scansetti” for Studies on Asbestos and Other Toxic Particulates, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali and Centre of Excellence of Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Genetica, Biologia e Biochimica, Università degli Studi di Torino, 10126 Torino, Italy, Dipartimento di Scienza dei Materiali e Ingegneria Chimica
| | - Dario Ghigo
- Interdepartmental Center “G. Scansetti” for Studies on Asbestos and Other Toxic Particulates, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali and Centre of Excellence of Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Genetica, Biologia e Biochimica, Università degli Studi di Torino, 10126 Torino, Italy, Dipartimento di Scienza dei Materiali e Ingegneria Chimica
| | - Edoardo Garrone
- Interdepartmental Center “G. Scansetti” for Studies on Asbestos and Other Toxic Particulates, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali and Centre of Excellence of Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Genetica, Biologia e Biochimica, Università degli Studi di Torino, 10126 Torino, Italy, Dipartimento di Scienza dei Materiali e Ingegneria Chimica
| | - Bice Fubini
- Interdepartmental Center “G. Scansetti” for Studies on Asbestos and Other Toxic Particulates, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali and Centre of Excellence of Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, 10125 Torino, Italy, Dipartimento di Genetica, Biologia e Biochimica, Università degli Studi di Torino, 10126 Torino, Italy, Dipartimento di Scienza dei Materiali e Ingegneria Chimica
| |
Collapse
|
22
|
Barnes CA, Elsaesser A, Arkusz J, Smok A, Palus J, Leśniak A, Salvati A, Hanrahan JP, Jong WHD, Dziubałtowska E, Stepnik M, Rydzyński K, McKerr G, Lynch I, Dawson KA, Howard CV. Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. NANO LETTERS 2008; 8:3069-3074. [PMID: 18698730 DOI: 10.1021/nl801661w] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Genotoxicity of commercial colloidal and laboratory-synthesized silica nanoparticles was tested using the single cell gel electrophoresis or Comet assay. By using a carefully developed protocol and careful characterization of the nanoparticle dispersions, Comet assays were performed on 3T3-L1 fibroblasts with 3, 6, and 24 h incubations and 4 or 40 microg/ml of silica nanoparticles. No significant genotoxicity was observed for the nanoparticles tested under the conditions described, and results were independently validated in two separate laboratories, showing that in vitro toxicity testing can be quantitatively reproducible.
Collapse
|
23
|
Dahmann D, Taeger D, Kappler M, Büchte S, Morfeld P, Brüning T, Pesch B. Assessment of exposure in epidemiological studies: the example of silica dust. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2008; 18:452-461. [PMID: 18059424 DOI: 10.1038/sj.jes.7500636] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 09/28/2007] [Indexed: 05/25/2023]
Abstract
Exposure to crystalline silica ranks among the most frequent occupational exposures to an established human carcinogen. Health-based occupational exposure limits can only be derived from a reliable dose-response relationship. Although quartz dust seems to be a well-measurable agent, several uncertainties in the quantification of exposure to crystalline silica can bias the risk estimates in epidemiological studies. This review describes the silica-specific methodological issues in the assessment of exposure. The mineralogical forms of silica, the technologies applied to generate dust, protective measures, and co-existing carcinogens are important parameters to characterize the exposure condition of an occupational setting. Another methodological question concerns the measurement of the respirable dust fraction in the worker's breathing zone and the determination of the quartz content in that fraction. Personal devices have been increasingly employed over time, whereas norms for the measurement of respirable dust have been defined only recently. Several methods are available to analyse the content of crystalline silica in dust with limits of quantitation close to environmental exposure levels. For epidemiological studies, the quartz content has frequently not been measured but only calculated. To develop a silica-dust database for epidemiological purposes, historical dust concentrations sampled with different devices and measured as particle numbers have to be converted in a common exposure metric. For the development of a job-exposure matrix (JEM), missing historical data have to be estimated to complete the database over time. Unknown but frequently high-exposure levels of the past contribute largely to the cumulative exposure of a worker. Because the establishment of a JEM is crucial for risk estimates, sufficient information should be made accessible to allow an estimation of the uncertainties in the assessment of exposure to crystalline silica. The impressive number of silica dust measurements and the evaluation of methodological uncertainties allow recommendations for a best practice of exposure assessment for epidemiological studies.
Collapse
Affiliation(s)
- Dirk Dahmann
- Institut für Gefahrstoff-Forschung (IGF), Institut an der Ruhr-Universität Bochum, Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Journeay WS, Suri SS, Moralez JG, Fenniri H, Singh B. Low inflammatory activation by self-assembling Rosette nanotubes in human Calu-3 pulmonary epithelial cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:817-823. [PMID: 18535989 DOI: 10.1002/smll.200700700] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rosette nanotubes (RNT) are a new class of metal-free organic nanotubes synthesized through self-assembly. Because of the wide range of potential biomedical applications associated with these materials, it is necessary to evaluate their potential in vitro toxicity. Here the cytotoxicity of a lysine-functionalized nanotube (RNT-K) in a human Calu-3 pulmonary epithelial cell line is investigated. The cells were treated with media only (control), lysine (50 mg mL(-1)), RNT-K (1, 5, and 50 microg mL(-1)), Min-U-Sil quartz microparticles (QM; 80 microg mL(-1)), and lipopolysaccharide (LPS; 1 microg mL(-1)). The supernatants were analyzed at 1, 6, and 24 h after treatment for the expression of three proinflammatory mediators: IL-8, TNF-alpha and EMAP-II. Cellular viability determined with the Trypan blue assay is significantly reduced in the QM and high-dose RNT-treated groups. TNF-alpha and EMAP-II are undetectable by enzyme-linked-immunosorbent assay (ELISA) in the supernatant of all groups. Although IL-8 concentrations do not differ between treatments, its concentrations increase with time within each of the groups. Quantitative reverse-transcriptase polymerase chain reaction (qRTPCR) of IL-8 mRNA shows increased expression in the high-dose RNT-treated groups at both 1 and 6 h, while an adhesion molecule, ICAM-1 mRNA, shows the greatest increase at 6 h in the QM-treated group. In summary, RNT-K neither reduces cell viability at moderate doses nor does it induce a time-dependent inflammatory response in pulmonary epithelial cells in vitro.
Collapse
Affiliation(s)
- W Shane Journeay
- Immunology Research Group, Toxicology Graduate Program and Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | | | | | | | | |
Collapse
|
25
|
Jacobsen NR, Saber AT, White P, Møller P, Pojana G, Vogel U, Loft S, Gingerich J, Soper L, Douglas GR, Wallin H. Increased mutant frequency by carbon black, but not quartz, in the lacZ and cII transgenes of muta mouse lung epithelial cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:451-61. [PMID: 17584883 DOI: 10.1002/em.20300] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Carbon black and quartz are relatively inert solid particulate materials that are carcinogenic in laboratory animals. Quartz is a human carcinogen, whereas data on carbon black are contradictory, and there are few data on mammalian mutagenesis. We determined the mutant frequency following eight repeated 72-hr incubations with 75 mug/ml carbon black (Printex 90) or 100 mug/ml quartz (SRM1878a) particles in the FE1 Muta Mouse lung epithelial cell line. For carbon black exposed cells, the mutant frequency was 1.40-fold (95% CI: 1.22-1.58) for cII and 1.23-fold (95% CI: 1.10-1.37) for lacZ compared with identically passaged untreated cells. Quartz did not significantly affect the mutant frequency. Carbon black also induced DNA strand breaks (P = 0.02) and oxidized purines (P = 0.008), as measured by the Comet assay. Quartz induced marginally more oxidized purines, but no change in strand breaks. We detected five (phenanthrene, flouranthene, pyrene, benzo[a]anthracene, and chrysene) of the 16 EPA priority polycyclic aromatic hydrocarbons (PAHs) in an extract of carbon black. The detected PAHs are only weakly mutagenic compared with benzo[a]pyrene, and were present in very low amounts. In conclusion, carbon black was weakly mutagenic in vitro at the cII and lacZ loci. It also induced DNA strand breaks and oxidized DNA bases. More studies are essential for understanding the biological significance of these findings, and clearly documenting DNA sequence changes. The results do not necessarily imply that other carbonaceous nano materials are genotoxic.
Collapse
Affiliation(s)
- Nicklas Raun Jacobsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fanizza C, Ursini CL, Paba E, Ciervo A, Di Francesco A, Maiello R, De Simone P, Cavallo D. Cytotoxicity and DNA-damage in human lung epithelial cells exposed to respirable α-quartz. Toxicol In Vitro 2007; 21:586-94. [PMID: 17257809 DOI: 10.1016/j.tiv.2006.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 12/06/2006] [Accepted: 12/10/2006] [Indexed: 12/01/2022]
Abstract
Occupational exposure to respirable crystalline silica is associated with the development of silicosis, lung cancer and airways diseases. In order to assess cytotoxic effects and direct-oxidative DNA damage induced by short-term exposure to different doses of respirable alpha-quartz (NIST SRM1878a), we conducted a study using A549 cells. The cells were exposed to alpha-quartz at 25, 50, 100 microg/ml for 4 h and analysed by scanning electron microscope (SEM) and LDH release assay for cytotoxic effect evaluation. Cells were also exposed to 10, 25, 50, 100 microg/ml of alpha-quartz for 2 h and 4 h and analysed by Fpg comet test to evaluate direct and oxidative DNA damage. SEM observations of treated cells showed bleb development at lower doses and alterations of microvilli morphology at the highest dose. A slight LDH release was found only at 100 microg/ml. Fpg comet test showed a dose-related oxidative DNA damage in cells exposed for 2 h to quartz. Cells exposed for 4h at the same concentrations showed a dose-related direct DNA damage and the presence of oxidative DNA damage at lower doses. The bleb induction on cell surface evidenced by SEM at lower doses correlates with the presence of oxidative DNA damage at 4 h. The cell surface modifications observed by SEM at 100 microg/ml indicate that high doses of quartz induce more evident cytotoxic effects confirmed by LDH analysis and correlate with the genotoxicity showed by comet assay.
Collapse
Affiliation(s)
- Carla Fanizza
- Department of Occupational Hygiene, ISPESL, National Institute for Occupational Safety and Prevention, Via Fontana Candida 1, 00040 Monteporzio Catone, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW There is compelling evidence that the immune responses induced by crystalline silica particles are implicated in the development of silicosis. This article reviews recent observations which further delineate how innate and adaptive immunity are involved in this lung disease. RECENT FINDINGS First, silica particles are recognized to have pathogen-associated molecular patterns by the innate immune system. The MARCO receptor expressed on the surface of macrophages appears crucial for the recognition and the uptake of silica as well as the activation of these immune cells in silicosis. Additional data support a major role of inflammation (mast cells, B lymphocytes and TNFalpha) in the development of lung fibrosis but also cancer. Silica-induced acute inflammation is accompanied by thrombosis; strongly suggesting that inhaled silica particles may also induce extrapulmonary lesions. Surprisingly, a pronounced anti-inflammatory reaction may also contribute to silica-induced lung fibrosis in mice and represent an additional etiopathogenic pathway of silicosis. Interestingly, it has been proposed that the pulmonary expression of IL-9 (a T lymphocyte-related interleukin) or Heme oxygenase-1 (an anti-inflammatory molecule) attenuated silicotic disease progression in animals. SUMMARY New pathogenic routes involving innate receptors and antiinflammation as well as new antifibrotic immune mediators have been recently described in experimental silicosis, highlighting new potential therapeutic targets and strategies.
Collapse
Affiliation(s)
- François Huaux
- Unit of Industrial Toxicology and Occupational Medicine, Faculty of Medicine, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
28
|
Gulumian M, Borm PJA, Vallyathan V, Castranova V, Donaldson K, Nelson G, Murray J. Mechanistically identified suitable biomarkers of exposure, effect, and susceptibility for silicosis and coal-worker's pneumoconiosis: a comprehensive review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2006; 9:357-95. [PMID: 16990219 DOI: 10.1080/15287390500196537] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Clinical detection of silicosis is currently dependent on radiological and lung function abnormalities, both late manifestations of disease. Markers of prediction and early detection of pneumoconiosis are imperative for the implementation of timely intervention strategies. Understanding the underlying mechanisms of the etiology of coal workers pneumoconiosis (CWP) and silicosis was essential in proposing numerous biomarkers that have been evaluated to assess effects following exposure to crystalline silica and/or coal mine dust. Human validation studies have substantiated some of these proposed biomarkers and argued in favor of their use as biomarkers for crystalline silica- and CWP-induced pneumoconiosis. A number of "ideal" biological markers of effect were identified, namely, Clara cell protein-16 (CC16) (serum), tumor necrosis factor-alpha (TNF-alpha) (monocyte release), interleukin-8 (IL-8) (monocyte release), reactive oxygen species (ROS) measurement by chemiluminescence (neutrophil release), 8-isoprostanes (serum), total antioxidant levels measured by total equivalent antioxidant capacity (TEAC), glutathione, glutathione peroxidase activity, glutathione S-transferase activity, and platelet-derived growth factor (PDGF) (serum). TNF-alpha polymorphism (blood cellular DNA) was identified as a biomarker of susceptibility. Further studies are planned to test the validity and feasibility of these biomarkers to detect either high exposure to crystalline silica and early silicosis or susceptibility to silicosis in gold miners in South Africa.
Collapse
Affiliation(s)
- M Gulumian
- Department of Toxicology and Biochemistry Research, National Institute for Occupational Health, Johannesburg, South Africa.
| | | | | | | | | | | | | |
Collapse
|
29
|
Geh S, Shi T, Shokouhi B, Schins RPF, Armbruster L, Rettenmeier AW, Dopp E. Genotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts. Inhal Toxicol 2006; 18:405-12. [PMID: 16556580 DOI: 10.1080/08958370600563524] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Crystalline silica has been classified as a human carcinogen, but there is still considerable controversy regarding its fibrogenic and carcinogenic potential. In the present study, we investigated the genotoxic potential of bentonite particles (diameter < 10 microm) with an a-quartz content of up to 6% and different chemical modifications (alkaline, acidic, organic). Human lung fibroblasts (IMR90) were incubated for 36 h, 48 h, or 72 h with bentonite particles in concentrations ranging from 1 to 15 microg/cm2. Genotoxicity was assessed using the micronucleus (MN) assay and kinetochore analysis. The generation of reactive oxygen species (ROS) caused by bentonite particles via Fenton-like mechanisms was measured acellularly using electron spin resonance (ESR) technique and intracellularly by applying an iron chelator. Our results show that bentonite-induced genotoxic effects in human lung fibroblasts are weak. The formation of micronuclei was only slightly increased after exposure of IMR90 cells to an acidic sample of bentonite dust with a quartz content of 4-5% for 36 h (15 microg/cm2), 48 h (5 microg/cm2), and 72 h (1 microg/cm2), to an alkaline sample with a quartz content of 5% for 48 h and 72 h (15 microg/cm2), and to an acidic bentonite sample with 1% quartz for 72 h (1 microg/cm2). Native (untreated) and organic activated bentonite particles did not show genotoxic effects in most of the experiments. Also, bentonite particles with a quartz content < 1% were negative in the micronucleus assay. Generation of ROS measured by ESR was dependent on the content of transition metals in the sample but not on the quartz content or the chemical modification. Reduction of MN after addition of the iron chelator 2,2'-dipyridyl showed that ROS formation also occurs intracellularly. Altogether, we conclude that the genotoxic potential of bentonite particles is generally low but can be altered by the content of quartz and available transition metals.
Collapse
Affiliation(s)
- Stefan Geh
- Institute of Hygiene and Occupational Medicine, University Hospital, Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Geh S, Yücel R, Duffin R, Albrecht C, Borm PJA, Armbruster L, Raulf-Heimsoth M, Brüning T, Hoffmann E, Rettenmeier AW, Dopp E. Cellular uptake and cytotoxic potential of respirable bentonite particles with different quartz contents and chemical modifications in human lung fibroblasts. Arch Toxicol 2005; 80:98-106. [PMID: 16059726 DOI: 10.1007/s00204-005-0013-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022]
Abstract
Considering the biological reactivity of pure quartz in lung cells, there is a strong interest to clarify the cellular effects of respirable siliceous dusts, like bentonites. In the present study, we investigated the cellular uptake and the cytotoxic potential of bentonite particles (Ø< 10 microm) with an alpha-quartz content of up to 6% and different chemical modifications (activation: alkaline, acidic, organic) in human lung fibroblasts (IMR90). Additionally, the ability of the particles to induce apoptosis in IMR90-cells and the hemolytic activity was tested. All bentonite samples were tested for endotoxins with the in vitro-Pyrogen test and were found to be negative. Cellular uptake of particles by IMR90-cells was studied by transmission electron microscopy (TEM). Cytotoxicity was analyzed in IMR90-cells by determination of viable cells using flow cytometry and by measuring of the cell respiratory activity. Induced apoptotic cells were detected by AnnexinV/Propidiumiodide-staining and gel electrophoresis. Our results demonstrate that activated bentonite particles are better taken up by IMR90-cells than untreated (native) bentonite particles. Also, activated bentonite particles with a quartz content of 5-6% were more cytotoxic than untreated bentonites or bentonites with a quartz content lower than 4%. The bentonite samples induced necrotic as well as apoptotic cell death. In general, bentonites showed a high membrane-damaging potential shown as hemolytic activity in human erythrocytes. We conclude that cellular effects of bentonite particles in human lung cells are enhanced after chemical treatment of the particles. The cytotoxic potential of the different bentonites is primarily characterized by a strong lysis of the cell membrane.
Collapse
Affiliation(s)
- Stefan Geh
- Institute of Hygiene and Occupational Medicine, University Hospital, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fubini B, Fenoglio I, Ceschino R, Ghiazza M, Martra G, Tomatis M, Borm P, Schins R, Bruch J. Relationship between the state of the surface of four commercial quartz flours and their biological activity in vitro and in vivo. Int J Hyg Environ Health 2004; 207:89-104. [PMID: 15031952 DOI: 10.1078/1438-4639-00277] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Four commercial quartz dusts (flours), two inflammogenic in vivo and activating macrophages in vitro (Qz 2/1-c and Qz 3/1-c) and two mostly inert (Qz 5/1-c and Qz 11/1-c), have been compared regarding their surface properties, in order to detect chemical differences which may account for their different biological behaviour. The following features have been examined: 1) extent of the amorphous fraction (heat associated alpha<-->beta transition of quartz) and its solubility in HF; 2) potential to cleave a carbon-hydrogen bond with consequent generation of carbon centred radicals (spin trapping technique, EPR); 3) evolution of surface functionalities upon heating (FTIR spectroscopy); 4) mechanisms of adsorption of water on dusts outgassed at 150 degrees and at 800 degrees C (adsorption calorimetry). HCl treated samples have also been examined. The two "less toxic" quartzes are more resistant to HF attack, coordinate irreversibly H2O molecules and exhibit strong adsorption sites, which are absent in the other two and in a very pure quartz dust. Conversely all samples show the same potential to release free radicals. The different behaviour of the two sets of dust is consistent with a different level of impurities, namely aluminium ex kaolin, carbon and alkaline ions. The less inflammogenic quartzes appear to be covered by aluminium ions (and possibly iron) which strongly holds molecular water or carbonates, thus reducing the silanol patches to a large extent and changing the surface properties of the particles. We hypothesize that cellular response, and particularly macrophage activation and death, is mediated by strong interactions between silanol patches and some cell membrane components, but inhibited when the surface of the particle is modified by the presence of aluminium ions, surface carbonates and other metal contaminants. This hypothesis suggests that grinding procedures with little appropriate additives, e.g. kaolin, alumina, can reduce the biological activity of quartz dusts.
Collapse
Affiliation(s)
- Bice Fubini
- Dipartimento di Chimica I. F. M., Interdipartimental Center G. Scansetti for Studies on Asbestos and other Toxic Particulates, Università di Torino, Via P. Giuria 7, I-10125-Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bruch J, Rehn S, Rehn B, Borm PJA, Fubini B. Variation of biological responses to different respirable quartz flours determined by a vector model. Int J Hyg Environ Health 2004; 207:203-16. [PMID: 15330388 DOI: 10.1078/1438-4639-00278] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The hypothesis of widely differing lung damage due to commonly used types of quartz was studied in 16 samples of respirable quartzes (> 99% silica) from sites of the European quartz industry, using an in vitro test, the vector model. Two samples with high and 2 with low biological activities were identified and subsequently examined for their in vivo lung toxicity (inflammation, fibrosis, genotoxicity) and surface characteristics. Alveolar macrophages (AM) are considered the target cells of primary dust effects. The vector model mimics some of the elemental dust cell effects such as cell toxicity, effects on the metabolism and stimulatory effects, e.g., TNF alpha and dust-induced ROS secretion. METHODS Doses of 15, 30, 60 and 120 microg dust per 10(6) AM were used together with the control dusts (quartz DQ12 and corundum). Testing parameters were LDH, glucuronidase, PMA forced ROS release, TNF alpha and dust induced ROS secretion. The main criterion for the selection of low or high activity samples was the secretion of TNF alpha. RESULTS (i) Apart from quartz samples with an activity close to that of DQ12, one also finds examples with a very low activity. (ii) In comparison particular parameters are linked with a specific dose response relationship and different dose points for the leveling off of the effects. The levels of TNF alpha represent a conspicuously broad response pattern; some samples induce secretion at the lowest dose and others are not active even at the highest dose investigated at already apparent toxicity. (iii) Regarding various parameters the dust samples led to distinct dose response profiles considered as vectors. The current study indicates that within the particle type "quartz fine dust" varying harmful doses and different elements of damage must be present. (iv) The lung damage of the subchronic animal assay coincides with in vitro tests thus confirming the concept of the vector model. CONCLUSION Threshold effects in the range of 15 - > or = 120 microg can be demonstrated for the discriminant vector TNF alpha, i.e. over 4 steps of dose doubling. These studies show very toxic quartzes but also quartzes of low biological activity comparable to corundum.
Collapse
Affiliation(s)
- Joachim Bruch
- Institute of Hygiene and Occupational Medicine, Essen University Clinic, Germany.
| | | | | | | | | |
Collapse
|