1
|
Mendoza-Morales LF, Fiorani F, Morán KD, Hecker YP, Cirone KM, Sánchez-López EF, Ramos-Duarte VA, Corigliano MG, Bilbao MG, Clemente M, Moore DP, Sander VA. Immunogenicity, safety and dual DIVA-like character of a recombinant candidate vaccine against neosporosis in cattle. Acta Trop 2024; 257:107293. [PMID: 38901525 DOI: 10.1016/j.actatropica.2024.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Neosporosis is the major infectious cause of abortion and reproductive losses in cattle worldwide; however, there are no available vaccines or drugs to control this disease. Recently, a dual (positive and negative) DIVA-like (Differentiation of Infected from Vaccinated Animals) vaccine was evaluated in a pregnant mouse model of neosporosis, showing promising immunogenic and protective results. The current report aimed to study the safety, the dose-dependent immunogenicity and the dual DIVA-like character of a recombinant subunit vaccine composed of the major surface antigen from Neospora caninum (rNcSAG1) and the carrier/adjuvant Heat shock protein 81.2 from Arabidopsis thaliana (rAtHsp81.2) in cattle. Healthy heifers were separated and assigned to experimental groups A-F and subcutaneously immunized with 2 doses of vaccine formulations 30 days apart as follows: A (n = 4): 50 μg rNcSAG1 + 150 μg rAtHsp81.2; B (n = 4): 200 μg rNcSAG1 + 600 μg rAtHsp81.2; C (n = 4): 500 μg rNcSAG1 + 1,500 μg rAtHsp81.2; D (n = 3): 150 μg rAtHsp81.2; E (n = 3):1,500 μg rAtHsp81.2, and F (n = 3) 2 ml of sterile PBS. The immunization of heifers with the different vaccine or adjuvant doses (groups A-E) was demonstrated to be safe and did not modify the mean value of the evaluated serum biomarkers of metabolic function (GOT/ASP, GPT/ALT, UREA, Glucose and total proteins). The kinetics and magnitude of the immune responses were dose-dependent. The higher dose of the vaccine formulation (group C) stimulated a broad and potent humoral and cellular immune response, characterized by an IgG1/IgG2 isotype profile and IFN-γ secretion. In addition, this was the first time that dual DIVA-like character of a vaccine against neosporosis was demonstrated, allowing us to differentiate vaccinated from infected heifers by two different DIVA compliant test approaches. These results encourage us to evaluate its protective efficacy in infected pregnant cattle in the future.
Collapse
Affiliation(s)
- Luisa Fernanda Mendoza-Morales
- Laboratorio de Biotecnologías en Bovinos y Ovinos, INTECH, CONICET-UNSAM, Intendente Marino Km 8,2; CC 164 (B7130IWA), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires, Argentina
| | - Franco Fiorani
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce (CONICET-INTA), Balcarce, Buenos Aires, Argentina
| | - Karen Daiana Morán
- Laboratorio de Reproducción, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), General Pico, La Pampa, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, General Pico, La Pampa, Argentina
| | - Yanina Paola Hecker
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce (CONICET-INTA), Balcarce, Buenos Aires, Argentina
| | - Karina Mariela Cirone
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce (CONICET-INTA), Balcarce, Buenos Aires, Argentina
| | - Edwin Fernando Sánchez-López
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires, Argentina; Laboratorio de Molecular Farming y Vacunas, INTECH, CONICET-UNSAM, Chascomús, Argentina
| | - Victor Andrés Ramos-Duarte
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires, Argentina; Laboratorio de Molecular Farming y Vacunas, INTECH, CONICET-UNSAM, Chascomús, Argentina
| | - Mariana Georgina Corigliano
- Laboratorio de Biotecnologías en Bovinos y Ovinos, INTECH, CONICET-UNSAM, Intendente Marino Km 8,2; CC 164 (B7130IWA), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires, Argentina
| | - María Guillermina Bilbao
- Laboratorio de Reproducción, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), General Pico, La Pampa, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, General Pico, La Pampa, Argentina
| | - Marina Clemente
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires, Argentina; Laboratorio de Molecular Farming y Vacunas, INTECH, CONICET-UNSAM, Chascomús, Argentina
| | - Dadín Prando Moore
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina; Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS Balcarce), Instituto Nacional de Tecnología Agropecuaria Estación Experimental Agropecuaria Balcarce (CONICET-INTA), Balcarce, Buenos Aires, Argentina
| | - Valeria Analía Sander
- Laboratorio de Biotecnologías en Bovinos y Ovinos, INTECH, CONICET-UNSAM, Intendente Marino Km 8,2; CC 164 (B7130IWA), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Kamboj A, Dumka S, Saxena MK, Singh Y, Kaur BP, da Silva SJR, Kumar S. A Comprehensive Review of Our Understanding and Challenges of Viral Vaccines against Swine Pathogens. Viruses 2024; 16:833. [PMID: 38932126 PMCID: PMC11209531 DOI: 10.3390/v16060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Pig farming has become a strategically significant and economically important industry across the globe. It is also a potentially vulnerable sector due to challenges posed by transboundary diseases in which viral infections are at the forefront. Among the porcine viral diseases, African swine fever, classical swine fever, foot and mouth disease, porcine reproductive and respiratory syndrome, pseudorabies, swine influenza, and transmissible gastroenteritis are some of the diseases that cause substantial economic losses in the pig industry. It is a well-established fact that vaccination is undoubtedly the most effective strategy to control viral infections in animals. From the period of Jenner and Pasteur to the recent new-generation technology era, the development of vaccines has contributed significantly to reducing the burden of viral infections on animals and humans. Inactivated and modified live viral vaccines provide partial protection against key pathogens. However, there is a need to improve these vaccines to address emerging infections more comprehensively and ensure their safety. The recent reports on new-generation vaccines against swine viruses like DNA, viral-vector-based replicon, chimeric, peptide, plant-made, virus-like particle, and nanoparticle-based vaccines are very encouraging. The current review gathers comprehensive information on the available vaccines and the future perspectives on porcine viral vaccines.
Collapse
Affiliation(s)
- Aman Kamboj
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Shaurya Dumka
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | - Mumtesh Kumar Saxena
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Yashpal Singh
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Bani Preet Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| |
Collapse
|
3
|
Zimnyakov DA, Alonova MV, Lavrukhin MS, Lyapina AM, Feodorova VA. Polarization- and Chaos-Game-Based Fingerprinting of Molecular Targets of Listeria Monocytogenes Vaccine and Fully Virulent Strains. Curr Issues Mol Biol 2023; 45:10056-10078. [PMID: 38132474 PMCID: PMC10742786 DOI: 10.3390/cimb45120628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Two approaches to the synthesis of 2D binary identifiers ("fingerprints") of DNA-associated symbol sequences are considered in this paper. One of these approaches is based on the simulation of polarization-dependent diffraction patterns formed by reading the modeled DNA-associated 2D phase-modulating structures with a coherent light beam. In this case, 2D binarized distributions of close-to-circular extreme polarization states are applied as fingerprints of analyzed nucleotide sequences. The second approach is based on the transformation of the DNA-associated chaos game representation (CGR) maps into finite-dimensional binary matrices. In both cases, the differences between the structures of the analyzed and reference symbol sequences are quantified by calculating the correlation coefficient of the synthesized binary matrices. A comparison of the approaches under consideration is carried out using symbol sequences corresponding to nucleotide sequences of the hly gene from the vaccine and wild-type strains of Listeria monocytogenes as the analyzed objects. These strains differ in terms of the number of substituted nucleotides in relation to the vaccine strain selected as a reference. The results of the performed analysis allow us to conclude that the identification of structural differences in the DNA-associated symbolic sequences is significantly more efficient when using the binary distributions of close-to-circular extreme polarization states. The approach given can be applicable for genetic differentiation immunized from vaccinated animals (DIVA).
Collapse
Affiliation(s)
- Dmitry A. Zimnyakov
- Physics Department, Yury Gagarin State Technical University of Saratov, 77 Polytechnicheskaya Str., 410054 Saratov, Russia;
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 335 Sokolovaya Str., 410005 Saratov, Russia; (M.S.L.); (A.M.L.); (V.A.F.)
| | - Marina V. Alonova
- Physics Department, Yury Gagarin State Technical University of Saratov, 77 Polytechnicheskaya Str., 410054 Saratov, Russia;
| | - Maxim S. Lavrukhin
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 335 Sokolovaya Str., 410005 Saratov, Russia; (M.S.L.); (A.M.L.); (V.A.F.)
| | - Anna M. Lyapina
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 335 Sokolovaya Str., 410005 Saratov, Russia; (M.S.L.); (A.M.L.); (V.A.F.)
| | - Valentina A. Feodorova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 335 Sokolovaya Str., 410005 Saratov, Russia; (M.S.L.); (A.M.L.); (V.A.F.)
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 335 Sokolovaya Str., 410005 Saratov, Russia
| |
Collapse
|
4
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Scheau AE, Savulescu-Fiedler I, Caruntu A, Badarau IA, Caruntu C, Scheau C. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. Int J Mol Sci 2023; 24:16299. [PMID: 38003488 PMCID: PMC10671393 DOI: 10.3390/ijms242216299] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Kaempferol and its derivatives are flavonoids found in various plants, and a considerable number of these have been used in various medical applications worldwide. Kaempferol and its compounds have well-known antioxidant, anti-inflammatory and antimicrobial properties among other health benefits. However, the antiviral properties of kaempferol are notable, and there is a significant number of experimental studies on this topic. Kaempferol compounds were effective against DNA viruses such as hepatitis B virus, viruses of the alphaherpesvirinae family, African swine fever virus, and pseudorabies virus; they were also effective against RNA viruses, namely feline SARS coronavirus, dengue fever virus, Japanese encephalitis virus, influenza virus, enterovirus 71, poliovirus, respiratory syncytial virus, human immunodeficiency virus, calicivirus, and chikungunya virus. On the other hand, no effectiveness against murine norovirus and hepatitis A virus could be determined. The antiviral action mechanisms of kaempferol compounds are various, such as the inhibition of viral polymerases and of viral attachment and entry into host cells. Future research should be focused on further elucidating the antiviral properties of kaempferol compounds from different plants and assessing their potential use to complement the action of antiviral drugs.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
5
|
Pei C, Dong H, Teng Z, Wei S, Zhang Y, Yin S, Tang J, Sun S, Guo H. Self-Assembling Nanovaccine Fused with Flagellin Enhances Protective Effect against Foot-and-Mouth Disease Virus. Vaccines (Basel) 2023; 11:1675. [PMID: 38006007 PMCID: PMC10675102 DOI: 10.3390/vaccines11111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Nanovaccines based on self-assembling nanoparticles (NPs) can show conformational epitopes of antigens and they have high immunogenicity. In addition, flagellin, as a biological immune enhancer, can be fused with an antigen to considerably enhance the immune effect of antigens. In improving the immunogenicity and stability of a foot-and-mouth disease virus (FMDV) antigen, novel FMDV NP antigens were prepared by covalently coupling the VP1 protein and truncated flagellin containing only N-terminus D0 and D1 (N-terminal aa 1-99, nFLiC) with self-assembling NPs (i301). The results showed that the fusion proteins VP1-i301 and VP1-i301-nFLiC can assemble into NPs with high thermal tolerance and stability, obtain high cell uptake efficiency, and upregulate marker molecules and immune-stimulating cytokines in vitro. In addition, compared with monomeric VP1 antigen, high-level cytokines were stimulated with VP1-i301 and VP1-i301-nFLiC nanovaccines in guinea pigs, to provide clinical protection against viral infection comparable to an inactivated vaccine. This study provides new insight for the development of a novel FMD vaccine.
Collapse
Affiliation(s)
- Chenchen Pei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Zhidong Teng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Sumin Wei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Yun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Jianli Tang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- College of Animal Science, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
6
|
Liu H, Teng Z, Dong H, Li J, Waheed Abdullah S, Zhang Y, Wu J, Guo H, Sun S. Poly(I:C) and CpG improve the assembly of foot-and-mouth disease virus-like particles and immune response in mice. Virology 2023; 579:94-100. [PMID: 36623353 DOI: 10.1016/j.virol.2022.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Virus-like particles (VLPs) are extremely potent, safe, and serviceable vaccine platforms. Good assembly efficiency of VLPs is the key to reducing vaccine production costs and eliciting a robust immune response. This study adopted CpG and Poly (I:C) as scaffolds to facilitate the assembly of foot-and-mouth disease virus (FMDV) VLPs in vitro. The VLPs and the co-assembly products were characterized by particle size, zeta potential, gel retardation measurement, nuclease digestion experiments, size-exclusion chromatography, transmission electron microscopy and circular dichroism analysis. Our results indicated the successful encapsulation of CpG and Poly (I:C) inside VLPs without any effect on shape or size. Vaccination in mice also elicited a robust immune response. This study demonstrated that CpG and Poly (I:C) improved the efficiency of FMDV VLPs assembly and enhanced immune response, further proposing a new idea for improving the efficiency of VLPs assembly and enriching the in vitro VLPs assembly strategies.
Collapse
Affiliation(s)
- Haiyun Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | - Zhidong Teng
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | - Hu Dong
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | - Jiajun Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | - Jinen Wu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China.
| |
Collapse
|
7
|
Cheang A, Westman ME, Green J. Evaluation of a Point-of-Care Feline Immunodeficiency Virus (FIV) Test Kit (RapidSTATUS™ FIV) to Determine the FIV Status of FIV-Vaccinated and FIV-Unvaccinated Pet Cats in Australia. Vet Sci 2022; 9:vetsci9110618. [PMID: 36356095 PMCID: PMC9695518 DOI: 10.3390/vetsci9110618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary This study evaluated a commercial point-of-care (PoC) feline immunodeficiency virus (FIV) test kit (RapidSTATUS™ FIV) for its accuracy in determining the FIV status of FIV-vaccinated and FIV-unvaccinated pet cats in Australia. In countries where FIV vaccination is used, veterinarians need a PoC kit that will produce a negative result for a FIV-uninfected cat, even if the cat is FIV-vaccinated or the FIV vaccination history is unknown, since incorrect diagnoses can impact negatively on the welfare of cats. FIV PoC kits also need to produce positive results in FIV-infected cats to help with appropriate management and to enable strategies to be implemented to prevent other cats from becoming FIV-infected. Results presented here show RapidSTATUS™ FIV to be highly accurate (98.8−100%) in a range of FIV-vaccinated and FIV-unvaccinated scenarios. Therefore, Australian veterinarians can reliably use RapidSTATUS™ FIV to rapidly and accurately determine the FIV status of all cats. Abstract Feline immunodeficiency virus (FIV) is a retrovirus that can cause immunosuppression, co-morbidities, and neoplasia in infected cats, and is commonly tested for in veterinary clinics and animal shelters in Australia. FIV diagnosis using point-of-care (PoC) kits to detect FIV antibodies in Australia is complicated by the commercial availability of an inactivated whole-FIV vaccine. The aim of this study was to determine the accuracy of the RapidSTATUS™ FIV antibody test kit in FIV-vaccinated and FIV-unvaccinated cats in Australia. Plasma from pet cats of known FIV vaccination and FIV infection statuses (n = 361), comprised of 57 FIV-uninfected cats annually vaccinated against FIV, 10 FIV-uninfected cats with lapsed FIV vaccination histories, 259 FIV-unvaccinated/FIV-uninfected cats, and 35 FIV-infected cats, was tested. RapidSTATUS™ FIV testing had sensitivity of 97.1% (34/35) and specificity of 100% (326/326), with an overall accuracy of 99.7% (360/361). Additional testing was undertaken using plasma from FIV-uninfected cats recently administered a primary FIV vaccination course (n = 12) or an annual booster FIV vaccination (n = 10). RapidSTATUS™ FIV was 98.8% (81/82) accurate and 100% (32/32) accurate in cats recently administered primary or annual FIV vaccinations, respectively. The high level of accuracy of RapidSTATUS™ FIV (98.8–100%) therefore establishes this PoC kit as a DIVA (differentiating infected from vaccinated animals) test. RapidSTATUS™ FIV is recommended to aid animal shelters, veterinarians, and researchers in Australia to accurately determine FIV infection status, irrespective of FIV vaccination history.
Collapse
|
8
|
Nogales A, DeDiego ML, Martínez-Sobrido L. Live attenuated influenza A virus vaccines with modified NS1 proteins for veterinary use. Front Cell Infect Microbiol 2022; 12:954811. [PMID: 35937688 PMCID: PMC9354547 DOI: 10.3389/fcimb.2022.954811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza A viruses (IAV) spread rapidly and can infect a broad range of avian or mammalian species, having a tremendous impact in human and animal health and the global economy. IAV have evolved to develop efficient mechanisms to counteract innate immune responses, the first host mechanism that restricts IAV infection and replication. One key player in this fight against host-induced innate immune responses is the IAV non-structural 1 (NS1) protein that modulates antiviral responses and virus pathogenicity during infection. In the last decades, the implementation of reverse genetics approaches has allowed to modify the viral genome to design recombinant IAV, providing researchers a powerful platform to develop effective vaccine strategies. Among them, different levels of truncation or deletion of the NS1 protein of multiple IAV strains has resulted in attenuated viruses able to induce robust innate and adaptive immune responses, and high levels of protection against wild-type (WT) forms of IAV in multiple animal species and humans. Moreover, this strategy allows the development of novel assays to distinguish between vaccinated and/or infected animals, also known as Differentiating Infected from Vaccinated Animals (DIVA) strategy. In this review, we briefly discuss the potential of NS1 deficient or truncated IAV as safe, immunogenic and protective live-attenuated influenza vaccines (LAIV) to prevent disease caused by this important animal and human pathogen.
Collapse
Affiliation(s)
- Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain
- *Correspondence: Aitor Nogales, ; Luis Martínez-Sobrido,
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Disease Intervention and Prevetion, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Aitor Nogales, ; Luis Martínez-Sobrido,
| |
Collapse
|
9
|
Aznar MN, Bessone FA, Segurado R, Duffy SJ. Assessment of an Aujeszky's Disease Control Strategy in a Highly Prevalent Pig Farm Based on Systematic Vaccination With an Inactivated gE-Negative Marker Vaccine. Front Vet Sci 2022; 9:852650. [PMID: 35529838 PMCID: PMC9072966 DOI: 10.3389/fvets.2022.852650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Aujeszky's disease (AD) is endemic in Argentina. In 2016, an inactivated gE- negative marker Bartha K61 vaccine (AUSKIPRA® BK) was launched for use, making Argentina the only country to carry out a control strategy plan with it. In the present article, we describe the results of a control program in a farrow-to-finishing farm with high initial AD prevalence (33% in sows), based on the systematic vaccination, detection, and elimination of seropositive pigs, the replacement of sows with vaccinated gilts, and the instauration of artificial insemination. The program was suitable for diminishing the incidence and the prevalence at levels consistent with virus eradication. This situation has been sustained over time. This is the first report of AUSKIPRA® BK efficacy under field conditions.
Collapse
Affiliation(s)
- María N. Aznar
- Instituto de Patobiología, Centro de Investigaciones Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Fernando A. Bessone
- Sanidad Animal, INTA, Estación Experimental (EEA) Marcos Juárez, Córdoba, Argentina
| | | | | |
Collapse
|
10
|
Choudhury SM, Ma X, Dang W, Li Y, Zheng H. Recent Development of Ruminant Vaccine Against Viral Diseases. Front Vet Sci 2021; 8:697194. [PMID: 34805327 PMCID: PMC8595237 DOI: 10.3389/fvets.2021.697194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023] Open
Abstract
Pathogens of viral origin produce a large variety of infectious diseases in livestock. It is essential to establish the best practices in animal care and an efficient way to stop and prevent infectious diseases that impact animal husbandry. So far, the greatest way to combat the disease is to adopt a vaccine policy. In the fight against infectious diseases, vaccines are very popular. Vaccination's fundamental concept is to utilize particular antigens, either endogenous or exogenous to induce immunity against the antigens or cells. In light of how past emerging and reemerging infectious diseases and pandemics were handled, examining the vaccination methods and technological platforms utilized for the animals may provide some useful insights. New vaccine manufacturing methods have evolved because of developments in technology and medicine and our broad knowledge of immunology, molecular biology, microbiology, and biochemistry, among other basic science disciplines. Genetic engineering, proteomics, and other advanced technologies have aided in implementing novel vaccine theories, resulting in the discovery of new ruminant vaccines and the improvement of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines, and vectored vaccines are increasingly gaining scientific and public attention as the next generation of vaccines and are being seen as viable replacements to conventional vaccines. The current review looks at the effects and implications of recent ruminant vaccine advances in terms of evolving microbiology, immunology, and molecular biology.
Collapse
Affiliation(s)
- Sk Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - YuanYuan Li
- Gansu Agricultural University, Lanzhou, China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
11
|
Better immune efficacy triggered by the inactivated gI/gE-deleted pseudorabies virus with the additional insertion of gC gene in mice and weaned pigs. Virus Res 2021; 296:198353. [PMID: 33640358 DOI: 10.1016/j.virusres.2021.198353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
A new variant of pseudorabies virus (PRV) with high pathogenicity has been prevalent in many swineherds vaccinated with Bartha-K61 in China since 2011. Several gene-deleted vaccine candidates have been developed based on new emerging PRV variants. PRV-AH, a new emerging PRV strain from Anhui Province, was isolated in our laboratory in 2013. In the present study, rPRV-AH-gI-/gE- and rPRV-AH-gI-/gE-/gC+ were generated based on PRV-AH by homologous recombination. The growth kinetics of rPRV-AH-gI-/gE- and rPRV-AH-gI-/gE-/gC+ were similar to their parental strains. Compared with the commercial inactivated vaccine of Ea strain, the immune efficacy of the inactivated vaccine based on recombinant viruses was evaluated in mice and weaned pigs. The result showed that the level of neutralizing antibody in mice immunized with rPRV-AH-gI-/gE-/gC+ was higher compared with those immunized with rPRV-AH-gI-/gE- at a dose of 106 TCID50 at 8 weeks post initial immunization (p < 0.0001). Among the groups immunized at a dose of 105 TCID50, the rPRV-AH-gI-/gE- group showed a survival rate of 37.5 %, while the rPRV-AH-gI-/gE-/gC+ group showed a protection rate of 87.5 % against the PRV-AH challenge. Besides, the rPRV-AH-gI-/gE- and rPRV-AH-gI-/gE-/gC+ group immunized at a dose of 106 TCID50 showed a survival rate of 100 %. Interestingly, compared with the commercial vaccine group, the group of 105 TCID50 rPRV-AH-gI-/gE-/gC+ showed a lower level of neutralizing antibodies (p < 0.0001) but the same protection rate in mice. Moreover, in the pig experiment, the level of neutralizing antibodies in the group vaccinated with inactivated rPRV-AH-gI-/gE-/gC+ was higher than any other groups at 8 weeks post initial immunization (p < 0.05). More importantly, the milder symptoms and pathological lesions occurred in pigs vaccinated with rPRV-AH-gI-/gE-/gC+ after challenge with 106 TCID50 PRV-AH, revealing that additional insertion of gC gene could enhance the protective efficacy in PRV gI/gE-deleted vaccine in pigs. Collectively, these above-mentioned findings suggested that the inactivated vaccine of rPRV-AH-gI-/gE-/gC+ had a better immune efficacy, which could be regarded as a promising inactivated vaccine candidate for PRV control.
Collapse
|
12
|
Idoga ES, Armson B, Alafiatayo R, Ogwuche A, Mijten E, Ekiri AB, Varga G, Cook AJC. A Review of the Current Status of Peste des Petits Ruminants Epidemiology in Small Ruminants in Tanzania. Front Vet Sci 2020; 7:592662. [PMID: 33324702 PMCID: PMC7723822 DOI: 10.3389/fvets.2020.592662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
Peste des petits ruminants (PPR) is a highly contagious viral disease of sheep and goats with high mortality. The disease is of considerable economic importance in countries such as Tanzania, where small ruminant products are important for sustainable livelihoods. This review assesses current knowledge regarding the epidemiology of PPRV in Tanzania, highlighting the challenges with respect to control and suggesting possible interventions. Thirty-three articles were identified after literature searches using Google Scholar and PubMed. Studies revealed that PPRV is endemic in sheep and goats in Tanzania, although seropositivity has also been reported in cattle, camels, buffalo, Grant's gazelle, wildebeest and impala, but with no clinical manifestation. Three lineages (lineage II to IV) of PPRV have been identified in Tanzania, implying at least two separate introductions of the virus. Diagnosis of PPR in Tanzania is mostly by observation of clinical signs and lesions at post mortem. Risk factors in Tanzania include age, sex, species, and close contact of animals from different farms/localities. Although there is an efficacious vaccine available for PPR, poor disease surveillance, low vaccine coverage, and uncontrolled animal movements have been the bane of control efforts for PPR in Tanzania. There is need for collaborative efforts to develop interventions to control and eradicate the disease. The establishment of a national reference laboratory for PPR, conduct of surveillance, the development of high-quality DIVA vaccines, as well as execution of a carefully planned national vaccination campaign may be key to the control and subsequent eradication of PPR in Tanzania and achieving the global goal of eradicating PPR by 2030.
Collapse
Affiliation(s)
- Enokela S. Idoga
- Department of Veterinary Physiology, Biochemistry and Pharmacology, University of Jos, Jos, Nigeria
| | - Bryony Armson
- vHive, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Ruth Alafiatayo
- vHive, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Adah Ogwuche
- Zoetis-ALPHA Initiative, Zoetis, Zaventem, Belgium
| | - Erik Mijten
- Zoetis-ALPHA Initiative, Zoetis, Zaventem, Belgium
| | - Abel B. Ekiri
- vHive, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | | | - Alasdair J. C. Cook
- vHive, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
13
|
Murr M, Hoffmann B, Grund C, Römer-Oberdörfer A, Mettenleiter TC. A Novel Recombinant Newcastle Disease Virus Vectored DIVA Vaccine against Peste des Petits Ruminants in Goats. Vaccines (Basel) 2020; 8:vaccines8020205. [PMID: 32354145 PMCID: PMC7348985 DOI: 10.3390/vaccines8020205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Peste des petits ruminants virus (PPRV, species: small ruminant morbillivirus) is the causative agent of the eponymous notifiable disease, the peste des petits ruminants (PPR) in wild and domestic sheep and goats. Mortality rates vary between 50% and 100%, causing significant losses of estimated 1.5 to 2 billion US Dollars per year. Live-attenuated PPRV vaccine strains are used in the field for disease prevention, but the application of a more thermostable vaccine enabling differentiation between infected and vaccinated animals (DIVA) would be highly desirable to achieve the goal of global disease eradication. We generated a recombinant Newcastle disease virus (rNDV) based on the live-attenuated NDV Clone 30 that expresses the surface protein hemagglutinin (H) of PPRV strain Kurdistan/11 (rNDV_HKur). In vitro analyses confirmed transgene expression as well as virus replication in avian, caprine, and ovine cells. Two consecutive subcutaneous vaccinations of German domestic goats with rNDV_HKur prevented clinical signs and hematogenic dissemination after an intranasal challenge with virulent PPRV Kurdistan/11. Virus shedding by different routes was reduced to a similar extent as after vaccination with the live-attenuated PPRV strain Nigeria 75/1. Goats that were either not vaccinated or inoculated with parental rNDV were used as controls. In summary, we demonstrate in a proof-of-concept study that an NDV vectored vaccine can protect against PPR. Furthermore, it provides DIVA-applicability and a high thermal tolerance.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
- Correspondence: ; Tel.: +49-38351-7-1629
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
14
|
Bengoa-Luoni SA, Corigliano MG, Sánchez-López E, Albarracín RM, Legarralde A, Ganuza A, Clemente M, Sander VA. The potential of a DIVA-like recombinant vaccine composed by rNcSAG1 and rAtHsp81.2 against vertical transmission in a mouse model of congenital neosporosis. Acta Trop 2019; 198:105094. [PMID: 31323195 DOI: 10.1016/j.actatropica.2019.105094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 12/25/2022]
Abstract
Neospora caninum is the etiological agent of neosporosis, a worldwide infectious disease recognized as the major cause of abortions and reproductive failures in livestock, responsible for significant economic losses in cattle industries. Currently, there are not cost-effective control options for this pathology, and the development of a vaccine involving new and integrated approaches is highly recommended. In this study, we evaluated the immunogenic and protective efficacy, as well as the potential DIVA (Differentiation of Infected from Vaccinated Animals) character of a recombinant subunit vaccine composed by the major surface antigen from N. caninum (NcSAG1) and the carrier/adjuvant heat shock protein 81.2 from Arabidopsis thaliana (AtHsp81.2) in a mouse model of congenital neosporosis. BALB/c female mice were intraperitoneal (i.p.) immunized with a mixture of equimolar quantities of rNcSAG1 and rAtHSP81.2 or each protein alone (rNcSAG1 or rAtHsp81.2). The vaccine containing a mixture of rNcSAG1 and rAtHsp81.2 significantly enhanced the production of specific anti-rNcSAG1 total IgG (tIgG), IgG1 and IgG2a antibodies in immunized mice when compared to control groups (non-vaccinated and rAtHsp81.2 immunized mice) as well as to the group of mice immunized only with the antigen (rNcSAG1). In addition, partial protection against vertical transmission and improvement of the offspring survival time was observed in this group. On the other hand, rAtHsp81.2 induced the production of specific anti-rAtHsp81.2 tIgG, allowing us to differentiate vaccinated from infected mice. Despite further experiments have to be made in cattle to test the capability of this vaccine formulation to differentiate vaccinated from infected animals in the field, our results suggest that the formulation composed by rNcSAG1 and rAtHsp81.2 could serve as a basis for the development of a new vaccine approach against bovine neosporosis.
Collapse
Affiliation(s)
| | | | | | | | - Ariel Legarralde
- Unidad de Biotecnología 6-UB6, INTECH, CONICET-UNSAM, Chascomús, Argentina
| | - Agustina Ganuza
- Unidad de Biotecnología 2-UB2, INTECH, CONICET-UNSAM, Consejo de Investigaciones Científicas (CIC) de la Provincia de Buenos Aires, Chascomús, Argentina
| | - Marina Clemente
- Unidad de Biotecnología 6-UB6, INTECH, CONICET-UNSAM, Chascomús, Argentina.
| | - Valeria A Sander
- Unidad de Biotecnología 6-UB6, INTECH, CONICET-UNSAM, Chascomús, Argentina.
| |
Collapse
|
15
|
Wernike K, Mundt A, Link EK, Aebischer A, Schlotthauer F, Sutter G, Fux R, Beer M. N-terminal domain of Schmallenberg virus envelope protein Gc delivered by recombinant equine herpesvirus type 1 and modified vaccinia virus Ankara: Immunogenicity and protective efficacy in cattle. Vaccine 2018; 36:5116-5123. [PMID: 30049630 DOI: 10.1016/j.vaccine.2018.07.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
Abstract
Schmallenberg virus (SBV), which emerged in 2011 in Central Europe and subsequently spread very rapidly throughout the continent, affects predominantly ruminants. SBV is transmitted by insect vectors, and therefore vaccination is one of the major tools of disease control. Only recently, a domain connected to virus neutralization has been identified at the amino-terminal part of the viral envelope protein Gc. Here, this Gc domain delivered by recombinant EHV-1 or MVA vector viruses was tested in a vaccination-challenge trial in cattle, one of the major target species of SBV. The EHV-1-based vaccine conferred protection in two of four animals, whereas immunization using the MVA vector vaccine efficiently induced an SBV-specific antibody response and full protection against SBV challenge infection in all the vaccinated animals. Moreover, due to the absence of antibodies against SBVs N-protein, both vector vaccines enable the differentiation between vaccinated and field-infected animals making them to a promising tool to control SBV spread as well as to prevent disease in domestic ruminants.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany.
| | - Alice Mundt
- Boehringer Ingelheim Veterinary Research Centre, Bemeroder Str. 31, 30559 Hannover, Germany
| | - Ellen Kathrin Link
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Ludwig-Maximilians-Universität, Veterinärstraße 13, 80539 Munich, Germany
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Felicia Schlotthauer
- Boehringer Ingelheim Veterinary Research Centre, Bemeroder Str. 31, 30559 Hannover, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Ludwig-Maximilians-Universität, Veterinärstraße 13, 80539 Munich, Germany
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Ludwig-Maximilians-Universität, Veterinärstraße 13, 80539 Munich, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
16
|
Tuppurainen ESM, Venter EH, Shisler JL, Gari G, Mekonnen GA, Juleff N, Lyons NA, De Clercq K, Upton C, Bowden TR, Babiuk S, Babiuk LA. Review: Capripoxvirus Diseases: Current Status and Opportunities for Control. Transbound Emerg Dis 2017; 64:729-745. [PMID: 26564428 PMCID: PMC5434826 DOI: 10.1111/tbed.12444] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 12/11/2022]
Abstract
Lumpy skin disease, sheeppox and goatpox are high-impact diseases of domestic ruminants with a devastating effect on cattle, sheep and goat farming industries in endemic regions. In this article, we review the current geographical distribution, economic impact of an outbreak, epidemiology, transmission and immunity of capripoxvirus. The special focus of the article is to scrutinize the use of currently available vaccines to investigate the resource needs and challenges that will have to be overcome to improve disease control and eradication, and progress on the development of safer and more effective vaccines. In addition, field evaluation of the efficacy of the vaccines and the genomic database available for poxviruses are discussed.
Collapse
Affiliation(s)
- E S M Tuppurainen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - E H Venter
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - J L Shisler
- Department of Microbiology, University of Illinois, Urbana, IL, USA
| | - G Gari
- National Animal Health Diagnostic and Investigation Center (NAHDIC), Sebeta, Ethiopia
| | - G A Mekonnen
- National Animal Health Diagnostic and Investigation Center (NAHDIC), Sebeta, Ethiopia
| | - N Juleff
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - N A Lyons
- The Pirbright Institute, Pirbright, UK
- European Commission for the Control of Foot-and-Mouth Disease, Food and Agriculture Organisation of the United Nations, Rome, Italy
| | - K De Clercq
- CODA-CERVA, Vesicular and Exotic Diseases Unit, Uccle, Belgium
| | - C Upton
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - T R Bowden
- CSIRO, Health & Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Vic., Australia
| | - S Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, WA, Canada
| | - L A Babiuk
- University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Sanson RL, Rawdon T, Owen K, Hickey K, van Andel M, Yu ZD. Evaluating the benefits of vaccination when used in combination with stamping-out measures against hypothetical introductions of foot-and-mouth disease into New Zealand: a simulation study. N Z Vet J 2017; 65:124-133. [DOI: 10.1080/00480169.2016.1263165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- RL Sanson
- AsureQuality Limited, PO Box 585, Palmerston North 4440, New Zealand
| | - T Rawdon
- Ministry for Primary Industries, Investigation Diagnostic Centres and Response Directorate, 25 The Terrace, Wellington, New Zealand
| | - K Owen
- Ministry for Primary Industries, Investigation Diagnostic Centres and Response Directorate, 25 The Terrace, Wellington, New Zealand
| | - K Hickey
- Ministry for Primary Industries, Investigation Diagnostic Centres and Response Directorate, 25 The Terrace, Wellington, New Zealand
| | - M van Andel
- Ministry for Primary Industries, Investigation Diagnostic Centres and Response Directorate, 25 The Terrace, Wellington, New Zealand
| | - ZD Yu
- Ministry for Primary Industries, Investigation Diagnostic Centres and Response Directorate, 25 The Terrace, Wellington, New Zealand
| |
Collapse
|
18
|
Vaccines against pseudorabies virus (PrV). Vet Microbiol 2016; 206:3-9. [PMID: 27890448 DOI: 10.1016/j.vetmic.2016.11.019] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022]
Abstract
Aujeszkýs disease (AD, pseudorabies) is a notifiable herpesvirus infection of pigs causing substantial economic losses to swine producers. AD in pigs is controlled by the use of vaccination with inactivated and attenuated live vaccines. Starting with classically attenuated live vaccines derived from low virulent field isolates, AD vaccination has pioneered novel strategies in animal disease control by the first use of genetically engineered live virus vaccines lacking virulence-determining genes, and the concept of DIVA, i.e. the serological differentiation of vaccinated from field-virus infected animals by the use of marker vaccines and respective companion diagnostic tests. The basis for this concept has been the molecular characterization of PrV and the identification of so-called nonessential envelope glycoproteins, e.g. glycoprotein E, which could be eliminated from the virus without harming viral replication or immunogenicity. Eradication of AD using the strategy of vaccination-DIVA testing has successfully been performed in several countries including Germany and the United States. Furthermore, by targeted genetic modification PrV has been developed into a powerful vector system for expression of foreign genes to vaccinate against several infectious diseases of swine, while heterologous vector systems have been used for expression of major immunogens of PrV. This small concise review summarizes the state-of-the-art information on PrV vaccines and provides an outlook for the future.
Collapse
|
19
|
Gebauer J, Kudlackova H, Kosina M, Kovarcik K, Tesarik R, Osvaldova A, Faldyna M, Matiasovic J. A proteomic approach to the development of DIVA ELISA distinguishing pigs infected with Salmonella Typhimurium and pigs vaccinated with a Salmonella Typhimurium-based inactivated vaccine. BMC Vet Res 2016; 12:252. [PMID: 27835998 PMCID: PMC5106837 DOI: 10.1186/s12917-016-0879-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella enterica serovar Typhimurium is one of the most common enteropathogenic bacteria found in pigs in Europe. In our previous work, we demonstrated the protective effects in suckling piglets when their dams had been vaccinated with an S. Typhimurium-based inactivated vaccine. This study is focused on a procedure leading to serological discrimination between vaccinated and infected pigs. As we supposed, distinct environment during natural infection and in bacterial cultures used for vaccine preparation led to a slightly different spectrum of expressed S. Typhimurium proteins. The examination of porcine antibodies produced after the experimental infection with S. Typhimurium or after vaccination with S. Typhimurium-based inactivated vaccine by affinity chromatography and mass spectrometry revealed differences in antibody response applicable for serological differentiation of infected from vaccinated animals. RESULTS Antibodies against Salmonella SipB, SipD and SseB proteins were detected at much higher levels in post-infection sera in comparison with control and post-vaccination sera. On the other hand, proteins BamB, OppA and a fragment of FliC interacted with antibodies from post-vaccination sera with a much higher intensity than from control and post-infection sera. In addition, we constructed ELISA assays using post-infection antigen - SipB protein and post-vaccination antigen - FliC-fragment and evaluated them on a panel of individual porcine sera. CONCLUSIONS The analysis of antibody response of infected and vaccinated pigs by proteomic tools enabled to identify S. Typhimurium antigens useful for distinguishing infected from vaccinated animals. This approach can be utilized in other challenges where DIVA vaccine and a subsequent serological assay are required, especially when genetic modification of a vaccine strain is not desirable.
Collapse
Affiliation(s)
- Jan Gebauer
- Department of Immunology, Veterinary Research Institute, Hudcova296/70, 62100, Brno, Czech Republic. .,Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska267/2, 611 37, Brno, Czech Republic.
| | - Hana Kudlackova
- Department of Immunology, Veterinary Research Institute, Hudcova296/70, 62100, Brno, Czech Republic
| | - Marcel Kosina
- Bioveta a. s., Komenskeho212/12, 683 23, Ivanovice na Hane, Czech Republic
| | - Kamil Kovarcik
- Department of Virology, Veterinary Research Institute, Hudcova296/70, 62100, Brno, Czech Republic
| | - Radek Tesarik
- Department of Immunology, Veterinary Research Institute, Hudcova296/70, 62100, Brno, Czech Republic
| | - Alena Osvaldova
- Department of Immunology, Veterinary Research Institute, Hudcova296/70, 62100, Brno, Czech Republic.,Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42, Brno, Czech Republic
| | - Martin Faldyna
- Department of Immunology, Veterinary Research Institute, Hudcova296/70, 62100, Brno, Czech Republic
| | - Jan Matiasovic
- Department of Immunology, Veterinary Research Institute, Hudcova296/70, 62100, Brno, Czech Republic
| |
Collapse
|
20
|
Tekleghiorghis T, Weerdmeester K, van Hemert-Kluitenberg F, Moormann RJM, Dekker A. Foot-and-Mouth Disease Seroprevalence in Cattle in Eritrea. Transbound Emerg Dis 2015; 64:754-763. [PMID: 26518476 DOI: 10.1111/tbed.12434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 12/01/2022]
Abstract
Information about seroprevalence of foot-and-mouth disease (FMD) and virus serotypes in Eritrea is unavailable, but is very important as it may guide the choice of intervention measures including vaccination to be implemented. We carried out a cross-sectional study from February to June 2011 in Eritrea with a two-stage cluster design, sampling cattle in 155 villages with the objective of determining the seroprevalence of FMD in four administrative regions of the country. We analysed cattle sera (n = 2429) for FMD virus antibodies using the non-structural ELISA (NS ELISA) and virus neutralization test (VNT). The overall seroprevalence was 26% and 30% for the NS ELISA and VNT, respectively. FMD virus serotypes O (14%) and A (11%) were the most prevalent. Gash Barka showed the highest (39%) seroprevalence both in NS ELISA and VNT compared to the other three administrative regions. Strategic FMD virus vaccination with type O and A (matching circulating strains) in combination of zoo-sanitary measures would be the best control option for Eritrea which could be started in areas where the disease is less endemic.
Collapse
Affiliation(s)
- T Tekleghiorghis
- Central Veterinary Institute (Part of Wageningen UR), Lelystad, The Netherlands.,National Veterinary Laboratory, Ministry of Agriculture, Asmara, Eritrea
| | - K Weerdmeester
- Central Veterinary Institute (Part of Wageningen UR), Lelystad, The Netherlands
| | | | - R J M Moormann
- Central Veterinary Institute (Part of Wageningen UR), Lelystad, The Netherlands.,Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - A Dekker
- Central Veterinary Institute (Part of Wageningen UR), Lelystad, The Netherlands
| |
Collapse
|
21
|
Affiliation(s)
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization, University of Saskatchewan , Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
22
|
Shil NK, Legione AR, Markham PF, Noormohammadi AH, Devlin JM. Development and Validation of TaqMan Real-Time Polymerase Chain Reaction Assays for the Quantitative and Differential Detection of Wild-Type Infectious Laryngotracheitis Viruses from a Glycoprotein G–Deficient Candidate Vaccine Strain. Avian Dis 2015; 59:7-13. [DOI: 10.1637/10810-030414-reg.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
An TQ, Peng JM, Tian ZJ, Zhao HY, Li N, Liu YM, Chen JZ, Leng CL, Sun Y, Chang D, Tong GZ. Pseudorabies virus variant in Bartha-K61-vaccinated pigs, China, 2012. Emerg Infect Dis 2014; 19:1749-55. [PMID: 24188614 PMCID: PMC3837674 DOI: 10.3201/eid1911.130177] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The widely used pseudorabies virus (PRV) Bartha-K61 vaccine has played a key role in the eradication of PRV. Since late 2011, however, a disease characterized by neurologic symptoms and a high number of deaths among newborn piglets has occurred among Bartha-K61–vaccinated pigs on many farms in China. Clinical samples from pigs on 15 farms in 6 provinces were examined. The PRV gE gene was detectable by PCR in all samples, and sequence analysis of the gE gene showed that all isolates belonged to a relatively independent cluster and contained 2 amino acid insertions. A PRV (named HeN1) was isolated and caused transitional fever in pigs. In protection assays, Bartha-K61 vaccine provided 100% protection against lethal challenge with SC (a classical PRV) but only 50% protection against 4 challenges with strain HeN1. The findings suggest that Bartha-K61 vaccine does not provide effective protection against PRV HeN1 infection.
Collapse
|
24
|
Sanson R, Dubé C, Cork S, Frederickson R, Morley C. Simulation modelling of a hypothetical introduction of foot-and-mouth disease into Alberta. Prev Vet Med 2014; 114:151-63. [DOI: 10.1016/j.prevetmed.2014.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 02/23/2014] [Accepted: 03/06/2014] [Indexed: 11/28/2022]
|
25
|
Immunization with a Borrelia burgdorferi BB0172-derived peptide protects mice against lyme disease. PLoS One 2014; 9:e88245. [PMID: 24505447 PMCID: PMC3914939 DOI: 10.1371/journal.pone.0088245] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/08/2014] [Indexed: 12/15/2022] Open
Abstract
Lyme disease is the most prevalent arthropod borne disease in the US and it is caused by the bacterial spirochete Borrelia burgdorferi (Bb), which is acquired through the bite of an infected Ixodes tick. Vaccine development efforts focused on the von Willebrand factor A domain of the borrelial protein BB0172 from which four peptides (A, B, C and D) were synthesized and conjugated to Keyhole Limpet Hemocyanin, formulated in Titer Max® adjuvant and used to immunize C3H/HeN mice subcutaneously at days 0, 14 and 21. Sera were collected to evaluate antibody responses and some mice were sacrificed for histopathology to evaluate vaccine safety. Twenty-eight days post-priming, protection was evaluated by needle inoculation of half the mice in each group with 103 Bb/mouse, whereas the rest were challenged with 105Bb/mouse. Eight weeks post-priming, another four groups of similarly immunized mice were challenged using infected ticks. In both experiments, twenty-one days post-challenge, the mice were sacrificed to determine antibody responses, bacterial burdens and conduct histopathology. Results showed that only mice immunized with peptide B were protected against challenge with Bb. In addition, compared to the other the treatment groups, peptide B-immunized mice showed very limited inflammation in the heart and joint tissues. Peptide B-specific antibody titers peaked at 8 weeks post-priming and surprisingly, the anti-peptide B antibodies did not cross-react with Bb lysates. These findings strongly suggest that peptide B is a promising candidate for the development of a new DIVA vaccine (Differentiate between Infected and Vaccinated Animals) for protection against Lyme disease.
Collapse
|
26
|
Chen HT, Liu YS. Immunity of foot-and-mouth disease serotype Asia 1 by sublingual vaccination. PLoS One 2013; 8:e63839. [PMID: 23717497 PMCID: PMC3661678 DOI: 10.1371/journal.pone.0063839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/11/2013] [Indexed: 01/02/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes vesicular disease of cloven-hoofed animals, with severe agricultural and economic losses. Here we present study using a sublingual (SL) route with the killed serotype Asia 1 FMDV vaccine. Guinea pigs were vaccinated using a commercially available vaccine formulation at the manufacturer’s recommended full, 1/4, and 1/16 antigen doses. Animals were challenged with homologous FMDV Asia1 strain at various times following vaccination. All control guinea pigs exhibited clinical disease, including fever, viremia, and lesions, specifically vesicle formation in feet. Animals vaccinated with the 1/16 and 1/4 doses were protected after challenge at days 7, 28, and 35 post vaccination. These data suggest that effective protection against foot-and-mouth disease can be achieved with 1/16 of the recommended vaccine dose using SL vaccination, indicating that the sublingual route is an attractive alternative for the administration of the FMDV vaccine.
Collapse
Affiliation(s)
- Hao-tai Chen
- State Key Laboratory of Veterinary Etiologic Biology, National Foot-and-Mouth Disease Reference Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
- * E-mail: (HTC); (YSL)
| | - Yong-sheng Liu
- State Key Laboratory of Veterinary Etiologic Biology, National Foot-and-Mouth Disease Reference Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
- * E-mail: (HTC); (YSL)
| |
Collapse
|
27
|
Abstract
Vaccination for both low pathogenicity avian influenza and highly pathogenic avian influenza is commonly used by countries that have become endemic for avian influenza virus, but stamping-out policies are still common for countries with recently introduced disease. Stamping-out policies of euthanatizing infected and at-risk flocks has been an effective control tool, but it comes at a high social and economic cost. Efforts to identify alternative ways to respond to outbreaks without widespread stamping out has become a goal for organizations like the World Organisation for Animal Health. A major issue with vaccination for avian influenza is trade considerations because countries that vaccinate are often considered to be endemic for the disease and they typically lose their export markets. Primarily as a tool to promote trade, the concept of DIVA (differentiate infected from vaccinated animals) has been considered for avian influenza, but the goal for trade is to differentiate vaccinated and not-infected from vaccinated and infected animals because trading partners are unwilling to accept infected birds. Several different strategies have been investigated for a DIVA strategy, but each has advantages and disadvantages. A review of current knowledge on the research and implementation of the DIVA strategy will be discussed with possible ways to implement this strategy in the field. The increased desire for a workable DIVA strategy may lead to one of these ideas moving from the experimental to the practical.
Collapse
Affiliation(s)
- David L Suarez
- Southeast Poultry Research Laboratory, 934 College Station Road, Athens, GA 30605, USA.
| |
Collapse
|
28
|
Liu F, Wu X, Li L, Ge S, Liu Z, Wang Z. Virus-like particles: promising platforms with characteristics of DIVA for veterinary vaccine design. Comp Immunol Microbiol Infect Dis 2013; 36:343-52. [PMID: 23561290 DOI: 10.1016/j.cimid.2013.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/13/2013] [Accepted: 02/25/2013] [Indexed: 11/27/2022]
Abstract
In general, it is difficult to differentiate infected from vaccinated animals through vaccination with conventional vaccines, thereby impeding the serological surveillance of animal diseases. DIVA (differentiating infected from vaccinated animals) vaccine, originally known as marker vaccine, usually based on the absence of at least one immunogenic protein in the vaccine strain, allows DIVA in conjunction with a diagnostic test that detects antibodies against the antigens lacking in the vaccine strain. Virus-like particles (VLPs), composed of one or more structural proteins but no genomes of native viruses, mimic the organization and conformation of authentic virions but have no ability to self-replicate in cells, potentially yielding safer vaccine candidates. Since VLPs containing either monovalent or multivalent antigen can be produced in compliance with the requirements for serological surveillance, the use of VLP-based vaccines plays a promising role in DIVA vaccination strategies against animal diseases. Here, we critically reviewed VLPs and companion diagnostics with properties of DIVA for veterinary vaccine design, and three different VLPs as promising platforms for DIVA vaccination strategies in animals.
Collapse
Affiliation(s)
- Fuxiao Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, Jilin 130062, China
| | | | | | | | | | | |
Collapse
|
29
|
Hemmatzadeh F, Sumarningsih S, Tarigan S, Indriani R, Dharmayanti NLPI, Ebrahimie E, Igniatovic J. Recombinant M2e protein-based ELISA: a novel and inexpensive approach for differentiating avian influenza infected chickens from vaccinated ones. PLoS One 2013; 8:e56801. [PMID: 23437243 PMCID: PMC3578931 DOI: 10.1371/journal.pone.0056801] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/16/2013] [Indexed: 11/18/2022] Open
Abstract
Available avian influenza (AIV) serological diagnostic tests cannot distinguish vaccinated from naturally infected birds. Differentiation of vaccinated from infected animals (DIVA) is currently advocated as a means of achieving the full control of H5N1. In this study, for the first time, recombinant ectodomain of M2 protein (M2e) of avian influenza virus (H5N1 strain) was used for the DIVA serology test. M2e was cloned into pMAL-P4X vector and expressed in E. coli cells. We used Western blot to recognize the expressed M2e-MBP protein by chicken antisera produced against live H5N1 virus. Also, the specificity of M2e-MBP protein was compared to the M2e synthetic peptide via ELISA. In M2e-MBP ELISA, all sera raised against the live avian influenza viruses were positive for M2e antibodies, whereas sera from killed virus vaccination were negative. Furthermore, M2e-MBP ELISA of the field sera obtained from vaccinated and non-vaccinated chickens showed negative results, while challenged vaccinated chickens demonstrated strong positive reactions. H5N1-originated recombinant M2e protein induced broad-spectrum response and successfully reacted with antibodies against other AIV strains such as H5N2, H9N2, H7N7, and H11N6. The application of the recombinant protein instead of synthetic peptide has the advantages of continues access to an inexpensive reagent for performing a large scale screening. Moreover, recombinant proteins provide the possibility of testing the DIVA results with an additional technique such a Western blotting which is not possible in the case of synthetic proteins. All together, the results of the present investigation show that recombinant M2e-MBP can be used as a robust and inexpensive solution for DIVA test.
Collapse
Affiliation(s)
- Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Pandya M, Pacheco JM, Bishop E, Kenney M, Milward F, Doel T, Golde WT. An alternate delivery system improves vaccine performance against foot-and-mouth disease virus (FMDV). Vaccine 2012; 30:3106-11. [DOI: 10.1016/j.vaccine.2012.02.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/09/2012] [Accepted: 02/18/2012] [Indexed: 10/28/2022]
|
31
|
Cubillos C, de la Torre BG, Bárcena J, Andreu D, Sobrino F, Blanco E. Inclusion of a specific T cell epitope increases the protection conferred against foot-and-mouth disease virus in pigs by a linear peptide containing an immunodominant B cell site. Virol J 2012; 9:66. [PMID: 22416886 PMCID: PMC3313860 DOI: 10.1186/1743-422x-9-66] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/14/2012] [Indexed: 11/23/2022] Open
Abstract
Background Foot-and-mouth disease virus (FMDV) causes an economically important and highly contagious disease of cloven-hoofed animals. FMD control in endemic regions is implemented using chemically inactivated whole-virus vaccines. Currently, efforts are directed to the development of safe and marked vaccines. We have previously reported solid protection against FMDV conferred by branched structures (dendrimeric peptides) harbouring virus-specific B and T-cell epitopes. In order to gain insights into the factors determining a protective immune response against FMDV, in this report we sought to dissect the immunogenicity conferred by different peptide-based immunogens. Thus, we have assessed the immune response and protection elicited in pigs by linear peptides harbouring the same FMDV B-cell or B and T-cell epitopes (B and TB peptides, respectively). Results Pigs were twice immunized with either the B-cell epitope (site A) peptide or with TB, a peptide where the B-cell epitope was in tandem with the T-cell epitope [3A (21-35)]. Both, B and TB peptides were able to induce specific humoral (including neutralizing antibodies) and cellular immune responses against FMDV, but did not afford full protection in pigs. The data obtained showed that the T-cell epitope used is capable to induce efficient T-cell priming that contributes to improve the protection against FMDV. However, the IgA titres and IFNγ release elicited by these linear peptides were lower than those detected previously with the dendrimeric peptides. Conclusions We conclude that the incorporation of a FMDV specific T-cell epitope in the peptide formulation allows a significant reduction in virus excretion and clinical score after challenge. However, the linear TB peptide did not afford full protection in challenged pigs, as that previously reported using the dendrimeric construction indicating that, besides the inclusion of an adecuate T-cell epitope in the formulation, an efficient presentation of the B-cell epitope is crucial to elicit full protection by peptide vaccines.
Collapse
Affiliation(s)
- Carolina Cubillos
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar, Valdeolmos, 28130 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Balamurugan V, Venkatesan G, Sen A, Annamalai L, Bhanuprakash V, Singh RK. Recombinant protein-based viral disease diagnostics in veterinary medicine. Expert Rev Mol Diagn 2010; 10:731-53. [PMID: 20843198 DOI: 10.1586/erm.10.61] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identification of pathogens or antibody response to pathogens in human and animals modulates the treatment strategies for naive population and subsequent infections. Diseases can be controlled and even eradicated based on the epidemiology and effective prophylaxis, which often depends on development of efficient diagnostics. In addition, combating newly emerging diseases in human as well as animal healthcare is challenging and is dependent on developing safe and efficient diagnostics. Detection of antibodies directed against specific antigens has been the method of choice for documenting prior infection. Other than zoonosis, development of inexpensive vaccines and diagnostics is a unique problem in animal healthcare. The advent of recombinant DNA technology and its application in the biotechnology industry has revolutionized animal healthcare. The use of recombinant DNA technology in animal disease diagnosis has improved the rapidity, specificity and sensitivity of various diagnostic assays. This is because of the absence of host cellular proteins in the recombinant derived antigen preparations that dramatically decrease the rate of false-positive reactions. Various recombinant products are used for disease diagnosis in veterinary medicine and this article discusses recombinant-based viral disease diagnostics currently used for detection of pathogens in livestock and poultry.
Collapse
|
33
|
Tignon M, Kulcsár G, Haegeman A, Barna T, Fábián K, Lévai R, Van der Stede Y, Farsang A, Vrancken R, Belák K, Koenen F. Classical swine fever: Comparison of oronasal immunisation with CP7E2alf marker and C-strain vaccines in domestic pigs. Vet Microbiol 2010; 142:59-68. [DOI: 10.1016/j.vetmic.2009.09.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Avellaneda G, Mundt E, Lee CW, Jadhao S, Suarez DL. Differentiation of Infected and Vaccinated Animals (DIVA) Using the NS1 Protein of Avian Influenza Virus. Avian Dis 2010; 54:278-86. [DOI: 10.1637/8644-020409-reg.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Uttenthal A, Parida S, Rasmussen TB, Paton DJ, Haas B, Dundon WG. Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza. Expert Rev Vaccines 2010; 9:73-87. [PMID: 20021307 DOI: 10.1586/erv.09.130] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The prophylactic use of vaccines against exotic viral infections in production animals is undertaken exclusively in regions where the disease concerned is endemic. In such areas, the infection pressure is very high and so, to assure optimal protection, the most efficient vaccines are used. However, in areas considered to be free from these diseases and in which there is the possibility of only limited outbreaks, the use of Differentiation of Infected from Vaccinated Animals (DIVA) or marker vaccines allows for vaccination while still retaining the possibility of serological surveillance for the presence of infection. This literature review describes the current knowledge on the use of DIVA diagnostic strategies for three important transboundary animal diseases: foot-and-mouth disease in cloven-hoofed animals, classical swine fever in pigs and avian influenza in poultry.
Collapse
Affiliation(s)
- Ase Uttenthal
- National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark.
| | | | | | | | | | | |
Collapse
|
36
|
Vaccination for respiratory immunity: latest developments. Anim Health Res Rev 2009; 10:155-8. [DOI: 10.1017/s1466252309990211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAdvances over the last 20 years in immunology and molecular biology have provided many new tools for identifying the important antigens and new ways to achieve the appropriate immune responses to these antigens. These provide many more options to achieve the best immune response from deletion mutations, subunit antigens, vectors or DNA immunization. These tools are being adopted to screen, discover and produce the appropriate antigens and to deliver them by the optimal method and with novel adjuvants to achieve the appropriate immune response. These developments will result in vaccines for respiratory disease that are safer and more efficacious, and provide greater flexibility for use and administration.
Collapse
|
37
|
Enhanced mucosal immunoglobulin A response and solid protection against foot-and-mouth disease virus challenge induced by a novel dendrimeric peptide. J Virol 2008; 82:7223-30. [PMID: 18448530 DOI: 10.1128/jvi.00401-08] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The successful use of a dendrimeric peptide to protect pigs against challenge with foot-and-mouth disease virus (FMDV), which causes the most devastating animal disease worldwide, is described. Animals were immunized intramuscularly with a peptide containing one copy of a FMDV T-cell epitope and branching out into four copies of a B-cell epitope. The four immunized pigs did not develop significant clinical signs upon FMDV challenge, neither systemic nor mucosal FMDV replication, nor was its transmission to contact control pigs observed. The dendrimeric construction specifically induced high titers of FMDV-neutralizing antibodies and activated FMDV-specific T cells. Interestingly, a potent anti-FMDV immunoglobulin A response (local and systemic) was observed, despite the parenteral administration of the peptide. On the other hand, peptide-immunized animals showed no antibodies specific of FMDV infection, which qualifies the peptide as a potential marker vaccine. Overall, the dendrimeric peptide used elicited an immune response comparable to that found for control FMDV-infected pigs that correlated with a solid protection against FMDV challenge. Dendrimeric designs of this type may hold substantial promise for peptide subunit vaccine development.
Collapse
|
38
|
Dundon WG, Maniero S, Toffan A, Capua I, Cattoli G. Appearance of Serum Antibodies Against the Avian Influenza Nonstructural 1 Protein in Experimentally Infected Chickens and Turkeys. Avian Dis 2007; 51:209-12. [PMID: 17494555 DOI: 10.1637/7556-033106r.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In order to support eradication efforts of avian influenza (AI) infections in poultry, the implementation of "differentiation of infected from vaccinated animals" (DIVA) vaccination strategies has been recommended by international organizations. These systems enable the detection of field exposure in vaccinated flocks, and through this detection, infected flocks may be properly managed, thus interrupting the perpetuation of the infectious cycle. A promising system, based on the detection of antibodies to the nonstructural 1 (NS1) protein of AI, has been deemed a good candidate. However, there are presently no data available, in support of this DIVA system, with regard to the kinetics of antibody production against the NS1 proteins in poultry following infection. The present investigation was undertaken to establish the dynamics of the appearance of anti-NS1 antibodies in a naïve population. Following experimental infection of turkeys, antibodies to a peptide spanning the c-terminal of the NS1 protein were detected by enzyme-linked immunosorbent assay (ELISA) starting between day 3 and day 5 postinfection. In contrast, no antibodies to the NS1 peptide could be detected in chickens over the test period. In addition, the turkeys and chickens reacted differently at a clinical level to the infection by the H9N2 challenge virus. Taken together, these findings indicate that there is a significant difference in the viral replication in turkeys and chickens, resulting in a variation in the production of antibodies to NS1, as detected by the peptide-based ELISA used. This fact must be taken into consideration when using a DIVA system based on the identification of antibodies to the NS1 protein.
Collapse
Affiliation(s)
- William G Dundon
- OIE, FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Italy
| | | | | | | | | |
Collapse
|
39
|
Patterson EV, Reese MJ, Tucker SJ, Dubovi EJ, Crawford PC, Levy JK. Effect of vaccination on parvovirus antigen testing in kittens. J Am Vet Med Assoc 2007; 230:359-63. [PMID: 17269866 DOI: 10.2460/javma.230.3.359] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the frequency and duration of feline panleukopenia virus (FPV) vaccine-induced interference with fecal parvovirus diagnostic testing in cats. DESIGN Prospective controlled study. ANIMALS Sixty-four 8- to 10-week-old specific-pathogen-free kittens. PROCEDURES Kittens were inoculated once with 1 of 8 commercial multivalent vaccines containing modified-live virus (MLV) or inactivated FPV by the SC or intranasal routes. Feces were tested for parvovirus antigen immediately prior to vaccination, then daily for 14 days with 3 tests designed for detection of canine parvovirus. Serum anti-FPV antibody titers were determined by use of hemagglutination inhibition prior to vaccination and 14 days later. RESULTS All fecal parvovirus test results were negative prior to vaccination. After vaccination, 1 kitten had positive test results with test 1, 4 kittens had positive results with test 2, and 13 kittens had positive results with test 3. Only 1 kitten had positive results with all 3 tests, and only 2 of those tests were subjectively considered to have strongly positive results. At 14 days after vaccination, 31% of kittens receiving inactivated vaccines had protective FPV titers, whereas 85% of kittens receiving MLV vaccines had protective titers. CONCLUSIONS AND CLINICAL RELEVANCE Animal shelter veterinarians should select fecal tests for parvovirus detection that have high sensitivity for FPV and low frequency of vaccine-related test interference. Positive parvovirus test results should be interpreted in light of clinical signs, vaccination history, and results of confirmatory testing. Despite the possibility of test interference, the benefit provided by universal MLV FPV vaccination of cats in high-risk environments such as shelters outweighs the impact on diagnostic test accuracy.
Collapse
Affiliation(s)
- Erin V Patterson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
40
|
Richt JA, Lekcharoensuk P, Lager KM, Vincent AL, Loiacono CM, Janke BH, Wu WH, Yoon KJ, Webby RJ, Solórzano A, García-Sastre A. Vaccination of pigs against swine influenza viruses by using an NS1-truncated modified live-virus vaccine. J Virol 2006; 80:11009-18. [PMID: 16943300 PMCID: PMC1642165 DOI: 10.1128/jvi.00787-06] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Swine influenza viruses (SIV) naturally infect pigs and can be transmitted to humans. In the pig, genetic reassortment to create novel influenza subtypes by mixing avian, human, and swine influenza viruses is possible. An SIV vaccine inducing cross-protective immunity between different subtypes and strains circulating in pigs is highly desirable. Previously, we have shown that an H3N2 SIV (A/swine/Texas/4199-2/98 [TX98]) containing a deleted NS1 gene expressing a truncated NS1 protein of 126 amino acids, NS1black triangle126, was attenuated in swine. In this study, 4-week-old pigs were vaccinated with the TX98 NS1black triangle126 modified live virus (MLV). Ten days after boosting, pigs were challenged with wild-type homologous H3N2 or heterosubtypic H1N1 SIV and sacrificed 5 days later. The MLV was highly attenuated and completely protected against challenge with the homologous virus. Vaccinated pigs challenged with the heterosubtypic H1N1 virus demonstrated macroscopic lung lesions similar to those of the unvaccinated H1N1 control pigs. Remarkably, vaccinated pigs challenged with the H1N1 SIV had significantly lower microscopic lung lesions and less virus shedding from the respiratory tract than did unvaccinated, H1N1-challenged pigs. All vaccinated pigs developed significant levels of hemagglutination inhibition and enzyme-linked immunosorbent assay titers in serum and mucosal immunoglobulin A antibodies against H3N2 SIV antigens. Vaccinated pigs were seronegative for NS1, indicating the potential use of the TX98 NS1black triangle126 MLV as a vaccine to differentiate infected from vaccinated animals.
Collapse
Affiliation(s)
- Jürgen A Richt
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 2300 Dayton Ave. B-15, Ames, IA 50010, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Molecular technology has given us a greater insight into the aetiology of disease, the functioning of the immune system and the mode of action of veterinary pathogens. The knowledge gained has been used to develop new vaccines with specific, reactive antigens which elicit protective immune mediated responses (humoral and/or cell mediated) in the host. These vaccines should not burden the immune system by initiating responses against non-essential antigens. However, the efficacy of these vaccines is only as good as the delivery technology or route used to present them to the immune system. Some vaccines, traditionally given by the parenteral route, are now given by the natural route; either orally or intranasally. Two major advantages, often interrelated, are the rapid onset of immunity and stimulation of the local, mucosal immunity. These new technologies are now making an impact on current vaccine development. The balance has to be found between what is technologically feasible and what will provide at least as good a protective immunity as current, conventional vaccines. As new and emerging diseases appear globally, new opportunities arise for molecular and conventional technologies to be applied to both the development and delivery of novel vaccines, as well as the improvement of vaccines in current use.
Collapse
Affiliation(s)
- W S K Chalmers
- Intervet UK Ltd., Walton Manor, Walton, Milton Keynes, Buckinghamshire MK7 7AJ, UK.
| |
Collapse
|
42
|
Dundon WG, Milani A, Cattoli G, Capua I. Progressive truncation of the Non-Structural 1 gene of H7N1 avian influenza viruses following extensive circulation in poultry. Virus Res 2006; 119:171-6. [PMID: 16464514 DOI: 10.1016/j.virusres.2006.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 01/03/2006] [Accepted: 01/06/2006] [Indexed: 11/25/2022]
Abstract
In order to support eradication efforts of avian influenza (AI) infections in poultry, the implementation of "DIVA" vaccination strategies, enabling the Differentiation of Infected from Vaccinated Animals have been recommended by international organisations. A system, based on the detection of antibodies to the Non-Structural 1 (NS1) protein of AI has been proposed but the success of such a system lies in the conservation of the NS1 protein among different AI isolates. With this in mind, the ns1 gene of 40 influenza A viruses isolated from a spectrum of avian species was sequenced and compared phylogenetically. The isolates included both low pathogenicity (LPAI) (n=22) and highly pathogenic (HPAI) (n=18) viruses of the H7 subtype and were representative of the avian influenza viruses that circulated in Northern Italy from 1999 to 2003. Size variation in the predicted amino acid sequence of each NS1 was revealed with two different levels of carboxy-terminal truncation being observed. Of the 40 isolates analysed, 16 had a full-length NS1 protein of 230 aa, 6 had a truncated protein of 220 aa and 18 had an intermediate truncation resulting in a protein of 224 aa. All of the H7N1 HPAI isolates possessed the intermediate carboxy-terminal truncation. In addition, all of the H7N1 LPAI viruses circulating at the beginning of the epidemic had a full length NS1 while those circulating towards the end of the period had a truncated protein. To determine whether modifications to NS1 could be a result of laboratory manipulation, two strains (A/ty/Italy/977/99 and A/ck/Italy/1082/99) with a full length NS1 were inoculated into 10-day-old embryonated chicken and 12-day-old embryonated turkey eggs via the allantoic route for 20 blind passages and sequenced at passages 3, 10, and 20. No truncation was observed following these serial passages. To determine whether the truncation involved an immunogenic region of the NS1 protein a peptide spanning residues 219 aa to 230 aa was synthesized and tested in an indirect ELISA against sera obtained from turkeys experimentally infected with a virus strain known to have a full length NS1 protein. The peptide proved to be immunogenic highlighting the fact that the variations of the NS1 protein presented in this work must to be taken into consideration when developing a diagnostic test based on the identification of antibodies to the NS1 protein.
Collapse
Affiliation(s)
- William G Dundon
- OIE, FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, Legnaro 35020 (PD), Italy.
| | | | | | | |
Collapse
|