1
|
Moskaev AV, Bega AG, Brusentsov II, Naumenko AN, Karagodin DA, Razumeiko VN, Andrianov BV, Goryacheva II, Lee EY, Panov VI, Sharakhov IV, Sharakhova MV, Gordeev MI. Species Composition, Ecological Preferences, and Chromosomal Polymorphism of Malaria Mosquitoes of the Crimean Peninsula and the Black Sea Coast of the Caucasus. INSECTS 2025; 16:367. [PMID: 40332871 PMCID: PMC12027981 DOI: 10.3390/insects16040367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 05/08/2025]
Abstract
In this study, we sampled malaria mosquito larvae in natural and artificial breeding places to study the geographical distribution, ecological preferences, and chromosomal variability of different species of the genus Anopheles in the territory of the Crimean Peninsula and the Black Sea coast of the Caucasus. Species were diagnosed using a combination of morphological, cytogenetic, and molecular markers. The ecological conditions of the larval habitats, such as dissolved oxygen content in the water, acidity, salinity, and temperature, were measured. Seven species of malaria mosquitoes were identified in the pool of 2229 individual mosquitoes collected at 56 breeding sites, including An. atroparvus, An. claviger, An. daciae (formerly identified as An. messeae s. l.), An. hyrcanus, An. maculipennis s. s., An. plumbeus, and An. melanoon. The previously recorded species of An. algeriensis, An. messeae s. s., An. sacharovi, and An. superpictus were not found in this study. Anopheles maculipennis was dominant in typical anophylogenic water bodies. Anopheles plumbeus, which used to breed mainly in tree holes in coastal forests, has spread to urban settlements along the Black Sea coast and breeds in artificial containers. Chromosomal polymorphism was studied and found in An. atroparvus and An. daciae populations. Differences in the chromosomal composition of An. daciae populations in Crimea and on the Black Sea coast of the Caucasus were revealed. The Crimean population had a low level of polymorphism in autosomal inversions. The data obtained in this study can be used to inform a better control of potential malaria vectors in the Black Sea coastal region.
Collapse
Affiliation(s)
- Anton V. Moskaev
- Laboratory of Experimental Biology and Biotechnology, Scientific and Educational Center in Chernogolovka, Federal State University of Education, Moscow 105005, Russia; (A.V.M.); (A.G.B.); (I.I.G.); (E.Y.L.); (V.I.P.)
- Analytical Laboratory for Environmental Monitoring, Vernadsky Russian State University of National Economy, Balashikha 143907, Moscow Region, Russia
| | - Anna G. Bega
- Laboratory of Experimental Biology and Biotechnology, Scientific and Educational Center in Chernogolovka, Federal State University of Education, Moscow 105005, Russia; (A.V.M.); (A.G.B.); (I.I.G.); (E.Y.L.); (V.I.P.)
- Laboratory of Insect Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Ilya I. Brusentsov
- Laboratory of Cell Differentiation Mechanisms, The Federal Research Center, Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (I.I.B.); (D.A.K.); (M.V.S.)
| | - Anastasia N. Naumenko
- Department of Entomology, The Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA (I.V.S.)
| | - Dmitriy A. Karagodin
- Laboratory of Cell Differentiation Mechanisms, The Federal Research Center, Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (I.I.B.); (D.A.K.); (M.V.S.)
| | - Vladimir N. Razumeiko
- Department of Ecology and Zoology, Vernadsky Crimean Federal University, Simferopol 295007, Russia;
| | - Boris V. Andrianov
- Laboratory of Insect Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Irina I. Goryacheva
- Laboratory of Experimental Biology and Biotechnology, Scientific and Educational Center in Chernogolovka, Federal State University of Education, Moscow 105005, Russia; (A.V.M.); (A.G.B.); (I.I.G.); (E.Y.L.); (V.I.P.)
- Laboratory of Insect Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Elizaveta Y. Lee
- Laboratory of Experimental Biology and Biotechnology, Scientific and Educational Center in Chernogolovka, Federal State University of Education, Moscow 105005, Russia; (A.V.M.); (A.G.B.); (I.I.G.); (E.Y.L.); (V.I.P.)
| | - Vladimir I. Panov
- Laboratory of Experimental Biology and Biotechnology, Scientific and Educational Center in Chernogolovka, Federal State University of Education, Moscow 105005, Russia; (A.V.M.); (A.G.B.); (I.I.G.); (E.Y.L.); (V.I.P.)
| | - Igor V. Sharakhov
- Department of Entomology, The Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA (I.V.S.)
- Department of Genetics and Cell Biology, Tomsk State University, Tomsk 634050, Russia
| | - Maria V. Sharakhova
- Laboratory of Cell Differentiation Mechanisms, The Federal Research Center, Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (I.I.B.); (D.A.K.); (M.V.S.)
- Department of Entomology, The Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA (I.V.S.)
| | - Mikhail I. Gordeev
- Analytical Laboratory for Environmental Monitoring, Vernadsky Russian State University of National Economy, Balashikha 143907, Moscow Region, Russia
- Department of General Biology and Ecology, Federal State University of Education, Moscow 105005, Russia
| |
Collapse
|
2
|
Ferraguti M. Mosquito species identity matters: unraveling the complex interplay in vector-borne diseases. Infect Dis (Lond) 2024; 56:685-696. [PMID: 38795138 DOI: 10.1080/23744235.2024.2357624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/18/2024] [Accepted: 05/14/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND Research on vector-borne diseases has traditionally centred on a limited number of vertebrate hosts and their associated pathogens, often neglecting the broader array of vectors within communities. Mosquitoes, with their vast species diversity, hold a central role in disease transmission, yet their capacity to transmit specific pathogens varies considerably among species. Quantitative modelling of mosquito-borne diseases is essential for understanding transmission dynamics and requires the necessity of incorporating the identity of vector species into these models. Consequently, understanding the role of different species of mosquitoes in modelling vector-borne diseases is crucial for comprehending pathogen amplification and spill-over into humans. This comprehensive overview highlights the importance of considering mosquito identity and emphasises the essential need for targeted research efforts to gain a complete understanding of vector-pathogen specificity. METHODS Leveraging the recently published book, 'Mosquitoes of the World', I identified 19 target mosquito species in Europe, highlighting the diverse transmission patterns exhibited by different vector species and the presence of 135 medically important pathogens. RESULTS The review delves into the complexities of vector-pathogen interactions, with a focus on specialist and generalist strategies. Furthermore, I discuss the importance of using appropriate diversity indices and the challenges associated with the identification of correct indices. CONCLUSIONS Given that the diversity and relative abundance of key species within a community significantly impact disease risk, comprehending the implications of mosquito diversity in pathogen transmission at a fine scale is crucial for advancing the management and surveillance of mosquito-borne diseases.
Collapse
Affiliation(s)
- Martina Ferraguti
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- Department of Theoretical and Computational Ecology (TCE), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
3
|
Soboleva ES, Kirilenko KM, Fedorova VS, Kokhanenko AA, Artemov GN, Sharakhov IV. Two Nested Inversions in the X Chromosome Differentiate the Dominant Malaria Vectors in Europe, Anopheles atroparvus and Anopheles messeae. INSECTS 2024; 15:312. [PMID: 38786868 PMCID: PMC11122324 DOI: 10.3390/insects15050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The Maculipennis subgroup of malaria mosquitoes includes both dominant malaria vectors and non-vectors in Eurasia. Understanding the genetic factors, particularly chromosomal inversions, that differentiate Anopheles species can provide valuable insights for vector control strategies. Although autosomal inversions between the species in this subgroup have been characterized based on the chromosomal banding patterns, the number and positions of rearrangements in the X chromosome remain unclear due to the divergent banding patterns. Here, we identified two large X chromosomal inversions, approximately 13 Mb and 10 Mb in size, using fluorescence in situ hybridization. The inversion breakpoint regions were mapped by hybridizing 53 gene markers with polytene chromosomes of An. messeae. The DNA probes were designed based on gene sequences from the annotated An. atroparvus genome. The two nested inversions resulted in five syntenic blocks. Only two small syntenic blocks, which encompass 181 annotated genes in the An. atroparvus genome, changed their position and orientation in the X chromosome. The analysis of the An. atroparvus genome revealed an enrichment of gene ontology terms associated with immune system and mating behavior in the rearranged syntenic blocks. Additionally, the enrichment of DNA transposons was found in sequences homologous to three of the four breakpoint regions. This study demonstrates the successful application of the physical genome mapping approach to identify rearrangements that differentiate species in insects with polytene chromosomes.
Collapse
Affiliation(s)
- Evgenia S. Soboleva
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
| | - Kirill M. Kirilenko
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
| | - Valentina S. Fedorova
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
| | - Alina A. Kokhanenko
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
| | - Gleb N. Artemov
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
| | - Igor V. Sharakhov
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Mwima R, Hui TYJ, Nanteza A, Burt A, Kayondo JK. Potential persistence mechanisms of the major Anopheles gambiae species complex malaria vectors in sub-Saharan Africa: a narrative review. Malar J 2023; 22:336. [PMID: 37936194 PMCID: PMC10631165 DOI: 10.1186/s12936-023-04775-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
The source of malaria vector populations that re-establish at the beginning of the rainy season is still unclear yet knowledge of mosquito behaviour is required to effectively institute control measures. Alternative hypotheses like aestivation, local refugia, migration between neighbouring sites, and long-distance migration (LDM) are stipulated to support mosquito persistence. This work assessed the malaria vector persistence dynamics and examined various studies done on vector survival via these hypotheses; aestivation, local refugia, local or long-distance migration across sub-Saharan Africa, explored a range of methods used, ecological parameters and highlighted the knowledge trends and gaps. The results about a particular persistence mechanism that supports the re-establishment of Anopheles gambiae, Anopheles coluzzii or Anopheles arabiensis in sub-Saharan Africa were not conclusive given that each method used had its limitations. For example, the Mark-Release-Recapture (MRR) method whose challenge is a low recapture rate that affects its accuracy, and the use of time series analysis through field collections whose challenge is the uncertainty about whether not finding mosquitoes during the dry season is a weakness of the conventional sampling methods used or because of hidden shelters. This, therefore, calls for further investigations emphasizing the use of ecological experiments under controlled conditions in the laboratory or semi-field, and genetic approaches, as they are known to complement each other. This review, therefore, unveils and assesses the uncertainties that influence the different malaria vector persistence mechanisms and provides recommendations for future studies.
Collapse
Affiliation(s)
- Rita Mwima
- Department of Entomology, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Tin-Yu J Hui
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Ann Nanteza
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Austin Burt
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Jonathan K Kayondo
- Department of Entomology, Uganda Virus Research Institute (UVRI), Entebbe, Uganda.
| |
Collapse
|
5
|
Dong H, Yuan H, Yang X, Shan W, Zhou Q, Tao F, Zhao C, Bai J, Li X, Ma Y, Peng H. Phylogenetic Analysis of Some Species of the Anopheles hyrcanus Group (Diptera: Culicidae) in China Based on Complete Mitochondrial Genomes. Genes (Basel) 2023; 14:1453. [PMID: 37510357 PMCID: PMC10379722 DOI: 10.3390/genes14071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Some species of the Hyrcanus group are vectors of malaria in China. However, the member species are difficult to identify accurately by morphology. The development of sequencing technologies offers the possibility of further studies based on the complete mitochondrial genome. In this study, samples of mosquitoes of the Hyrcanus group were collected in China between 1997 and 2015. The mitochondrial genomes of ten species of the Hyrcanus group were analyzed, including the structure and base composition, codon usage, secondary structure of tRNA, and base difference sites in protein coding regions. Phylogenetic analyses using maximum-likelihood and Bayesian inference were performed based on mitochondrial genes and complete mitochondrial genomes The mitochondrial genome of 10 Hyrcanus group members ranged from 15,403 bp to 15,475 bp, with an average 78.23% (A + T) content, comprising of 13 PCGs (protein coding genes), 22 tRNAs, and 2 rRNAs. Site differences between some closely related species in the PCGs were small. There were only 36 variable sites between Anopheles sinensis and Anopheles belenrae for a variation ratio of 0.32% in all PCGs. The pairwise interspecies distance based on 13 PCGs was low, with an average of 0.04. A phylogenetic tree constructed with the 13 PCGs was consistent with the known evolutionary relationships. Some phylogenetic trees constructed by single coding regions (such as COI or ND4) or combined coding regions (COI + ND2 + ND4 + ND5 or ND2 + ND4) were consistent with the phylogenetic tree constructed using the 13 PCGs. The phylogenetic trees constructed using some coding genes (COII, ND5, tRNAs, 12S rRNA, and 16S rRNA) differed from the phylogenetic tree constructed using PCGs. The difference in mitochondrial genome sequences between An. sinensis and An. belenrae was very small, corresponding to intraspecies difference, suggesting that the species was in the process of differentiation. The combination of all 13 PCG sequences was demonstrated to be optimal for phylogenetic analysis in closely related species.
Collapse
Affiliation(s)
- Haowei Dong
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Hao Yuan
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Xusong Yang
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Wenqi Shan
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Qiuming Zhou
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Feng Tao
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Chunyan Zhao
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Jie Bai
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Xiangyu Li
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| | - Yajun Ma
- College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Heng Peng
- Department of Pathogen Biology, College of Basic Medical, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
6
|
Yurchenko AA, Naumenko AN, Artemov GN, Karagodin DA, Hodge JM, Velichevskaya AI, Kokhanenko AA, Bondarenko SM, Abai MR, Kamali M, Gordeev MI, Moskaev AV, Caputo B, Aghayan SA, Baricheva EM, Stegniy VN, Sharakhova MV, Sharakhov IV. Phylogenomics revealed migration routes and adaptive radiation timing of Holarctic malaria mosquito species of the Maculipennis Group. BMC Biol 2023; 21:63. [PMID: 37032389 PMCID: PMC10084679 DOI: 10.1186/s12915-023-01538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/08/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Phylogenetic analyses of closely related species of mosquitoes are important for better understanding the evolution of traits contributing to transmission of vector-borne diseases. Six out of 41 dominant malaria vectors of the genus Anopheles in the world belong to the Maculipennis Group, which is subdivided into two Nearctic subgroups (Freeborni and Quadrimaculatus) and one Palearctic (Maculipennis) subgroup. Although previous studies considered the Nearctic subgroups as ancestral, details about their relationship with the Palearctic subgroup, and their migration times and routes from North America to Eurasia remain controversial. The Palearctic species An. beklemishevi is currently included in the Nearctic Quadrimaculatus subgroup adding to the uncertainties in mosquito systematics. RESULTS To reconstruct historic relationships in the Maculipennis Group, we conducted a phylogenomic analysis of 11 Palearctic and 2 Nearctic species based on sequences of 1271 orthologous genes. The analysis indicated that the Palearctic species An. beklemishevi clusters together with other Eurasian species and represents a basal lineage among them. Also, An. beklemishevi is related more closely to An. freeborni, which inhabits the Western United States, rather than to An. quadrimaculatus, a species from the Eastern United States. The time-calibrated tree suggests a migration of mosquitoes in the Maculipennis Group from North America to Eurasia about 20-25 million years ago through the Bering Land Bridge. A Hybridcheck analysis demonstrated highly significant signatures of introgression events between allopatric species An. labranchiae and An. beklemishevi. The analysis also identified ancestral introgression events between An. sacharovi and its Nearctic relative An. freeborni despite their current geographic isolation. The reconstructed phylogeny suggests that vector competence and the ability to enter complete diapause during winter evolved independently in different lineages of the Maculipennis Group. CONCLUSIONS Our phylogenomic analyses reveal migration routes and adaptive radiation timing of Holarctic malaria vectors and strongly support the inclusion of An. beklemishevi into the Maculipennis Subgroup. Detailed knowledge of the evolutionary history of the Maculipennis Subgroup provides a framework for examining the genomic changes related to ecological adaptation and susceptibility to human pathogens. These genomic variations may inform researchers about similar changes in the future providing insights into the patterns of disease transmission in Eurasia.
Collapse
Affiliation(s)
- Andrey A Yurchenko
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Kurchatov Genomics Center, the Federal Research Center, Institute of Cytology and Genetics, Novosibirsk, Russia
- Current Address: INSERM U981, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Anastasia N Naumenko
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Gleb N Artemov
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Dmitry A Karagodin
- Laboratory of Cell Differentiation Mechanisms, the Federal Research Center, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - James M Hodge
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alena I Velichevskaya
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Alina A Kokhanenko
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Semen M Bondarenko
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Mohammad R Abai
- Department of Medical Entomology and Vector Control, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Kamali
- Department of Medical Entomology and Parasitology, Tarbiat Modares University, Tehran, Iran
| | - Mikhail I Gordeev
- Department of General Biology and Ecology, State University of Education, Mytishchi, Russia
| | - Anton V Moskaev
- Department of General Biology and Ecology, State University of Education, Mytishchi, Russia
| | - Beniamino Caputo
- Dipartimento Di Sanità Pubblica E Malattie Infettive, Università Sapienza, Rome, Italy
| | - Sargis A Aghayan
- Scientific Center of Zoology and Hydroecology, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
- Department of Zoology, Yerevan State University, Yerevan, Armenia
| | - Elina M Baricheva
- Laboratory of Cell Differentiation Mechanisms, the Federal Research Center, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Vladimir N Stegniy
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Maria V Sharakhova
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Laboratory of Cell Differentiation Mechanisms, the Federal Research Center, Institute of Cytology and Genetics, Novosibirsk, Russia.
| | - Igor V Sharakhov
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Department of Genetics and Cell Biology and the Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia.
| |
Collapse
|
7
|
Maharaj S, Ekoka E, Erlank E, Nardini L, Reader J, Birkholtz LM, Koekemoer LL. The ecdysone receptor regulates several key physiological factors in Anopheles funestus. Malar J 2022; 21:97. [PMID: 35305668 PMCID: PMC8934008 DOI: 10.1186/s12936-022-04123-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Malaria is a devastating disease, transmitted by female Anopheles mosquitoes infected with Plasmodium parasites. Current insecticide-based strategies exist to control the spread of malaria by targeting vectors. However, the increase in insecticide resistance in vector populations hinder the efficacy of these methods. It is, therefore, essential to develop novel vector control methods that efficiently target transmission reducing factors such as vector density and competence. A possible vector control candidate gene, the ecdysone receptor, regulates longevity, reproduction, immunity and other physiological processes in several insects, including malaria vectors. Anopheles funestus is a prominent vector in sub-Saharan Africa, however, the function of the ecdysone receptor in this mosquito has not previously been studied. This study aimed to determine if the ecdysone receptor depletion impacts An. funestus longevity, reproduction and susceptibility to Plasmodium falciparum infection.
Methods
RNA interference was used to reduce ecdysone receptor expression levels in An. funestus females and investigate how the above-mentioned phenotypes are influenced. Additionally, the expression levels of the ecdysone receptor, and reproduction genes lipophorin and vitellogenin receptor as well as the immune gene, leucine rich immune molecule 9 were determined in ecdysone receptor-depleted mosquitoes using quantitative polymerase chain reaction.
Results
Ecdysone receptor-depleted mosquitoes had a shorter lifespan, impaired oogenesis, were less fertile, and had reduced P. falciparum infection intensity.
Conclusions
Overall, this study provides the first experimental evidence that supports ecdysone receptor as a potential target in the development of vector control measures targeting An. funestus.
Collapse
|
8
|
Thabet HS, TagEldin RA, Fahmy NT, Diclaro JW, Alaribe AA, Ezedinachi E, Nwachuku NS, Odey FO, Arimoto H. Spatial Distribution of PCR-Identified Species of Anopheles gambiae senu lato (Diptera: Culicidae) Across Three Eco-Vegetational Zones in Cross River State, Nigeria. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:576-584. [PMID: 35064267 DOI: 10.1093/jme/tjab221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 06/14/2023]
Abstract
Anopheles gambiae sensu lato complex (An. gambiae s.l.) describes a group of nine morphologically indistinguishable members that vary in their distribution, ability to transmit malaria, and susceptibility to pyrethroids. Here, we recorded the spatial patterns of PCR-identified An. gambiae s.l. complex species collected from four sites in Cross River State, Nigeria that represented three different ecological zones. Trapping was conducted between October 2015 and June 2016. Anopheles gambiae s.l. complex species identification was performed using species-specific primers followed by An. gambiae and An. coluzzii differentiation using the restriction fragment length polymorphism (RFLP) method. Bivariate and multivariate logistic regression models were used to identify ecological and seasonal variables closely associated with An. coluzzii and An. gambiae distribution. Out of 1,388 An. gambiae s.l. successfully amplified, 1,074 (77.4%) were An. coluzzii, 278 (20%) were An. gambiae, and 25 (1.8%) were hybrids (An. coluzzii/An. gambiae). A very small number of An. arabiensis (0.8%, n = 11) were also collected. Statistical analysis indicated that An. coluzzii is predominant in Guinea-savannah and tropical rainforest, and is highly associated with rainy seasons, while, An. gambiae is prevalent in mangrove swamp forest during dry seasons. Only 13 An. gambiae s.l. females were infected with Plasmodium falciparum (P. falciparum). The sporozoite infection rate was higher in mangrove swamp forest (53.8%, n = 7) than in rain forest (38.5%, n = 5) followed by Guinea-savannah (7.7%, n = 1) ecological zones. These results provide important insights for strategic planning of malaria control programs in Nigeria.
Collapse
Affiliation(s)
- H S Thabet
- U.S. Naval Medical Research Unit No. 3 (NAMRU-3), Cairo Detachment, Egypt
| | - R A TagEldin
- U.S. Naval Medical Research Unit No. 3 (NAMRU-3), Cairo Detachment, Egypt
| | - N T Fahmy
- U.S. Naval Medical Research Unit No. 3 (NAMRU-3), Cairo Detachment, Egypt
| | - J W Diclaro
- U.S. Naval Medical Research Unit No. 3 (NAMRU-3), Cairo Detachment, Egypt
- Navy Entomology Center of Excellence (NECE), Jacksonville, FL, USA
| | - A A Alaribe
- Calabar Institute of Tropical Diseases Research and Prevention (CITDRP), University of Calabar, Cross River State, Nigeria
| | - E Ezedinachi
- Calabar Institute of Tropical Diseases Research and Prevention (CITDRP), University of Calabar, Cross River State, Nigeria
| | - N S Nwachuku
- Calabar Institute of Tropical Diseases Research and Prevention (CITDRP), University of Calabar, Cross River State, Nigeria
| | - F O Odey
- Calabar Institute of Tropical Diseases Research and Prevention (CITDRP), University of Calabar, Cross River State, Nigeria
| | - H Arimoto
- U.S. Naval Medical Research Unit No. 3 (NAMRU-3), Cairo Detachment, Egypt
- Navy Environmental and Preventive Medicine Unit Five, San Diego, CA, USA
| |
Collapse
|
9
|
Jones CM, Ciubotariu II, Muleba M, Lupiya J, Mbewe D, Simubali L, Mudenda T, Gebhardt ME, Carpi G, Malcolm AN, Kosinski KJ, Romero-Weaver AL, Stevenson JC, Lee Y, Norris DE, Southern Central Africa International Centers of Excellence for Malaria Research. Multiple Novel Clades of Anopheline Mosquitoes Caught Outdoors in Northern Zambia. FRONTIERS IN TROPICAL DISEASES 2021; 2. [PMID: 35983564 PMCID: PMC9384971 DOI: 10.3389/fitd.2021.780664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Residual vector populations that do not come in contact with the most frequently utilized indoor-directed interventions present major challenges to global malaria eradication. Many of these residual populations are mosquito species about which little is known. As part of a study to assess the threat of outdoor exposure to malaria mosquitoes within the Southern and Central Africa International Centers of Excellence for Malaria Research, foraging female anophelines were collected outside households in Nchelenge District, northern Zambia. These anophelines proved to be more diverse than had previously been reported in the area. In order to further characterize the anopheline species, sequencing and phylogenetic approaches were utilized. Anopheline mosquitoes were collected from outdoor light traps, morphologically identified, and sent to Johns Hopkins Bloomberg School of Public Health for sequencing. Sanger sequencing from 115 field-derived samples yielded mitochondrial COI sequences, which were aligned with a homologous 488 bp gene segment from known anophelines (n = 140) retrieved from NCBI. Nuclear ITS2 sequences (n = 57) for at least one individual from each unique COI clade were generated and compared against NCBI’s nucleotide BLAST database to provide additional evidence for taxonomical identity and structure. Molecular and morphological data were combined for assignment of species or higher taxonomy. Twelve phylogenetic groups were characterized from the COI and ITS2 sequence data, including the primary vector species Anopheles funestus s.s. and An. gambiae s.s. An unexpectedly large proportion of the field collections were identified as An. coustani and An. sp. 6. Six phylogenetic groups remain unidentified to species-level. Outdoor collections of anopheline mosquitoes in areas frequented by people in Nchelenge, northern Zambia, proved to be extremely diverse. Morphological misidentification and underrepresentation of some anopheline species in sequence databases confound efforts to confirm identity of potential malaria vector species. The large number of unidentified anophelines could compromise the malaria vector surveillance and malaria control efforts not only in northern Zambia but other places where surveillance and control are focused on indoor-foraging and resting anophelines. Therefore, it is critical to continue development of methodologies that allow better identification of these populations and revisiting and cleaning current genomic databases.
Collapse
Affiliation(s)
- Christine M. Jones
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ilinca I. Ciubotariu
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | | | - James Lupiya
- Tropical Diseases Research Centre, Ndola, Zambia
| | - David Mbewe
- Tropical Diseases Research Centre, Ndola, Zambia
| | | | | | - Mary E. Gebhardt
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Giovanna Carpi
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Ashley N. Malcolm
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
| | - Kyle J. Kosinski
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
| | - Ana L. Romero-Weaver
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
| | - Jennifer C. Stevenson
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
- Correspondence: Yoosook Lee, ; Douglas E. Norris,
| | | | | |
Collapse
|
10
|
da Cruz DL, Paiva MHS, Guedes DRD, de Souza Gomes EC, Pires SG, Gomez LF, Ayres CFJ. First report of the L1014F kdr mutation in wild populations of Anopheles arabiensis in Cabo Verde, West Africa. Parasit Vectors 2021; 14:582. [PMID: 34802463 PMCID: PMC8607584 DOI: 10.1186/s13071-021-05088-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to the lack of vaccines, malaria control mainly involves the control of anopheline vectors (Anopheles spp.) using chemical insecticides. However, the prolonged and indiscriminate use of these compounds has led to the emergence of resistance in Anopheles populations in Africa. Insecticide resistance surveillance programs are less frequent in Cabo Verde than in other African countries. This study aimed to investigate the circulation of the L1014F and L1014S alleles in natural populations of Anopheles arabiensis collected from two sampling sites in the city of Praia, Cabo Verde. METHODS Anopheles larvae were collected from the two sampling sites and reared in the laboratory until the adult stage. Mosquitoes were first morphologically identified by classical taxonomy and then by molecular species identification using molecular markers. All Anopheles arabiensis were subjected to PCR analysis to screen for mutations associated to resistance in the Nav gene. RESULTS A total of 105 mosquitoes, all belonging to the Anopheles gambiae complex, were identified by classical taxonomy as well as by molecular taxonomy. Molecular identification showed that 100% of the An. gambiae senso lato specimens analyzed corresponded to An. arabiensis. Analysis of the Nav gene revealed the presence of L1014S and L1014F alleles with frequencies of 0.10 and 0.19, respectively. CONCLUSIONS Our data demonstrated, for the first time, the presence of the L1014F allele in the An. arabiensis population from Cabo Verde, as well as an increase in the frequency of the kdr L1014S allele reported in a previous study. The results of this study demonstrate the need to establish new approaches in vector control programs in Cabo Verde.
Collapse
Affiliation(s)
- Derciliano Lopes da Cruz
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundaçao Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundaçao Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitaria, Recife, PE, 50670-420, Brazil. .,Centro Academico do Agreste, Universidade Federal de Pernambuco, Rodovia BR-104, km 59-Nova Caruaru, Caruaru, PE, 55002-970, Brazil.
| | - Duschinka Ribeiro Duarte Guedes
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundaçao Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Elainne Christine de Souza Gomes
- Departamento de Parasitologia, Instituto Aggeu Magalhaes/Fundaçao Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | | | | | - Constância Flávia Junqueira Ayres
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundaçao Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| |
Collapse
|
11
|
Alenou LD, Etang J. Airport Malaria in Non-Endemic Areas: New Insights into Mosquito Vectors, Case Management and Major Challenges. Microorganisms 2021; 9:2160. [PMID: 34683481 PMCID: PMC8540862 DOI: 10.3390/microorganisms9102160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the implementation of preventive measures in airports and aircrafts, the risk of importing Plasmodium spp. infected mosquitoes is still present in malaria-free countries. Evidence suggests that mosquitoes have found a new alliance with the globalization of trade and climate change, leading to an upsurge of malaria parasite transmission around airports. The resulting locally acquired form of malaria is called Airport malaria. However, piecemeal information is available, regarding its epidemiological and entomological patterns, as well as the challenges in the diagnosis, treatment, and prevention. Understanding these issues is a critical step towards a better implementation of control strategies. To cross reference this information, we conducted a systematic review on 135 research articles published between 1969 (when the first cases of malaria in airports were reported) and 2020 (i.e., 51 years later). It appears that the risk of malaria transmission by local mosquito vectors in so called malaria-free countries is not zero; this risk is more likely to be fostered by infected vectors coming from endemic countries by air or by sea. Furthermore, there is ample evidence that airport malaria is increasing in these countries. From 2010 to 2020, the number of cases in Europe was 7.4 times higher than that recorded during the 2000-2009 decade. This increase may be associated with climate change, increased international trade, the decline of aircraft disinsection, as well as delays in case diagnosis and treatment. More critically, current interventions are weakened by biological and operational challenges, such as drug resistance in malaria parasites and vector resistance to insecticides, and logistic constraints. Therefore, there is a need to strengthen malaria prevention and treatment for people at risk of airport malaria, and implement a rigorous routine entomological and epidemiological surveillance in and around airports.
Collapse
Affiliation(s)
- Leo Dilane Alenou
- Malaria Research Laboratory, Yaoundé Research Institute (IRY), Organization for the Coordination of Endemic Diseases’ Control in Central Africa (OCEAC), Yaoundé P.O. Box 288, Cameroon;
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala P.O. Box 2701, Cameroon
| | - Josiane Etang
- Malaria Research Laboratory, Yaoundé Research Institute (IRY), Organization for the Coordination of Endemic Diseases’ Control in Central Africa (OCEAC), Yaoundé P.O. Box 288, Cameroon;
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala P.O. Box 2701, Cameroon
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Faculty 09—Agricultural Sciences, Nutritional Sciences and Environmental Management, Justus-Liebig-University Gießen, Winchester Str. 2, 35394 Giessen, Germany
| |
Collapse
|
12
|
Moosa-Kazemi SH, Asgarian TS, Sedaghat MM, Javar S. Pathogenic fungi infection attributes of malarial vectors Anopheles maculipennis and Anopheles superpictus in central Iran. Malar J 2021; 20:393. [PMID: 34627243 PMCID: PMC8502412 DOI: 10.1186/s12936-021-03927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to the effect of synthetic and commercial insecticides on non-target organisms and the resistance of mosquitoes, non-chemical and environmentally friendly methods have become prevalent in recent years. The present study was to isolate entomopathogenic fungi with toxic effects on mosquitoes in natural larval habitats. METHODS Larvae of mosquitoes were collected from Central, Qamsar, Niasar, and Barzok Districts in Kashan County, Central Iran by standard dipping method, from April to late December 2019. Dead larvae, live larvae showing signs of infection, and larvae and pupae with a white coating of fungal mycelium on the outer surface of their bodies were isolated from the rest of the larvae and sterilized with 10% sodium hypochlorite for 2 min, then washed twice with distilled water and transferred to potato-dextrose-agar (PDA) and water-agar (WA) media and incubated at 25 ± 2 °C for 3-4 days. Larvae and fungi were identified morphologically based on identification keys. RESULTS A total of 9789 larvae were collected from urban and rural areas in Kashan County. Thirteen species were identified which were recognized to belong to three genera, including Anopheles (7.89%), Culiseta (17.42%) and Culex (74.69%). A total of 105 larvae, including Anopheles superpictus sensu lato (s.l), Anopheles maculipennis s.l., Culex deserticola, Culex perexiguus, and Culiseta longiareolata were found to be infected by Nattrassia mangiferae, Aspergillus niger, Aspergillus fumigatus, Trichoderma spp., and Penicillium spp. Of these, Penicillium spp. was the most abundant fungus isolated and identified from the larval habitats, while An. superpictus s.l. was the most infected mosquito species. CONCLUSIONS Based on the observations and results obtained of the study, isolated fungi had the potential efficacy for pathogenicity on mosquito larvae. It is suggested that their effects on mosquito larvae should be investigated in the laboratory. The most important point, however, is the proper way of exploiting these biocontrol agents to maximize their effect on reducing the population of vector mosquito larvae without any negative effect on non-target organisms.
Collapse
Affiliation(s)
- Seyed Hassan Moosa-Kazemi
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O. Box 6446-14155, Tehran, Iran.
| | - Tahereh Sadat Asgarian
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O. Box 6446-14155, Tehran, Iran
| | - Mohammad Mehdi Sedaghat
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O. Box 6446-14155, Tehran, Iran.
| | - Saeedeh Javar
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extention Organization (AREEO), Tehran, Iran
| |
Collapse
|
13
|
Li C, Gao Y, Chang N, Ma D, Zhou R, Zhao Z, Wang J, Zhang Q, Liu Q. Risk Assessment of Anopheles philippinensis and Anopheles nivipes (Diptera: Culicidae) Invading China under Climate Change. BIOLOGY 2021; 10:biology10100998. [PMID: 34681097 PMCID: PMC8533129 DOI: 10.3390/biology10100998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Anopheles philippinensis and Anopheles nivipes are morphologically similar and are considered to be effective vectors of malaria transmission in northeastern India. Environmental factors such as temperature and rainfall have a significant impact on the temporal and spatial distribution of disease vectors driven by future climate change. METHODS In this study, we used the maximum entropy model to predict the potential global distribution of the two mosquito species in the near future and the trend of future distribution in China. Based on the contribution rate of environmental factors, we analyzed the main environmental factors affecting the distribution of the two mosquito species. We also constructed a disease vector risk assessment index system to calculate the comprehensive risk value of the invasive species. RESULTS Precipitation has a significant effect on the distribution of potentially suitable areas for Anopheles philippinensis and Anopheles nivipes. The two mosquito species may spread in the suitable areas of China in the future. The results of the risk assessment index system showed that the two mosquito species belong to the moderate invasion risk level for China. CONCLUSIONS China should improve the mosquito vector monitoring system, formulate scientific prevention and control strategies and strictly prevent foreign imports.
Collapse
Affiliation(s)
- Chao Li
- School of Public Health, Shandong First Medical University, Jinan 250000, China; (C.L.); (D.M.)
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; (Y.G.); (N.C.); (R.Z.); (Z.Z.); (J.W.)
| | - Yuan Gao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; (Y.G.); (N.C.); (R.Z.); (Z.Z.); (J.W.)
| | - Nan Chang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; (Y.G.); (N.C.); (R.Z.); (Z.Z.); (J.W.)
- School of Public Health, Nanjing Medical University, Nanjing 210000, China
| | - Delong Ma
- School of Public Health, Shandong First Medical University, Jinan 250000, China; (C.L.); (D.M.)
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; (Y.G.); (N.C.); (R.Z.); (Z.Z.); (J.W.)
| | - Ruobing Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; (Y.G.); (N.C.); (R.Z.); (Z.Z.); (J.W.)
| | - Zhe Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; (Y.G.); (N.C.); (R.Z.); (Z.Z.); (J.W.)
- Shandong University Climate Change and Health Center, School of Public Health, Shandong University, Jinan 250012, China
| | - Jun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; (Y.G.); (N.C.); (R.Z.); (Z.Z.); (J.W.)
| | - Qinfeng Zhang
- School of Public Health, Shandong First Medical University, Jinan 250000, China; (C.L.); (D.M.)
- Correspondence: (Q.Z.); (Q.L.); Tel.: +86-13705385531 (Q.Z.); +86-13910599152 (Q.L.)
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China; (Y.G.); (N.C.); (R.Z.); (Z.Z.); (J.W.)
- Shandong University Climate Change and Health Center, School of Public Health, Shandong University, Jinan 250012, China
- Correspondence: (Q.Z.); (Q.L.); Tel.: +86-13705385531 (Q.Z.); +86-13910599152 (Q.L.)
| |
Collapse
|
14
|
Zhang C, Yang R, Wu L, Luo C, Guo X, Deng Y, Zhou H, Zhang Y. Molecular phylogeny of the Anopheles hyrcanus group (Diptera: Culicidae) based on rDNA-ITS2 and mtDNA-COII. Parasit Vectors 2021; 14:454. [PMID: 34488860 PMCID: PMC8420049 DOI: 10.1186/s13071-021-04971-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Anopheles hyrcanus group, which includes 25 species, is widely distributed in the Oriental and Palaearctic regions. Given the difficulty in identifying cryptic or sibling species based on their morphological characteristics, molecular identification is regarded as an important complementary approach to traditional morphological taxonomy. The aim of this study was to reconstruct the phylogeny of the Hyrcanus group using DNA barcoding markers in order to determine the phylogenetic correlations of closely related taxa and to compare these markers in terms of identification efficiency and genetic divergence among species. METHODS Based on data extracted from the GenBank database and data from the present study, we used 399 rDNA-ITS2 sequences of 19 species and 392 mtDNA-COII sequences of 14 species to reconstruct the molecular phylogeny of the Hyrcanus group across its worldwide range. We also compared the performance of rDNA-ITS2 against that of mtDNA-COII to assess the genetic divergence of closely related species within the Hyrcanus group. RESULTS Average interspecific divergence for the rDNA-ITS2 sequence (0.376) was 125-fold higher than the average intraspecies divergence (0.003), and average interspecific divergence for the mtDNA-COII sequence (0.055) was eightfold higher than the average intraspecies divergence (0.007). The barcoding gap ranged from 0.015 to 0.073 for rDNA-ITS2, and from 0.017 to 0.025 for mtDNA-COII. Two sets of closely related species, namely, Anophels lesteri and An. paraliae, and An. sinensis, An. belenrae and An. kleini, were resolved by rDNA-ITS2. In contrast, the relationship of An. sinensis/An. belenrae/An. kleini was poorly defined in the COII tree. The neutrality test and mismatch distribution revealed that An. peditaeniatus, An. hyrcanus, An. sinensis and An. lesteri were likely to undergo hitchhiking or population expansion in accordance with both markers. In addition, the population of an important vivax malaria vector, An. sinensis, has experienced an expansion after a bottleneck in northern and southern Laos. CONCLUSIONS The topology of the Hyrcanus group rDNA-ITS2 and mtDNA-COII trees conformed to the morphology-based taxonomy for species classification rather than for that for subgroup division. rDNA-ITS2 is considered to be a more reliable diagnostic tool than mtDNA-COII in terms of investigating the phylogenetic correlation between closely related mosquito species in the Hyrcanus group. Moreover, the population expansion of an important vivax malaria vector, An. sinensis, has underlined a potential risk of malaria transmission in northern and southern Laos. This study contributes to the molecular identification of the Anopheles hyrcanus group in vector surveillance.
Collapse
Affiliation(s)
- Canglin Zhang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Rui Yang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Linbo Wu
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Chunhai Luo
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Xiaofang Guo
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Yan Deng
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Hongning Zhou
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu’er, 665099 People’s Republic of China
| | - Yilong Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433 People’s Republic of China
| |
Collapse
|
15
|
Morris AL, Ghani A, Ferguson N. Fine-scale estimation of key life-history parameters of malaria vectors: implications for next-generation vector control technologies. Parasit Vectors 2021; 14:311. [PMID: 34103094 PMCID: PMC8188720 DOI: 10.1186/s13071-021-04789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
Background Mosquito control has the potential to significantly reduce malaria burden on a region, but to influence public health policy must also show cost-effectiveness. Gaps in our knowledge of mosquito population dynamics mean that mathematical modelling of vector control interventions have typically made simplifying assumptions about key aspects of mosquito ecology. Often, these assumptions can distort the predicted efficacy of vector control, particularly next-generation tools such as gene drive, which are highly sensitive to local mosquito dynamics. Methods We developed a discrete-time stochastic mathematical model of mosquito population dynamics to explore the fine-scale behaviour of egg-laying and larval density dependence on parameter estimation. The model was fitted to longitudinal mosquito population count data using particle Markov chain Monte Carlo methods. Results By modelling fine-scale behaviour of egg-laying under varying density dependence scenarios we refine our life history parameter estimates, and in particular we see how model assumptions affect population growth rate (Rm), a crucial determinate of vector control efficacy. Conclusions Subsequent application of these new parameter estimates to gene drive models show how the understanding and implementation of fine-scale processes, when deriving parameter estimates, may have a profound influence on successful vector control. The consequences of this may be of crucial interest when devising future public health policy. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04789-0.
Collapse
Affiliation(s)
- Aaron L Morris
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| | - Azra Ghani
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Neil Ferguson
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
16
|
Demarta-Gatsi C, Mécheri S. Vector saliva controlled inflammatory response of the host may represent the Achilles heel during pathogen transmission. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200155. [PMID: 34035796 PMCID: PMC8128132 DOI: 10.1590/1678-9199-jvatitd-2020-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infection with vector-borne pathogens starts with the inoculation of these pathogens during blood feeding. In endemic regions, the population is regularly bitten by naive vectors, implicating a permanent stimulation of the immune system by the vector saliva itself (pre-immune context). Comparatively, the number of bites received by exposed individuals from non-infected vectors is much higher than the bites from infected ones. Therefore, vector saliva and the immunological response in the skin may play an important role, so far underestimated, in the establishment of anti-pathogen immunity in endemic areas. Hence, the parasite biology and the disease pathogenesis in “saliva-primed” and “saliva-unprimed” individuals must be different. This integrated view on how the pathogen evolves within the host together with vector salivary components, which are known to be endowed with a variety of pharmacological and immunological properties, must remain the focus of any investigational study dealing with vector-borne diseases. Considering this three-way partnership, the host skin (immune system), the pathogen, and the vector saliva, the approach that consists in the validation of vector saliva as a source of molecular entities with anti-disease vaccine potential has been recently a subject of active and fruitful investigation. As an example, the vaccination with maxadilan, a potent vasodilator peptide extracted from the saliva of the sand fly Lutzomyia longipalpis, was able to protect against infection with various leishmanial parasites. More interestingly, a universal mosquito saliva vaccine that may potentially protect against a range of mosquito-borne infections including malaria, dengue, Zika, chikungunya and yellow fever. In this review, we highlight the key role played by the immunobiology of vector saliva in shaping the outcome of vector-borne diseases and discuss the value of studying diseases in the light of intimate cross talk among the pathogen, the vector saliva, and the host immune mechanisms.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France.,Medicines for Malaria Venture (MMV), Geneva, Switzerland.,Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - Salah Mécheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France
| |
Collapse
|
17
|
Hodge JM, Yurchenko AA, Karagodin DA, Masri RA, Smith RC, Gordeev MI, Sharakhova MV. The new Internal Transcribed Spacer 2 diagnostic tool clarifies the taxonomic position and geographic distribution of the North American malaria vector Anopheles punctipennis. Malar J 2021; 20:141. [PMID: 33691700 PMCID: PMC7944907 DOI: 10.1186/s12936-021-03676-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background The malaria mosquito Anopheles punctipennis, a widely distributed species in North America, is capable of transmitting human malaria and is actively involved in the transmission of the ungulate malaria parasite Plasmodium odocoilei. However, molecular diagnostic tools based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA are lacking for this species. Anopheles punctipennis is a former member of the Anopheles maculipennis complex but its systematic position remains unclear. Methods In this study, ITS2 sequences were obtained from 276 An. punctipennis specimens collected in the eastern and midwestern United States and a simple and robust Restriction Fragment Length Polymorphism approach for species identification was developed. The maximum-likelihood phylogenetic tree was constructed based on ITS2 sequences available through this study and from GenBank for 20 species of Anopheles. Results The analysis demonstrated a consistent ITS2 sequence length and showed no indications of intragenomic variation among the samples based on ITS2, suggesting that An. punctipennis represents a single species in the studied geographic locations. In this study, An. punctipennis was found in urban, rural, and forest settings, suggesting its potential broad role in pathogen transmission. Phylogeny based on ITS2 sequence comparison demonstrated the close relationship of this species with other members of the Maculipennis group. Conclusions This study developed molecular tools based on ITS2 sequences for the malaria vector An. punctipennis and clarified the phylogenetic position of the species within the Maculipennis group.
Collapse
Affiliation(s)
- James M Hodge
- Department of Entomology and the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Andrey A Yurchenko
- Department of Entomology and the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Kurchatov Genomics Center, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| | - Dmitriy A Karagodin
- Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Reem A Masri
- Department of Entomology and the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA, USA
| | - Mikhail I Gordeev
- Department of General Biology and Ecology, Moscow Region State University, Moscow, Russia
| | - Maria V Sharakhova
- Department of Entomology and the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA. .,Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
18
|
Bourke BP, Wilkerson RC, Linton YM. Molecular species delimitation reveals high diversity in the mosquito Anopheles tessellatus Theobald, 1901 (Diptera, Culicidae) across its range. Acta Trop 2021; 215:105799. [PMID: 33358735 DOI: 10.1016/j.actatropica.2020.105799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Anopheles tessellatus is a potentially important vector found across South, East and Southeast Asia. While it was formerly considered a formidable vector of human Plasmodium and filarial parasites in the Maldives, and of lesser importance as a vector of human Plasmodium in Sri Lanka and parts of Indonesia, it is currently of little or unknown health importance in many other parts of its range. This study describes the genetic diversity and evolutionary relationships among An. tessellatus populations in nine Asian countries at the COI gene using maximum-likelihood and Bayesian phylogenetic inference tree and cluster-based species delimitation approaches. These analyses reveal exceptional levels of genetic diversity in An. tessellatus populations across its known range, and identify up to six putative species in the newly determined Tessellatus Complex. The existence of such cryptic diversity has potentially important consequences for vector management and disease control. Differences in the ecologies and life histories among these species may have considerable impact on vectorial capacity and may go some way towards explaining why An. tessellatus s.l. has such varying degrees of public health importance across its range.
Collapse
|
19
|
Gomes ECDS, Cruz DLD, Santos MAVM, Souza RMC, Oliveira CMFD, Ayres CFJ, Domingos RM, Pedro MDGDS, Paiva MHS, Pimentel LMLM. Outbreak of autochthonous cases of malaria in coastal regions of Northeast Brazil: the diversity and spatial distribution of species of Anopheles. Parasit Vectors 2020; 13:621. [PMID: 33317632 PMCID: PMC7734732 DOI: 10.1186/s13071-020-04502-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/25/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Brazil has the fourth highest prevalence of malaria of all countries in the Americas, with an estimated 42 million people at risk of contracting this disease. Although most cases occur in the Amazon region, cases of an autochthonous nature have also been registered in the extra-Amazonian region where Anopheles aquasalis and An. albitarsis are the mosquito species of greatest epidemiological interest. In 2019, the municipality of Conde (state of Paraíba) experienced an epidemic of autochthonous cases of malaria. Here we present preliminary results of an entomological and case epidemiology investigation, in an attempt to correlate the diversity and spatial distribution of species of Anopheles with the autochthonous cases of this outbreak of malaria. METHODS Case data were collected using case report forms made available by the Conde Municipal Health Department. The entomological survey was carried out from July to November 2019. The various methods of capture included the use of battery-powered aspirators, mouth aspirators, Shannon traps, BG-Sentinel traps (with and without dry ice) and CDC light traps. Captured mosquitoes were separated, packaged and sent to the laboratory for sexing and molecular identification of the various species of anophelines. The data were tabulated and analyzed using Microsoft Excel. Spatial analysis of the data was performed using ArcGis 10 software. RESULTS In 2019, 20 autochthonous cases and one imported case of malaria caused by Plasmodium vivax were diagnosed, with three cases of relapses. A total of 3713 mosquitoes were collected, of which 3390 were culicines and 323 were anophelines. Nine species of genus Anopheles were identified, with the most abundant being An. aquasalis (38.9%), followed by An. minor (18.2%) and An. albitarsis (9.0%). Spatial analysis of the data showed that the area could be considered to be at risk of malaria cases and that there was a high prevalence of Anopheles. CONCLUSIONS The results presented indicate that this extra-Amazonian region has an environment conducive to maintenance of the malaria transmission cycle owing to the wide diversity of Anopheles species. This environment in combination with the high influx of people from endemic areas to the study area provides a perfect setting for the occurrence and maintenance of malaria.
Collapse
Affiliation(s)
- Elainne Christine de Souza Gomes
- Department of Parasitology, Aggeu Magalhães Institute, Fiocruz, Ministry of Health, Brazil, Av. Professor Moraes Rego, s/n Cidade Universitária, Recife, PE, 50740-465, Brazil.
| | - Derciliano Lopes da Cruz
- Department of Entomology, Aggeu Magalhães Institute, Fiocruz, Ministry of Health Brazil, Av. Professor Moraes Rego, s/n Cidade Universitária, Recife, PE, 50740-465, Brazil
| | - Maria Alice Varjal Melo Santos
- Department of Entomology, Aggeu Magalhães Institute, Fiocruz, Ministry of Health Brazil, Av. Professor Moraes Rego, s/n Cidade Universitária, Recife, PE, 50740-465, Brazil
| | - Renata Maria Costa Souza
- Department of Immunology, Aggeu Magalhães Institute, Fiocruz, Ministry of Health, Brazil, Av. Professor Moraes Rego, s/n Cidade Universitária, Recife, PE, 50740-465, Brazil
| | - Cláudia Maria Fontes de Oliveira
- Department of Entomology, Aggeu Magalhães Institute, Fiocruz, Ministry of Health Brazil, Av. Professor Moraes Rego, s/n Cidade Universitária, Recife, PE, 50740-465, Brazil
| | - Constância Flávia Junqueira Ayres
- Department of Entomology, Aggeu Magalhães Institute, Fiocruz, Ministry of Health Brazil, Av. Professor Moraes Rego, s/n Cidade Universitária, Recife, PE, 50740-465, Brazil
| | - Renata Martins Domingos
- Health Department of Conde/ Paraíba, Rua Paulo da Rocha Barreto, 79 Centro, Conde, PB, 58322-000, Brazil
| | | | - Marcelo Henrique Santos Paiva
- Department of Entomology, Aggeu Magalhães Institute, Fiocruz, Ministry of Health Brazil, Av. Professor Moraes Rego, s/n Cidade Universitária, Recife, PE, 50740-465, Brazil.,Agreste Academic Center, University of Pernambuco, Rodovia BR-104, km 59 Nova Caruaru, Caruaru, PE, 55002-970, Brazil
| | - Lílian Maria Lapa Montenegro Pimentel
- Department of Immunology, Aggeu Magalhães Institute, Fiocruz, Ministry of Health, Brazil, Av. Professor Moraes Rego, s/n Cidade Universitária, Recife, PE, 50740-465, Brazil
| |
Collapse
|
20
|
Sindhania A, Das MK, Sharma G, Surendran SN, Kaushal BR, Lohani HP, Singh OP. Molecular forms of Anopheles subpictus and Anopheles sundaicus in the Indian subcontinent. Malar J 2020; 19:417. [PMID: 33213479 PMCID: PMC7678295 DOI: 10.1186/s12936-020-03492-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022] Open
Abstract
Background Anopheles subpictus and Anopheles sundaicus are closely related species, each comprising several sibling species. Ambiguities exist in the classification of these two nominal species and the specific status of members of these species complexes. Identifying fixed molecular forms and mapping their spatial distribution will help in resolving the taxonomic ambiguities and understanding their relative epidemiological significance. Methods DNA sequencing of Internal Transcribed Spacer-2 (ITS2), 28S-rDNA (D1-to-D3 domains) and cytochrome oxidase-II (COII) of morphologically identified specimens of two nominal species, An. subpictus sensu lato (s.l.) and An. sundaicus s.l., collected from the Indian subcontinent, was performed and subjected to genetic distance and molecular phylogenetic analyses. Results Molecular characterization of mosquitoes for rDNA revealed the presence of two molecular forms of An. sundaicus s.l. and three molecular forms of An. subpictus s.l. (provisionally designated as Form A, B and C) in the Indian subcontinent. Phylogenetic analyses revealed two distinct clades: (i) subpictus clade, with a single molecular form of An. subpictus (Form A) prevalent in mainland India and Sri Lanka, and (ii) sundaicus clade, comprising of members of Sundaicus Complex, two molecular forms of An. subpictus s.l. (Form B and C), prevalent in coastal areas or islands in Indian subcontinent, and molecular forms of An. subpictus s.l. reported from Thailand and Indonesia. Based on the number of float-ridges on eggs, all An. subpictus molecular Form B were classified as Species B whereas majority (80%) of the molecular Form A were classified as sibling species C. Fixed intragenomic sequence variation in ITS2 with the presence of two haplotypes was found in molecular Form A throughout its distribution. Conclusion A total of three molecular forms of An. subpictus s.l. and two molecular forms of An. sundaicus s.l. were recorded in the Indian subcontinent. Phylogenetically, two forms of An. subpictus s.l. (Form B and C) prevalent in coastal areas or islands in the Indian subcontinent and molecular forms reported from Southeast Asia are members of Sundaicus Complex. Molecular Form A of An. subpictus is distantly related to all other forms and deserve a distinct specific status.
Collapse
Affiliation(s)
- Ankita Sindhania
- National Institute of Malaria Research, Sector 8 Dwarka, New Delhi, 110077, India
| | - Manoj K Das
- National Institute of Malaria Research, Field Unit, Itki, Ranchi, 835301, India
| | - Gunjan Sharma
- National Institute of Malaria Research, Sector 8 Dwarka, New Delhi, 110077, India
| | | | - B R Kaushal
- Department of Zoology, Kumaun University, Nainital, India
| | | | - Om P Singh
- National Institute of Malaria Research, Sector 8 Dwarka, New Delhi, 110077, India.
| |
Collapse
|
21
|
Molecular and morphological evidence of sibling species in Anopheles baileyi Edwards (Diptera: Culicidae) in Bhutan and Thailand. Acta Trop 2020; 209:105549. [PMID: 32473989 DOI: 10.1016/j.actatropica.2020.105549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 11/21/2022]
Abstract
This paper reports the results of a molecular and morphological study of Anopheles baileyi in Bhutan and Thailand. Phylogenetic analyses of ribosomal (ITS2) and mitochondrial DNA (COI) sequences revealed the presence of four genetically distinct clades, three in Bhutan (Clades I, II and III) and one in Thailand (Clade IV). Most of the larvae in the Bhutanese clades differed from those in the Thai clade in having seta 4-C branched, whereas it is single in the latter. The adults of each clade showed variation of wing markings and overlapping characters. The combination of characteristics of thoracic setae 1,2-P and abdominal seta 3-I was found to be useful for distinguishing the larvae. Pupae were inseparable. We provisionally recognize mosquitoes of Clades I, II, III and IV as members of a sibling species complex, the Baileyi Complex, denoted as species A, B, C and D, respectively. Species A is most likely the type form of An. baileyi s.s. because it was found adjacent to the type locality (Yatung, Tibet), and the others are unrecognized species.
Collapse
|
22
|
Kamber T, Koekemoer LL, Mathis A. Loop-mediated isothermal amplification (LAMP) assays for Anopheles funestus group and Anopheles gambiae complex species. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:295-301. [PMID: 32154608 DOI: 10.1111/mve.12437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Species of the genus Anopheles vary with regard to their vector capacity for Plasmodium spp., the causative agent of malaria, and their accurate identification is often required. Loop-mediated isothermal amplification (LAMP) is a rapid, simple and low-cost method for specific DNA amplification. Primers for LAMP assays specific for the Anopheles funestus group and Anopheles gambiae complex species as well as for the species Anopheles arabiensis, An. funestus, An. gambiae s.s/Anopheles coluzzii (major vectors) and Anopheles rivulorum (minor vector) were designed targeting specific genome or rDNA internal transcribed spacer regions. Reaction conditions (buffer composition, primer concentrations, incubation time) were evaluated and the specificities of the assays confirmed with DNA from non-target Anopheles species. DNA release from the mosquitoes is achieved simply by heating them for 5 min in water. An aliquot of the DNA solutions is transferred to the reaction tube using disposable inoculation loops. The outcome of the LAMP amplifications after 1 h incubation at 65 °C can easily be visualized by a colour change visible to the naked eye. The assays are operable under field conditions requiring only basic equipment (portable heat block programmable at 65 and 80 °C, cooler for master mixes).
Collapse
Affiliation(s)
- T Kamber
- Institute of Parasitology, National Centre for Vector Entomology, Zürich, Switzerland
| | - L L Koekemoer
- Wits Research Institute for Malaria, SAMRC Collaborating Centre for Multidisciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - A Mathis
- Institute of Parasitology, National Centre for Vector Entomology, Zürich, Switzerland
| |
Collapse
|
23
|
Genetic analysis and population structure of the Anopheles gambiae complex from different ecological zones of Burkina Faso. INFECTION GENETICS AND EVOLUTION 2020; 81:104261. [PMID: 32092481 DOI: 10.1016/j.meegid.2020.104261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/21/2022]
Abstract
The Anopheles gambiae complex (Diptera: Culicidae) is the most important vector for malaria in Sub-Saharan Africa, besides other vectors such as Anopheles funestus. Malaria vector control should encompass specific identification, genetic diversity and population structure of An. gambiae to design vector control strategies. The aim of this study was to determine the distribution of sibling species of the An. gambiae complex according to climatic regions related to cotton-growing or cotton-free areas by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Then, variation in mitochondrial cytochrome c oxidase 1 (COI) was used to assess the genetic structure within and between populations from our selected ecological zones. At the sibling species level, the following proportions were found across all samples (n = 180): An. coluzzii 65.56%, An. gambiae stricto sensu (s.s). 21.11%, and An. arabiensis 3.33%. Hybrids between An. gambiae s.s. and An. coluzzii (7.78%) and hybrids between An. coluzzii and An. arabiensis (2.22%) were found. The phylogenetic tree and Integer Neighbour-Joining (IntNJ) haplotype network did not reveal any distinct genetic structure pattern related to climatic or agricultural conditions in Burkina Faso. The Fst (Wright's F-statistic) values close to zero showed a free gene flow and no differentiation in An. gambiae complex populations. Furthermore, neutrality indices calculated by Tajima's D, Fu and Li's D⁎, Fu and Li's F⁎, Fu's Fs tests suggested an excess of rare mutations in the populations. Overall, variation in the proportions of An. gambiae s.s., An. coluzzii and An. arabiensis was found according to climatic regions, but COI analysis did not evidence any population structuring of the An. gambiae complex. These scientific contributions can be used as a basis for further in-depth study of the genetic diversity of the An. gambiae complex for epidemiological risk assessment of malaria in Burkina Faso.
Collapse
|
24
|
Naumenko AN, Karagodin DA, Yurchenko AA, Moskaev AV, Martin OI, Baricheva EM, Sharakhov IV, Gordeev MI, Sharakhova MV. Chromosome and Genome Divergence between the Cryptic Eurasian Malaria Vector-Species Anopheles messeae and Anopheles daciae. Genes (Basel) 2020; 11:E165. [PMID: 32033356 PMCID: PMC7074279 DOI: 10.3390/genes11020165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 01/06/2023] Open
Abstract
Chromosomal inversions are important drivers of genome evolution. The Eurasian malaria vector Anophelesmesseae has five polymorphic inversions. A cryptic species, An. daciae, has been discriminated from An. messeae based on five fixed nucleotide substitutions in the internal transcribed spacer 2 (ITS2) of ribosomal DNA. However, the inversion polymorphism in An. daciae and the genome divergence between these species remain unexplored. In this study, we sequenced the ITS2 region and analyzed the inversion frequencies of 289 Anopheles larvae specimens collected from three locations in the Moscow region. Five individual genomes for each of the two species were sequenced. We determined that An. messeae and An. daciae differ from each other by the frequency of polymorphic inversions. Inversion X1 was fixed in An. messeae but polymorphic in An. daciae populations. The genome sequence comparison demonstrated genome-wide divergence between the species, especially pronounced on the inversion-rich X chromosome (mean Fst = 0.331). The frequency of polymorphic autosomal inversions was higher in An. messeae than in An. daciae. We conclude that the X chromosome inversions play an important role in the genomic differentiation between the species. Our study determined that An. messeae and An. daciae are closely related species with incomplete reproductive isolation.
Collapse
Affiliation(s)
- Anastasia N. Naumenko
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA; (A.N.N.); (A.A.Y.); (O.I.M.); (I.V.S.)
| | - Dmitriy A. Karagodin
- Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Prospekt Lavrentyeva, 630090 Novosibirsk, Russia;
| | - Andrey A. Yurchenko
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA; (A.N.N.); (A.A.Y.); (O.I.M.); (I.V.S.)
- Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Prospekt Lavrentyeva, 630090 Novosibirsk, Russia;
| | - Anton V. Moskaev
- Department of General Biology and Ecology, Moscow Regional State University, 10a Radio Street, 105005 Moscow, Russia; (A.V.M.); (M.I.G.)
| | - Olga I. Martin
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA; (A.N.N.); (A.A.Y.); (O.I.M.); (I.V.S.)
| | - Elina M. Baricheva
- Laboratory of Cell Differentiation Mechanisms, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Prospekt Lavrentyeva, 630090 Novosibirsk, Russia;
| | - Igor V. Sharakhov
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA; (A.N.N.); (A.A.Y.); (O.I.M.); (I.V.S.)
- Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Prospekt Lavrentyeva, 630090 Novosibirsk, Russia;
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, 36 Lenina Street, 634041 Tomsk, Russia
| | - Mikhail I. Gordeev
- Department of General Biology and Ecology, Moscow Regional State University, 10a Radio Street, 105005 Moscow, Russia; (A.V.M.); (M.I.G.)
| | - Maria V. Sharakhova
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA; (A.N.N.); (A.A.Y.); (O.I.M.); (I.V.S.)
- Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Prospekt Lavrentyeva, 630090 Novosibirsk, Russia;
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, 36 Lenina Street, 634041 Tomsk, Russia
| |
Collapse
|
25
|
Ghavami MB, Khoeini S, Djadid ND. Molecular characteristics of odorant-binding protein 1 in Anopheles maculipennis. Malar J 2020; 19:29. [PMID: 31952536 PMCID: PMC6969430 DOI: 10.1186/s12936-019-3058-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 12/08/2019] [Indexed: 11/10/2022] Open
Abstract
Background Anopheles maculipennis complex, the historic vector of malaria, causes serious medical problems worldwide and exhibits different behaviours. Studying the odorant-binding proteins (OBPs), which influence the chemosensory system and behavioural responses, is essential to understanding the population structure and developing effective control measures against this vector. The present study was designed to identify and analyse the obp1 gene in An. maculipennis. Methods Adults of An. maculipennis sensu stricto were collected in Zanjan Province, northwest of Iran, and gDNAs of female mosquitoes were extracted. Fragments of An. maculipennis obp1 (Amacobp1) gene were amplified using degenerate and specific primers, and some of amplicons were selected for sequencing. Results Analysis of amplified products identified that the sequence of Amacobp1 gene was 1341 bp long. This gene contains three exons (5′, internal, and 3′of 160, 256, and 18 bp, respectively) and encodes 144 amino acids. The sizes of introns I and II in deduced gene are 268 and 358 nucleotides, respectively. The amino acid sequence in the C-terminal of AmacOBP1 is similar to that of major malaria vector Anopheles species. However, its N-terminal has a specific signal peptide with 19 amino acids. This peptide is conserved in different studied populations, and its sequence of amino acids shows the most variation among anopheline species. Conclusions Degenerate primers in this study are suggested for studying obp1 gene in Anopheles species. Amacobp1 gene is proposed as a molecular marker for the detection of intraspecific ecotypes and diagnosis of different species within Maculipennis Group. Moreover, the N-terminal of AmacOBP1 peptide is recommended as a molecular marker to identify the Amacobp1 expression patterns in different chemosensory organs for assessing the molecular mechanisms and developing novel behavioural disturbance agents to control An. maculipennis.
Collapse
Affiliation(s)
- Mohammad Bagher Ghavami
- Department of Medical Entomology and Vector Control, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Sakineh Khoeini
- Department of Medical Entomology and Vector Control, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | |
Collapse
|
26
|
Ali RSM, Wahid I, Saingamsook J, Saeung A, Wannasan A, Walton C, Harbach RE, Somboon P. Molecular identification of mosquitoes of the Anopheles maculatus group of subgenus Cellia (Diptera: Culicidae) in the Indonesian Archipelago. Acta Trop 2019; 199:105124. [PMID: 31394077 DOI: 10.1016/j.actatropica.2019.105124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Abstract
This study reports the molecular differentiation of females of Anopheles maculatus s.l. collected in eight localities on five islands in the Indonesian Archipelago: Hargowilis and Hargotirto villages of Central Java Province, North Kalimantan Province, Sabang off the northern tip of Sumatra Province, Sumba Island of East Nusa Tenggara Province and Sulawesi Province. Analyses based on rDNA (ITS2 and D3) and mtDNA (COII) sequences revealed the presence of An. greeni for the first time in North Kalimantan, and at least one novel (previously unrecognized) species of the Maculatus Group in Central Java (Hargowilis). Despite the similarity of rDNA markers of specimens of An. maculatus s.l. from Central Java and Sulawesi, their COII sequences are highly divergent (3.3%), which might indicate the presence of a further new species. Specimens of An. maculatus s.l. from the other localities had identical rDNA sequences to most An. maculatus s.s. from mainland Southeast Asia, but moderate divergence in their COII sequences (1.2-2.1%). The latter might indicate there are further novel species within the Maculatus Complex. However, as the divergence at COII may be the result of geographical structuring within species related to the historical biogeography of the region, further studies are needed to shed light on this possibility.
Collapse
|
27
|
Zhu HM, Luo SH, Gao M, Tao F, Gao JP, Chen HM, Li XY, Peng H, Ma YJ. Phylogeny of certain members of Hyrcanus group (Diptera: Culicidae) in China based on mitochondrial genome fragments. Infect Dis Poverty 2019; 8:91. [PMID: 31647031 PMCID: PMC6806543 DOI: 10.1186/s40249-019-0601-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/07/2019] [Indexed: 12/01/2022] Open
Abstract
Background Species of the Anopheles hyrcanus group are widely distributed in Palearctic and Oriental regions and some of them are important malaria vectors. The cryptic species of An. hyrcanus group was almost impossible to identify based only on their morphology. The phylogenetic relationship of An. hyrcanus group was also not clear. Methods Five members of An. hyrcanus group were identified by rDNA ITS2 sequencing as An. yatsushiroensis, An. belenrae, An. kleini, An. lesteri and An. sineroides. The mitochondrial genome fragments were sequenced and annotated using the mitochondrial genome of An. sinensis as reference. Based on the four segments and Joint Data sequences of these species, and other four anopheline species downloaded from GenBank, intraspecific as well as interspecific genetic distances were calculated and the phylogenetic trees were reconstructed by the methods of neighbor joining, maximum parsimony, minimum evolution and maximum likelihood. Findings Four parts of mitochondrial genomes, which were partial fragments COI + tRNA + COII (F5), ATP6 + COIII(F7 + F8), ND1(F19) and lrRNA (F21), were obtained. All fragments were connected as one sequence (referred as Joint Data), which had a total length of 3393 bp. All fragment sequences were highly conservative within species, with the maximum p distance (0.026) calculated by F19 of An. belenrae. The pairwise interspecific p distance calculated by each fragment showed minor or even no difference among An. sinensis, An. kleini and An. belenrae. However, interspecific p distances calculated by the Joint Data sequence ranged from 0.004 (An. belenrae vs An. kleini) to 0.089 (An. sineroides vs An. minimus), and the p distances of the six members of An. hyrcanus group were all less than 0.029. The phylogenetic tree showed two major clades: all subgenus Anopheles species (including six members of An. hyrcanus group, An. atroparvus and An. quadrimaculatus A) and subgenus Cellia (including An. dirus and An. minimus). The An. hyrcanus group was divided into two clusters as ((An. lesteri, An. sineroides) An. yatsushiroensis) and ((An. belenrae, An. sinensis) An. kleini)). Conclusions The An. hyrcanus group in this study could be divided into two clusters, in one of which An. belenrae, An. sinensis and An. kleini were most closely related. More molecular markers would make greater contribution to phylogenetic analysis.
Collapse
Affiliation(s)
- Hui-Min Zhu
- College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, China
| | - Shu-Han Luo
- College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, China
| | - Man Gao
- College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, China
| | - Feng Tao
- Department of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Jing-Peng Gao
- Department of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Han-Ming Chen
- Department of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Xiang-Yu Li
- Department of Medical Microbiology and Parasitology, Second Military Medical University, Shanghai, 200433, China
| | - Heng Peng
- Department of Medical Microbiology and Parasitology, Second Military Medical University, Shanghai, 200433, China.
| | - Ya-Jun Ma
- Department of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
28
|
Araújo WSD. Importance of Entomological Studies in Evaluating the Malarious Potential in Brazil. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1179-1180. [PMID: 31165157 DOI: 10.1093/jme/tjz090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Walter Santos De Araújo
- Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, Brazil
- Ecology and Control of Insecta - EcoInsecta Environmental Services, Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
29
|
Wang G, Guo X, Song F, Zheng W, Tan W, Huang E, Wu J, Wang C, Yang Q, Li C, Zhao T. Is Genetic Continuity Between Anopheles sinensis (Diptera: Culicidae) and its Sibling Species Due to Gene Introgression or Incomplete Speciation? JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1239-1252. [PMID: 31066895 DOI: 10.1093/jme/tjz049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Indexed: 06/09/2023]
Abstract
The Anopheles mosquito Hyrcanus Group is widely distributed geographically across both Palearctic and Oriental regions and comprises 26 valid species. Although the species Anopheles sinensis Wiedemann (1828) is the most common in China and has a low potential vector rank, it has nevertheless long been thought to be an important natural malaria vector within the middle and lower reaches of the Yangtze River. A number of previous research studies have found evidence to support the occurrence of natural hybridization between An. sinensis and Anopheles kleini Rueda, 2005 (a competent malaria vector). We, therefore, collected a sample series of An. sinensis and morphologically similar species across China and undertook ribosomal and mitochondrial DNA analyses in order to assess genetic differentiation (Fst) and gene flow (Nm) amongst different groups. This enabled us to evaluate divergence times between morphologically similar species using the cytochrome oxidase I (COI) gene. The results of this study reveal significant genetic similarities between An. sinensis, An. kleini, and Anopheles belenrae Rueda, 2005 and therefore imply that correct molecular identifications will require additional molecular markers. As results also reveal the presence of gene flow between these three species, their taxonomic status will require further work. Data suggest that An. kleini is the most basal of the three species, while An. sinensis and An. belenrae share the closest genetic relationship.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
- Zhejiang International Travel Healthcare Center, Hangzhou, China
| | - Xiaoxia Guo
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Fenglin Song
- Liaoning International Travel Healthcare Center, Dalian, China
| | - Wei Zheng
- Zhejiang International Travel Healthcare Center, Hangzhou, China
| | - Weilong Tan
- Center for Disease Control and Prevention of Nanjing Command, Nanjing, China
| | - Enjiong Huang
- Fujian International Travel Healthcare Center, Fuzhou, China
| | - Jiahong Wu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Chongcai Wang
- Hainan International Travel Healthcare Center, Haikou, China
| | - Qinggui Yang
- Jiangsu Academy of Science and Technology for Inspection and Quarantine, Nanjing, China
- Jiangsu International Travel Healthcare Center, Nanjing, China
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
30
|
Vaulin OV, Karagodin DA, Baricheva EM, Zakharov IK. Estimated resistance of the malaria mosquito Anopheles messeae s.l. to the insecticide malathion. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:48-56. [PMID: 31124233 DOI: 10.1111/jvec.12328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Resistance to agricultural pesticides is an important and insufficiently studied concern for pest and disease vector research. We determined the malathion resistance of species in the Anopheles maculipennis mosquito group in a habitat near Novosibirsk, Russia. Most of the 851 individuals we measured were members of the Anopheles messeae s.l. complex (An. messeae and An. daciae species). The LC50 value for malathion was 0.052 mg/L for the mixed specimens, and we failed to find any differences between species. The LC50 value was within the range of values for malathion resistance of Anopheles stephensi and Culex quinquefasciatus. As the main resistance mechanism to organophosphate and carbamate insecticides is a single mononucleotide substitution in the ace-1 gene, we searched for this mutation in An. messeae s.l. and An. beklemishevi by restriction analysis. This mutation was not found in 347 of the specimens. We sequenced the ace-1 gene fragment for 24 specimens from four species of the Anopheles maculipennis group, including An. messeae, An. daciae, An. atroparvus, and An. beklemishevi. These specimens harbored a nucleotide substitution in the triplet where a mutation can lead to insecticide resistance, but this substitution would make it difficult for the resistance to develop. Since the studied specimens belong to branches of the Palearctic portion of the Anopheles maculipennis group, we suspect that all other Palearctic species of this group would have difficulties harboring the ace-1 mutation that would lead to organophosphate and carbamate resistance.
Collapse
Affiliation(s)
- Oleg V Vaulin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry A Karagodin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Elina M Baricheva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Ilya K Zakharov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
31
|
Ogola EO, Chepkorir E, Sang R, Tchouassi DP. A previously unreported potential malaria vector in a dry ecology of Kenya. Parasit Vectors 2019; 12:80. [PMID: 30744665 PMCID: PMC6369554 DOI: 10.1186/s13071-019-3332-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/31/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In Kenya, malaria remains a major public health menace equally affecting the semi-arid to arid ecologies. However, entomologic knowledge of malaria vectors in such areas remains poor. METHODS Morphologically-identified wild-caught Anopheles funestus (s.l.) specimens trapped outdoors from the semi-arid to arid area of Kacheliba, West Pokot County, Kenya, were analysed by PCR and sequencing for species identification, malaria parasite infection and host blood-meal sources. RESULTS Three hundred and thirty specimens were analysed to identify sibling species of the An. funestus group, none of which amplified using the available primers; two were infected with Plasmodium falciparum and Plasmodium ovale, separately, while 84% (n = 25) of the blood-fed specimens had fed on humans. Mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS2) sequences of 55 specimens (Plasmodium-positive, blood-fed and Plasmodium-negative) did not match reference sequences, possibly suggesting a previously unreported species, resolving as two clades. CONCLUSIONS Our findings indicate the existence of yet-to-be identified and described anopheline species with a potential as malaria vectors in Kenya.
Collapse
Affiliation(s)
- Edwin O Ogola
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Edith Chepkorir
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
32
|
Namgay R, Drukpa T, Wangdi T, Pemo D, Harbach RE, Somboon P. A checklist of the Anopheles mosquito species (Diptera: Culicidae) in Bhutan. Acta Trop 2018; 188:206-212. [PMID: 30213615 DOI: 10.1016/j.actatropica.2018.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 11/26/2022]
Abstract
The present paper records, for the first time, the Anopheles fauna of Bhutan, determined from surveys conducted from 2007 to early 2018. Adult mosquitoes were collected mainly on cattle bait and occasionally in human landing catches. Collections of immature stages were performed in various aquatic habitats. Larvae were preserved or reared to adults. Identification was based on morphological characters using available keys. A total of 30 species were identified, including nine species of subgenus Anopheles and 21 species of subgenus Cellia. Distribution and collection data are provided with notes on the locations and habitats of the species. Anopheles pseudowillmori is suspected to be a vector of malarial parasites in the plains and hilly forested areas of the country because it is widely distributed and the most common species collected in human landing catches. Notes also include observed morphological variation observed in An. baileyi and An. lindesayi, which differ from the type forms. Corrections are made for previous reports of Anopheles in Bhutan. The need for further surveys and molecular identification of members of species complexes and morphological variants is emphasized.
Collapse
|
33
|
Kavran M, Zgomba M, Weitzel T, Petric D, Manz C, Becker N. Distribution of Anopheles daciae and other Anopheles maculipennis complex species in Serbia. Parasitol Res 2018; 117:3277-3287. [PMID: 30155566 PMCID: PMC6153502 DOI: 10.1007/s00436-018-6028-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/24/2018] [Indexed: 12/04/2022]
Abstract
Malaria is one of the most severe health problems facing the world today. Until the mid-twentieth century, Europe was an endemic area of malaria, with the Balkan countries being heavily infested. Sibling species belonging to the Anopheles maculipennis complex are well-known as effective vectors of Plasmodium in Europe. A vast number of human malaria cases in the past in the former Yugoslavia territory have stressed the significance of An. maculipennis complex species as primary and secondary vectors. Therefore, the present study evaluates the species composition, geographic distribution and abundance of these malaria vector species. Mosquitoes were collected in the northern Serbian province of Vojvodina and analysed by PCR-RFLP, multiplex PCR and sequencing of the ITS2 intron of genomic rDNA. Four sibling species of the An. maculipennis complex were identified. Both larvae and adults of the recently described species An. daciae were identified for the first time in Serbia. In 250 larval samples, 109 (44%) An. messeae, 90 (36%) An. maculipennis s.s., 33 (13%) An. daciae and 18 (7%) An. atroparvus were identified. In adult collections, 81 (47%) An. messeae, 55 (32%) An. daciae, 33 (19%) An. maculipennis s.s., and 3 (2%) An. atroparvus were recorded. The most abundant species in Vojvodina was An. messeae, whereas An. atroparvus was confirmed a rare species in all parts. Since this species is a potentially, highly competent malarial vector, low population density could be crucial to prevent a new establishment of endemic malaria transmission in Serbia.
Collapse
Affiliation(s)
- Mihaela Kavran
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, Novi Sad, 21000 Serbia
| | - Marija Zgomba
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, Novi Sad, 21000 Serbia
| | - Thomas Weitzel
- German Mosquito Control Association (KABS), Georg-Peter-Süß-Str. 3, 67346 Speyer, Germany
| | - Dusan Petric
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, Novi Sad, 21000 Serbia
| | - Christina Manz
- Universität Karlsruhe (TH), Kaiserstraße 12, 76131 Karlsruhe, Baden-Württemberg Germany
| | - Norbert Becker
- German Mosquito Control Association (KABS), Georg-Peter-Süß-Str. 3, 67346 Speyer, Germany
| |
Collapse
|
34
|
The Development of Cytogenetic Maps for Malaria Mosquitoes. INSECTS 2018; 9:insects9030121. [PMID: 30227611 PMCID: PMC6164047 DOI: 10.3390/insects9030121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 11/20/2022]
Abstract
Anopheline mosquitoes are important vectors of human malaria. Next-generation sequencing opens new opportunities for studies of mosquito genomes to uncover the genetic basis of a Plasmodium transmission. Physical mapping of genome sequences to polytene chromosomes significantly improves reference assemblies. High-resolution cytogenetic maps are essential for anchoring genome sequences to chromosomes as well as for studying breakpoints of chromosome rearrangements and chromatin protein localization. Here we describe a detailed pipeline for the development of high-resolution cytogenetic maps using polytene chromosomes of malaria mosquitoes. We apply this workflow to the refinement of the cytogenetic map developed for Anopheles beklemishevi.
Collapse
|
35
|
Artemov GN, Velichevskaya AI, Bondarenko SM, Karagyan GH, Aghayan SA, Arakelyan MS, Stegniy VN, Sharakhov IV, Sharakhova MV. A standard photomap of the ovarian nurse cell chromosomes for the dominant malaria vector in Europe and Middle East Anopheles sacharovi. Malar J 2018; 17:276. [PMID: 30060747 PMCID: PMC6065146 DOI: 10.1186/s12936-018-2428-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 08/10/2023] Open
Abstract
Background Anopheles sacharovi is a dominant malaria vector species in South Europe and the Middle East which has a highly plastic behaviour at both adult and larval stages. Such plasticity has prevented this species from eradication by several anti-vector campaigns. The development of new genome-based strategies for vector control will benefit from genome sequencing and physical chromosome mapping of this mosquito. Although a cytogenetic photomap for chromosomes from salivary glands of An. sacharovi has been developed, no cytogenetic map suitable for physical genome mapping is available. Methods Mosquitoes for this study were collected at adult stage in animal shelters in Armenia. Polytene chromosome preparations were prepared from ovarian nurse cells. Fluorescent in situ hybridization (FISH) was performed using PCR amplified probes. Results This study constructed a high-quality standard photomap for polytene chromosomes from ovarian nurse cells of An. sacharovi. Following the previous nomenclature, chromosomes were sub-divided into 39 numbered and 119 lettered sub-divisions. Chromosomal landmarks for the chromosome recognition were described. Using FISH, 4 PCR-amplified genic probes were mapped to the chromosomes. The positions of the probes demonstrated gene order reshuffling between An. sacharovi and Anopheles atroparvus which has not been seen cytologically. In addition, this study described specific chromosomal landmarks that can be used for the cytotaxonomic diagnostics of An. sacharovi based on the banding pattern of its polytene chromosomes. Conclusions This study constructed a high-quality standard photomap for ovarian nurse cell chromosomes of An. sacharovi and validated its utility for physical genome mapping. Based on the map, cytotaxonomic features for identification of An. sacharovi have been described. The cytogenetic map constructed in this study will assist in creating a chromosome-based genome assembly for this mosquito and in developing cytotaxonomic tools for identification of other species from the Maculipennis group.
Collapse
Affiliation(s)
- Gleb N Artemov
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Alena I Velichevskaya
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Semen M Bondarenko
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Gayane H Karagyan
- Scientific Center of Zoology and Hydroecology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Sargis A Aghayan
- Scientific Center of Zoology and Hydroecology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia.,Chair of Zoology, Yerevan State University, Yerevan, Armenia
| | | | - Vladimir N Stegniy
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Igor V Sharakhov
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.
| | - Maria V Sharakhova
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
36
|
Vaulin OV, Karagodin DA, Zakharov IK, Baricheva EM. Dynamics of Malaria Mosquito Species Composition in Siberian Populations Detected by Restriction Analysis. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418070153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Mouatcho J, Cornel AJ, Dahan-Moss Y, Koekemoer LL, Coetzee M, Braack L. Detection of Anopheles rivulorum-like, a member of the Anopheles funestus group, in South Africa. Malar J 2018; 17:195. [PMID: 29764433 PMCID: PMC5952852 DOI: 10.1186/s12936-018-2353-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
Background The Anopheles gambiae sensu lato (s.l.) and Anopheles funestus s.l. species complexes contain the most important malaria vectors in Africa. Within the An. funestus group of at least 11 African species, the vector status of all but the nominal species An. funestus appears poorly investigated, although evidence exists that Anopheles rivulorum and Anopheles vaneedeni may play minor roles. A new species, An. rivulorum-like, was described from Burkina Faso in 2000 and subsequently also found in Cameroon and Zambia. This is the first paper reporting the presence of this species in South Africa, thereby significantly extending its known range. Methods Mosquitoes were collected using dry-ice baited net traps and CDC light traps in the Kruger National Park, South Africa. Sixty-four An. funestus s.l. among an overall 844 mosquitoes were captured and identified to species level using the polymerase chain reaction assay. All samples were also analysed for the presence of Plasmodium falciparum circumsporozoite protein using the enzyme-linked-immunosorbent assay. Results Four members of the An. funestus group were identified: An. rivulorum-like (n = 49), An. rivulorum (n = 11), Anopheles parensis (n = 2) and Anopheles leesoni (n = 1). One mosquito could not be identified. No evidence of P. falciparum was detected in any of the specimens. Conclusion This is the first report of An. rivulorum-like south of Zambia, and essentially extends the range of this species from West Africa down to South Africa. Given the continental-scale drive towards malaria elimination and the challenges faced by countries in the elimination phase to understand and resolve residual transmission, efforts should be directed towards determining the largely unknown malaria vector potential of members of the An. funestus group and other potential secondary vectors.
Collapse
Affiliation(s)
- Joel Mouatcho
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, University of Pretoria, Pretoria, South Africa
| | - Anthony J Cornel
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, University of Pretoria, Pretoria, South Africa.,Department of Entomology and Nematology, University of California, Davis, CA, 95616, USA
| | - Yael Dahan-Moss
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Leo Braack
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
38
|
Artemov GN, Gordeev MI, Kokhanenko AA, Moskaev AV, Velichevskaya AI, Stegniy VN, Sharakhov IV, Sharakhova MV. A standard photomap of ovarian nurse cell chromosomes and inversion polymorphism in Anopheles beklemishevi. Parasit Vectors 2018; 11:211. [PMID: 29587834 PMCID: PMC5870207 DOI: 10.1186/s13071-018-2657-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/17/2018] [Indexed: 11/23/2022] Open
Abstract
Background Anopheles beklemishevi is a member of the Maculipennis group of malaria mosquitoes that has the most northern distribution among other members of the group. Although a cytogenetic map for the larval salivary gland chromosomes of this species has been developed, a high-quality standard cytogenetic photomap that enables genomics and population genetics studies of this mosquito at the adult stage is still lacking. Methods In this study, a cytogenetic map for the polytene chromosomes of An. beklemishevi from ovarian nurse cells was developed using high-resolution digital imaging from field collected mosquitoes. PCR-amplified DNA probes for fluorescence in situ hybridization (FISH) were designed based on the genome of An. atroparvus. The DNA probe obtained by microdissection procedures from the breakpoint region was labelled in a DOP-PCR reaction. Population analysis was performed on 371 specimens collected in 18 locations. Results We report the development of a high-quality standard photomap for the polytene chromosomes from ovarian nurse cells of An. beklemishevi. To confirm the suitability of the map for physical mapping, several PCR-amplified probes were mapped to the chromosomes of An. beklemishevi using FISH. In addition, we identified and mapped DNA probes to flanking regions of the breakpoints of two inversions on chromosome X of this species. Inversion polymorphism was determined in 13 geographically distant populations of An. beklemishevi. Four polymorphic inversions were detected. The positions of common chromosomal inversions were indicated on the map. Conclusions The study constructed a standard photomap for ovarian nurse cell chromosomes of An. beklemishevi and tested its suitability for physical genome mapping and population studies. Cytogenetic analysis determined inversion polymorphism in natural populations of An. beklemishevi related to this species’ adaptation. Electronic supplementary material The online version of this article (10.1186/s13071-018-2657-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gleb N Artemov
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Mikhail I Gordeev
- Department of General Biology and Ecology, Moscow Regional State University, Moscow, Russia
| | - Alina A Kokhanenko
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Anton V Moskaev
- Department of General Biology and Ecology, Moscow Regional State University, Moscow, Russia
| | - Alena I Velichevskaya
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Vladimir N Stegniy
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Igor V Sharakhov
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia. .,Virginia Tech, Department of Entomology, Fralin Life Science Institute, Blacksburg, VA, USA.
| | - Maria V Sharakhova
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia. .,Virginia Tech, Department of Entomology, Fralin Life Science Institute, Blacksburg, VA, USA.
| |
Collapse
|
39
|
Silva GLD, Pereira TN, Ferla NJ, Silva OSD. The impact of insecticides management linked with resistance expression in Anopheles spp. populations. CIENCIA & SAUDE COLETIVA 2018; 21:2179-88. [PMID: 27383351 DOI: 10.1590/1413-81232015217.00922015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/11/2015] [Indexed: 11/22/2022] Open
Abstract
The resistance of some species of Anopheles to chemical insecticides is spreading quickly throughout the world and has hindered the actions of prevention and control of malaria. The main mechanism responsible for resistance in these insects appears to be the target site known as knock-down resistance (kdr), which causes mutations in the sodium channel. Even so, many countries have made significant progress in the prevention of malaria, focusing largely on vector control through long-lasting insecticide nets (LLINs), indoor residual spraying and (IRS) of insecticides. The objective of this review is to contribute with information on the more applied insecticides for the control of the main vectors of malaria, its effects, and the different mechanisms of resistance. Currently it is necessary to look for others alternatives, e.g. biological control and products derived from plants and fungi, by using other organisms as a possible regulator of the populations of malaria vectors in critical outbreaks.
Collapse
Affiliation(s)
- Guilherme Liberato da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul. R. Sarmento Leite 500, Centro Histórico. 90050-170 Porto Alegre RS Brasil.
| | - Thiago Nunes Pereira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul. R. Sarmento Leite 500, Centro Histórico. 90050-170 Porto Alegre RS Brasil.
| | - Noeli Juarez Ferla
- Laboratório de Acarologia, Museu de Ciências Naturais, Centro Universitário UNIVATES. Lajeado RS Brasil
| | - Onilda Santos da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul. R. Sarmento Leite 500, Centro Histórico. 90050-170 Porto Alegre RS Brasil.
| |
Collapse
|
40
|
Zawada JW, Dahan-Moss YL, Muleba M, Dabire RK, Maïga H, Venter N, Davies C, Hunt RH, Coetzee M, Koekemoer LL. Molecular and physiological analysis of Anopheles funestus swarms in Nchelenge, Zambia. Malar J 2018; 17:49. [PMID: 29370805 PMCID: PMC5785822 DOI: 10.1186/s12936-018-2196-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/19/2018] [Indexed: 11/10/2022] Open
Abstract
Background Anopheles funestus has been recognized as a major malaria vector in Africa for over 100 years, but knowledge on many aspects of the biology of this species is still lacking. Anopheles funestus, as with most other anophelines, mate through swarming. A key event that is crucial for the An. funestus male to mate is genitalia rotation. This involves the 135° to 180° rotation of claspers, which are tipped with claws. This physical change then enables the male to grasp the female during copulation. The aim of this investigation was to molecularly characterize wild An. funestus swarms from Zambia and examine the degree of genitalia rotation within the swarm. Methods Anopheles funestus swarms were collected from Nchelenge, northern Zambia, during dusk periods in May 2016. All the adults from the swarm were analysed morphologically and identified to species level using a multiplex PCR assay. Anopheles funestus s.s. specimens were molecularly characterized by restriction fragment length polymorphism type and Clade type assays. The different stages of genitalia rotation were examined in the adult males. Results A total of six swarms were observed during the study period and between 6 and 26 mosquitoes were caught from each swarm. Species analysis revealed that 90% of the males from the swarms were An. funestus s.s. MW-type, with 84% belonging to clade I compared to 14% clade II and 2% failed to amplify. Very few specimens (3.4%) were identified as Anopheles gambiae s.s. Eighty percent of the males from the swarm had complete genitalia rotation. Conclusions This is the first time that An. funestus swarms have been molecularly identified to species level. Anopheles funestus swarms appear to be species-specific with no evidence of clade-type differentiation within these swarms. The An. funestus swarms consist mainly of males with fully rotated genitalia, which strongly suggests that swarming behaviour is triggered primarily when males have matured.
Collapse
Affiliation(s)
- Jacek W Zawada
- Wits Research Institute for Malaria; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Center for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | - Yael L Dahan-Moss
- Wits Research Institute for Malaria; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Center for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | | | - Roch K Dabire
- Institut de Recherche en Sciences de la Santé/Centre Muraz, BP 545, Bobo-Dioulasso, Burkina Faso
| | - Hamid Maïga
- Institut de Recherche en Sciences de la Santé/Centre Muraz, BP 545, Bobo-Dioulasso, Burkina Faso
| | - Nelius Venter
- Wits Research Institute for Malaria; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Center for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | - Craig Davies
- Wits Research Institute for Malaria; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Center for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | - Richard H Hunt
- Wits Research Institute for Malaria; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Center for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Center for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Center for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa.
| |
Collapse
|
41
|
Erlank E, Koekemoer LL, Coetzee M. The importance of morphological identification of African anopheline mosquitoes (Diptera: Culicidae) for malaria control programmes. Malar J 2018; 17:43. [PMID: 29357873 PMCID: PMC5778787 DOI: 10.1186/s12936-018-2189-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/15/2018] [Indexed: 01/03/2023] Open
Abstract
Background The correct identification of disease vectors is the first step towards implementing an effective control programme. Traditionally, for malaria control, this was based on the morphological differences observed in the adults and larvae between different mosquito species. However, the discovery of species complexes meant that genetic tools were needed to separate the sibling species and today there are standard molecular techniques that are used to identify the two major malaria vector groups of mosquitoes. On the assumption that species-diagnostic DNA polymerase chain reaction (PCR) assays are highly species-specific, experiments were conducted to investigate what would happen if non-vector species were randomly included in the molecular assays. Methods Morphological keys for the Afrotropical Anophelinae were used to provide the a priori identifications. All mosquito specimens were then subjected to the standard PCR assays for members of the Anopheles gambiae complex and Anopheles funestus group. Results One hundred and fifty mosquitoes belonging to 11 morphological species were processed. Three species (Anopheles pretoriensis, Anopheles rufipes and Anopheles rhodesiensis) amplified members of the An. funestus group and four species (An. pretoriensis, An. rufipes, Anopheles listeri and Anopheles squamosus) amplified members of the An. gambiae complex. Conclusions Morphological identification of mosquitoes prior to PCR assays not only saves time and money in the laboratory, but also ensures that data received by malaria vector control programmes are useful for targeting the major vectors.
Collapse
Affiliation(s)
- Erica Erlank
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multidisciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multidisciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multidisciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa.
| |
Collapse
|
42
|
Mosquitoes as Arbovirus Vectors: From Species Identification to Vector Competence. PARASITOLOGY RESEARCH MONOGRAPHS 2018. [PMCID: PMC7122353 DOI: 10.1007/978-3-319-94075-5_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mosquitoes and other arthropods transmit a large number of medically important pathogens, in particular viruses. These arthropod-borne viruses (arboviruses) include a wide variety of RNA viruses belonging to the Flaviviridae family (West Nile virus (WNV), Usutu virus (USUV), Dengue virus (DENV), Japanese encephalitis virus (JEV), Zika virus (ZIKV)), the Togaviridae family (Chikungunya virus (CHIKV)), and Bunyavirales order (Rift Valley fever virus (RVFV)) (please refer also to Table 9.1). Arboviral transmission to humans and livestock constitutes a major threat to public health and economy as illustrated by the emergence of ZIKV in the Americas, RVFV outbreaks in Africa, and the worldwide outbreaks of DENV. To answer the question if those viral pathogens also pose a risk to Europe, we need to first answer the key questions (summarized in Fig. 9.1):Who could contribute to such an outbreak? Information about mosquito species resident or imported, potential hosts and viruses able to infect vectors and hosts in Germany is needed. Where would competent mosquito species meet favorable conditions for transmission? Information on the minimum requirements for efficient replication of the virus in a given vector species and subsequent transmission is needed. How do viruses and vectors interact to facilitate transmission? Information on the vector immunity, vector physiology, vector genetics, and vector microbiomes is needed.
Collapse
|
43
|
Pang SC, Andolina C, Malleret B, Christensen PR, Lam-Phua SG, Razak MABA, Chong CS, Li D, Chu CS, Russell B, Rénia L, Ng LC, Nosten F. Singapore's Anopheles sinensis Form A is susceptible to Plasmodium vivax isolates from the western Thailand-Myanmar border. Malar J 2017; 16:465. [PMID: 29145859 PMCID: PMC5689142 DOI: 10.1186/s12936-017-2114-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/08/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Singapore has been certified malaria-free by the World Health Organization since November 1982. However, sporadic autochthonous malaria outbreaks do occur. In one of the most recent outbreaks of vivax malaria, an entomological investigation identified Anopheles sinensis as the most probable vector. As metaphase karyotype studies divided An. sinensis into two forms, A and B, with different vector competence: the investigation of vector competence of An. sinensis found in Singapore was thus pursued using Plasmodium vivax field isolates from the Thailand-Myanmar border. METHODS Adults and larvae An. sinensis were collected from Singapore from 14 different locations, using various trapping and collection methods between September 2013 and January 2016. Molecular identification of An. sinensis species were conducted by amplifying the ITS2 and CO1 region using PCR. Experimental infections of An. sinensis using blood from seven patients infected with P. vivax from the Thailand-Myanmar border were conducted with Anopheles cracens (An. dirus B) as control. RESULTS Phylogenetic analysis showed that An. sinensis (F22, F2 and collected from outbreak areas) found in Singapore was entirely Form A, and closely related to An. sinensis Form A from Thailand. Artificial infection of these Singapore strain An. sinensis Form A resulted in the development of oocysts in four experiments, with the number of sporozoites produced by one An. sinensis ranging from 4301 to 14,538. CONCLUSIONS Infection experiments showed that An. sinensis Form A from Singapore was susceptible to Thai-Myanmar P. vivax strain, suggesting a potential role as a malaria vector in Singapore.
Collapse
Affiliation(s)
- Sook-Cheng Pang
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, Singapore, 138667 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543 Singapore
| | - Chiara Andolina
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Singapore, 138648 Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117597 Singapore
| | - Peter R. Christensen
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Sai-Gek Lam-Phua
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, Singapore, 138667 Singapore
| | | | - Chee-Seng Chong
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, Singapore, 138667 Singapore
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543 Singapore
| | - Cindy S. Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland St, Dunedin, 9016 New Zealand
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Singapore, 138648 Singapore
| | - Lee-Ching Ng
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, Singapore, 138667 Singapore
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| |
Collapse
|
44
|
Blažejová H, Šebesta O, Rettich F, Mendel J, Čabanová V, Miterpáková M, Betášová L, Peško J, Hubálek Z, Kampen H, Rudolf I. Cryptic species Anopheles daciae (Diptera: Culicidae) found in the Czech Republic and Slovakia. Parasitol Res 2017; 117:315-321. [PMID: 29119308 DOI: 10.1007/s00436-017-5670-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/30/2017] [Indexed: 11/30/2022]
Abstract
We report the distribution of mosquitoes of the maculipennis complex in two distinct areas of the Czech Republic (Bohemia and South Moravia) and in one locality of neighbouring Slovakia with emphasis on the detection of the newly described cryptic species Anopheles daciae (Linton, Nicolescu & Harbach, 2004). A total of 691 mosquitoes were analysed using a species-specific multiplex PCR assay to differentiate between the members of the maculipennis complex. In the Czech Republic, we found Anopheles maculipennis (with a prevalence rate of 1.4%), Anopheles messeae (49.0%) and Anopheles daciae (49.6%). In Slovakia, only An. messeae (52.1%) and An. daciae (47.9%) were detected. In this study, An. daciae was documented for the first time in the two countries where it represented a markedly higher proportion of maculipennis complex species (with an overall prevalence almost reaching 50%) in comparison to previous reports from Germany, Romania and Poland. The determination of the differential distribution of maculipennis complex species will contribute to assessing risks of mosquito-borne diseases such as malaria or dirofilariasis.
Collapse
Affiliation(s)
- Hana Blažejová
- Institute of Vertebrate Biology, v.v.i, Czech Academy of Sciences, Kvetna 8, 603 65, Brno, Czech Republic
| | - Oldřich Šebesta
- Institute of Vertebrate Biology, v.v.i, Czech Academy of Sciences, Kvetna 8, 603 65, Brno, Czech Republic
| | - František Rettich
- The National Institute of Public Health, Srobarova 48, Praha 10, 100 42, Czech Republic
| | - Jan Mendel
- Institute of Vertebrate Biology, v.v.i, Czech Academy of Sciences, Kvetna 8, 603 65, Brno, Czech Republic
| | - Viktória Čabanová
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Martina Miterpáková
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Lenka Betášová
- Institute of Vertebrate Biology, v.v.i, Czech Academy of Sciences, Kvetna 8, 603 65, Brno, Czech Republic
| | - Juraj Peško
- Institute of Vertebrate Biology, v.v.i, Czech Academy of Sciences, Kvetna 8, 603 65, Brno, Czech Republic
| | - Zdeněk Hubálek
- Institute of Vertebrate Biology, v.v.i, Czech Academy of Sciences, Kvetna 8, 603 65, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Helge Kampen
- Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Ivo Rudolf
- Institute of Vertebrate Biology, v.v.i, Czech Academy of Sciences, Kvetna 8, 603 65, Brno, Czech Republic. .,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
45
|
Fang Y, Shi WQ, Zhang Y. Molecular phylogeny of Anopheles hyrcanus group members based on ITS2 rDNA. Parasit Vectors 2017; 10:417. [PMID: 28882174 PMCID: PMC5590201 DOI: 10.1186/s13071-017-2351-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/29/2017] [Indexed: 11/10/2022] Open
Abstract
Background The Anopheles hyrcanus group includes 25 species, and is widely distributed in the Oriental and Palaearctic regions. Several species within this group are vectors of malaria, lymphatic filariasis and Japanese encephalitis. It is difficult or impossible to identify cryptic species based on their morphological characteristics, with some closely related species of the Hyrcanus Group have similar adult morphological characteristics. Thus, their molecular identification has been an important complementary method to traditional morphological taxonomy. Methods We used 461 ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2) sequences relating to 19 species to reconstruct the molecular phylogeny of the Hyrcanus Group across its range. In addition, we compared the performance of rDNA ITS2 to that of mitochondrial DNA (mtDNA) cytochrome c oxidase subunit 1 gene (cox1) to assess the genetic divergence of Hyrcanus Group sibling species. Results Based on Kimura’s 2-parameter (K2P) distance model, the average conspecific ITS2 divergence was 0.003, whereas sequence divergence between species averaged 0.480. Average ITS2 sequence divergences were almost 160 times higher among the Hyrcanus Group members than within each species. Two sets of sibling species, An. lesteri Baisas & Hu, 1936 and An. paraliae Sandosham, 1959; and An. sinensis Wiedemann, 1828, An. belenrae Rueda, 2005, and An. kleini Rueda, 2005, were resolved by ITS2. Each of these species was represented as an independent lineage in the phylogenetic tree. Results suggest that An. pseudopictus Grassi, 1899 and An. hyrcanus (Pallas, 1771) are most likely a single species. We uncovered two new ITS2 lineages that require further study before resolving their true taxonomic status, and designed a diagnostic polymerase chain reaction (PCR) assay to distinguish five morphologically similar species. Conclusions Nuclear and mitochondrial genes generally provided consistent results for subgroup division. Compared to cox1, ITS2 is a more reliable tool for studying phylogenetic relationships among closely related mosquito taxa. Based on species-specific differences in ITS2 sequences, the multiplex PCR assay developed here can be used to improve the efficiency of vector identification. Thus, this research will promote the progress of malaria vector surveillance in both epidemic and non-epidemic areas of South and East Asia. Electronic supplementary material The online version of this article (10.1186/s13071-017-2351-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 20025, People's Republic of China
| | - Wen-Qi Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 20025, People's Republic of China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 20025, People's Republic of China.
| |
Collapse
|
46
|
Kyalo D, Amratia P, Mundia CW, Mbogo CM, Coetzee M, Snow RW. A geo-coded inventory of anophelines in the Afrotropical Region south of the Sahara: 1898-2016. Wellcome Open Res 2017; 2:57. [PMID: 28884158 PMCID: PMC5558104 DOI: 10.12688/wellcomeopenres.12187.1] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 11/20/2022] Open
Abstract
Background: Understanding the distribution of anopheline vectors of malaria is an important prelude to the design of national malaria control and elimination programmes. A single, geo-coded continental inventory of anophelines using all available published and unpublished data has not been undertaken since the 1960s. Methods: We have searched African, European and World Health Organization archives to identify unpublished reports on anopheline surveys in 48 sub-Saharan Africa countries. This search was supplemented by identification of reports that formed part of post-graduate theses, conference abstracts, regional insecticide resistance databases and more traditional bibliographic searches of peer-reviewed literature. Finally, a check was made against two recent repositories of dominant malaria vector species locations ( circa 2,500). Each report was used to extract information on the survey dates, village locations (geo-coded to provide a longitude and latitude), sampling methods, species identification methods and all anopheline species found present during the survey. Survey records were collapsed to a single site over time. Results: The search strategy took years and resulted in 13,331 unique, geo-coded survey locations of anopheline vector occurrence between 1898 and 2016. A total of 12,204 (92%) sites reported the presence of 10 dominant vector species/sibling species; 4,473 (37%) of these sites were sampled since 2005. 4,442 (33%) sites reported at least one of 13 possible secondary vector species; 1,107 (25%) of these sites were sampled since 2005. Distributions of dominant and secondary vectors conform to previous descriptions of the ecological ranges of these vectors. Conclusion: We have assembled the largest ever geo-coded database of anophelines in Africa, representing a legacy dataset for future updating and identification of knowledge gaps at national levels. The geo-coded database is available on Harvard Dataverse as a reference source for African national malaria control programmes planning their future control and elimination strategies.
Collapse
Affiliation(s)
- David Kyalo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Punam Amratia
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Clara W Mundia
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Charles M Mbogo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Maureen Coetzee
- Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa.,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Robert W Snow
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Wei Y, Cheng B, Zhu G, Shen D, Liang J, Wang C, Wang J, Tang J, Cao J, Sharakhov IV, Xia A. Comparative physical genome mapping of malaria vectors Anopheles sinensis and Anopheles gambiae. Malar J 2017; 16:235. [PMID: 28583133 PMCID: PMC5460330 DOI: 10.1186/s12936-017-1888-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/31/2017] [Indexed: 11/29/2022] Open
Abstract
Background Anopheles sinensis is a dominant natural vector of Plasmodium vivax in China, Taiwan, Japan, and Korea. Recent genome sequencing of An. sinensis provides important insights into the genomic basis of vectorial capacity. However, the lack of a physical genome map with chromosome assignment and orientation of sequencing scaffolds hinders comparative analyses with other genomes to infer evolutionary changes relevant to the vector capacity. Results Here, a physical genome map for An. sinensis was constructed by assigning 52 scaffolds onto the chromosomes using fluorescence in situ hybridization (FISH). This chromosome-based genome assembly composes approximately 36% of the total An. sinensis genome. Comparisons of 3955 orthologous genes between An. sinensis and Anopheles gambiae identified 361 conserved synteny blocks and 267 inversions fixed between these two lineages. The rate of gene order reshuffling on the X chromosome is approximately 3.2 times higher than that on the autosomes. Conclusions The physical map will facilitate detailed genomic analysis of An. sinensis and contribute to understanding of the patterns and mechanisms of large-scale genome rearrangements in anopheline mosquitoes. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1888-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Wei
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Biao Cheng
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Guoding Zhu
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Danyu Shen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jiangtao Liang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Cong Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jianxia Tang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Jun Cao
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | - Igor V Sharakhov
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.,Laboratory for Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Ai Xia
- Department of Entomology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
48
|
Trari B, Dakki M, Harbach RE. An updated checklist of the Culicidae (Diptera) of Morocco, with notes on species of historical and current medical importance. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2017; 42:94-104. [PMID: 28504435 DOI: 10.1111/jvec.12243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/17/2016] [Indexed: 06/07/2023]
Abstract
An updated checklist of the mosquito species (Diptera: Culicidae) recorded in Morocco from 1916 to 2016 is provided, including synonyms and synonymous usage for each species. Forty-three species belonging to seven genera are recorded so far: Anopheles (9), Aedes (12) Coquillettidia (2), Culex (12), Culiseta (5), Orthopodomyia (1) and Uranotaenia (2). Traditional and equivalent names in the polyphyletic concept of Aedes are provided for the aedine species. The historical importance and current potential threat of mosquitoes to human health in Morocco is reviewed.
Collapse
Affiliation(s)
- Bouchra Trari
- Unité de Recherche et Développement, Institut Supérieur des Professions Infirmières et Techniques de Santé, Rabat, Morocco
- Département de Zoologie et Biologie Générale, Faculté des Sciences, Université Mohamed V, Rabat, Morocco
- Laboratoire de Zoologie, Université Mohamed V, Institut Scientifique, Rabat, Morocco
| | - Mohamed Dakki
- Laboratoire de Zoologie, Université Mohamed V, Institut Scientifique, Rabat, Morocco
| | - Ralph E Harbach
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
49
|
Taai K, Harbach RE, Aupalee K, Srisuka W, Yasanga T, Otsuka Y, Saeung A. An effective method for the identification and separation of Anopheles minimus, the primary malaria vector in Thailand, and its sister species Anopheles harrisoni, with a comparison of their mating behaviors. Parasit Vectors 2017; 10:97. [PMID: 28222787 PMCID: PMC5320799 DOI: 10.1186/s13071-017-2035-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Species of the Anopheles minimus complex are considered to be the primary vectors of malaria in South and Southeast Asia. Two species of the complex, Anopheles minimus and Anopheles harrisoni, occur in Thailand. They are sympatric and difficult to accurately distinguish based on morphological characters. The aim of this study was to investigate the potential of antennal sensory organs to distinguish these two species. Additionally, we investigated their ability to mate in cages of different sizes, as well as the possible mechanism(s) that evokes stenogamous behavior. METHODS Large sensilla coeloconica present on the antennae of females of An. minimus and An. harrisoni were counted under a conventional light microscope and various types of antennal sensilla were examined under a scanning electron microscope (SEM). Determinations of mating ability were carried out in 20 and 30 cm3 cages with a density resting surface (DRS) of 7.2. The insemination rate, frequency of clasper (gonocoxopodite) movement of the male genitalia during induced copulation and duration of mating of the two species were compared. RESULTS The mean numbers of large sensilla coeloconica on antennal flagellomeres 1-8 and the mean number of large sensilla coeloconica on each flagellum in An. minimus (26.25) and An. harrisoni (31.98) were significantly different. Females of both species bear five types of antennal sensilla: chaetica, trichodea, basiconica, coeloconica and ampullacea. Marked differences in the structure of the large sensilla coeloconica were observed between the two species. Furthermore, only An. minimus could copulate naturally in the small cages. The frequency of clasper movement in the stenogamous An. minimus was significantly higher than in An. harrisoni, but there was no difference in the duration of mating. CONCLUSIONS To our knowledge, this study is the first to examine and discover the usefulness of large sensilla coeloconica on the antennae of females and the frequency of clasper movement in males for distinguishing the sibling species An. minimus and An. harrisoni. The discovery provides an effective and relatively inexpensive method for their identification. Additionally, the greater frequency of clasper movement of An. minimus might influence its ability to mate in small spaces.
Collapse
Affiliation(s)
- Kritsana Taai
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ralph E Harbach
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Kittipat Aupalee
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wichai Srisuka
- Entomology Section, Queen Sirikit Botanic Garden, P.O. Box 7, Chiang Mai, 50180, Thailand
| | - Thippawan Yasanga
- Medical Science Research Equipment Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yasushi Otsuka
- Research Center for the Pacific Islands, Kagoshima University, Kagoshima, 890-8580, Japan
| | - Atiporn Saeung
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
50
|
Stevenson JC, Norris DE. Implicating Cryptic and Novel Anophelines as Malaria Vectors in Africa. INSECTS 2016; 8:E1. [PMID: 28025486 PMCID: PMC5371929 DOI: 10.3390/insects8010001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022]
Abstract
Entomological indices and bionomic descriptions of malaria vectors are essential to accurately describe and understand malaria transmission and for the design and evaluation of appropriate control interventions. In order to correctly assign spatio-temporal distributions, behaviors and responses to interventions to particular anopheline species, identification of mosquitoes must be accurately made. This paper reviews the current methods and their limitations in correctly identifying anopheline mosquitoes in sub-Saharan Africa, and highlights the importance of molecular methods to discriminate cryptic species and identify lesser known anophelines. The increasing number of reports of Plasmodium infections in assumed "minor", non-vector, and cryptic and novel species is reviewed. Their importance in terms of evading current control and elimination strategies and therefore maintaining malaria transmission is emphasized.
Collapse
Affiliation(s)
- Jennifer C Stevenson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Macha Research Trust, Choma P.O. Box 630166, Southern Province, Zambia.
| | - Douglas E Norris
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|