1
|
Oliveira TMA, Mansano AS, Holanda CA, Pinto TS, Reis JB, Azevedo EB, Verbinnen RT, Viana JL, Franco TCRS, Vieira EM. Occurrence and Environmental Risk Assessment of Contaminants of Emerging Concern in Brazilian Surface Waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2199-2210. [PMID: 39073366 DOI: 10.1002/etc.5953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
We investigated the occurrence and the environmental risk of eight contaminants of emerging concern (CECs; acetaminophen, naproxen, diclofenac, methylparaben, 17β-estradiol, sulfathiazole, sulfadimethoxine, and sulfamethazine) in three Brazilian water bodies, namely, the Monjolinho River Basin (São Paulo State), the Mogi Guaçu River (São Paulo State), and the Itapecuru River (Maranhão State) in three sampling campaigns. The CECs were only quantified in surface water samples collected at the Monjolinho River Basin. Acetaminophen, naproxen, and methylparaben were detected in the range of <200 to 575.9 ng L-1, <200 to 224.7 ng L-1, and <200 to 303.6 ng L-1, respectively. The detection frequencies of the three measured compounds were between 33% and 67%. The highest concentrations of CECs were associated with intense urbanization and untreated sewage discharge. Furthermore, CEC concentrations were significantly correlated with total organic carbon, electrical conductivity, and dissolved oxygen levels, suggesting that domestic pollution from urban areas is an important source in the distribution of CECs in the Monjolinho River Basin. The environmental risk assessment indicated a high risk for acetaminophen (risk quotient [RQ] values between 2.1 and 5.8), a medium risk for naproxen (RQs between 0.6 and 0.7), and a low risk for methylparaben (RQs < 0.1) to the freshwater biota of the Monjolinho River Basin. Our findings show potential threats of CECs in Brazilian water bodies, especially in vulnerable areas, and reinforce the need for improvements in environmental regulations to include monitoring and control of these compounds in aquatic systems. Environ Toxicol Chem 2024;43:2199-2210. © 2024 SETAC.
Collapse
Affiliation(s)
- Thiessa M A Oliveira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
- Santa Luzia Faculty, Santa Inês, Maranhão, Brazil
| | - Adrislaine S Mansano
- Department of Hydrobiology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Carlos A Holanda
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
- Licentiate Coordination of Natural Sciences, Federal University of Maranhão, Imperatriz, Maranhão, Brazil
| | - Tiago S Pinto
- Water Resources and Applied Ecology Center, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Jonas B Reis
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Eduardo B Azevedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Raphael T Verbinnen
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
- Analytical Chemistry and Ecotoxicology Laboratory, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - José Lucas Viana
- Analytical Chemistry and Ecotoxicology Laboratory, Federal University of Maranhão, São Luís, Maranhão, Brazil
- Environmental Studies Centre, São Paulo State University, Rio Claro, Brazil
| | - Teresa C R S Franco
- Analytical Chemistry and Ecotoxicology Laboratory, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Eny M Vieira
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
2
|
Gonkowski S, Martín J, Aparicio I, Santos JL, Alonso E, Rytel L. Evaluation of Parabens and Bisphenol A Concentration Levels in Wild Bat Guano Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1928. [PMID: 36767313 PMCID: PMC9916121 DOI: 10.3390/ijerph20031928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Parabens and bisphenol A are synthetic compounds found in many everyday objects, including bottles, food containers, personal care products, cosmetics and medicines. These substances may penetrate the environment and living organisms, on which they have a negative impact. Till now, numerous studies have described parabens and BPA in humans, but knowledge about terrestrial wild mammals' exposure to these compounds is very limited. Therefore, during this study, the most common concentration levels of BPA and parabens were selected (such as methyl paraben-MeP, ethyl paraben-EtP, propyl paraben-PrP and butyl paraben-BuP) and analyzed in guano samples collected in summer (nursery) colonies of greater mouse-eared bats (Myotis myotis) using liquid chromatography with the tandem mass spectrometry (LC-MS-MS) method. MeP has been found in all guano samples and its median concentration levels amounted to 39.6 ng/g. Other parabens were present in smaller number of samples (from 5% for BuP to 62.5% for EtP) and in lower concentrations. Median concentration levels of these substances achieved 0.95 ng/g, 1.45 ng/g and 15.56 ng/g for EtP, PrP and BuP, respectively. BPA concentration levels did not exceed the method quantification limit (5 ng/g dw) in any sample. The present study has shown that wild bats are exposed to parabens and BPA, and guano samples are a suitable matrix for studies on wild animal exposure to these substances.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Julia Martín
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Liliana Rytel
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 14, 10-719 Olsztyn, Poland
| |
Collapse
|
3
|
Werner J, Grześkowiak T, Zgoła-Grześkowiak A. A polydimethylsiloxane/deep eutectic solvent sol-gel thin film sorbent and its application to solid-phase microextraction of parabens. Anal Chim Acta 2022; 1202:339666. [DOI: 10.1016/j.aca.2022.339666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/01/2022]
|
4
|
Makowska K, Martín J, Rychlik A, Aparicio I, Santos JL, Alonso E, Gonkowski S. Biomonitoring parabens in dogs using fur sample analysis - Preliminary studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150757. [PMID: 34619184 DOI: 10.1016/j.scitotenv.2021.150757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Parabens are widely used in the food, cosmetics and pharmaceutical industry and are widespread in the environment. As endocrine disruptors, parabens have adverse effects on living organisms. However, knowledge of the exposure of domestic animals to parabens is extremely scarce. Therefore, this study assessed the exposure level of dogs to three parabens commonly used in industry (i.e. methylparaben - MeP, ethylparaben - EtP and propylparaben - PrP) using fur sample analysis in liquid chromatography-tandem mass spectrometry. The presence of parabens has been noted in the samples collected from all dogs included in the study (n = 30). Mean concentrations of MeP, EtP and PrP in the fur of dogs were 176 (relative standard deviation - RSD = 127.48%) ng/g dry weight (dw), 48.4 (RSD = 163.64%) ng/g dw and 79.8 ng/g dw (RSD = 151.89%), respectively. The highest concentrations were found for MeP (up to 1023 ng/g dw). Concentrations of MeP and EtP in males were statistically higher than those in females (p < 0.05). Statistically significantly higher concentration levels of PrP in young animals (up to three years old) were also found. This is the first study concerning the use of fur samples to evaluate the exposure of domestic animals to parabens. The results indicate that an analysis of the fur may be a useful tool of paraben biomonitoring in dogs. The presence of parabens in the canine fur also suggests that these substances may play a role in veterinary toxicology. However, many aspects connected with this issue are not clear and require further study.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland.
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Andrzej Rychlik
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| |
Collapse
|
5
|
Galinaro CA, Spadoto M, de Aquino FWB, de Souza Pelinson N, Vieira EM. Environmental risk assessment of parabens in surface water from a Brazilian river: the case of Mogi Guaçu Basin, São Paulo State, under precipitation anomalies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8816-8830. [PMID: 34491494 DOI: 10.1007/s11356-021-16315-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Parabens are preservatives widely used by industry since these compounds have antifungal properties, relative low cost, and stability over a wide pH range. This study aims to quantify and assess the environmental risks of methylparaben (MP), ethylparaben (EP), propylparaben (PP), and butylparaben (BP) in surface water from a Brazilian River, Mogi Guaçu. The State of São Paulo, including the Mogi Guaçu River region, suffered from a period of intense drought and high temperatures, which caused anomalies in river flows and water supply problems. The water samples were collected from 14 locations, along 300 km of river extension, at four different seasons. Samples were previously extracted and pre-concentrated by dispersive liquid-liquid microextraction (DLLME) and later analyzed by ultra-performance liquid chromatography coupled with electrospray ionization in tandem with mass spectrometry (UPLC-ESI-MS/MS) detector. During the sampling period, PP was detected in 89.3% of the water samples, MP in 87.5%, EP in 73.2%, and BP in 48.2%. The sum of parabens' average levels was 42.2 μg L-1 in Winter, 41.5 μg L-1 in Summer, 36.6 μg L-1 in Autumn, and 31.5 μg L-1 in Spring. These levels can be attributed to the smaller dilution effect caused by the drought period. Also, ecological risk assessment indicated that parabens could take a low, medium, and high risk for target organisms in the measured aquatic environments, especially considering Pimephales promelas where 15% of the samples do not present potential risk, 84% of samples can present medium risk and only 1% have low risk. Besides, the risks for BP are also considerably higher, when almost 40% presents for high risks and 60% for medium risks. The present study indicates worrisome threats to the water source and to allegedly protected biodiversity and, therefore, urgent actions are needed to effectively protect.
Collapse
Affiliation(s)
- Carlos Alexandre Galinaro
- São Carlos Institute of Chemistry, University of São Paulo, Avenida do Trabalhador São Carlense 400, CEP 13.560-970, São Carlos, São Paulo, Brazil.
| | - Mariangela Spadoto
- Water Resources and Applied Ecology Center, São Carlos School of Engineering, University of São Paulo, Avenida do Trabalhador São Carlense, 400, 13.560-970, São Carlos, São Paulo, Brazil
| | - Francisco Wendel Batista de Aquino
- Chemistry Department, Federal University of São Carlos, Rodovia Washington Luís s/n km 235, P.O. Box 676, São Paulo, São Carlos, 13565-905, Brazil
| | - Natália de Souza Pelinson
- São Carlos School of Engineering (EESC), University of São Paulo (USP), 400 Trabalhador São Carlense Avenue, São Carlos, SP, 13566-590, Brazil
| | - Eny Maria Vieira
- São Carlos Institute of Chemistry, University of São Paulo, Avenida do Trabalhador São Carlense 400, CEP 13.560-970, São Carlos, São Paulo, Brazil
| |
Collapse
|
6
|
Wojtkiewicz J, Tzatzarakis M, Vakonaki E, Makowska K, Gonkowski S. Evaluation of human exposure to parabens in north eastern Poland through hair sample analysis. Sci Rep 2021; 11:23673. [PMID: 34880378 PMCID: PMC8654909 DOI: 10.1038/s41598-021-03152-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/24/2021] [Indexed: 12/02/2022] Open
Abstract
Parabens (PBs) are a group of substances commonly used in industry. They also pollute the environment, penetrate into living organisms and adversely affect various internal organs. During this study, the degree of exposure of people living in Olsztyn, a city in north eastern Poland, to selected parabens most often used in industry was studied. The chemicals under investigation included: methyl paraben—MePB, ethyl paraben—EtPB, propyl paraben—PrPB, benzyl paraben BePB and butyl paraben -BuPB. To this aim, hair samples collected from the scalps of 30 volunteers were analyzed using a liquid chromatography–mass spectrometry technique. All PBs studied were present in a high percentage of analyzed samples (from 76.7% in the case of BePB to 100% in the case of MePB and PrPB). The mean concentration levels were 4425.3 pg/mg for MeBP, 704.0 pg/mg for EtPB, 825.7 pg/mg for PrPB, 135.2 pg/mg for BePB and 154.5 pg/mg for BuPB. Significant differences in PB concentration levels between particular persons were visible. On the other hand, gender, age and artificial hair coloring did not cause statistically significant differences in PB levels. Obtained results have clearly indicated that people living in north eastern Poland are exposed to various PBs, and therefore these substances may affect their health status. However, the evaluation of PBs influence on human health requires further research.
Collapse
Affiliation(s)
- Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900, Olsztyn, Poland.
| | - Manolis Tzatzarakis
- Laboratory of Toxicology Science and Research, Medicine School, University of Crete, 70013, Heraklion, Crete, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology Science and Research, Medicine School, University of Crete, 70013, Heraklion, Crete, Greece
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957, Olsztyn, Poland
| | - Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957, Olsztyn, Poland
| |
Collapse
|
7
|
Characterization of Tattoo Aftercare Products: Allergenic Ingredients and Marketing Claims. Dermatitis 2021; 32:301-307. [PMID: 34524774 DOI: 10.1097/der.0000000000000635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Common recommendations for tattoo aftercare to ensure proper healing include application of topical products. Little is known about tattoo aftercare products. METHODS Tattoo aftercare products were identified from a previous study and a search on Amazon.com using the phrase "tattoo aftercare." Duplicates and products without complete ingredient lists were excluded. Marketing claims were tabulated. All ingredients were entered in Excel and grouped according to Contact Allergen Management Program categories. Comparison of ingredients to North American Contact Dermatitis Group (NACDG) screening and American Contact Dermatitis Society (ACDS) Core allergens was conducted. RESULTS A total of 84 tattoo aftercare products from 52 distinct brands were found. Forty-eight distinctive market claims were identified; the use of "natural ingredient(s)" (42.9%) was most common. There were 4 to 28 ingredients per product (mean = 11.8 ± 5.5) with a total of 369 distinct ingredients listed. Products contained an average of 7.9 ± 3.9 ACDS Core allergens per product and 7.0 ± 3.7 NACDG allergens per product. Most common allergens included fragrance/botanicals (n = 529), vitamin E derivatives (n = 43), and vitamin B5 derivatives (n = 11). CONCLUSIONS This review of 84 products found that tattoo aftercare products contain an average of 8 ACDS Core and 7 NACDG allergens. Clinicians should be aware of potential allergens in tattoo aftercare products.
Collapse
|
8
|
Czarczyńska-Goślińska B, Grześkowiak T, Frankowski R, Lulek J, Pieczak J, Zgoła-Grześkowiak A. Determination of bisphenols and parabens in breast milk and dietary risk assessment for Polish breastfed infants. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Paraben Compounds—Part I: An Overview of Their Characteristics, Detection, and Impacts. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052307] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parabens are widely used in different industries as preservatives and antimicrobial compounds. The evolution of analytical techniques allowed the detection of these compounds in different sources at µg/L and ng/L. Until today, parabens were already found in water sources, air, soil and even in human tissues. The impact of parabens in humans, animals and in ecosystems are a matter of discussion within the scientific community, but it is proven that parabens can act as endocrine disruptors, and some reports suggest that they are carcinogenic compounds. The presence of parabens in ecosystems is mainly related to wastewater discharges. This work gives an overview about the paraben problem, starting with their characteristics and applications. Moreover, the dangers related to their usage were addressed through the evaluation of toxicological studies over different species as well as of humans. Considering this, paraben detection in different water sources, wastewater treatment plants, humans and animals was analyzed based on literature results. A review of European legislation regarding parabens was also performed, presenting some considerations for the use of parabens.
Collapse
|
10
|
Werner J, Rębiś T, Frankowski R, Grześkowiak T, Zgoła-Grześkowiak A. Development of Poly(3,4-Ethylenedioxythiophene) (PEDOT) Electropolymerized Sorbent-Based Solid-Phase Microextraction (SPME) for the Determination of Parabens in Lake Waters by High-Performance Liquid Chromatography – Tandem Mass Spectrometry (HPLC-MS/MS). ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1870232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Justyna Werner
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznań, Poland
| | - Tomasz Rębiś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznań, Poland
| | - Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznań, Poland
| | - Tomasz Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznań, Poland
| | | |
Collapse
|
11
|
Merola C, Perugini M, Conte A, Angelozzi G, Bozzelli M, Amorena M. Embryotoxicity of methylparaben to zebrafish (Danio rerio) early-life stages. Comp Biochem Physiol C Toxicol Pharmacol 2020; 236:108792. [PMID: 32428600 DOI: 10.1016/j.cbpc.2020.108792] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
Methylparaben (MeP) is widely used as preservative in personal care products, food commodities and pharmaceuticals due to its antimicrobial properties. Its widespread use resulted in the contamination of aquatic environment and raised concerns about the potential adverse effects on human health, especially in the developing organisms. The aim of the present study was to evaluate the embryotoxicity of MeP in zebrafish early-life stages applying the benchmark-dose (BMD) methodology to Fish embryo acute toxicity (FET) tests-OECD guideline 236. Toxic effects were studied by daily evaluation of lethal endpoints, hatching rate and sublethal alterations. Zebrafish fertilized eggs were exposed until 96 h post fertilization (hpf) to five concentrations of MeP: 1 mg/L, 10 mg/L, 30 mg/L, 60 mg/L and 80 mg/L. The lethal concentration 50 (LC 50) was 72.67 mg/L. Indeed, BMD confidence interval (lower bound, BMDL-upper bound, BMDU) was 40.8-57.4 mg/L for lethal endpoints and 16-26.5 mg/L for toxicity index, that includes both lethal and sublethal alterations. Zebrafish embryos exposed to MeP developed sublethal alterations including pericardial edema, yolk edema, blood stasis, reduction in blood circulation, reduced heartbeat and notochord curvature. The number of embryos exposed to the highest concentrations of MeP that reported sublethal alterations increased between 24hpf and 48 hpf-72 hpf-96 hpf. Only zebrafish larvae treated with 30 mg/L of MeP showed behavioural changes. This study highlighted the detrimental effects of MeP on zebrafish early-life stages with attention to its developmental toxicity.
Collapse
Affiliation(s)
- C Merola
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Italy
| | - M Perugini
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Italy.
| | - A Conte
- Istituto Zooprofilattico Sperimentale "G. Caporale", via Campo Boario, 64100 Teramo, Italy
| | - G Angelozzi
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Italy
| | - M Bozzelli
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Italy
| | - M Amorena
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Italy
| |
Collapse
|
12
|
Frankowski R, Zgoła-Grześkowiak A, Grześkowiak T, Sójka K. The presence of bisphenol A in the thermal paper in the face of changing European regulations - A comparative global research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114879. [PMID: 32505936 DOI: 10.1016/j.envpol.2020.114879] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is used as a color developer in a thermal paper that after a heating process reacts with a leuco dye and changes it to a colored form. Receipts from cash registers are considered as the main source of consumer exposure to bisphenols together with polycarbonates and epoxy resins. Levels of BPA and its possible alternatives were determined in thermal paper samples collected between May 2018 and May 2019 in 22 European and 17 non-European countries on all inhabited continents (220 samples in total, 133 of which were from Europe and 87 from other countries). These measurements were intended to check the level of BPA presence in receipts originating from different countries, especially from Europe in the light of changing regulations restricting its use. The effect of thermal printing on developer content was also analyzed, but no major changes in concentrations of bisphenols were observed during the process. Thus, printed receipts could be used for the determination of bisphenol content. Analysis of receipts from 39 countries has shown that BPA is still the most common compound used around the world with 69% samples containing this color developer. Among other tested bisphenols, BPS was used as a color developer in 20% samples, but it was noted that all samples collected from Japan and the United States of America were found to contain only BPS. Other bisphenols (F, AF, E, and B) considered as possible alternatives for BPA were detected only at trace levels or not detected at all, which showed that they were not used as color developers. The relatively large use of BPS as a BPA substitute is worrying because this compound not only has similar endocrine properties but is also poorly biodegradable. Besides, its relatively high polarity facilitates spreading in the environment.
Collapse
Affiliation(s)
- Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland.
| | - Tomasz Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Krzysztof Sójka
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| |
Collapse
|
13
|
Hamdaoui O, Merouani S. Impact of seawater salinity on the sonochemical removal of emerging organic pollutants. ENVIRONMENTAL TECHNOLOGY 2020; 41:2305-2313. [PMID: 30585533 DOI: 10.1080/09593330.2018.1564071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
The results presented in this study illustrate the multiple roles of seawater salinity toward the sonochemical degradation, at variable frequencies (300-1700 kHz), of several hazardous substances, i.e. propylparaben (PPR) endocrine disruptor and several synthetic dyes: naphthol blue black (NBB), malachite green (MG), basic red 29 (BR29), acid orange 7 (AO7), Rhodamine B (RhB) and basic fuchsin (BF). Sonochemical treatment degraded all pollutants in seawater at faster rates than in deionized water. The seawater-salts through increasing the ionic strength of the solution act as a potential pusher of hydrophilic pollutants toward the reactive interfacial area of cavitation bubbles. Additionally, the salts reduce the bubble coalescence, which yields higher number of active bubbles in the irradiating media. Analysing the degradation rate of PPR and NBB with two heterogeneous models based on Langmuir kinetics mechanism indicated that the bubble interfacial area was the preferred reaction zone for the ultrasonic degradation of PPR and NBB in seawater.
Collapse
Affiliation(s)
- Oualid Hamdaoui
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, Annaba, Algeria
| | - Slimane Merouani
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, Annaba, Algeria
- Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider - Constantine 3, Constantine, Algeria
| |
Collapse
|
14
|
Muckoya VA, Nomngongo PN, Ngila JC. Factorial Design Optimisation of Solid Phase Extraction for Preconcentration of Parabens in Wastewater Using Ultra-High Performance Liquid Chromatography Triple Quadrupole Mass Spectrometry. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411014666180627150854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Parabens are synthetic esters used extensively as preservatives and/or
bactericides in personal care personal products.
Objective:
Development and validation of a novel robust chemometric assisted analytical technique
with superior analytical performances for the determination of ethylparaben, methylparaben and
propylparaben, using simulated wastewater matrix.
Methods:
An automated Solid Phase Extraction (SPE) method coupled with liquid chromatographymass
spectrometry was applied in this study. A gradient elution programme comprising of 0.1%
formic acid in deionised water (A) and 0.1% formic acid in Methanol (B) was employed on a 100 x
2.1 mm, 3.0 μm a particle size biphenyl column. Two-level (2k) full factorial design coupled with
response surface methodology was used for optimisation and investigation of SPE experimental
variables that had the most significant outcome of the analytical response.
Results:
According to the analysis of variance (ANOVA), sample pH and eluent volume were
statistically the most significant parameters. The method developed was validated for accuracy,
precision, Limits of Detection (LOD) and Limit of Quantification (LOQ) and linearity. The LOD and
LOQ established under those optimised conditions varied between 0.04-0.12 μgL−1 and 0.14-0.40 μgL−1
respectively. The use of matrix-matched external calibration provided extraction recoveries between
78-128% with relative standard deviations at 2-11% for two spike levels (10 and 100 μgL-1) in three
different water matrices (simulated wastewater, influent and effluent water).
Conclusion:
The newly developed method was applied successfully to the analyses of parabens in
wastewater samples at different sampling points of a wastewater treatment plant, revealing
concentrations of up to 3 μgL−1.
Collapse
Affiliation(s)
- Vallerie A. Muckoya
- Applied Chemistry Department, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Philiswa N. Nomngongo
- Applied Chemistry Department, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Jane C. Ngila
- Applied Chemistry Department, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
15
|
Radwan EK, Ibrahim MBM, Adel A, Farouk M. The occurrence and risk assessment of phenolic endocrine-disrupting chemicals in Egypt's drinking and source water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1776-1788. [PMID: 31758477 DOI: 10.1007/s11356-019-06887-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/25/2019] [Indexed: 05/20/2023]
Abstract
This is the first nationwide survey of bisphenol A (BPA), methylparaben, ethylparaben, propylparaben, butylparaben, and o-phenylphenol, in Egypt's water. Five hundred fifty-five water samples were collected from source water (SW, 109 samples) and drinking water (DW, 446 samples) of twenty-three Egyptian governorates. These chemicals were determined by direct ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis of a filtered aliquot of samples. The impacts of the measured concentrations on the aquatic organisms and human health were evaluated as well. BPA, methylparaben, propylparaben, and butylparaben were frequently detected in SW and DW, while ethylparaben and o-phenylphenol were not detected whatsoever. The most frequently detected endocrine-disrupting chemical (EDC) was BPA in SW and methylparaben in DW. The recorded highest concentrations of BPA and methylparaben in SW and BPA and methylparaben, propylparaben, and butylparaben in DW were the highest worldwide. Of the investigated twenty-three governorates, the SW and DW of Aswan, Red Sea, Cairo, Sharqia, and Damietta were free of the studied EDCs. Contrarily, BPA, MeP, PrP, and BuP were detected in Sohag's SW and DW. A detection ratio > 70% was recorded in SW of Faiyum, Dakahlia, and Ismailia, and > 90% in DW of Sohag, Port Said, Dakahlia, and Faiyum. The environmental risk assessment results excluded any human health risk even in the worst-case scenario and showed that BPA represents the highest risk to the aquatic organisms.
Collapse
Affiliation(s)
- Emad K Radwan
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt.
| | - M B M Ibrahim
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt
- Reference Laboratory for Drinking Water, Holding Company for Water and Wastewater, Shubra El-Khima Water Treatment Plant, Cairo, Egypt
| | - Ahmed Adel
- Reference Laboratory for Drinking Water, Holding Company for Water and Wastewater, Shubra El-Khima Water Treatment Plant, Cairo, Egypt
| | - Mohamed Farouk
- Reference Laboratory for Drinking Water, Holding Company for Water and Wastewater, Shubra El-Khima Water Treatment Plant, Cairo, Egypt
| |
Collapse
|
16
|
Abstract
Parabens now being formally declared as the American Contact Dermatitis Society (non)allergen of the year, the allergologic concerns regarding parabens raised during the past century are no longer a significant issue. The more recent toxicological concerns regarding parabens are more imposing, stemming from the gravity of the noncutaneous adverse health effects for which they have been scrutinized for the past 20 years. These include endocrine activity, carcinogenesis, infertility, spermatogenesis, adipogenesis, perinatal exposure impact, and nonallergologic cutaneous, psychologic, and ecologic effects. To assert that parabens are safe for use as currently used in the cosmetics, food, and pharmaceutical industries, all toxicological end points must be addressed. We seek to achieve perspective through this exercise: perspective for the professional assessing systemic risk of parabens by all routes of exposure. The data reviewed in this article strive to provide a balanced perspective for the consumer hopefully to allay concerns regarding the safety of parabens and facilitate an informed decision-making process. Based on currently available scientific information, claims that parabens are involved in the genesis or propagation of these controversial and important health problems are premature. Haste to remove parabens from consumer products could result in their substitution with alternative, less proven, and potentially unsafe alternatives, especially given the compelling data supporting the lack of significant dermal toxicity of this important group of preservatives.
Collapse
|
17
|
Bernal V, Giraldo L, Moreno-Piraján JC, Balsamo M, Erto A. Mechanisms of Methylparaben Adsorption onto Activated Carbons: Removal Tests Supported by a Calorimetric Study of the Adsorbent⁻Adsorbate Interactions. Molecules 2019; 24:molecules24030413. [PMID: 30678133 PMCID: PMC6384570 DOI: 10.3390/molecules24030413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/12/2019] [Accepted: 01/20/2019] [Indexed: 01/25/2023] Open
Abstract
: In this study, the mechanisms of methylparaben adsorption onto activated carbon (AC) are elucidated starting from equilibrium and thermodynamic data. Adsorption tests are carried out on three ACs with different surface chemistry, in different pH and ionic strength aqueous solutions. Experimental results show that the methylparaben adsorption capacity is slightly affected by pH changes, while it is significantly reduced in the presence of high ionic strength. In particular, methylparaben adsorption is directly dependent on the micropore volume of the ACs and the π- stacking interactions, the latter representing the main interaction mechanism of methylparaben adsorption from liquid phase. The equilibrium adsorption data are complemented with novel calorimetric data that allow calculation of the enthalpy change associated with the interactions between solvent-adsorbent, adsorbent-adsorbate and the contribution of the ester functional group (in the methylparaben structure) to the adsorbate⁻adsorbent interactions, in different pH and ionic strength conditions. It was determined that the interaction enthalpy of methylparaben-AC in water increases (absolute value) slightly with the basicity of the activated carbons, due to the formation of interactions with π- electrons and basic functional groups of ACs. The contribution of the ester group to the adsorbate-adsorbent interactions occurs only in the presence of phenol groups on AC by the formation of Brønsted⁻Lowry acid⁻base interactions.
Collapse
Affiliation(s)
- Valentina Bernal
- Departamento de Química, Universidad Nacional de Colombia. Bogotá 11001, Colombia.
| | - Liliana Giraldo
- Departamento de Química, Universidad Nacional de Colombia. Bogotá 11001, Colombia.
| | | | - Marco Balsamo
- Departamento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II. Napoli 80121-80147, Italy.
| | - Alessandro Erto
- Departamento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II. Napoli 80121-80147, Italy.
| |
Collapse
|
18
|
Czarczyńska-Goślińska B, Zgoła-Grześkowiak A, Jeszka-Skowron M, Frankowski R, Grześkowiak T. Detection of bisphenol A, cumylphenol and parabens in surface waters of Greater Poland Voivodeship. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 204:50-60. [PMID: 28854378 DOI: 10.1016/j.jenvman.2017.08.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 05/17/2023]
Abstract
Amounts of bisphenol A (BPA), 4-cumylphenol (CP) and 5 parabens - methylparaben (MP), ethylparaben (EP), propylparaben (PP), butylparaben (BP) and benzylparaben (BzP) in Greater Poland Voivodeship's surface waters are reported. The water samples were collected from selected 15 locations in 2015-2016 at seven different time points: in March, June, August, and October 2015 and March, June, and September 2016. MP was found in every tested sample with typical concentration at several dozen nanograms per liter and the highest level almost 1600 ng L-1 in a sample collected from the Warta River in October 2015. The other four parabens were determined at considerably lower concentrations than MP at levels not exceeding 100 ng L-1 with PP found at the highest and BzP at the lowest levels. BPA was determined at similar concentration level to parabens - between 5 ng L-1 and 95 ng L-1 and CP was found only in a limited number of samples. Noticeable seasonal changes of paraben concentrations were found showing that for these compounds the pollutant release factor dominates both the biodegradation factor and the water volume factor. These seasonal changes were not observed for BPA and CP. Out of all determined parabens only MP was found at considerably higher concentrations than BPA. However, MP's endocrine properties are much lower than those of BPA posing a lower environmental impact potential than BPA. Influence of other (more endocrine disrupting) parabens is also relatively weak in comparison to BPA due to their considerably lower concentrations in the environment.
Collapse
Affiliation(s)
- Beata Czarczyńska-Goślińska
- Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznań, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland.
| | - Magdalena Jeszka-Skowron
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Tomasz Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| |
Collapse
|
19
|
Shen X, Liang J, Zheng L, Lv Q, Wang H. Application of dispersive liquid-liquid microextraction for the preconcentration of eight parabens in real samples and their determination by high-performance liquid chromatography. J Sep Sci 2017; 40:4385-4393. [PMID: 28877408 DOI: 10.1002/jssc.201700722] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Xiong Shen
- Department of Pharmacy; Zhongshan Hospital, Fudan University; Shanghai P.R. China
| | - Jian Liang
- Department of Pharmacy; Zhongshan Hospital, Fudan University; Shanghai P.R. China
| | - Luxia Zheng
- Shanghai Institute for Food and Drug Control; Shanghai P.R. China
| | - Qianzhou Lv
- Department of Pharmacy; Zhongshan Hospital, Fudan University; Shanghai P.R. China
| | - Hong Wang
- Department of General Surgery; Zhongshan Hospital, Fudan University; Shanghai P.R. China
| |
Collapse
|
20
|
Jeszka-Skowron M, Zgoła-Grześkowiak A, Stanisz E, Waśkiewicz A. Potential health benefits and quality of dried fruits: Goji fruits, cranberries and raisins. Food Chem 2016; 221:228-236. [PMID: 27979197 DOI: 10.1016/j.foodchem.2016.10.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 11/29/2022]
Abstract
Dried fruits are important snacks and additives to other foods due to their taste and nutritional advantages. Therefore there is an important goal to control the quality of the food on the market for consumer's safety. Antioxidant activity of goji fruits (Lycium barbarum), cranberries (Vaccinium macrocarpon and oxycoccus) and raisins (Vitis vinifera) were studied using the DPPH (2,2-diphenyl-1-picrylhydrazyl) and Folin-Ciocalteu assays. Cu, Mn and Ge influencing antioxidant activity were determined together with selected toxic metals (Cd, Ni and Pb). Contamination with fungi was studied by quantification of their marker - ergosterol and important mycotoxins (aflatoxins B1, B2, G1 and G2, and ochratoxin A) were also determined. Antioxidant activity of all tested dried fruits was confirmed with goji fruits being the most profitable for consumers. Contamination of the tested fruits with toxic metals and mycotoxins was low.
Collapse
Affiliation(s)
- Magdalena Jeszka-Skowron
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Ewa Stanisz
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| |
Collapse
|