1
|
Alam AMMN, Lee EY, Hossain MJ, Samad A, Kim SH, Hwang YH, Joo ST. Meat quality and safety issues during high temperatures and cutting-edge technologies to mitigate the scenario. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:645-662. [PMID: 39165738 PMCID: PMC11331369 DOI: 10.5187/jast.2024.e46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 08/22/2024]
Abstract
Climate change, driven by the natural process of global warming, is a worldwide issue of significant concern because of its adverse effects on livestock output. The increasing trend of environmental temperature surging has drastically affected meat production and meat product quality, hence result in economic losses for the worldwide livestock business. Due to the increasing greenhouse gas emissions, the situation would get prolonged, and heat exposure-related stress is expected to worsen. Heat exposure causes metabolic and physiological disruptions in livestock. Ruminants and monogastric animals are very sensitive to heat stress due to their rate of metabolism, development, and higher production levels. Before slaughter, intense hot weather triggers muscle glycogen breakdown, producing pale, mushy, and exudative meat with less water-holding capacity. Animals exposed to prolonged high temperatures experience a decrease in their muscle glycogen reserves, producing dry, dark, and complex meat with elevated final pH and increased water-holding capacity. Furthermore, heat stress also causes oxidative stresses, especially secondary metabolites from lipid oxidation, severely affects the functionality of proteins, oxidation of proteins, decreasing shelf life, and food safety by promoting exfoliation and bacterial growth. Addressing the heat-related issues to retain the sustainability of the meat sector is an essential task that deserves an inclusive and comprehensive approach. Considering the intensity of the heat stress effects, this review has been designed primarily to examine the consequences of hot environment temperatures and related stresses on the quality and safety of meat and secondarily focus on cutting edge technology to reduce or alleviate the situational impact.
Collapse
Affiliation(s)
- AMM Nurul Alam
- Division of Applied Life Science (BK 21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK 21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Md Jakir Hossain
- Division of Applied Life Science (BK 21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Abdul Samad
- Division of Applied Life Science (BK 21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - So-Hee Kim
- Division of Applied Life Science (BK 21
Four), Gyeongsang National University, Jinju 52828,
Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK 21
Four), Gyeongsang National University, Jinju 52828,
Korea
- Institute of Agriculture & Life
Science, Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
2
|
Gouda A, Tolba S, Mahrose K, Felemban SG, Khafaga AF, Khalifa NE, Jaremko M, Moustafa M, Alshaharni MO, Algopish U, Abd El-Hack ME. Heat shock proteins as a key defense mechanism in poultry production under heat stress conditions. Poult Sci 2024; 103:103537. [PMID: 38428202 PMCID: PMC10912679 DOI: 10.1016/j.psj.2024.103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/03/2024] Open
Abstract
Over the past years, the poultry industry has been assigned to greater production performance but has become highly sensitive to environmental changes. The average world temperature has recently risen and is predicted to continue rising. In open-sided houses, poultry species confront high outside temperatures, which cause heat stress (HS) problems. Cellular responses are vital in poultry, as they may lead to identifying confirmed HS biomarkers. Heat shock proteins (HSP) are highly preserved protein families that play a significant role in cell function and cytoprotection against various stressors, including HS. The optimal response in which the cell survives the HS elevates HSP levels that prevent cellular proteins from damage caused by HS. The HSP have chaperonic action to ensure that stress-denatured proteins are folded, unfolded, and refolded. The HSP70 and HSP90 are the primary HSP in poultry with a defensive function during HS. HSP70 was the optimal biological marker for assessing HS among the HSP studied. The current review attempts to ascertain the value of HSP as a heat stress defense mechanism in poultry.
Collapse
Affiliation(s)
- Ahmed Gouda
- Animal Production Department, Agricultural and Biological Research Division, National Research Center, Dokki, Cairo, Egypt
| | - Samar Tolba
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Khalid Mahrose
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig 44511, Egypt
| | - Shatha G Felemban
- Medical Laboratory Science Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Uthman Algopish
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
3
|
Aloui L, Greene ES, Tabler T, Lassiter K, Thompson K, Bottje WG, Orlowski S, Dridi S. Effect of heat stress on the hypothalamic expression profile of water homeostasis-associated genes in low- and high-water efficient chicken lines. Physiol Rep 2024; 12:e15972. [PMID: 38467563 DOI: 10.14814/phy2.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
With climate change, selection for water efficiency and heat resilience are vitally important. We undertook this study to determine the effect of chronic cyclic heat stress (HS) on the hypothalamic expression profile of water homeostasis-associated markers in high (HWE)- and low (LWE)-water efficient chicken lines. HS significantly elevated core body temperatures of both lines. However, the amplitude was higher by 0.5-1°C in HWE compared to their LWE counterparts. HWE line drank significantly less water than LWE during both thermoneutral (TN) and HS conditions, and HS increased water intake in both lines with pronounced magnitude in LWE birds. HWE had better feed conversion ratio (FCR), water conversion ratio (WCR), and water to feed intake ratio. At the molecular level, the overall hypothalamic expression of aquaporins (AQP8 and AQP12), arginine vasopressin (AVP) and its related receptor AVP2R, angiotensinogen (AGT), angiotensin II receptor type 1 (AT1), and calbindin 2 (CALB2) were significantly lower; however, CALB1 mRNA and AQP2 protein levels were higher in HWE compared to LWE line. Compared to TN conditions, HS exposure significantly increased mRNA abundances of AQPs (8, 12), AVPR1a, natriuretic peptide A (NPPA), angiotensin I-converting enzyme (ACE), CALB1 and 2, and transient receptor potential cation channel subfamily V member 1 and 4 (TRPV1 and TRPV4) as well as the protein levels of AQP2, however it decreased that of AQP4 gene expression. A significant line by environment interaction was observed in several hypothalamic genes. Heat stress significantly upregulated AQP2 and SCT at mRNA levels and AQP1 and AQP3 at both mRNA and protein levels, but it downregulated that of AQP4 protein only in LWE birds. In HWE broilers, however, HS upregulated the hypothalamic expression of renin (REN) and AVPR1b genes and AQP5 proteins, but it downregulated that of AQP3 protein. The hypothalamic expression of AQP (5, 7, 10, and 11) genes was increased by HS in both chicken lines. In summary, this is the first report showing improvement of growth performances in HWE birds. The hypothalamic expression of several genes was affected in a line- and/or environment-dependent manner, revealing potential molecular signatures for water efficiency and/or heat tolerance in chickens.
Collapse
Affiliation(s)
- Loujain Aloui
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
- Higher School of Agriculture of Mograne, University of Carthage, Zaghouan, Tunisia
| | - Elizabeth S Greene
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Travis Tabler
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kentu Lassiter
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kevin Thompson
- Center for Agricultural Data Analyses, Divion of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Walter G Bottje
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sara Orlowski
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
4
|
El-Shobokshy SA, Abo-Samaha MI, Khafaga AF, Fakiha KG, Khatab SA, Abdelmaksoud EM, Khalek Soltan MA, Othman SI, Rudayni HA, Allam AA, Emam M. The beneficial effect of nanomethionine supplementation on growth performance, gene expression profile, and histopathology of heat-stressed broiler chicken. Poult Sci 2024; 103:103206. [PMID: 37980757 PMCID: PMC10663956 DOI: 10.1016/j.psj.2023.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023] Open
Abstract
This study investigated the effects of nanomethionine (nano-meth) on performance, antioxidants, and gene expression of HSP70, HSP90 and Heat Shock factor-1 (HSF-1) from the liver, and TLR4 from the jejunum, of broiler chickens reared under normal temperatures or under heat stress. Three hundred 1-day-old chicks were randomly assigned to 5 treatment groups. Group 1 served as control. Under normal temperature, birds in group 2 received nano-meth (10 mL/L of drinking water) from d1 until the experiment ended. Group 3 birds were heat-stressed (HS) and did not receive any supplementation. Group 4 received nano-meth in the same dose from d1 old until experiment ended, and the birds were exposed to HS. Group 5 birds were HS and received supplementation of nano-meth during the HS period only. Nano-meth improved (P < 0.0001) final body weight, weight gain, feed conversion ratio, and also decreased (P < 0.0001) the effect of HS on growth performance. Reduction (P < 0.0001) in malondialdehyde and changes in antioxidant enzymes GPX and CAT activity indicated the antioxidant effect of nano-meth. Nano-meth supplementation caused an increase in the expression of HSP70 , HSP90 and HSF1, and a downregulation of TLR4 gene expression. Additionally, nano-meth-supplemented groups showed marked improvement in the histological liver structure, intestinal morphology and villus height compared to control or HS groups.
Collapse
Affiliation(s)
- Set A El-Shobokshy
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Magda I Abo-Samaha
- Poultry Breeding and Production, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Khloud G Fakiha
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Shymaa A Khatab
- Genetics and Genetic Engineering, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | | | - Mosaad Abdel Khalek Soltan
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Muhammad bin Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Mohamed Emam
- Department of Nutrition and Veterinary Clinical Nutrition, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
5
|
Abare MY, Rahayu S, Tugiyanti E. Review: The role of heat shock proteins in chicken: Insights into stress adaptation and health. Res Vet Sci 2023; 165:105057. [PMID: 37864906 DOI: 10.1016/j.rvsc.2023.105057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
This review article aimed to provide readers with a comprehensive understanding of the function of heat shock proteins (HSPs) in chicken physiology, stress response, and overall poultry health. With the increasing challenges faced by the livestock industry, particularly the poultry sector, due to climate change-induced high ambient temperatures, heat stress (HS) has become a critical concern. HS disrupts the thermal balance in poultry, leading to detrimental effects on growth, immune function, and overall health. HSPs play a pivotal role in mitigating the impacts of HS in chickens. These molecular chaperones are involved in protein folding, unfolding, and assembly, and they are classified into several families based on their size, including small molecule HSPs, HSP40, HSP60, HSP70, HSP90, and HSP110. By maintaining cellular homeostasis and promoting stress tolerance, HSPs act as vital guardians in helping chickens cope with HS and its associated consequences. The review synthesized relevant literature to shed light on the importance of HSPs in stress adaptation, cellular homeostasis, and the maintenance of normal cell metabolism in chickens. The adverse effects of HS on chickens include oxidative stress and compromised immune systems, making them more susceptible to infections. So also, HS negatively affects production performance and meat quality in poultry. Understanding the functions of HSPs in chickens offers valuable insights into stress adaptation and health, and could potentially lead to the identification of HSP biomarkers, genetic selection for heat tolerance, investigations into the interplay between HSPs and immune function, and the development of nutritional interventions to enhance HSP activity. By exploring these potential research directions, the review aimed to contribute to the development of novel approaches to mitigate the negative effects of HS on poultry, ultimately improving productivity and animal welfare in a changing climate.
Collapse
Affiliation(s)
- Muhammad Yakubu Abare
- Departmenmt of Agricultural Biotechnology, Faculty of Postgraduate, Jendral Soedirman University, Dr. Suparno Street, Karangwangkal, Puwokerto, Central Java 53122, Indonesia.
| | - Sri Rahayu
- Faculty of Animal Science, Jendral Soedirman University, Dr. Suparno Street, Karangwangkal, Puwokerto, Central Java 53122, Indonesia.
| | - Elly Tugiyanti
- Faculty of Animal Science, Jendral Soedirman University, Dr. Suparno Street, Karangwangkal, Puwokerto, Central Java 53122, Indonesia.
| |
Collapse
|
6
|
Oluwagbenga EM, Fraley GS. Heat stress and poultry production: a comprehensive review. Poult Sci 2023; 102:103141. [PMID: 37852055 PMCID: PMC10591017 DOI: 10.1016/j.psj.2023.103141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
The impact of global warming on poultry production has gained significant attention over the years. However, our current knowledge and understanding of the mechanisms through which heat stress (HS) resulting from global warming affects the welfare, behavior, immune response, production performance, and even transgenerational effects in poultry are still incomplete. Further research is needed to delve deeper into these mechanisms to gain a comprehensive understanding. Numerous studies have investigated various biomarkers of stress in poultry, aiming to identify reliable markers that can accurately assess the physiological status and well-being of birds. However, there is a significant amount of variation and inconsistency in the results reported across different studies. This inconsistency highlights the need for more standardized methods and assays and a clearer understanding of the factors that influence these biomarkers in poultry. This review article specifically focuses on 3 main aspects: 1) the neuroendocrine and behavioral responses of poultry to HS, 2) the biomarkers of HS and 3) the impact of HS on poultry production that have been studied in poultry. By examining the neuroendocrine and behavioral changes exhibited by poultry under HS, we aim to gain insights into the physiological impact of elevated temperatures in poultry.
Collapse
Affiliation(s)
| | - G S Fraley
- Animal Sciences, Purdue University, West Lafayette, IN USA.
| |
Collapse
|
7
|
Cartoni Mancinelli A, Baldi G, Soglia F, Mattioli S, Sirri F, Petracci M, Castellini C, Zampiga M. Impact of chronic heat stress on behavior, oxidative status and meat quality traits of fast-growing broiler chickens. Front Physiol 2023; 14:1242094. [PMID: 37772060 PMCID: PMC10522860 DOI: 10.3389/fphys.2023.1242094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
This research aimed to investigate, through a multifactorial approach, the relationship among some in-vivo parameters (i.e., behavior and blood traits) in broilers exposed to chronic HS, and their implications on proximate composition, technological properties, and oxidative stability of breast meat. A total of 300 Ross 308 male chickens were exposed, from 35 to 41 days of age, to either thermoneutral conditions (TNT group: 20°C; six replicates of 25 birds/each) or elevated ambient temperature (HS group: 24 h/d at 30°C; six replicates of 25 birds/each). In order to deal with thermal stress, HS chickens firstly varied the frequency of some behaviors that are normally expressed also in physiological conditions (i.e., increasing "drinking" and decreasing "feeding") and then exhibited a behavioral pattern finalized at dissipating heat, primarily represented by "roosting," "panting" and "elevating wings." Such modifications become evident when the temperature reached 25°C, while the behavioral frequencies tended to stabilize at 27°C with no further substantial changes over the 6 days of thermal challenge. The multifactorial approach highlighted that these behavioral changes were associated with oxidative and inflammatory status as indicated by lower blood γ-tocopherol and higher carbonyls level (0.38 vs. 0.18 nmol/mL, and 2.39 vs. 7.19 nmol/mg proteins, respectively for TNT and HS; p < 0.001). HS affected breast meat quality by reducing the moisture:protein ratio (3.17 vs. 3.01, respectively for TNT and HS; p < 0.05) as well as the muscular acidification (ultimate pH = 5.81 vs. 6.00, respectively; p < 0.01), resulting in meat with higher holding capacity and tenderness. HS conditions reduced thiobarbituric acid reactive substances (TBARS) concentration in the breast meat while increased protein oxidation. Overall results evidenced a dynamic response of broiler chickens to HS exposure that induced behavioral and physiological modifications strictly linked to alterations of blood parameters and meat quality characteristics.
Collapse
Affiliation(s)
- Alice Cartoni Mancinelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Giulia Baldi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Simona Mattioli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Al-Abdullatif A, Azzam MM. Effects of Hot Arid Environments on the Production Performance, Carcass Traits, and Fatty Acids Composition of Breast Meat in Broiler Chickens. Life (Basel) 2023; 13:1239. [PMID: 37374022 DOI: 10.3390/life13061239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/14/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
The high environmental temperature is one of the main factors challenging the broiler industry during the hot seasons due to it causing more thermal stress. This study aimed to find the effects of heat stress under hot arid environments on the growth performance, carcass traits, and nutritional composition of breast meat in broiler chickens. A total of 240 broiler chickens were allocated into two groups: (1) a control group (thermoneutral environment (TN); 24 ± 0.17 °C) and (2) a heat stress (HS) group, with 30 replicates in each environment. From d 25 to 35 of age, the broiler chickens in the HS group were exposed to 8 h/day of thermal stress (34 ± 0.71 °C) from 8:00 am to 4:00 pm, while the actual recorded value of ambient temperature was 31 °C on average with a relative air humidity (RH) between 48 and 49% for 10 consecutive days (d 25-35 of age). The live body weight (BW), weight gain, and feed intake significantly deteriorated (p < 0.05), and the feed conversion ratio tended to deteriorate (p = 0.055) in the HS group. The hot and cold carcass yields increased (p < 0.05), while the relative heart and liver weights decreased (p < 0.05) in the broiler chickens exposed to HS. The breast meat yield tended to decrease (p = 0.057), while wing meat yields increased significantly (p = 0.050) in heat-stressed broiler chickens. The shrinkage of the carcass percentage increased during chilling (p < 0.001) in the HS group. The ultimate pH values; cooking loss; and contents of moisture, crude protein, and fat of breast meat showed no response (p > 0.05) between the TN and HS groups. The heat-stressed broiler chickens presented lower levels of arachidonic acid (C20:4 (n-6)) (p = 0.01) and eicosadienoic acid (C20:2 (n-6)) (p = 0.050) in the breast meat, while the variations in n-3 polyunsaturated fatty acid were insignificant (p > 0.05) between the groups. In conclusion, our findings confirmed that the hot arid environments could reduce the production performance of broiler chickens and increase carcass shrinkage during chilling, but did not compromise the n-3 polyunsaturated fatty acid and cooking loss in the breast meat.
Collapse
Affiliation(s)
- Abdulaziz Al-Abdullatif
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahmoud Mostafa Azzam
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Choi J, Kong B, Bowker BC, Zhuang H, Kim WK. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. Animals (Basel) 2023; 13:ani13081386. [PMID: 37106949 PMCID: PMC10135100 DOI: 10.3390/ani13081386] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Poultry meat is becoming one of the most important animal protein sources for human beings in terms of health benefits, cost, and production efficiency. Effective genetic selection and nutritional programs have dramatically increased meat yield and broiler production efficiency. However, modern practices in broiler production result in unfavorable meat quality and body composition due to a diverse range of challenging conditions, including bacterial and parasitic infection, heat stress, and the consumption of mycotoxin and oxidized oils. Numerous studies have demonstrated that appropriate nutritional interventions have improved the meat quality and body composition of broiler chickens. Modulating nutritional composition [e.g., energy and crude protein (CP) levels] and amino acids (AA) levels has altered the meat quality and body composition of broiler chickens. The supplementation of bioactive compounds, such as vitamins, probiotics, prebiotics, exogenous enzymes, plant polyphenol compounds, and organic acids, has improved meat quality and changed the body composition of broiler chickens.
Collapse
Affiliation(s)
- Janghan Choi
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Byungwhi Kong
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Brian C Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Chowdhury VS. L-Citrulline: A novel hypothermic amino acid promoting thermotolerance in heat-exposed chickens. Anim Sci J 2023; 94:e13826. [PMID: 36938778 DOI: 10.1111/asj.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
With global warming becoming of increasing concern, poultry farms are experiencing a concomitant increase in heat stress. Chickens are very sensitive to high ambient temperature (HT), so the development of novel nutrients that will help deal with the challenge posed by heat stress is vital. We revealed that L-citrulline (L-Cit) can reduce body temperature in chickens. Orally administered L-Cit solution has been found to provide heat tolerance in chickens and to result in reduced food intake. Heat exposure and oral administration of L-Cit led to increased levels of plasma insulin, whereas heat stress led to a decline in plasma thyroxine. Dietary administration of L-Cit was also shown to be effective to reduce heat stress in broiler chickens. Moreover, L-Cit was found to be metabolized in the liver within 1 h of its administration, and in L-Cit-treated broiler chicks, the Cit-Arginine cycle and the Krebs cycle were found to be active. L-Cit has not yet been approved for inclusion in the poultry diet, so it is important to find alternative sources of L-Cit. Taken together, these findings suggest that L-Cit may serve as an important novel nutrient with the ability to produce heat tolerance in chickens under HT.
Collapse
Affiliation(s)
- Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Department of Animal and Marine Bioresource Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Liu Z, Chen Y, Xue J, Huang X, Chen Z, Wang Q, Wang C. Effects of ambient temperature on the growth performance, fat deposition, and intestinal morphology of geese from 28 to 49 days of age. Poult Sci 2022; 101:101814. [PMID: 35358928 PMCID: PMC8966147 DOI: 10.1016/j.psj.2022.101814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 11/12/2022] Open
Abstract
This study was conducted to investigate the effects of ambient temperature on the growth performance, fat deposition, and intestinal morphology of geese from 28 to 49 d of age. A total of 120 twenty-eight-day-old geese were randomly allotted to 5 environmentally controlled chambers with ambient temperatures set at 18, 21, 24, 27, and 30°C from 28 to 49 d of age, respectively. The feed intake, 49 d body weight, and weight gain decreased linearly or quadratically (P < 0.05) as ambient temperature increased and declined to a minimum when the temperature increased to 30°C. The feed/gain showed a linear or quadratic (P < 0.05) increasing response to increasing temperature. According to broken-line regression, the upper critical levels of ambient temperature from 28 to 49 d of age for weight gain and feed intake were 25.19 and 23.97°C, respectively. As ambient temperature increased from 18 to 30°C, the abdominal fat weight, abdominal fat rate, and subcutaneous fat thickness decreased linearly (P < 0.05) and were accompanied by linearly increasing liver fat content (P < 0.05), but the ambient temperature had no effect on intermuscular fat width or breast muscle fat content (P > 0.05). There were no differences in jejunal, ileal, or cecal morphology for geese raised at 18, 21, 24, 27, and 30°C (P > 0.05). The duodenal villus height showed a linear decreasing response to increasing ambient temperature, but the ambient temperature had no effect on crypt depth, villus width, muscularis thickness, or villus height/crypt depth of the duodenum (P > 0.05). These results indicate that high ambient temperature decreased growth performance and fat deposition and impaired duodenal morphology of geese. Under our experimental conditions, we recommend that the upper critical ambient temperature for geese from 28 to 49 d of age be 25.19°C.
Collapse
|
12
|
Abstract
Dadih or dadiah is traditional fermented buffalo milk of Minangkabau, which occurs spontaneously. Dadih is commonly served as ampiang dadih, or other dishes. The microbiota found in dadih are dominated by lactic acid bacteria, and yeasts are also found. The lactic acid bacteria provide functional value, such as antimicrobial, hypocholesterolemic, antimutagenic, antioxidant, and immunomodulatory properties, as well as being the source of γ-aminobutyric acid (GABA) as an anti-stress agent and folate. Nevertheless, many challenges were observed in dadih production, including the limitation of buffalo milk production due to decreasing populations of buffalo in the last two decades, unstandardized dadih production due to the spontaneous fermentation in natural bamboo tubes, and safety problems as no heat treatment is applied in the production of dadih. These problems impede the development of dadih production, thus is it important to improve buffalo cultivation through artificial insemination programs, using different types of milk and pasteurization processes in dadih production, and incubator development to accelerate the fermentation period.
Collapse
|
13
|
Luo H, Liu Z, Xie F, Bilal M, Liu L, Yang R, Wang Z. Microbial production of gamma-aminobutyric acid: applications, state-of-the-art achievements, and future perspectives. Crit Rev Biotechnol 2021; 41:491-512. [PMID: 33541153 DOI: 10.1080/07388551.2020.1869688] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an important non-protein amino acid with wide-ranging applications. Currently, GABA can be produced by a variety of methods, including chemical synthesis, plant enrichment, enzymatic methods, and microbial production. Among these methods, microbial production has gained increasing attention to meet the strict requirements of an additive in the fields of food, pharmaceutical, and livestock. In addition, renewable and abundant resources, such as glucose and lignocellulosic biomass can also be used for GABA microbial production under mild and environmentally friendly processing conditions. In this review, the applications, metabolic pathways and physiological functions of GABA in different microorganisms were firstly discussed. A comprehensive overview of the current status of process engineering strategies for enhanced GABA production, including fermentation optimization and whole-cell conversion from different feedstocks by various host strains is also provided. We also presented the state-of-the-art achievements in strain development strategies for industrial lactic acid bacteria (LAB), Corynebacterium glutamicum and Escherichia coli to enhance the performance of GABA bioproduction. In order to use bio-based GABA in the fields of food and pharmaceutical, some Generally Recognized as Safe (GRAS) strains such as LAB and C. glutamicum will be the promising chassis hosts. Toward the end of this review, current challenges and valuable research directions/strategies on the improvements of process and strain engineering for economic microbial production of GABA are also suggested.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Zheng Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Fang Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|
14
|
Ma D, Guedes JM, Duttlinger AW, Johnson JS, Zuelly SM, Lay DC, Richert BT, Kim YHB. Impact of L-glutamine as replacement of dietary antibiotics during post weaning and transport recovery on carcass and meat quality attributes in pigs. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Kumar M, Ratwan P, Dahiya SP, Nehra AK. Climate change and heat stress: Impact on production, reproduction and growth performance of poultry and its mitigation using genetic strategies. J Therm Biol 2021; 97:102867. [PMID: 33863431 DOI: 10.1016/j.jtherbio.2021.102867] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Heat stress is an important environmental determinant which adversely affects the performance of poultry worldwide. The present communication reviews the impact of heat stress on production, reproduction and growth performance of poultry, and its alleviation using genetic strategies. The adverse effects of high environmental temperature on poultry include decrease in growth rate, body weight, egg production, egg weight, egg quality, meat quality, semen quality, fertility and hatchability, which cause vast financial losses to the poultry industry. High ambient temperature has an antagonistic effect on performance traits of the poultry. Thus, selection of birds for high performance has increased their susceptibility to heat stress. Additionally, heat burden during transportation of birds from one place to another leads to reduced meat quality, increased mortality and welfare issues. Molecular markers are being explored nowadays to recognize the potential candidate genes related to production, reproduction and growth traits for selecting poultry birds to enhance thermo-tolerance and resistance against diseases. In conclusion, there is a critical need of formulating selection strategies based on genetic markers and exploring more genes in addition to HSP25, 70, 90, H1, RB1CC, BAG3, PDK, ID1, Na, F, dw and K responsible for thermoregulation, to improve the overall performance of poultry along with their ability to tolerate heat stress conditions.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Livestock Farm Complex, LUVAS, Hisar, 125004, Haryana, India.
| | - Poonam Ratwan
- Department of Animal Genetics and Breeding, LUVAS, Hisar, 125004, Haryana, India.
| | - S P Dahiya
- Department of Livestock Farm Complex, LUVAS, Hisar, 125004, Haryana, India.
| | - Anil Kumar Nehra
- Department of Veterinary Parasitology, LUVAS, Hisar, 125004, Haryana, India.
| |
Collapse
|
16
|
Chowdhury VS, Han G, Eltahan HM, Haraguchi S, Gilbert ER, Cline MA, Cockrem JF, Bungo T, Furuse M. Potential Role of Amino Acids in the Adaptation of Chicks and Market-Age Broilers to Heat Stress. Front Vet Sci 2021; 7:610541. [PMID: 33490137 PMCID: PMC7820334 DOI: 10.3389/fvets.2020.610541] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/27/2020] [Indexed: 01/11/2023] Open
Abstract
Increased average air temperatures and more frequent and prolonged periods of high ambient temperature (HT) associated with global warming will increasingly affect worldwide poultry production. It is thus important to understand how HT impacts poultry physiology and to identify novel approaches to facilitate improved adaptation and thereby maximize poultry growth, health and welfare. Amino acids play a role in many physiological functions, including stress responses, and their relative demand and metabolism are altered tissue-specifically during exposure to HT. For instance, HT decreases plasma citrulline (Cit) in chicks and leucine (Leu) in the embryonic brain and liver. The physiological significance of these changes in amino acids may involve protection of the body from heat stress. Thus, numerous studies have focused on evaluating the effects of dietary administration of amino acids. It was found that oral l-Cit lowered body temperature and increased thermotolerance in layer chicks. When l-Leu was injected into fertile broiler eggs to examine the cause of reduction of Leu in embryos exposed to HT, in ovo feeding of l-Leu improved thermotolerance in broiler chicks. In ovo injection of l-Leu was also found to inhibit weight loss in market-age broilers exposed to chronic HT, giving rise to the possibility of developing a novel biotechnology aimed at minimizing the economic losses to poultry producers during summer heat stress. These findings and the significance of amino acid metabolism in chicks and market-age broilers under HT are summarized and discussed in this review.
Collapse
Affiliation(s)
- Vishwajit S Chowdhury
- Laboratory of Stress Physiology and Metabolism, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Guofeng Han
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Hatem M Eltahan
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Elizabeth R Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - John F Cockrem
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Takashi Bungo
- Department of Bioresource Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Zhong G, Shao D, Wang Q, Tong H, Shi S. Effects of dietary supplemented of γ-amino butyric acid on growth performance, blood biochemical indices and intestinal morphology of yellow-feathered broilers exposed to a high temperature environment. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1747953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Guang Zhong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Qiang Wang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Haibing Tong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, Jiangsu 225125, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Jeong SB, Kim YB, Lee JW, Kim DH, Moon BH, Chang HH, Choi YH, Lee KW. Role of dietary gamma-aminobutyric acid in broiler chickens raised under high stocking density. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:293-304. [PMID: 33005763 PMCID: PMC7503073 DOI: 10.1016/j.aninu.2020.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 11/23/2022]
Abstract
The present study was conducted to evaluate the effects of dietary gamma-aminobutyric acid (GABA) in broiler chickens raised in high stocking density (HSD) on performance and physiological responses. A total of 900 male broiler chicks (Ross 308) at 1 d old were assigned in a 2 × 2 factorial arrangement to 4 treatments (10 replicates per treatment) with stocking density, 7.5 birds/m2 (low stocking density; LSD) or 15 birds/m2 (HSD), and dietary GABA, 0 or 100 mg/kg. Chickens raised in HSD exhibited a decrease in body weight gain in all phases (P < 0.05) and feed intake in starter and whole phases (P < 0.01), and an increase in feed conversion ratio in the finisher phase (P < 0.01) compared with LSD-raised chickens. However, dietary GABA did not affect growth performance nor interacted with stocking density on production variables. The HSD vs. LSD increased relative liver weight on d 35 whereas dietary GABA increased relative liver weight and decreased relative bursa weight on d 21. Both stocking density and dietary GABA affected yield and quality of breast and leg muscles. Dietary GABA increased (P < 0.05) width of tibia on d 35 and interacted (P = 0.054) with stocking density on breaking stocking density on d 35. The HSD vs. LSD group lowered (P < 0.05) feather coverage scores. Significant interaction between stocking density and GABA on surface temperature of shank on d 21 was noted (P = 0.024). Dietary GABA exhibited an opposite effect on the concentrations of cecal short-chain fatty acids depending on stocking density leading to a moderate to significant interaction. Stocking density decreased alpha-1-acid glycoprotein whereas dietary GABA decreased heterophil-to-lymphocyte ratio and corticosterone in blood or serum samples. Serum biochemical parameters were altered by stocking density or dietary GABA. It is concluded that dietary GABA alleviated stress indices including corticosterone and heterophil-to-lymphocyte ratio, but failed to reverse stocking density-induced growth depression.
Collapse
Affiliation(s)
- Su-Been Jeong
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yoo Bhin Kim
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jeong-Woo Lee
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Da-Hye Kim
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | | | - Hong-Hee Chang
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yang-Ho Choi
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
19
|
Shakeri M, Cottrell JJ, Wilkinson S, Le HH, Suleria HAR, Warner RD, Dunshea FR. A Dietary Sugarcane-Derived Polyphenol Mix Reduces the Negative Effects of Cyclic Heat Exposure on Growth Performance, Blood Gas Status, and Meat Quality in Broiler Chickens. Animals (Basel) 2020; 10:ani10071158. [PMID: 32650461 PMCID: PMC7401608 DOI: 10.3390/ani10071158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Heat stress is a main reason of systemic oxidative stress, which compromises broiler meat production and quality. To improve the productivity of poultry meat production, studies have investigated different heat stress amelioration strategies. Among these strategies, low-cost feed supplementations are introduced to potentially reduce the negative effects of heat stress. Previous studies have also investigated the effects of different antioxidants on growth performance and meat quality, while a limited number of studies have been made regarding the impacts of the polyphenols at different doses. Polyphenols with antioxidant properties have positive effects against oxidative stress, and are naturally available in high amounts in plants, which makes them a novel feed supplementation for improving meat production as well as meat quality in heat-stressed broiler chickens. Therefore, this study attempted to investigate the effects of different doses of polyphenols supplementation on growth performance, physiological responses, and meat quality in broiler chickens exposed to cyclic heat stress. Abstract Heat stress (HS) compromises growth performance and meat quality of broiler chickens by interrupting lipid and protein metabolism, resulting in increased oxidative damages. The experiment attempted to investigate whether dietary polyphenols (Polygain (POL)) could ameliorate the aforementioned adverse effects of HS on performance and meat quality. One hundred and twenty one day-old-male chicks were allocated to two temperature conditions, thermoneutral (TN) or HS, and fed with either a control diet (CON) or the CON plus four different doses of POL (2, 4, 6 and 10 g/kg). Heat stress caused respiratory alkalosis as evidenced by increased rectal temperature (p < 0.001) and respiration rate (p < 0.001) due to increased blood pH (p < 0.001). Heat stress decreased final body weight (p = 0.061) and breast muscle water content (p = 0.013) while POL improved both (p = 0.002 and p = 0.003, respectively). Heat stress amplified muscle damages, indicated by increased thiobarbituric acid reactive substances (p < 0.001) and reduced myofibril fragmentation index (p = 0.006) whereas POL improved both (p = 0.037 and p = 0.092, respectively). Heat stress impaired meat tenderness (p < 0.001) while POL improved it (p = 0.003). In conclusion, HS impaired growth performance and meat quality whereas POL ameliorated these responses in a dose-dependent manner, and effects of POL were evident under both temperature conditions.
Collapse
Affiliation(s)
- Majid Shakeri
- Department of Medicine, The University of Washington, Seattle WA 98102, USA
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
- Correspondence: (M.S.); (J.J.C.)
| | - Jeremy J. Cottrell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
- Correspondence: (M.S.); (J.J.C.)
| | | | - Hieu H. Le
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
| | - Robyn D. Warner
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Melbourne, Victoria 3010, Australia; (H.H.L.); (H.A.R.S.); (R.D.W.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
20
|
Lan R, Zhao Z, Li S, An L. Sodium butyrate as an effective feed additive to improve performance, liver function, and meat quality in broilers under hot climatic conditions. Poult Sci 2020; 99:5491-5500. [PMID: 33142467 PMCID: PMC7647702 DOI: 10.1016/j.psj.2020.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/31/2020] [Accepted: 06/13/2020] [Indexed: 11/09/2022] Open
Abstract
This study was conducted to investigate the effects of dietary sodium butyrate (SB) supplementation on growth performance, liver function, antioxidant capacity, carcass characteristics, and meat quality in broilers under hot climatic conditions. A total of 288 one-day-old Arbor Acres broilers were randomly allocated to 4 dietary treatments as follow: CON, control diet without SB; T1, control diet with 300 mg/kg SB; T2, control diet with 600 mg/kg SB; and T3, control diet with 1,200 mg/kg SB. Each treatment had 6 replication pens and 12 broilers per pen. The results indicated that the BW on day 35; ADG from day 1 to 21, day 22 to 35, and day 1 to 35; and ADFI from day 22 to 35 linearly (P < 0.05) increased with SB supplementation. Interestingly, alanine aminotransferase and aspartate aminotransferase content in serum were linearly (P < 0.05) decreased by SB supplementation. There was linear (P < 0.05) improvement in activity of superoxide dismutase and catalase in the liver, whereas the content of malondialdehyde was linearly (P < 0.05) decreased with the inclusion of SB. Increasing SB level linearly (P < 0.05) increased CP composition and decreased drip loss percentage on day 1 and 3 of breast muscle. Furthermore, there was linear (P < 0.05) improvement in activity of superoxide dismutase, glutathione peroxidase, and catalase, whereas the content of malondialdehyde showed decreasing trend (P < 0.10) with the inclusion of SB in breast muscle. In conclusion, SB can be used as an effective feed additive to improve growth performance, liver function, and meat quality of broilers under hot climatic conditions.
Collapse
Affiliation(s)
- Ruixia Lan
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China
| | - Zhihui Zhao
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China
| | - Siqi Li
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China
| | - Lilong An
- Department of Animal Science, College of Agriculture, Guangdong Ocean University, Zhanjiang 524-088, Guangdong P.R. China.
| |
Collapse
|
21
|
Beyond Heat Stress: Intestinal Integrity Disruption and Mechanism-Based Intervention Strategies. Nutrients 2020; 12:nu12030734. [PMID: 32168808 PMCID: PMC7146479 DOI: 10.3390/nu12030734] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
The current climate changes have increased the prevalence and intensity of heat stress (HS) conditions. One of the initial consequences of HS is the impairment of the intestinal epithelial barrier integrity due to hyperthermia and hypoxia following blood repartition, which often results in a leaky gut followed by penetration and transfer of luminal antigens, endotoxins, and pathogenic bacteria. Under extreme conditions, HS may culminate in the onset of “heat stroke”, a potential lethal condition if remaining untreated. HS-induced alterations of the gastrointestinal epithelium, which is associated with a leaky gut, are due to cellular oxidative stress, disruption of intestinal integrity, and increased production of pro-inflammatory cytokines. This review summarizes the possible resilience mechanisms based on in vitro and in vivo data and the potential interventions with a group of nutritional supplements, which may increase the resilience to HS-induced intestinal integrity disruption and maintain intestinal homeostasis.
Collapse
|
22
|
Hu H, Chen L, Dai S, Li J, Bai X. Effect of Glutamine on Antioxidant Capacity and Lipid Peroxidation in the Breast Muscle of Heat-stressed Broilers via Antioxidant Genes and HSP70 Pathway. Animals (Basel) 2020; 10:ani10030404. [PMID: 32121383 PMCID: PMC7143643 DOI: 10.3390/ani10030404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
This study investigated whether Glutamine (Gln) could be used as an additive to improve antioxidant capacity in the breast muscle of heat-stressed broilers. Two hundred and forty 22-day-old Arbor Acres broilers in the G1, G2, G3, and G4 groups (n = 60 each) were housed in a cyclic hot environment and fed the basal diet with 0%, 0.5%, 1.0%, and 1.5% Gln, respectively. Compared with the G1 group, dietary 1.5% Gln increased (p < 0.05) pH and b* values, but decreased (p < 0.05) L* cooking loss, drip loss, and water loss rate in breast meat of heat-stressed broilers. Malondialdehyde levels in the breast muscle were lower (p < 0.05) in 1.0% and 1.5% Gln groups than that of the heat-stress group. Compared with the G1 group, dietary 1.5% Gln increased (p < 0.05) catalase (CAT), glutathione, glutathione peroxidase (GSH-Px,) and total antioxidant capacity in the breast muscle of heat-stressed broilers. Furthermore, the CAT, GSH-Px, HSP70 mRNA expression levels, and HSP70 protein expression levels were increased (p < 0.05) in the G3 and G4 groups compared with the G1 group. In sum, Gln alleviated antioxidant capacity and lipid peroxidation in the breast muscle of heat-stressed broilers through antioxidant genes and HSP70 pathways.
Collapse
Affiliation(s)
- Hong Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (H.H.); (J.L.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agriculture Science, Beijing 100193, China;
| | - Sifa Dai
- Department of Pharmaceutical and Life Sciences, Jiujiang University, Jiujiang 332005, China;
| | - Jiaqi Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (H.H.); (J.L.)
| | - Xi Bai
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (H.H.); (J.L.)
- Correspondence: ; Tel.: +86-0550-6732-040
| |
Collapse
|
23
|
Bai S, He C, Zhang K, Ding X, Zeng Q, Wang J, Peng H, Bai J, Lu H, Xuan Y, Su Z. Effects of dietary inclusion of Radix Bupleuri and Radix Astragali extracts on the performance, intestinal inflammatory cytokines expression, and hepatic antioxidant capacity in broilers exposed to high temperature. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Gonzalez-Rivas PA, Chauhan SS, Ha M, Fegan N, Dunshea FR, Warner RD. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci 2019; 162:108025. [PMID: 31841730 DOI: 10.1016/j.meatsci.2019.108025] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/15/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Heat stress is one of the most stressful events in the life of livestock with harmful consequences for animal health, productivity and product quality. Ruminants, pigs and poultry are susceptible to heat stress due to their rapid metabolic rate and growth, high level of production, and species-specific characteristics such as rumen fermentation, sweating impairment, and skin insulation. Acute heat stress immediately before slaughter stimulates muscle glycogenolysis and can result in pale, soft and exudative (PSE) meat characterized by low water holding capacity (WHC). By contrast, animals subjected to chronic heat stress, have reduced muscle glycogen stores resulting in dark, firm and dry (DFD) meat with high ultimate pH and high WHC. Furthermore, heat stress leads to oxidative stress, lipid and protein oxidation, and reduced shelf life and food safety due to bacterial growth and shedding. This review discusses the scientific evidence regarding the effects of heat stress on livestock physiology and metabolism, and their consequences for meat quality and safety.
Collapse
Affiliation(s)
- Paula A Gonzalez-Rivas
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Surinder S Chauhan
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Minh Ha
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Narelle Fegan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
25
|
|
26
|
Chowdhury VS. Heat Stress Biomarker Amino Acids and Neuropeptide Afford Thermotolerance in Chicks. J Poult Sci 2019; 56:1-11. [PMID: 32055190 PMCID: PMC6993887 DOI: 10.2141/jpsa.0180024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
With global warming, heat stress is becoming a pressing concern worldwide. In chickens, heat stress reduces food intake and growth, and increases body temperature and stress responses. Although it is believed that young chicks do not experience heat stress as they need a higher ambient temperature to survive, our series of studies in young chicks showed that they are sensitive to heat stress. This review summarizes current knowledge on amino acid metabolisms during heat stress, with special emphasis on the hypothermic functions of l-citrulline (l-Cit) and l-leucine (l-Leu), and the functions of neuropeptide Y (NPY) in terms of body temperature and heat stress regulation in chicks. Amino acid metabolism is severely affected by heat stress. For example, prolonged heat stress reduces plasma l-Cit in chicks and l-Leu in the brain and liver of embryos. l-Cit and l-Leu supplementation affords thermotolerance in young chicks. NPY expression is increased in the brains of heat-exposed chicks. NPY has a hypothermic action under control thermoneutral temperature and heat stress in chicks. The NPY-sub-receptor Y5 is a partial mediator of the hypothermic action of NPY. Further, NPY stimulates brain dopamine concentrations and acts as an anti-stress agent in heat-exposed fasted, but not fed chicks. In conclusion, young chicks can serve as a model animal for the study of heat stress in chickens. l-Cit, l-Leu, and NPY were identified as biomarkers of heat stress, with the potential to afford thermotolerance in chicks.
Collapse
Affiliation(s)
- Vishwajit S. Chowdhury
- Lab of Stress Physiology and Metabolism, Graduate School of Bioresource and Bioenvironmental Science, Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
27
|
Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J Therm Biol 2018; 78:131-139. [DOI: 10.1016/j.jtherbio.2018.08.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/16/2018] [Accepted: 08/18/2018] [Indexed: 02/06/2023]
|
28
|
Sifa D, Bai X, Zhang D, Hu H, Wu X, Wen A, He S, Zhao L. Dietary glutamine improves meat quality, skeletal muscle antioxidant capacity and glutamine metabolism in broilers under acute heat stress. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1520113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dai Sifa
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Xi Bai
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Dan Zhang
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Hong Hu
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Xuezhuang Wu
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| | - Lei Zhao
- College of Animal Science, Anhui Science and Technology University, Fengyang, People’s Republic of China
| |
Collapse
|
29
|
Wen A, Bai X, Dai S, Shah AA, Hu H. Effect of dietary sodium diacetate on growth performance, carcass characteristics, meat quality, intestinal pH and Escherichia coli of broilers. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an15884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This research report investigated the influences of diet supplemented with sodium diacetate (SD) on growth performance, carcass characteristics, meat quality, and intestinal pH and Escherichia coli count of broilers. A total of 240 1-day-old Arbor Acres chicks were randomly allocated into four groups fed with basal diets containing 0% (Control group), 0.01%, 0.03%, and 0.05% SD. At 42 days of age, the final weight, bodyweight gain, pre-evisceration weight, eviscerated weight, and breast muscle weight were increased in the 0.05% SD group compared with the Control group (P < 0.05). The 0.05% SD group also showed an increased water-holding capacity in the breast and thigh meat (P < 0.05). However, this group also showed a decrease in the lightness value of thigh meat (P < 0.05). There was a tendency towards a decrease in pH values of duodenum, jejunum, ileum, and appendix with the increase in SD supplementation (0.01–0.05%). Broilers in the 0.05% SD group had a lower pH in the jejunum than those in the Control group (P < 0.05). SD supplementation in diets decreased the E. coli count in the small and large intestines (P < 0.05). This study suggests that SD supplementation in diets provides a nutritional strategy to improve growth performance, carcass characteristics, meat quality, and intestinal health of broilers.
Collapse
|
30
|
Orally Administered D-Aspartate Depresses Rectal Temperature and Alters Plasma Triacylglycerol and Glucose Concentrations in Broiler Chicks. J Poult Sci 2017; 54:205-211. [PMID: 32908427 PMCID: PMC7477212 DOI: 10.2141/jpsa.0160010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
L-Aspartate (L-Asp), D-aspartate (D-Asp) or their chemical conjugates plays important physiological roles in regulating food intake, plasma metabolites and thermoregulation in animals. However, there are very few studies available in layers and no reports have been found in broilers. Broilers are very important commercial birds for meat production, so effects of L- or D-Asp in broilers would provide new physiological insight of this strain. Therefore, the purpose of this study was to determine the effect of oral administration of L- or D-Asp on feed intake, rectal temperature and some plasma metabolites in broiler chicks. Broiler chicks (5 days old) were orally administered with different doses (0, 3.75, 7.5 and 15 mmol/kg body weight) of L- or D-Asp. At 120 min after administration of L- or D-Asp, the blood was immediately collected through the jugular vein. The rectal temperature of chicks was measured at 30, 60 and 120 min after administration using a digital thermometer with an accuracy of ±0.1°C, by inserting the thermistor probe in the rectum to a depth of 2 cm. A repeated-measures two-way ANOVA was applied for the analysis of feed intake and rectal temperature. Plasma metabolites were statistically analyzed by one-way ANOVA and regression equations. The study showed that oral administration of both L- and D-Asp did not alter feed intake. However, D-Asp, but not L-Asp, dose-dependently decreased the rectal temperature in chicks. It was also found that D-Asp increased plasma glucose and decreased triacylglycerol concentrations. The changes in plasma metabolites further indicate that D-Asp treatment modulates the energy metabolism in broiler chicks. In conclusion, D-Asp may be a beneficial nutrient not only for layers but also for broilers, since orally administered D-Asp lowered rectal temperature without reducing feed intake.
Collapse
|
31
|
Do PH, Tran PV, Bahry MA, Yang H, Han G, Tsuchiya A, Asami Y, Furuse M, Chowdhury VS. Oral administration of a medium containing both D-aspartate-producing live bacteria and D-aspartate reduces rectal temperature in chicks. Br Poult Sci 2017; 58:569-577. [DOI: 10.1080/00071668.2017.1335858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- P. H. Do
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - P. V. Tran
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - M. A. Bahry
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - H. Yang
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - G. Han
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - A. Tsuchiya
- R&D Division, Meiji Co., Ltd., Kanagawa, Japan
| | - Y. Asami
- R&D Division, Meiji Co., Ltd., Kanagawa, Japan
| | - M. Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - V. S. Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
32
|
Xie XZ, Liang C, Li MH, Chen Z. Effects of Gaba on the Thymus Cytokines of Wenchang Chickens Submitted to Heat Stress. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2016-0334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- XZ Xie
- Hainan Normal University, China
| | - C Liang
- Hainan Normal University, China
| | - MH Li
- Hainan Normal University, China
| | - Z Chen
- Hainan Normal University, China
| |
Collapse
|
33
|
Chand N, Muhammad S, Khan RU, Alhidary IA, Rehman ZU. Ameliorative effect of synthetic γ-aminobutyric acid (GABA) on performance traits, antioxidant status and immune response in broiler exposed to cyclic heat stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23930-23935. [PMID: 27628921 DOI: 10.1007/s11356-016-7604-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to find the effect of synthetic γ-aminobutyric acid (GABA) on the performance, antioxidant status, and immune response in broiler exposed to summer stress. A total of 400-day-old male broiler chickens (Ross 308) was randomly distributed into five treatments (5 replicates). One group served as a control (basal diet only) while the others were supplemented with GABA at the rate of 25 (GABA-25), 50 (GABA 50), 75 (GABA-75), and 100 (GABA-100) mg/kg feed. The experiment was continued for 35 days. Feed intake during the third week was significantly higher (P < 0.05) in GABA-75 and GABA-100, however, it increased significantly (P < 0.05) in GABA-100 during the fourth and fifth week. Overall mean feed intake was significantly (P < 0.05) high in GABA-75 and GABA-100. From the results, we found that body weight improved significantly (P < 0.05) in GABA-50 in week-3. During the fourth, fifth, and overall, body weight increased significantly (P < 0.05) in GABA-100. Significantly, high (P < 0.05) feed conversion ratio (FCR) was found in GABA-100 during the third, fourth, fifth, and on an overall basis. Mean Malondialdehyde (MDA) decreased significantly (P < 0.05) in GABA-100 while Paraoxonase (PON1) and Newcastle disease (ND) titer increased significantly (P < 0.05) in the same group. We concluded that performance traits, antioxidant status, and immune response improved in broiler supplemented 100 mg/kg GABA, exposed to cyclic heat stress.
Collapse
Affiliation(s)
- Naila Chand
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Sher Muhammad
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Rifat Ullah Khan
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan.
- Department of Animal production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| | - Ibrahim Abdullah Alhidary
- Department of Animal production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Zia Ur Rehman
- Faculty of Animal Husbandry & Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
34
|
Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress. Animal 2016; 10:163-71. [PMID: 26677935 DOI: 10.1017/s1751731115001998] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The objective of this study was to determine if a diet supplemented simultaneously with vitamins C and E would alleviate the negative effects of heat stress, applied between 28 and 42 days of age, on performance, carcass and meat quality traits of broiler chickens. A total of 384 male broiler chickens were assigned to a completely randomized design, with a 2×3 factorial arrangement (diet with or without vitamin supplementation and two ambient temperatures plus a pair-feeding group) and 16 replicates. Chickens were kept in thermoneutral conditions up to 28 days of age. They were then housed in groups of four per cage, in three environmentally controlled chambers: two thermoneutral (22.5 and 22.6°C) and one for heat stress (32°C). Half the chickens were fed a diet supplemented with vitamins C (257 to 288 mg/kg) and E (93 to 109 mg/kg). In the thermoneutral chambers, half of the chickens were pair-fed to heat stressed chickens, receiving each day the average feed intake recorded in the heat stress chamber in the previous day. Meat physical quality analyses were performed on the pectoralis major muscle. No ambient temperature×diet supplementation interaction effects were detected on performance, carcass, or meat quality traits. The supplemented diet resulted in lower growth performance, attributed either to a carry-over effect of the lower initial BW, or to a possible catabolic effect of vitamins C and E when supplemented simultaneously at high levels. Heat stress reduced slaughter and carcass weights, average daily gain and feed intake, and increased feed conversion. Growth performance of pair-fed chickens was similar to that of heat stressed chickens. Exposure to heat stress increased carcass and abdominal fat percentages, but reduced breast, liver and heart percentages. Pair-fed chickens showed the lowest fat percentage and their breast percentage was similar to controls. Heat stress increased meat pH and negatively affected meat color and cooking loss. In pair-fed chickens, meat color was similar to the heat stressed group. Shear force was not influenced by heat stress, but pair-fed chickens showed the tenderest meat. In conclusion, reduction in growth performance and negative changes in meat color in heat stressed chickens were attributed to depression in feed intake, whereas negative changes in body composition, higher meat pH and cooking loss were credited to high ambient temperature per se. Diet supplementation with vitamins C and E as antioxidants did not mitigate any of these negative effects.
Collapse
|
35
|
Hu H, Bai X, Wen A, Shah A, Dai S, Ren Q, Wang S, He S, Wang L. Assessment of interactions between glutamine and glucose on meat quality, AMPK, and glutamine concentrations in pectoralis major meat of broilers under acute heat stress. J APPL POULTRY RES 2016. [DOI: 10.3382/japr/pfw021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Hu H, Bai X, Shah AA, Dai S, Wang L, Hua J, Che C, He S, Wen A, Jiang J. Interactive effects of glutamine and gamma-aminobutyric acid on growth performance and skeletal muscle amino acid metabolism of 22-42-day-old broilers exposed to hot environment. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:907-915. [PMID: 26493197 DOI: 10.1007/s00484-015-1084-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 10/10/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
The present experiment was conducted to investigate the interactive effects between dietary glutamine (Gln, 0 and 5 g/kg) and gamma-aminobutyric acid (GABA, 0 and 100 mg/kg) on growth performance and amino acid (AA) metabolism of broilers under hot environment. A total of 360 22-day-old Arbor Acres male chickens were randomly assigned to five treatment groups under thermoneutral chamber (PC, 23 °C) and cyclic heat stress (HS, 30-34 °C cycling) conditions. Compared with the PC group, cyclic HS decreased (P < 0.05) daily weight gain (DWG), daily feed consumption (DFC), the concentrations of Gln, glutamate (Glu), and GABA, and the activities of glutaminase and glutamic acid decarboxylase (GAD) in breast muscle at 28, 35, and 42 days, while it increased (P < 0.05) the activities of glutamine synthetase (GS) and gamma-aminobutyric acid transaminase (GABA-T) at 28, 35, and 42 days. Dietary Gln and GABA improved (P < 0.05) DWG and DFC of broilers under cyclic HS during 28-42 days. In breast muscle, the Gln supplementation increased (P < 0.05) the concentrations of Gln (28, 35, and 42 days), Glu (28, 35, and 42 days), and GABA (42 days) and the activities of glutaminase (28, 35, and 42 days) and GAD (28, 35, and 42 days) but decreased (P < 0.05) GS activities at 28, 35, and 42 days and GABA-T activities at 28 days. The addition of GABA increased (P < 0.05) the concentrations of Gln and Glu and activities of glutaminase and GAD, while it decreased (P < 0.05) GABA-T activities at 28, 35, and 42 days. Significant interactions (P < 0.05) between Gln and GABA were found on breast skeletal muscle Gln concentrations, glutaminase activities, GS activities at 28 and 35 days, and DWG, GABA concentrations, and GABA-T activities at 28, 35, and 42 days in broilers under cyclic HS. In conclusion, the present results indicated that the interactions of exogenous Gln and GABA could offer a potential nutritional strategy to prevent HS-related depression in skeletal muscle Gln and GABA metabolism of broilers.
Collapse
Affiliation(s)
- Hong Hu
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Xi Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Assar Ali Shah
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Sifa Dai
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China.
| | - Like Wang
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Jinling Hua
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Chuanyan Che
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| | - Jinpeng Jiang
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua road, Fengyang, 233100, People's Republic of China
| |
Collapse
|
37
|
Fouad A, Chen W, Ruan D, Wang S, Xia W, Zheng C. Impact of Heat Stress on Meat, Egg Quality, Immunity and Fertility in Poultry and Nutritional Factors That Overcome These Effects: A Review. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ijps.2016.81.95] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Hu H, Bai X, Shah AA, Wen AY, Hua JL, Che CY, He SJ, Jiang JP, Cai ZH, Dai SF. Dietary supplementation with glutamine and γ-aminobutyric acid improves growth performance and serum parameters in 22- to 35-day-old broilers exposed to hot environment. J Anim Physiol Anim Nutr (Berl) 2015; 100:361-70. [PMID: 25980810 DOI: 10.1111/jpn.12346] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/14/2015] [Indexed: 12/12/2022]
Abstract
This study was designed using 360 21-day-old chicks to determine the influences of diet supplementation with glutamine (5 g/kg), γ-aminobutyric acid (GABA, 100 mg/kg) or their combinations on performance and serum parameters exposed to cycling high temperatures. From 22 to 35 days, the experimental groups (2 × 2) were subjected to circular heat stress by exposing them to 30-34 °C cycling, while the positive control group was exposed to 23 °C constant. The blood of broilers was collected to detect serum parameters on days 28 and 35. Compared with the positive control group, the cycling high temperature decreased (p < 0.05) the feed consumption, weight gain and serum total protein (TP), glucose, thyroxine (T4), insulin, alkaline phosphatase (ALP), glutamine, GABA and glutamate levels, while increased (p < 0.05) the serum triglyceride (TG), corticosterone (CS), glucagon (GN), creatine kinase (CK), glutamic oxaloacetic transaminase (GOT), nitric oxide synthase (NOS), glutamate pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) levels during 22-35 days. However, dietary glutamine (5 g/kg) increased (p < 0.05) the feed consumption, weight gain and serum levels of glutamine, TP, insulin and ALP, but decreased (p < 0.05) the serum TG, CK, GOT, NOS and GPT levels. Diet supplemented with GABA also increased (p < 0.05) weight gain and the serum levels of TP, T4, ALP, GABA and glutamine. In addition, the significant interactions (p < 0.05) between glutamine and GABA were found in the feed consumption, weight gain and the serum ALP, CK, LDH, GABA, T3 and T4 levels of heat-stressed chickens. This research indicated that dietary glutamine and GABA improved the antistress ability in performance and serum parameters of broilers under hot environment.
Collapse
Affiliation(s)
- H Hu
- College of Animal Science, Anhui Science and Technology University, Fengyang, China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - X Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - A A Shah
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - A Y Wen
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - J L Hua
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - C Y Che
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - S J He
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - J P Jiang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Z H Cai
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - S F Dai
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
39
|
Wang Y, Liu M, Zhao L, Qiu Y, Zhuang Y. Interactions of γ-aminobutyric acid and whey proteins/caseins during fortified milk production. RSC Adv 2015. [DOI: 10.1039/c5ra16271h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
γ-aminobutyric acid mainly cross-links the β-lg fraction and adducts with α-la or αs1-casein fractions, and tends to form its linear or membered ring structure oligomers.
Collapse
Affiliation(s)
- Yaosong Wang
- State Key Laboratory of Bioreactor Engineering
- R&D Center of Separation and Extraction Technology in Fermentation Industry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Mingying Liu
- State Key Laboratory of Bioreactor Engineering
- R&D Center of Separation and Extraction Technology in Fermentation Industry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering
- R&D Center of Separation and Extraction Technology in Fermentation Industry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yongjun Qiu
- State Key Laboratory of Bioreactor Engineering
- R&D Center of Separation and Extraction Technology in Fermentation Industry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering
- R&D Center of Separation and Extraction Technology in Fermentation Industry
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
40
|
Oral Administration of L-Citrulline, but not L-Arginine or L-Ornithine, Acts as a Hypothermic Agent in Chicks. J Poult Sci 2015. [DOI: 10.2141/jpsa.0150014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Ito K, Erwan E, Nagasawa M, Furuse M, Chowdhury VS. Changes in free amino acid concentrations in the blood, brain and muscle of heat-exposed chicks. Br Poult Sci 2014; 55:644-52. [DOI: 10.1080/00071668.2014.957653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
|
43
|
Wu G. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 2014; 5:34. [PMID: 24999386 PMCID: PMC4082180 DOI: 10.1186/2049-1891-5-34] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/08/2014] [Indexed: 12/17/2022] Open
Abstract
Amino acids are building blocks for proteins in all animals. Based on growth or nitrogen balance, amino acids were traditionally classified as nutritionally essential or nonessential for mammals, birds and fish. It was assumed that all the “nutritionally nonessential amino acids (NEAA)” were synthesized sufficiently in the body to meet the needs for maximal growth and optimal health. However, careful analysis of the scientific literature reveals that over the past century there has not been compelling experimental evidence to support this assumption. NEAA (e.g., glutamine, glutamate, proline, glycine and arginine) play important roles in regulating gene expression, cell signaling, antioxidative responses, fertility, neurotransmission, and immunity. Additionally, glutamate, glutamine and aspartate are major metabolic fuels for the small intestine to maintain its digestive function and to protect the integrity of the intestinal mucosa. Thus, diets for animals must contain all NEAA to optimize their survival, growth, development, reproduction, and health. Furthermore, NEAA should be taken into consideration in revising the “ideal protein” concept that is currently used to formulate swine and poultry diets. Adequate provision of all amino acids (including NEAA) in diets enhances the efficiency of animal production. In this regard, amino acids should not be classified as nutritionally essential or nonessential in animal or human nutrition. The new Texas A&M University’s optimal ratios of dietary amino acids for swine and chickens are expected to beneficially reduce dietary protein content and improve the efficiency of their nutrient utilization, growth, and production performance.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
44
|
Lara LJ, Rostagno MH. Impact of Heat Stress on Poultry Production. Animals (Basel) 2013; 3:356-69. [PMID: 26487407 PMCID: PMC4494392 DOI: 10.3390/ani3020356] [Citation(s) in RCA: 617] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/05/2013] [Accepted: 04/22/2013] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Due to the common occurrence of environmental stressors worldwide, many studies have investigated the detrimental effects of heat stress on poultry production. It has been shown that heat stress negatively affects the welfare and productivity of broilers and laying hens. However, further research is still needed to improve the knowledge of basic mechanisms associated to the negative effects of heat stress in poultry, as well as to develop effective interventions. Abstract Understanding and controlling environmental conditions is crucial to successful poultry production and welfare. Heat stress is one of the most important environmental stressors challenging poultry production worldwide. The detrimental effects of heat stress on broilers and laying hens range from reduced growth and egg production to decreased poultry and egg quality and safety. Moreover, the negative impact of heat stress on poultry welfare has recently attracted increasing public awareness and concern. Much information has been published on the effects of heat stress on productivity and immune response in poultry. However, our knowledge of basic mechanisms associated to the reported effects, as well as related to poultry behavior and welfare under heat stress conditions is in fact scarce. Intervention strategies to deal with heat stress conditions have been the focus of many published studies. Nevertheless, effectiveness of most of the interventions has been variable or inconsistent. This review focuses on the scientific evidence available on the importance and impact of heat stress in poultry production, with emphasis on broilers and laying hens.
Collapse
Affiliation(s)
- Lucas J Lara
- Department of Animal Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA.
| | - Marcos H Rostagno
- Livestock Behavior Research Unit, USDA-ARS, 125 South Russell Street, West Lafayette, IN 47907, USA.
| |
Collapse
|