1
|
Siegel EL, Rich C, Saravanan S, Pearson P, Xu G, Rich SM. Effects of Inosine-5'-monophosphate Dehydrogenase (IMPDH/GuaB) Inhibitors on Borrelia burgdorferi Growth in Standard and Modified Culture Conditions. Microorganisms 2024; 12:2064. [PMID: 39458373 PMCID: PMC11509813 DOI: 10.3390/microorganisms12102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Borrelia burgdorferi's inosine-5'-monophosphate dehydrogenase (IMPDH, GuaB encoded by the guaB gene) is a potential therapeutic target. GuaB is necessary for B. burgdorferi replication in mammalian hosts but not in standard laboratory culture conditions. Therefore, we cannot test novel GuaB inhibitors against B. burgdorferi without utilizing mammalian infection models. This study aimed to evaluate modifications to a standard growth medium that may mimic mammalian conditions and induce the requirement of GuaB usage for replication. The effects of two GuaB inhibitors (mycophenolic acid, 6-chloropurine riboside at 125 μM and 250 μM) were assessed against B. burgdorferi (guaB+) grown in standard Barbour-Stoenner-Kelly-II (BSK-II) medium (6% rabbit serum) and BSK-II modified to 60% concentration rabbit serum (BSK-II/60% serum). BSK-II directly supplemented with adenine, hypoxanthine, and nicotinamide (75 μM each, BSK-II/AHN) was also considered as a comparison group. In standard BSK-II, neither mycophenolic acid nor 6-chloropurine riboside affected B. burgdorferi growth. Based on an ANOVA, a dose-dependent increase in drug effects was observed in the modified growth conditions (F = 4.471, p = 0.001). Considering higher drug concentrations at exponential growth, mycophenolic acid at 250 μM reduced spirochete replication by 48% in BSK-II/60% serum and by 50% in BSK-II/AHN (p < 0.001 each). 6-chloropurine riboside was more effective in both mediums than mycophenolic acid, reducing replication by 64% in BSK-II/60% serum and 65% in BSK-II/AHN (p < 0.001 each). These results demonstrate that modifying BSK-II medium with physiologically relevant levels of mammalian serum supports replication and induces the effects of GuaB inhibitors. This represents the first use of GuaB inhibitors against Borrelia burgdorferi, building on tests against purified B. burgdorferi GuaB. The strong effects of 6-chloropurine riboside indicate that B. burgdorferi can salvage and phosphorylate these purine derivative analogs. Therefore, this type of molecule may be considered for future drug development. Optimization of this culture system will allow for better assessment of novel Borrelia-specific GuaB inhibitor molecules for Lyme disease interventions. The use of GuaB inhibitors as broadcast sprays or feed baits should also be evaluated to reduce spirochete load in competent reservoir hosts.
Collapse
Affiliation(s)
- Eric L. Siegel
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (E.L.S.); (C.R.); (S.S.); (P.P.); (G.X.)
- New England Center of Excellence in Vector-Borne Disease, Amherst, MA 01003, USA
| | - Connor Rich
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (E.L.S.); (C.R.); (S.S.); (P.P.); (G.X.)
- New England Center of Excellence in Vector-Borne Disease, Amherst, MA 01003, USA
| | - Sanchana Saravanan
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (E.L.S.); (C.R.); (S.S.); (P.P.); (G.X.)
- New England Center of Excellence in Vector-Borne Disease, Amherst, MA 01003, USA
| | - Patrick Pearson
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (E.L.S.); (C.R.); (S.S.); (P.P.); (G.X.)
- New England Center of Excellence in Vector-Borne Disease, Amherst, MA 01003, USA
| | - Guang Xu
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (E.L.S.); (C.R.); (S.S.); (P.P.); (G.X.)
- New England Center of Excellence in Vector-Borne Disease, Amherst, MA 01003, USA
| | - Stephen M. Rich
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (E.L.S.); (C.R.); (S.S.); (P.P.); (G.X.)
- New England Center of Excellence in Vector-Borne Disease, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Itani S, Hamie M, El Jammal R, Abdine W, Doumit M, Charafeddine A, El-Sabban M, Patinote C, Masquefa C, Bonnet PA, Obeid M, El Hajj H. Imiquimod Reverses Chronic Toxoplasmosis-Associated Behavioral and Neurocognitive Anomalies in a Rat Model. Biomedicines 2024; 12:1295. [PMID: 38927503 PMCID: PMC11202296 DOI: 10.3390/biomedicines12061295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Toxoplasma gondii is the etiologic agent of toxoplasmosis, a highly prevalent parasitosis. Toxoplasma gondii (T. gondii) transits in the brain from acute (AT) to chronic toxoplasmosis (CT), under host immune control. In immunocompromised patients, reactivation of CT is potentially life-threatening. Behavioral and neurological complications have been associated with CT. Furthermore, an effective treatment targeting CT is still lacking. We previously reported the efficacy of imiquimod against CT. Here, we demonstrate the molecular effects of imiquimod or imiquimod followed by the clinically used combination of sulfadiazine and pyrimethamine (SDZ + PYR) on CT-associated behavior in a rat model. Imiquimod decreased the number of cysts in the brains of chronically infected rats due to an induced reactivation of bradyzoites into tachyzoites. Importantly, this decrease was more pronounced in rats treated with imiquimod followed by SDZ + PYR. Rats chronically infected with T. gondii exhibited an anxiety-like behavior. Notably, treatment with imiquimod reversed this behavior aberrancy, with even a more pronounced effect with imiquimod followed by SDZ/PYR. Similarly, rats chronically infected with T. gondii exhibited learning deficits, and imiquimod alone or followed by SDZ/PYR reversed this behavior. Our results enhance our knowledge of the implications of CT on behavioral aberrancies and highlight the potency of imiquimod followed by SDZ + PYR on these CT-associated complications.
Collapse
Affiliation(s)
- Shaymaa Itani
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (S.I.); (M.H.); (W.A.)
| | - Maguy Hamie
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (S.I.); (M.H.); (W.A.)
| | - Reem El Jammal
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.E.J.); (M.D.); (M.E.-S.); (M.O.)
| | - Wassim Abdine
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (S.I.); (M.H.); (W.A.)
| | - Mark Doumit
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.E.J.); (M.D.); (M.E.-S.); (M.O.)
| | - Adib Charafeddine
- College of Pharmacy, American University of Iraq-Baghdad, Baghdad 10071, Iraq;
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.E.J.); (M.D.); (M.E.-S.); (M.O.)
| | - Cindy Patinote
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (C.P.); (C.M.); (P.-A.B.)
| | - Carine Masquefa
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (C.P.); (C.M.); (P.-A.B.)
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France; (C.P.); (C.M.); (P.-A.B.)
| | - Makram Obeid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (R.E.J.); (M.D.); (M.E.-S.); (M.O.)
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (S.I.); (M.H.); (W.A.)
| |
Collapse
|
3
|
Vijayasurya, Gupta S, Shah S, Pappachan A. Drug repurposing for parasitic protozoan diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:23-58. [PMID: 38942539 DOI: 10.1016/bs.pmbts.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Protozoan parasites are major hazards to human health, society, and the economy, especially in equatorial regions of the globe. Parasitic diseases, including leishmaniasis, malaria, and others, contribute towards majority of morbidity and mortality. Around 1.1 million people die from these diseases annually. The lack of licensed vaccinations worsens the worldwide impact of these diseases, highlighting the importance of safe and effective medications for their prevention and treatment. However, the appearance of drug resistance in parasites continuously affects the availability of medications. The demand for novel drugs motivates global antiparasitic drug discovery research, necessitating the implementation of many innovative ways to maintain a continuous supply of promising molecules. Drug repurposing has come out as a compelling tool for drug development, offering a cost-effective and efficient alternative to standard de novo approaches. A thorough examination of drug repositioning candidates revealed that certain drugs may not benefit significantly from their original indications. Still, they may exhibit more pronounced effects in other disorders. Furthermore, certain medications can produce a synergistic effect, resulting in enhanced therapeutic effectiveness when given together. In this chapter, we outline the approaches employed in drug repurposing (sometimes referred to as drug repositioning), propose novel strategies to overcome these hurdles and fully exploit the promise of drug repurposing. We highlight a few major human protozoan diseases and a range of exemplary drugs repurposed for various protozoan infections, providing excellent outcomes for each disease.
Collapse
Affiliation(s)
- Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Smit Shah
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
4
|
Miranda Júnior NRD, Santos AGAD, Pereira AV, Mariano IA, Guilherme ALF, Santana PDL, Beletini LDF, Evangelista FF, Nogueira-Melo GDA, Sant'Ana DDMG. Rosuvastatin enhances alterations caused by Toxoplasma gondii in the duodenum of mice. Tissue Cell 2023; 84:102194. [PMID: 37597359 DOI: 10.1016/j.tice.2023.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
Infection by Toxoplasma gondii may compromise the intestinal histoarchitecture through the tissue reaction triggered by the parasite. Thus, this study evaluated whether treatment with rosuvastatin modifies duodenal changes caused by the chronic infection induced by cysts of T. gondii. For this, female Swiss mice were distributed into infected and treated group (ITG), infected group (IG), group treated with 40 mg/kg rosuvastatin (TG) and control group (CG). After 72 days of infection, the animals were euthanized, the duodenum was collected and processed for histopathological analysis. We observed an increase in immune cell infiltration in the IG, TG and ITG groups, with injury to the Brunner glands. The infection led to a reduction in collagen fibers and mast cells. Infected and treated animals showed an increase in collagen fibers, acidic mucin-producing goblet cells, intraepithelial lymphocytes and mast cells, in addition to the reduction of muscle, neutral mucin-producing and Paneth cells. While treatment with rosuvastatin alone led to increased muscle layer, proportion of neutral mucin-producing goblet cells, Paneth cells, and reduction of collagen fibers. These findings indicate that the infection and treatment caused changes in the homeostasis of the intestinal wall and treatment with rosuvastatin potentiated most parameters indicative of inflammation.
Collapse
Affiliation(s)
- Nelson Raimundo de Miranda Júnior
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Amanda Gubert Alves Dos Santos
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Andréia Vieira Pereira
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Isabela Alessandra Mariano
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Ana Lucia Falavigna Guilherme
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Priscilla de Laet Santana
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Lucimara de Fátima Beletini
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Fernanda Ferreira Evangelista
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Gessilda de Alcantara Nogueira-Melo
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Debora de Mello Gonçales Sant'Ana
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil.
| |
Collapse
|
5
|
Gharibi Z, Shahbazi B, Gouklani H, Nassira H, Rezaei Z, Ahmadi K. Computational screening of FDA-approved drugs to identify potential TgDHFR, TgPRS, and TgCDPK1 proteins inhibitors against Toxoplasma gondii. Sci Rep 2023; 13:5396. [PMID: 37012275 PMCID: PMC10070243 DOI: 10.1038/s41598-023-32388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is one of the most successful parasites in the world, because about a third of the world's population is seropositive for toxoplasmosis. Treatment regimens for toxoplasmosis have remained unchanged for the past 20 years, and no new drugs have been introduced to the market recently. This study, performed molecular docking to identify interactions of FDA-approved drugs with essential residues in the active site of proteins of T. gondii Dihydrofolate Reductase (TgDHFR), Prolyl-tRNA Synthetase (TgPRS), and Calcium-Dependent Protein Kinase 1 (TgCDPK1). Each protein was docked with 2100 FDA-approved drugs using AutoDock Vina. Also, the Pharmit software was used to generate pharmacophore models based on the TgDHFR complexed with TRC-2533, TgPRS in complex with halofuginone, and TgCDPK1 in complex with a bumped kinase inhibitor, RM-1-132. Molecular dynamics (MD) simulation was also performed for 100 ns to verify the stability of interaction in drug-protein complexes. Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis evaluated the binding energy of selected complexes. Ezetimibe, Raloxifene, Sulfasalazine, Triamterene, and Zafirlukast drugs against the TgDHFR protein, Cromolyn, Cefexim, and Lactulose drugs against the TgPRS protein, and Pentaprazole, Betamethasone, and Bromocriptine drugs against TgCDPK1 protein showed the best results. These drugs had the lowest energy-based docking scores and also stable interactions based on MD analyses with TgDHFR, TgPRS, and TgCDPK1 drug targets that can be introduced as possible drugs for laboratory investigations to treat T. gondii parasite infection.
Collapse
Affiliation(s)
- Zahra Gharibi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamed Gouklani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hoda Nassira
- Polymer Division, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Zahra Rezaei
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
6
|
Zhang Y, Li D, Shen Y, Li S, Lu S, Zheng B. Immunization with a novel mRNA vaccine, TGGT1_216200 mRNA-LNP, prolongs survival time in BALB/c mice against acute toxoplasmosis. Front Immunol 2023; 14:1161507. [PMID: 37122740 PMCID: PMC10140528 DOI: 10.3389/fimmu.2023.1161507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Toxoplasma gondii, a specialized intracellular parasite, causes a widespread zoonotic disease and is a severe threat to social and economic development. There is a lack of effective drugs and vaccines against T. gondii infection. Recently, mRNA vaccines have been rapidly developed, and their packaging materials and technologies are well established. In this study, TGGT1_216200 (TG_200), a novel molecule from T. gondii, was identified using bioinformatic screening analysis. TG_200 was purified and encapsulated with a lipid nanoparticle (LNP) to produce the TG_200 mRNA-LNP vaccine. The immune protection provided by the new vaccine and its mechanisms after immunizing BABL/C mice via intramuscular injection were investigated. There was a strong immune response when mice were vaccinated with TG_200 mRNA-LNP. Elevated levels of anti-T. gondii-specific immunoglobulin G (IgG), and a higher IgG2a-to-IgG1 ratio was observed. The levels of interleukin-12 (IL-12), interferon-γ (IFN-γ), IL-4, and IL-10 were also elevated. The result showed that the vaccine induced a mixture of Th1 and Th2 cells, and Th1-dominated humoral immune response. Significantly increased antigen-specific splenocyte proliferation was induced by TG_200 mRNA-LNP immunization. The vaccine could also induce T. gondii-specific cytotoxic T lymphocytes (CTLs). The expression levels of interferon regulatory factor 8 (IRF8), T-Box 21 (T-bet), and nuclear factor kappa B (NF-κB) were significantly elevated after TG_200 mRNA-LNP immunization. The levels of CD83, CD86, MHC-I, MHC-II, CD8, and CD4 molecules were also higher. The results indicated that TG_200 mRNA-LNP produced specific cellular and humoral immune responses. Most importantly, TG_200 mRNA-LNP immunized mice survived significantly longer (19.27 ± 3.438 days) than the control mice, which died within eight days after T. gondii challenge (P< 0.001). The protective effect of adoptive transfer was also assessed, and mice receiving serum and splenocytes from mice immunized with TG_200 mRNA-LNP showed improved survival rates of 9.70 ± 1.64 days and, 13.40 ± 2.32 days, respectively (P< 0.001). The results suggested that TG_200 mRNA-LNP is a safe and promising vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Yizhuo Zhang
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Dan Li
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yu Shen
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shiyu Li
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shaohong Lu
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Shaohong Lu, ; Bin Zheng,
| | - Bin Zheng
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Shaohong Lu, ; Bin Zheng,
| |
Collapse
|
7
|
Anti-Toxoplasma gondii agent isolated from Orostachys malacophylla (Pallas) Fischer. Exp Parasitol 2022; 242:108397. [DOI: 10.1016/j.exppara.2022.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
|
8
|
Yan X, Sun Y, Zhang G, Han W, Gao J, Yu X, Jin X. Study on the antagonistic effects of koumiss on Toxoplasma gondii infection in mice. Front Nutr 2022; 9:1014344. [PMID: 36245502 PMCID: PMC9554477 DOI: 10.3389/fnut.2022.1014344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii is an important food-borne zoonotic parasite, and approximately one-third of people worldwide are positive for T. gondii antibodies. To date, there are no specific drugs or vaccines against T. gondii. Therefore, developing a new safe and effective method has become a new trend in treating toxoplasmosis. Koumiss is rich in probiotics and many components that can alleviate the clinical symptoms of many diseases via the functional characteristics of koumiss and its regulation of intestinal flora. To investigate the antagonistic effect of koumiss on T. gondii infection, the model of acute and chronic T. gondii infection was established in this study. The survival rate, SHIRPA score, serum cytokine levels, brain cyst counts, β-amyloid deposition and intestinal flora changes were measured after koumiss feeding. The results showed that the clinical symptoms of mice were improved at 6 dpi and that the SHIRPA score decreased after koumiss feeding (P < 0.05). At the same time, the levels of IL-4, IFN-γ and TNF-α decreased (P < 0.001, P < 0.001, P < 0.01). There was no significant difference of survival rate between koumiss treatment and the other groups. Surprisingly, the results of chronic infection models showed that koumiss could significantly reduce the number of brain cysts in mice (P < 0.05), improve β-amyloid deposition in the hippocampus (P < 0.01) and decrease the levels of IFN-γ and TNF-α (P < 0.01, P < 0.05). Moreover, koumiss could influence the gut microbiota function in resisting T. gondii infection. In conclusion, koumiss had a significant effect on chronic T. gondii infection in mice and could improve the relevant indicators of acute T. gondii infection in mice. The research provides new evidence for the development of safe and effective anti-T. gondii methods, as well as a theoretical basis and data support for the use of probiotics against T. gondii infection and broadened thoughts for the development and utilization of koumiss.
Collapse
Affiliation(s)
- Xinlei Yan
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Xinlei Yan,
| | - Yufei Sun
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenying Han
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, China
| | - Jialu Gao
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, China
| | - Xiuli Yu
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, China
| | - Xindong Jin
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
9
|
Shamshad H, Bakri R, Mirza AZ. Dihydrofolate reductase, thymidylate synthase, and serine hydroxy methyltransferase: successful targets against some infectious diseases. Mol Biol Rep 2022; 49:6659-6691. [PMID: 35253073 PMCID: PMC8898753 DOI: 10.1007/s11033-022-07266-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
Parasitic diseases have a serious impact on the world in terms of health and economics and are responsible for worldwide mortality and morbidity. The present review features the hybrid targeting involving three main enzymes for the treatment of different parasitic diseases. The enzymes Dihydrofolate reductase, thymidylate synthase, and Serine hydroxy methyltransferase play an essential role in the folate pathway. The present review focuses on these enzymes, which can be targeted against several diseases. It shed light on the past, present, and future of these targets, and it can be assessed that these targets can play a significant role against several infectious diseases. For combating viral and protozoal infectious diseases, these targets in combination should be addressed.
Collapse
Affiliation(s)
- Hina Shamshad
- Faculty of Pharmacy, Jinnah University for Women, Karachi, Pakistan
| | - Rowaida Bakri
- College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | |
Collapse
|
10
|
Alanazi AD, Almohammed HI. Therapeutic Potential and Safety of the Cinnamomum zeylanicum Methanolic Extract Against Chronic Toxoplasma gondii Infection in Mice. Front Cell Infect Microbiol 2022; 12:900046. [PMID: 35755846 PMCID: PMC9218191 DOI: 10.3389/fcimb.2022.900046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background This experimental study determined the in vitro, in vivo, and toxicity effects of Cinnamomum zeylanicum methanolic extract (CZME) against Toxoplasma gondii infection. Methods The in vitro activity of CZME T. gondii tachyzoites was studied by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Infected mice were treated with CZME for two weeks at doses of 20, 40, and 60 mg/kg/day. Then, the therapeutic effects of CZME were evaluated by assessing the mean number and mean size of T. gondii tissue cysts, oxidant-antioxidant enzymes, pro-inflammatory cytokines, and mRNA expression levels of bradyzoite surface antigen 1 (BAG1) by real-time PCR. Results CZME significantly (p <0.001) increased the mortality rate of parasites in a dose- and time-dependent response. The mean number of intracellular tachyzoites was significantly reduced after CZME therapy. The treatment of infected mice with CZME resulted in a significant (p <0.001) downregulation of BAG1 and the level of lipid peroxidation (LPO) and nitric oxide (NO) as oxidative stress markers. However, a considerable rise (p <0.05) was found in the levels of antioxidant markers such as glutathione peroxidase (GPx), catalase enzyme (CAT), and superoxide dismutase enzyme activity (SOD). In a dose-dependent response, after treatment of infected mice with CZME, the level of pro-inflammatory cytokines of IFN-γ, IL-1β, and IL-12 was considerably elevated. CZME had no significant cytotoxicity on Vero cells, with a 50% cytotoxic concentration of 169.5 ± 5.66 μg/ml. Conclusion The findings confirmed the promising therapeutic effects of CZME on chronic toxoplasmosis in mice. Nevertheless, further investigations must confirm these results, elucidate its precise mechanisms, and examine its effectiveness in human volunteers.
Collapse
Affiliation(s)
- Abdullah D Alanazi
- Departmentof Biological Sciences, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi, Saudi Arabia
| | - Hamdan I Almohammed
- Department of Basic Science, Faculty of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Yan X, Han W, Jin X, Sun Y, Gao J, Yu X, Guo J. Study on the effect of koumiss on the intestinal microbiota of mice infected with Toxoplasma gondii. Sci Rep 2022; 12:1271. [PMID: 35075239 PMCID: PMC8786867 DOI: 10.1038/s41598-022-05454-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii is a worldwide food-borne parasite that can infect almost all warm-blooded animals, including humans. To date, there are no effective drugs to prevent or eradicate T. gondii infection. Recent studies have shown that probiotics could influence the relationship between the microbiota and parasites in the host. Koumiss has been used to treat many diseases based on its probiotic diversity. Therefore, we explored the effect of koumiss on T. gondii infection via its effect on the host intestinal microbiota. BALB/c mice were infected with T. gondii and treated with PBS, koumiss and mares' milk. Brain cysts were counted, and long-term changes in the microbiota and the effect of koumiss on gut microbiota were investigated with high-throughput sequencing technology. The results suggested that koumiss treatment significantly decreased the cyst counts in the brain (P < 0.05). Moreover, T. gondii infection changed the microbiota composition, and koumiss treatment increased the relative abundance of Lachnospiraceae and Akkermansia muciniphila, which were associated with preventing T. gondii infection. Moreover, koumiss could inhibit or ameliorate T. gondii infection by increasing the abundance of certain bacteria that control unique metabolic pathways. The study not only established a close interaction among the host, intracellular pathogens and intestinal microbiota but also provided a novel focus for drug development to prevent and eradicate T. gondii infection.
Collapse
Affiliation(s)
- Xinlei Yan
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Wenying Han
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xindong Jin
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yufei Sun
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jialu Gao
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiuli Yu
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jun Guo
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
12
|
Hajj RE, Tawk L, Itani S, Hamie M, Ezzeddine J, El Sabban M, El Hajj H. Toxoplasmosis: Current and Emerging Parasite Druggable Targets. Microorganisms 2021; 9:microorganisms9122531. [PMID: 34946133 PMCID: PMC8707595 DOI: 10.3390/microorganisms9122531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a prevalent disease affecting a wide range of hosts including approximately one-third of the human population. It is caused by the sporozoan parasite Toxoplasma gondii (T. gondii), which instigates a range of symptoms, manifesting as acute and chronic forms and varying from ocular to deleterious congenital or neuro-toxoplasmosis. Toxoplasmosis may cause serious health problems in fetuses, newborns, and immunocompromised patients. Recently, associations between toxoplasmosis and various neuropathies and different types of cancer were documented. In the veterinary sector, toxoplasmosis results in recurring abortions, leading to significant economic losses. Treatment of toxoplasmosis remains intricate and encompasses general antiparasitic and antibacterial drugs. The efficacy of these drugs is hindered by intolerance, side effects, and emergence of parasite resistance. Furthermore, all currently used drugs in the clinic target acute toxoplasmosis, with no or little effect on the chronic form. In this review, we will provide a comprehensive overview on the currently used and emergent drugs and their respective parasitic targets to combat toxoplasmosis. We will also abridge the repurposing of certain drugs, their targets, and highlight future druggable targets to enhance the therapeutic efficacy against toxoplasmosis, hence lessening its burden and potentially alleviating the complications of its associated diseases.
Collapse
Affiliation(s)
- Rana El Hajj
- Department of Biological Sciences, Beirut Arab University, P.O. Box 11-5020, Riad El Solh, Beirut 1107 2809, Lebanon;
| | - Lina Tawk
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon; (L.T.); (J.E.)
| | - Shaymaa Itani
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
| | - Maguy Hamie
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
| | - Jana Ezzeddine
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon; (L.T.); (J.E.)
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon;
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
- Correspondence: ; Tel.: +961–1-350000 (ext. 4897)
| |
Collapse
|
13
|
In vitro activity of N-phenyl-1,10-phenanthroline-2-amines against tachyzoites and bradyzoites of Toxoplasma gondii. Bioorg Med Chem 2021; 50:116467. [PMID: 34666274 DOI: 10.1016/j.bmc.2021.116467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/19/2023]
Abstract
Toxoplasma gondiiis an apicomplexan parasite, the causative agent of toxoplasmosis, a common disease in the world. Toxoplasmosis could be severe, especially in immunocompromised patients. The current therapy is limited, where pyrimethamine and sulfadiazine are the best choices despite being associated with side effects and ineffective against the bradyzoites, the parasitic form present during the chronic phase of the infection. Thus, new therapies against both tachyzoites and bradyzoites from T. gondii are urgent. Herein, we present the anti-T. gondii effect of 1,10-phenanthroline and its N-phenyl-1,10-phenanthroline-2-amine derivatives. The chemical modification of 1,10-phenanthroline tonew derivatives improved the anti-T. gondiiactivity 3.4 fold. The most active derivative presented ED50in the nanomolar range, the smallest value found was for Ph8, 0.1 µM for 96 h of treatment. The host cell viability was maintained after the treatment with the compounds, which were found to be highly selective presenting large selectivity indexes. Treatment with derivatives for 96 h was able to eliminate the T. gondii infection irreversibly. The ultrastructural alterations caused after the treatment with the most effective derivative (Ph8) included signs of cell death, specifically revealed by the Tunel assay for detection of DNA fragmentation. The Phen derivatives were also able to control the growth of the in vitro-derived bradyzoite forms of T. gondii EGS strain, causing its lysis and death. These findings promote the 1,10-phenanthroline derivatives as potential lead compounds for the development of a treatment for acute and chronic phases of toxoplasmosis.
Collapse
|
14
|
Daher D, Shaghlil A, Sobh E, Hamie M, Hassan ME, Moumneh MB, Itani S, El Hajj R, Tawk L, El Sabban M, El Hajj H. Comprehensive Overview of Toxoplasma gondii-Induced and Associated Diseases. Pathogens 2021; 10:pathogens10111351. [PMID: 34832507 PMCID: PMC8625914 DOI: 10.3390/pathogens10111351] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is a prevalent protozoan parasite of medical and veterinary significance. It is the etiologic agent of toxoplasmosis, a neglected disease in which incidence and symptoms differ between patients and regions. In immunocompetent patients, toxoplasmosis manifests as acute and chronic forms. Acute toxoplasmosis presents as mild or asymptomatic disease that evolves, under the host immune response, into a persistent chronic disease in healthy individuals. Chronic toxoplasmosis establishes as latent tissue cysts in the brain and skeletal muscles. In immunocompromised patients, chronic toxoplasmosis may reactivate, leading to a potentially life-threatening condition. Recently, the association between toxoplasmosis and various diseases has been shown. These span primary neuropathies, behavioral and psychiatric disorders, and different types of cancer. Currently, a direct pre-clinical or clinical molecular connotation between toxoplasmosis and most of its associated diseases remains poorly understood. In this review, we provide a comprehensive overview on Toxoplasma-induced and associated diseases with a focus on available knowledge of the molecular players dictating these associations. We will also abridge the existing therapeutic options of toxoplasmosis and highlight the current gaps to explore the implications of toxoplasmosis on its associated diseases to advance treatment modalities.
Collapse
Affiliation(s)
- Darine Daher
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Ahmad Shaghlil
- Department of Biology, Faculty of Sciences, R. Hariri Campus, Lebanese University, Beirut 1107 2020, Lebanon; (A.S.); (E.S.)
| | - Eyad Sobh
- Department of Biology, Faculty of Sciences, R. Hariri Campus, Lebanese University, Beirut 1107 2020, Lebanon; (A.S.); (E.S.)
| | - Maguy Hamie
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Malika Elhage Hassan
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Mohamad Bahij Moumneh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Shaymaa Itani
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
| | - Rana El Hajj
- Department of Biological Sciences, Beirut Arab University, Beirut 1107 2809, Lebanon;
| | - Lina Tawk
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon;
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon; (D.D.); (M.H.); (M.E.H.); (M.B.M.); (S.I.)
- Correspondence: ; Tel.: +961–1-350000 (ext. 4897)
| |
Collapse
|
15
|
Hamie M, Najm R, Deleuze-Masquefa C, Bonnet PA, Dubremetz JF, El Sabban M, El Hajj H. Imiquimod Targets Toxoplasmosis Through Modulating Host Toll-Like Receptor-MyD88 Signaling. Front Immunol 2021; 12:629917. [PMID: 33767699 PMCID: PMC7986122 DOI: 10.3389/fimmu.2021.629917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Toxoplasma gondii is a prevalent parasite of medical and veterinary importance. Tachyzoïtes and bradyzoïtes are responsible for acute and chronic toxoplasmosis (AT and CT), respectively. In immunocompetent hosts, AT evolves into a persistent CT, which can reactivate in immunocompromised patients with dire consequences. Imiquimod is an efficient immunomodulatory drug against certain viral and parasitic infections. In vivo, treatment with Imiquimod, throughout AT, reduces the number of brain cysts while rendering the remaining cysts un-infectious. Post-establishment of CT, Imiquimod significantly reduces the number of brain cysts, leading to a delay or abortion of reactivation. At the molecular level, Imiquimod upregulates the expression of Toll-like receptors 7, 11, and 12, following interconversion from bradyzoïtes to tachyzoïtes. Consequently, MyD88 pathway is activated, resulting in the induction of the immune response to control reactivated Toxoplasma foci. This study positions Imiquimod as a potent drug against toxoplasmosis and elucidates its mechanism of action particularly against chronic toxoplasmosis, which is the most prevalent form of the disease.
Collapse
Affiliation(s)
- Maguy Hamie
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rania Najm
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | | | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
16
|
Secrieru A, Costa ICC, O’Neill PM, Cristiano MLS. Antimalarial Agents as Therapeutic Tools Against Toxoplasmosis-A Short Bridge between Two Distant Illnesses. Molecules 2020; 25:E1574. [PMID: 32235463 PMCID: PMC7181032 DOI: 10.3390/molecules25071574] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022] Open
Abstract
Toxoplasmosis is an infectious disease with paramount impact worldwide, affecting many vulnerable populations and representing a significant matter of concern. Current therapies used against toxoplasmosis are based essentially on old chemotypes, which fail in providing a definitive cure for the disease, placing the most sensitive populations at risk for irreversible damage in vital organs, culminating in death in the most serious cases. Antimalarial drugs have been shown to possess key features for drug repurposing, finding application in the treatment of other parasite-borne illnesses, including toxoplasmosis. Antimalarials provide the most effective therapeutic solutions against toxoplasmosis and make up for the majority of currently available antitoxoplasmic drugs. Additionally, other antiplasmodial drugs have been scrutinized and many promising candidates have emanated in recent developments. Available data demonstrate that it is worthwhile to explore the activity of classical and most recent antimalarial chemotypes, such as quinolines, endoperoxides, pyrazolo[1,5-a]pyrimidines, and nature-derived peptide-based parasiticidal agents, in the context of toxoplasmosis chemotherapy, in the quest for encountering more effective and safer tools for toxoplasmosis control or eradication.
Collapse
Affiliation(s)
- Alina Secrieru
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
| | - Inês C. C. Costa
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK;
| | - Maria L. S. Cristiano
- Center of Marine Sciences, CCMAR, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal; (A.S.); (I.C.C.C.)
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, FCT, Gambelas Campus, University of Algarve, UAlg, 8005-139 Faro, Portugal
| |
Collapse
|