1
|
Paul JK, Azmal M, Haque ANMSNB, Meem M, Talukder OF, Ghosh A. Unlocking the secrets of the human gut microbiota: Comprehensive review on its role in different diseases. World J Gastroenterol 2025; 31:99913. [DOI: 10.3748/wjg.v31.i5.99913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/25/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
The human gut microbiota, a complex and diverse community of microorganisms, plays a crucial role in maintaining overall health by influencing various physiological processes, including digestion, immune function, and disease susceptibility. The balance between beneficial and harmful bacteria is essential for health, with dysbiosis - disruption of this balance - linked to numerous conditions such as metabolic disorders, autoimmune diseases, and cancers. This review highlights key genera such as Enterococcus, Ruminococcus, Bacteroides, Bifidobacterium, Escherichia coli, Akkermansia muciniphila, Firmicutes (including Clostridium and Lactobacillus), and Roseburia due to their well-established roles in immune regulation and metabolic processes, but other bacteria, including Clostridioides difficile, Salmonella, Helicobacter pylori, and Fusobacterium nucleatum, are also implicated in dysbiosis and various diseases. Pathogenic bacteria, including Escherichia coli and Bacteroides fragilis, contribute to inflammation and cancer progression by disrupting immune responses and damaging tissues. The potential for microbiota-based therapies, such as probiotics, prebiotics, fecal microbiota transplantation, and dietary interventions, to improve health outcomes is examined. Future research directions in the integration of multi-omics, the impact of diet and lifestyle on microbiota composition, and advancing microbiota engineering techniques are also discussed. Understanding the gut microbiota’s role in health and disease is essential for formulating personalized, efficacious treatments and preventive strategies, thereby enhancing health outcomes and progressing microbiome research.
Collapse
Affiliation(s)
- Jibon Kumar Paul
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahir Azmal
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - ANM Shah Newaz Been Haque
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Meghla Meem
- Faculty of Medicine, Dhaka University, Dhaka 1000, Bangladesh
| | - Omar Faruk Talukder
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Ajit Ghosh
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
2
|
Cheng W, Feng W, Tian G, Liu J, Ba Z, Yu M, Yan R, Liu L, He Y, Li X, Zhang J. Study of Serum Metabolic Biomarkers and Prediction Models of Cantharidin-Induced Nephrotoxicity in Rats Based on Dynamic Metabolomics. J Appl Toxicol 2024. [PMID: 39676217 DOI: 10.1002/jat.4743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/10/2024] [Accepted: 11/24/2024] [Indexed: 12/17/2024]
Abstract
The clinical application of cantharidin (CTD) is seriously limited due to its nephrotoxicity. Therefore, this study aims to investigate sensitive biomarkers for the evaluation and prediction of nephrotoxicity induced by CTD in rat. A total of 80 rats were randomly divided into four groups: control group and three doses of CTD groups. After 0, 1, 5, 15, and 28 days of intragastric administration, rat serum and urine were collected for biochemical indexes, then serum was used for metabolomic analyses, and rat kidney was collected for pathological and ultrastructural observation. The levels of serum crea (Scr), blood urea nitrogen (BUN), urea, urine crea (Ucrea), and urinary microalbumin (UmALB) were significantly increased after administration of different doses of CTD (p < 0.05). Additionally, histopathology and cell ultrastructure observation of kidney showed significant cell inflammatory infiltration and glomerular edema. Seven metabolic biomarkers including 6-hydroxymelatonin were significantly disturbed by CTD. The CatBoost Classifier prediction model was used to establish the CTD nephrotoxicity prediction model, and the prediction accuracy and precision were 0.645 and 0.640, respectively. Moreover, 6-hydroxymelatonin was found to be most useful biomarkers for evaluating the CTD nephrotoxicity. Finally, the seven metabolic biomarkers were found mainly involved in pyruvate metabolism, pantothenate and CoA biosynthesis.
Collapse
Affiliation(s)
- Weina Cheng
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wenzhong Feng
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Guanghuan Tian
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jingxian Liu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Zhixun Ba
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ming Yu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Rong Yan
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Liu Liu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Yanmei He
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaofei Li
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Jianyong Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Li J, Xu Y, Sun T, Zhang X, Liang H, Lin W, Yu H, Yang B, Yang H. Exploration of the pathogenesis of nephrotic syndrome and traditional Chinese medicine intervention based on gut microbiota. Front Immunol 2024; 15:1430356. [PMID: 39717782 PMCID: PMC11663840 DOI: 10.3389/fimmu.2024.1430356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Nephrotic syndrome (NS) represents a prevalent syndrome among various chronic kidney disease pathologies and is known for its higher severity and worse prognosis compared with chronic glomerulonephritis. Understanding its pathogenesis and identifying more effective treatment modalities have long been a concern of kidney specialists. With the introduction of the gut-kidney axis concept and the progress in omics technologies, alterations in the gut microbiota have been observed in primary and secondary NS. This link has been extensively researched in conditions such as diabetic nephropathy and immunoglobulin A (IgA) nephropathy. Thus, dysbiosis of the gut microbiota is seen as a crucial contributing factor in NS; however, there is a lack of comprehensive reviews that elucidate the changes in the gut microbiota across different NS conditions and that describe its mechanistic role in the disease. Moreover, serving as an innate regulator of the gut microbiota, traditional Chinese medicine (TCM) has the potential to exert a profound impact on the expression of inflammation-promoting agents, decreasing the levels of endotoxins and uremic toxins. In addition, it strengthens the stability of the intestinal barrier while controlling the metabolic function of the body through its efficient modulation of the gut microbiota. This intricate process yields far-reaching consequences for NS.
Collapse
Affiliation(s)
- Jing Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yupei Xu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Tianhao Sun
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huimin Liang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wei Lin
- Department of Nephrology, Traditional Chinese Hospital of Xiamen, Xiamen, China
| | - Hangxing Yu
- Department of Nephrology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
4
|
Alemasi A, Gu L, Zhou Y. Gut microbiota in the association between obesity and kidney function decline: a metagenomics-based study in a rat model. Ren Fail 2024; 46:2328320. [PMID: 38469667 PMCID: PMC10939107 DOI: 10.1080/0886022x.2024.2328320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
OBJECTIVES Obesity can induce dysbiosis in the gut microbiota and is considered a separate risk factor for kidney function decline. Nonetheless, the precise function of intestinal microorganisms in facilitating the connection between obesity and kidney function decline remains uncertain. Hence, the objective of this study was to investigate the alterations in the gut microbiota composition that take place during obesity and their correlations with renal function utilizing a rat model. METHODS For 20 weeks, 25 Sprague-Dawley rats were fed either a high-fat diet (HFD) or a normal-fat normal diet (ND). Physiological indices, peripheral plasma, kidney tissue, and colon contents were collected for comparison between groups. Metagenomic analysis of intestinal flora was performed. RESULTS The HFD group demonstrated significantly increased levels of creatinine and urea nitrogen in the peripheral blood. Additionally, the HFD rats exhibited a significantly larger glomerular diameter compared to the ND group, accompanied by the presence of glomerulosclerosis, tubular vacuolar transformation, and other pathological changes in certain glomeruli. Metagenomics analysis revealed a notable rise in the prevalence of the Firmicutes phylum within the HFD group, primarily comprising the Rumenococcus genus. Functional analysis indicated that the gut microbiota in the HFD group primarily correlated with infectious diseases, signal transduction, and signaling molecules and interactions. CONCLUSIONS This study provides evidence that the consumption of a HFD induces modifications in the composition and functionality of the gut microbiome in rats, which may serve as a potential mechanism underlying the relationship between obesity and the progression of kidney function decline.
Collapse
Affiliation(s)
- Akehu Alemasi
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lijiang Gu
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yilun Zhou
- Department of Nephrology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Garcia-Martinez Y, Alexandrova E, Iebba V, Ferravante C, Spinelli M, Franci G, Amoresano A, Weisz A, Trepiccione F, Borriello M, Ingrosso D, Perna AF. Does gut microbiota dysbiosis impact the metabolic alterations of hydrogen sulfide and lanthionine in patients with chronic kidney disease? BMC Microbiol 2024; 24:436. [PMID: 39462312 PMCID: PMC11515264 DOI: 10.1186/s12866-024-03590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) is characterized by a methionine-related metabolic disorder involving reduced plasma levels of hydrogen sulfide (H2S) and increased lanthionine. The gut microbiota influences methionine metabolism, potentially impacting sulfur metabolite dysfunctions in CKD. We evaluated whether gut microbiota dysbiosis contributes to H2S and lanthionine metabolic alterations in CKD. METHODS The gut microbiota of 88 CKD patients (non-dialysis, hemodialysis, and transplant patients) and 26 healthy controls were profiled using 16 S-amplicon sequencing. H2S and lanthionine concentrations were measured in serum and fecal samples using the methylene blue method and LC-MS/MS, respectively. RESULTS The CKD population exhibited a tenfold increase in serum lanthionine associated with kidney dysfunction. Despite lanthionine retention, hemodialysis and transplant patients had significantly lower serum H2S than healthy controls. Fecal H2S levels were not altered or related to bloodstream H2S concentrations. Conversely, fecal lanthionine was significantly increased in CKD compared to healthy controls and associated with kidney dysfunction. Microbiota composition varied among CKD groups and healthy controls, with the greatest dissimilarity observed between hemodialysis and transplant patients. Changes relative to the healthy group included uneven Ruminococcus gnavus distribution (higher in transplant patients and lower in non-dialysis CKD patients), reduced abundance of the short-chain fatty acid-producing bacteria Alistipes indistinctus and Coprococcus eutactus among transplant patients, and depleted Streptococcus salivarius in non-dialysis CKD patients. A higher abundance of Methanobrevibacter smithii, Christensenella minuta, and Negativibacillus massiliensis differentiated hemodialysis patients from controls. No correlation was found between differentially abundant species and the metabolic profile that could account for the H2S and lanthionine alterations observed. CONCLUSIONS The metabolic deregulation of H2S and lanthionine observed in the study was not associated with alterations in the gut microbiota composition in CKD patients. Further research on microbial sulfur pathways may provide a better understanding of the role of gut microbiota in maintaining H2S and lanthionine homeostasis.
Collapse
Affiliation(s)
- Yuselys Garcia-Martinez
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy.
| | - Elena Alexandrova
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Italy
| | - Valerio Iebba
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, Paris, France
| | - Carlo Ferravante
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Italy
| | - Michelle Spinelli
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Napoli Federico II, Naples, Italy
| | - Alessandro Weisz
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Italy
- Genome Research Center for Health - CRGS, Campus of Medicine, University of Salerno, Baronissi, Italy
| | - Francesco Trepiccione
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alessandra F Perna
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
6
|
Młynarska E, Budny E, Saar M, Wojtanowska E, Jankowska J, Marciszuk S, Mazur M, Rysz J, Franczyk B. Does the Composition of Gut Microbiota Affect Chronic Kidney Disease? Molecular Mechanisms Contributed to Decreasing Glomerular Filtration Rate. Int J Mol Sci 2024; 25:10429. [PMID: 39408756 PMCID: PMC11477184 DOI: 10.3390/ijms251910429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic kidney disease (CKD) is a very prevalent and insidious disease, particularly with initially poorly manifested symptoms that progressively culminate in the manifestation of an advanced stage of the condition. The gradual impairment of kidney function, particularly decreased filtration capacity, results in the retention of uremic toxins and affects numerous molecular mechanisms within the body. The dysbiotic intestinal microbiome plays a crucial role in the accumulation of protein-bound uremic toxins such as p-cresol (pC), indoxyl sulfate (IS), and p-cresyl sulfate (p-CS) through the ongoing fermentation process. The described phenomenon leads to an elevated level of oxidative stress and inflammation, subsequently resulting in tissue damage and complications, particularly an increase in cardiovascular risk, representing the predominant cause of mortality in chronic kidney disease (CKD). Therefore, exploring methods to reduce uremic toxins is currently a pivotal therapeutic strategy aimed at reducing the risk of organ damage in patients with chronic kidney disease (CKD). This review aims to summarize recent discoveries on modifying the composition of the intestinal microbiota through the introduction of special probiotic and synbiotic supplements for CKD therapy. The potential to connect the gut microbiota with CKD opens the possibility for further extensive research in this area, which could lead to the incorporation of synbiotics and probiotics into the fundamental treatment and prevention of CKD.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Emilian Budny
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Maciej Saar
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Ewa Wojtanowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Justyna Jankowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Szymon Marciszuk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Marcin Mazur
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (M.M.)
| |
Collapse
|
7
|
Li J, Shen Y, Yan K, Wang S, Jiao J, Chi H, Zhong JC, Dong Y, Wang P. The compositional and functional imbalance of the gut microbiota in CKD linked to disease patterns. J Transl Med 2024; 22:773. [PMID: 39152439 PMCID: PMC11328458 DOI: 10.1186/s12967-024-05578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND The prevalence of chronic kidney disease (CKD) is on the rise, posing a significant public health challenge. Although gut microbiome dysbiosis has been implicated in the impairment of kidney functions, the existence of pathological subtypes-linked differences remains largely unknown. We aimed to characterize the intestinal microbiota in patients with membranous nephropathy (MN), IgA nephropathy (IgAN), minimal change disease (MCD), and ischemic renal injury (IRI) in order to investigate the intricate relationship between intestinal microbiota and CKD across different subtypes. METHODS We conducted a cross-sectional study involving 94 patients with various pathological patterns of CKD and 54 healthy controls (HCs). The clinical parameters were collected, and stool samples were obtained from each participant. Gut microbial features were analyzed using 16S rRNA sequencing and taxon annotation to compare the HC, CKD, MN, IgAN, MCD, and IRI groups. RESULTS The CKD subjects exhibited significantly reduced alpha diversity, modified community structures, and disrupted microbial composition and potential functions compared to the control group. The opportunistic pathogen Klebsiella exhibited a significant enrichment in patients with CKD, whereas Akkermansia showed higher abundance in HCs. The study further revealed the presence of heterogeneity in intestinal microbial signatures across diverse CKD pathological types, including MN, IgAN, MCD, and IRI. The depression of the family Lachnospiraceae and the genus Bilophila was prominently observed exclusively in patients with MN, while suppressed Streptococcus was detected only in individuals with MCD, and a remarkable expansion of the genus Escherichia was uniquely found in cases of IRI. The study also encompassed the development of classifiers employing gut microbial diagnostic markers to accurately discriminate between distinct subtypes of CKD. CONCLUSIONS The dysregulation of gut microbiome was strongly correlated with CKD, exhibiting further specificity towards distinct pathological patterns. Our study emphasizes the significance of considering disease subtypes when assessing the impact of intestinal microbiota on the development, diagnosis, and treatment of CKD.
Collapse
Affiliation(s)
- Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yang Shen
- Department of Nephrology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kaixin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Siyuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jie Jiao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongjie Chi
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Chen S, Nie R, Wang C, Luan H, Ma X, Gui Y, Zeng X, Yuan H. A two sample mendelian randomization analysis investigates causal effects between gut microbiome and immune related Vasculitis. Sci Rep 2024; 14:18810. [PMID: 39138194 PMCID: PMC11322650 DOI: 10.1038/s41598-024-68205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Observational data suggest a link between gut microbiota and immune-related vasculitis, but causality remains unclear. A bidirectional mendelian randomization study was conducted using public genome-wide data. The inverse-variance-weighted (IVW) method identified associations and addressed heterogeneity.Families Clostridiaceae 1 and Actinomycetaceae correlated positively with granulomatosis with polyangiitis risk, while classes Lentisphaeria and Melainabacteria, and families Lachnospiraceae and Streptococcaceae showed negative associations. Behçet's disease was positively associated with the risk of family Streptococcaceae abundance. And other several gut microbiota constituents were identified as potential risk factors for immune-related vasculitis. Furthermore, combining positive association results from the IVW analysis revealed numerous shared gut microbiota constituents associated with immune-related vasculitis. MR analysis demonstrated a causal association between the gut microbiota and immune-related vasculitis, offering valuable insights for subsequent mechanistic and clinical investigations into microbiota-mediated immune-related vasculitis.
Collapse
Affiliation(s)
- Si Chen
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Rui Nie
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Chao Wang
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Haixia Luan
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Xu Ma
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Yuan Gui
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China
| | - Xiaoli Zeng
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China.
| | - Hui Yuan
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road No. 2, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
9
|
Pourafshar S, Sharma B, Allen J, Hoang M, Lee H, Dressman H, Tyson CC, Mallawaarachchi I, Kumar P, Ma JZ, Lin PH, Scialla JJ. Longitudinal Pilot Evaluation of the Gut Microbiota Comparing Patients With and Without Chronic Kidney Disease. J Ren Nutr 2024; 34:302-312. [PMID: 38286361 DOI: 10.1053/j.jrn.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 01/31/2024] Open
Abstract
OBJECTIVE The gut microbiota contributes to metabolic diseases, such as diabetes and hypertension, but is poorly characterized in chronic kidney disease (CKD). DESIGN AND METHODS We enrolled 24 adults within household pairs, in which at least one member had self-reported kidney disease, diabetes, or hypertension. CKD was classified based on estimated glomerular filtration rate < 60 mL/min/1.73 m2 or urine-albumin-to-creatinine ratio of ≥ 30 mg/g. Participants collected stool and dietary recalls seasonally over a year. Gut microbiota was characterized using 16s rRNA and metagenomic sequencing. RESULTS Ten participants had CKD (42%) with a median (interquartile range) estimated glomerular filtration rate of 49 (44, 54) mL/min/1.73 m2. By 16s rRNA sequencing, there was moderate to high intraclass correlation (ICC = 0.63) for seasonal alpha diversity (Shannon index) within individuals and modest differences by season (P < .01). ICC was lower with metagenomics, which has resolution at the species level (ICC = 0.26). There were no differences in alpha or beta diversity by CKD with either method. Among 79 genera, Frisingicoccus, Tuzzerella, Faecalitalea, and Lachnoclostridium had lower abundance in CKD, while Collinsella, Lachnospiraceae_ND3007, Veillonella, and Erysipelotrichaceae_UCG_003 were more abundant in CKD (each nominal P < .05) using 16s rRNA sequencing. Higher Collinsella and Veillonella and lower Lachnoclostridium in CKD were also identified by metagenomics. By metagenomics, Coprococcus catus and Bacteroides stercoris were more and less abundant in CKD, respectively, at false discovery rate corrected P = .02. CONCLUSIONS We identified candidate taxa in the gut microbiota associated with CKD. High ICC in individuals with modest seasonal impacts implies that follow-up studies may use less frequent sampling.
Collapse
Affiliation(s)
- Shirin Pourafshar
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Binu Sharma
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jenifer Allen
- Duke Clinical & Translational Science Institute, TransPop Group, Kannapolis, North Carolina
| | - Madeleine Hoang
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, Virginia
| | - Hannah Lee
- College of Arts and Sciences, University of Virginia, Charlottesville, Virginia
| | - Holly Dressman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina
| | - Crystal C Tyson
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Indika Mallawaarachchi
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pankaj Kumar
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pao-Hwa Lin
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Julia J Scialla
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
10
|
Vandecruys M, De Smet S, De Beir J, Renier M, Leunis S, Van Criekinge H, Glorieux G, Raes J, Vanden Wyngaert K, Nagler E, Calders P, Monbaliu D, Cornelissen V, Evenepoel P, Van Craenenbroeck AH. Revitalizing the Gut Microbiome in Chronic Kidney Disease: A Comprehensive Exploration of the Therapeutic Potential of Physical Activity. Toxins (Basel) 2024; 16:242. [PMID: 38922137 PMCID: PMC11209503 DOI: 10.3390/toxins16060242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Both physical inactivity and disruptions in the gut microbiome appear to be prevalent in patients with chronic kidney disease (CKD). Engaging in physical activity could present a novel nonpharmacological strategy for enhancing the gut microbiome and mitigating the adverse effects associated with microbial dysbiosis in individuals with CKD. This narrative review explores the underlying mechanisms through which physical activity may favorably modulate microbial health, either through direct impact on the gut or through interorgan crosstalk. Also, the development of microbial dysbiosis and its interplay with physical inactivity in patients with CKD are discussed. Mechanisms and interventions through which physical activity may restore gut homeostasis in individuals with CKD are explored.
Collapse
Affiliation(s)
- Marieke Vandecruys
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
| | - Stefan De Smet
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Jasmine De Beir
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Marie Renier
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Sofie Leunis
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Hanne Van Criekinge
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, 3000 Leuven, Belgium;
- VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
| | - Karsten Vanden Wyngaert
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Evi Nagler
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
- Transplantoux Foundation, 3000 Leuven, Belgium
| | - Véronique Cornelissen
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Amaryllis H. Van Craenenbroeck
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
11
|
Yu JX, Chen X, Zang SG, Chen X, Wu YY, Wu LP, Xuan SH. Gut microbiota microbial metabolites in diabetic nephropathy patients: far to go. Front Cell Infect Microbiol 2024; 14:1359432. [PMID: 38779567 PMCID: PMC11109448 DOI: 10.3389/fcimb.2024.1359432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the main complications of diabetes and a major cause of end-stage renal disease, which has a severe impact on the quality of life of patients. Strict control of blood sugar and blood pressure, including the use of renin-angiotensin-aldosterone system inhibitors, can delay the progression of diabetic nephropathy but cannot prevent it from eventually developing into end-stage renal disease. In recent years, many studies have shown a close relationship between gut microbiota imbalance and the occurrence and development of DN. This review discusses the latest research findings on the correlation between gut microbiota and microbial metabolites in DN, including the manifestations of the gut microbiota and microbial metabolites in DN patients, the application of the gut microbiota and microbial metabolites in the diagnosis of DN, their role in disease progression, and so on, to elucidate the role of the gut microbiota and microbial metabolites in the occurrence and prevention of DN and provide a theoretical basis and methods for clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Li-Pei Wu
- Medical Laboratory Department, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu, China
| | - Shi-Hai Xuan
- Medical Laboratory Department, Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu, China
| |
Collapse
|
12
|
Liu X, Mo J, Yang X, Peng L, Zeng Y, Zheng Y, Song G. Causal relationship between gut microbiota and chronic renal failure: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1356478. [PMID: 38633704 PMCID: PMC11021586 DOI: 10.3389/fmicb.2024.1356478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Background Observational studies and some experimental investigations have indicated that gut microbiota are closely associated with the incidence and progression of chronic renal failure. However, the causal relationship between gut microbiota and chronic renal failure remains unclear. The present study employs a two-sample Mendelian randomization approach to infer the causal relationship between gut microbiota and chronic renal failure at the genetic level. This research aims to determine whether there is a causal effect of gut microbiota on the risk of chronic renal failure, aiming to provide new evidence to support targeted gut therapy for the treatment of chronic renal failure. Methods Employing genome-wide association study (GWAS) data from the public MiBioGen and IEU OpenGWAS platform, a two-sample Mendelian randomization analysis was conducted. The causal relationship between gut microbiota and chronic renal failure was inferred using five different methods: Inverse Variance Weighted, MR-Egger, Weighted Median, Simple Mode, and Weighted Mode. The study incorporated sensitivity analyses that encompassed evaluations for pleiotropy and heterogeneity. Subsequently, the results of the Mendelian randomization analysis underwent a stringent correction for multiple testing, employing the False Discovery Rate method to enhance the validity of our findings. Results According to the results from the Inverse Variance Weighted method, seven bacterial genera show a significant association with the outcome variable chronic renal failure. Of these, Ruminococcus (gauvreauii group) (OR = 0.82, 95% CI = 0.71-0.94, p = 0.004) may act as a protective factor against chronic renal failure, while the genera Escherichia-Shigella (OR = 1.22, 95% CI = 1.08-1.38, p = 0.001), Lactococcus (OR = 1.1, 95% CI = 1.02-1.19, p = 0.013), Odoribacter (OR = 1.23, 95% CI = 1.03-1.49, p = 0.026), Enterorhabdus (OR = 1.14, 95% CI = 1.00-1.29, p = 0.047), Eubacterium (eligens group) (OR = 1.18, 95% CI = 1.02-1.37, p = 0.024), and Howardella (OR = 1.18, 95% CI = 1.09-1.28, p < 0.001) may be risk factors for chronic renal failure. However, after correction for multiple comparisons using False Discovery Rate, only the associations with Escherichia-Shigella and Howardella remain significant, indicating that the other genera have suggestive associations. Sensitivity analyses did not reveal any pleiotropy or heterogeneity. Conclusion Our two-sample Mendelian randomization study suggests that the genera Escherichia-Shigella and Howardella are risk factors for chronic renal failure, and they may serve as potential targets for future therapeutic interventions. However, the exact mechanisms of action are not yet clear, necessitating further research to elucidate their precise roles fully.
Collapse
Affiliation(s)
- Xingzheng Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinying Mo
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xuerui Yang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ling Peng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Youjia Zeng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yihou Zheng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Gaofeng Song
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
13
|
Mavrogeorgis E, Valkenburg S, Siwy J, Latosinska A, Glorieux G, Mischak H, Jankowski J. Integration of Urinary Peptidome and Fecal Microbiome to Explore Patient Clustering in Chronic Kidney Disease. Proteomes 2024; 12:11. [PMID: 38651370 PMCID: PMC11036268 DOI: 10.3390/proteomes12020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Millions of people worldwide currently suffer from chronic kidney disease (CKD), requiring kidney replacement therapy at the end stage. Endeavors to better understand CKD pathophysiology from an omics perspective have revealed major molecular players in several sample sources. Focusing on non-invasive sources, gut microbial communities appear to be disturbed in CKD, while numerous human urinary peptides are also dysregulated. Nevertheless, studies often focus on isolated omics techniques, thus potentially missing the complementary pathophysiological information that multidisciplinary approaches could provide. To this end, human urinary peptidome was analyzed and integrated with clinical and fecal microbiome (16S sequencing) data collected from 110 Non-CKD or CKD individuals (Early, Moderate, or Advanced CKD stage) that were not undergoing dialysis. Participants were visualized in a three-dimensional space using different combinations of clinical and molecular data. The most impactful clinical variables to discriminate patient groups in the reduced dataspace were, among others, serum urea, haemoglobin, total blood protein, urinary albumin, urinary erythrocytes, blood pressure, cholesterol measures, body mass index, Bristol stool score, and smoking; relevant variables were also microbial taxa, including Roseburia, Butyricicoccus, Flavonifractor, Burkholderiales, Holdemania, Synergistaceae, Enterorhabdus, and Senegalimassilia; urinary peptidome fragments were predominantly derived from proteins of collagen origin; among the non-collagen parental proteins were FXYD2, MGP, FGA, APOA1, and CD99. The urinary peptidome appeared to capture substantial variation in the CKD context. Integrating clinical and molecular data contributed to an improved cohort separation compared to clinical data alone, indicating, once again, the added value of this combined information in clinical practice.
Collapse
Affiliation(s)
- Emmanouil Mavrogeorgis
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (E.M.); (J.S.); (A.L.); (H.M.)
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Sophie Valkenburg
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (S.V.); (G.G.)
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (E.M.); (J.S.); (A.L.); (H.M.)
| | - Agnieszka Latosinska
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (E.M.); (J.S.); (A.L.); (H.M.)
| | - Griet Glorieux
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (S.V.); (G.G.)
| | - Harald Mischak
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany; (E.M.); (J.S.); (A.L.); (H.M.)
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University Hospital, 52074 Aachen, Germany
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, 6229 Maastricht, The Netherlands
| |
Collapse
|
14
|
Samaey A, Vázquez-Castellanos JF, Caenepeel C, Evenepoel P, Vermeire S, Raes J, Knops N. Effects of fecal microbiota transplantation for recurrent Clostridium difficile infection in children on kidney replacement therapy: a pilot study. Pediatr Nephrol 2024; 39:1201-1212. [PMID: 37775582 DOI: 10.1007/s00467-023-06168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Recurrent Clostridium difficile infection (rCDI) is a rising problem in children with chronic diseases. Fecal microbiota transplantation (FMT) is a recent alternative for rCDI patients who do not respond to conventional treatment. FMT could have an additional positive effect on the intestinal dysbiosis and accumulation of uremic retention molecules (URM) associated with chronic kidney disease (CKD). Our aim was to investigate the clinical efficacy of FMT for rCDI in children with CKD together with the effect on dysbiosis and URM levels. METHODS We analyzed stool and blood samples before and until 3 months after FMT in 3 children between 4 and 8 years old with CKD and rCDI. The microbiome was analyzed by 16 s rRNA sequencing. URM were analyzed with ultra-performance liquid chromatography-tandem mass spectrometry. CRP and fecal calprotectin were analyzed as parameters for systemic and gut inflammation, respectively. RESULTS CDI resolved after FMT in all three without adverse events; one patient needed a second FMT. No significant effect on CRP and calprotectin was observed. Stool samples demonstrated a reduced richness and bacterial diversity which did not improve after FMT. We did observe a trend in the decrease of specific URM up to 3 months after FMT. CONCLUSION FMT is an effective treatment for rCDI in patients with CKD. Analysis of the microbiome showed an important intestinal dysbiosis that, besides a significant reduction in Clostridium difficile, did not significantly change after FMT. A trend for reduction was seen in some of the measured URM after FMT.
Collapse
Affiliation(s)
- An Samaey
- Department of Pediatric Nephrology and Solid Organ Transplantation, UZ Leuven, Leuven, Belgium.
| | - Jorge Francisco Vázquez-Castellanos
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Louvain, Belgium
| | - Clara Caenepeel
- Translational Research Center for Gastrointestinal Disorders (TARGID), UZ Leuven, Leuven, Belgium
| | - Pieter Evenepoel
- Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Gastroenterology &, Hepatology University Hospitals Leuven, and Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Noël Knops
- Department of Pediatric Nephrology and Solid Organ Transplantation, UZ Leuven, Leuven, Belgium
- Department of Pediatrics, Groene Hart Ziekenhuis, Gouda, the Netherlands
| |
Collapse
|
15
|
Araujo R, Merino-Ribas A, Pereira L, Campos J, Silva N, Alencastre IS, Pestana M, Sampaio-Maia B. The urogenital microbiome in chronic kidney disease patients on peritoneal dialysis. Nefrologia 2024; 44:194-203. [PMID: 38697697 DOI: 10.1016/j.nefroe.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/27/2023] [Indexed: 05/05/2024] Open
Abstract
INTRODUCTION AND OBJECTIVES Diabetes, dyslipidemia, older age, gender, urinary tract infections, and recent antibiotic intake have been associated with a decrease in the urobiome richness and other fluctuations in this microbiome. Gut and blood microbiome have been reported to be altered in patients with chronic kidney disease (CKD), and specifically in peritoneal dialysis (PD) patients. Still, there are currently no studies describing the urogenital microbiome in CKD-PD patients. In this study we characterized the urobiome profile in 46 PD patients and analyzed its clinical and inflammatory parameters. MATERIALS AND METHODS Mid-stream urine, fecal and blood samples were collected from 46 patients undergoing PD at Centro Hospitalar Universitário de São João (CHUSJ) in Porto, Portugal. Exclusion criteria were age under 18 years old, inability to give informed consent, history of infection in the last three months, and antibiotic intake in the last three months. The microbiome communities were analyzed by amplification and sequencing of the V3-V4 region of the bacterial 16S rRNA gene. Correlations with the patients' clinical data and inflammatory profile were performed. RESULTS CKD-PD patients presented a unique urobiome profile dominated by Bacillota, Actinomycetota and Pseudomonadota and characterized by a lower Shannon diversity than fecal and blood microbiome. The taxonomic profiles of urogenital samples were organized in multiple subtypes dominated by populations of Lactobacillus, Staphylococcus, Streptococcus, Gardnerella, Prevotella, Escherichia-Shigella, being similar to other non-PD-CKD patients. Gender, sCD14, residual diuresis and history of peritonitis were significantly associated to variations in the urobiome. Although not reaching statistical significance, diabetes and the time on PD also showed association with particular taxonomic groups. Depletion of Gardnerella, Staphylococcus, Corynebacterium, Lactobacillus or Dermabacter populations correlated with CKD-PD patients with history of diabetes, history of peritonitis and altered levels of sCD14. CONCLUSIONS Our results highlight urogenital microbiome as a potential partner and/or marker in the overall health state of CKD-PD patients.
Collapse
Affiliation(s)
- Ricardo Araujo
- Nephrology & Infectious Diseases R&D Group, i3S - Instituto de Investigação e Inovação em Saúde, INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | - Ana Merino-Ribas
- Nephrology & Infectious Diseases R&D Group, i3S - Instituto de Investigação e Inovação em Saúde, INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; Nephrology Department, Hospital Universitari de Girona Doctor Josep Trueta, Girona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luciano Pereira
- Nephrology & Infectious Diseases R&D Group, i3S - Instituto de Investigação e Inovação em Saúde, INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; Nephrology Department, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Joana Campos
- Nephrology & Infectious Diseases R&D Group, i3S - Instituto de Investigação e Inovação em Saúde, INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Nádia Silva
- Nephrology Department, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Inês Soares Alencastre
- Nephrology & Infectious Diseases R&D Group, i3S - Instituto de Investigação e Inovação em Saúde, INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Manuel Pestana
- Nephrology & Infectious Diseases R&D Group, i3S - Instituto de Investigação e Inovação em Saúde, INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; Nephrology Department, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Benedita Sampaio-Maia
- Nephrology & Infectious Diseases R&D Group, i3S - Instituto de Investigação e Inovação em Saúde, INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; Faculdade de Medicina Dentária, Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
Ji C, Miao J, Zhao N, Dai Y, Yang J, Qu J, Zhu J, Zhao M. N-nitrosamines induced gender-dimorphic effects on infant rats at environmental levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169196. [PMID: 38097075 DOI: 10.1016/j.scitotenv.2023.169196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
The safety of drinking water has always been a concern for people all over the world. N-nitrosamines (NAs), a kind of nitrogenous disinfection by-products (N-DBPs), are generally detected as a mixture in drinking water at home and abroad. Studies have shown that individual NAs posed strong carcinogenicity at high concentrations. However, health risks of NAs at environmental levels (concentrations in drinking water) are still unclear. Therefore, the potential health risks of environmentally relevant NAs exposure in drinking water needs to be conducted. In this study, blood biochemical analysis and metabolomics based on nuclear magnetic resonance (NMR) were performed to comprehensively investigate NAs induced metabolic disturbance in infant rats at environmental levels. Results of blood biochemical indices analysis indicated that AST in the serum of male rats in NAs-treated group exhibited a significant gender-specific difference. Multivariate statistics showed that two and eight significantly disturbed metabolic pathways were identified in the serum samples of NAs-treated male and female rats, respectively. In the urine samples of NAs-treated female rats, glycine, serine, and threonine metabolism pathway was significantly disturbed; while three significantly disturbed metabolic pathways were found in the urine of NAs-treated male rats. Finally, results of spearman correlation coefficients suggested that the disturbances of metabolism profile in serum and urine were correlated with changes in the gut microbiota (data derived from our published paper). Data presented here aimed to generate new health risk data of NAs mixture exposure at environmental levels and provide theoretical support for drinking water safety management. ENVIRONMENTAL IMPLICATION: N-nitrosamines (NAs) are a kind of nitrogenous disinfection by-products (N-DBPs) generated during drinking water disinfection processes. Herein, health risks of NAs at environmental levels (concentrations in drinking water) are investigated using blood biochemical analysis and nuclear magnetic resonance (NMR)-based metabolomics. Results confirmed NAs induced gender-specific on the metabolism in rat and the disturbances of metabolism profile in serum and urine were correlated with changes in the gut microbiota. Data presented here aimed to generate new health risk data of NAs mixture exposure at environmental levels and provide theoretical support for drinking water safety management.
Collapse
Affiliation(s)
- Chenyang Ji
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiahui Miao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaoyao Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiawen Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; College of Life Science, Taizhou University, Taizhou 318000, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
17
|
Coutinho-Wolino KS, Melo MFS, Mota JC, Mafra D, Guimarães JT, Stockler-Pinto MB. Blueberry, cranberry, raspberry, and strawberry as modulators of the gut microbiota: target for treatment of gut dysbiosis in chronic kidney disease? From current evidence to future possibilities. Nutr Rev 2024; 82:248-261. [PMID: 37164634 DOI: 10.1093/nutrit/nuad048] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Gut dysbiosis is common in patients with chronic kidney disease (CKD) and is associated with uremic toxin production, inflammation, oxidative stress, and cardiovascular disease development. Therefore, healthy dietary patterns are essential modulators of gut microbiota. In this context, studies suggest that consuming berry fruits, rich in polyphenols and nutrients, may positively affect the gut microbiota, promoting the selective growth of beneficial bacteria and improving clinical status. However, studies on the effects of berry fruits on gut microbiota in CKD are scarce, and a better understanding of the possible mechanisms of action of berry fruits on gut microbiota is needed to guide future clinical studies and clinical practice in CKD. The objective was to discuss how berry fruits (blueberry, cranberry, raspberry, and strawberry) could be a therapeutic strategy to modulate the gut microbiota and possibly reverse the dysbiosis in CKD. Overall, available evidence shows that berry fruits can promote an increase in diversity by affecting the abundance of mucus-producing bacteria and short-chain fatty acids. Moreover, these fruits can increase the expression of mRNA involved in tight junctions in the gut such as occludin, tight junction protein 1 (TJP1), and mucin. Studies on the exact amount of berries leading to these effects show heterogeneous findings. However, it is known that, with 5 mg/day, it is already possible to observe some effects in animal models. Wild berries could possibly improve the uremic condition by reducing the levels of uremic toxins via modulation of the gut microbiota. In the long term, this could be an excellent strategy for patients with CKD. Therefore, clinical studies are encouraged to evaluate better these effects on CKD as well as the safe amount of these fruits in order to promote a better quality of life or even the survival of these patients.
Collapse
Affiliation(s)
- Karen S Coutinho-Wolino
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Manuela F S Melo
- Graduate Program in Nutrition, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| | - Jessica C Mota
- Graduate Program in Nutrition, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
| | - Denise Mafra
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
- Postgraduate Program in Medical Sciences, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Milena B Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Postgraduate Program in Nutrition Sciences, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil
- Postgraduate Program in Pathology, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
18
|
Wang F, Liu C, Ren L, Li Y, Yang H, Yu Y, Xu W. Sanziguben polysaccharides improve diabetic nephropathy in mice by regulating gut microbiota to inhibit the TLR4/NF-κB/NLRP3 signalling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:427-436. [PMID: 36772833 PMCID: PMC9930838 DOI: 10.1080/13880209.2023.2174145] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/02/2023]
Abstract
CONTEXT Sanziguben (SZGB) is an empirical prescription used in traditional Chinese medicine to treat diabetic nephropathy (DN). As an abundant and primarily effective component of SZGB, Sanziguben polysaccharides (SZP) can be digested by flora to generate biological activity. OBJECTIVE Our study aimed to clarify the potential mechanism of SZP in improving chronic DN. MATERIALS AND METHODS Male db/db mice were randomized into DN, SZP (500 mg/kg) and metformin (MET, 300 mg/kg) groups. Wild-type littermates served as the normal control (NC) group. The drug was orally administered for 8 weeks. Enzyme-linked immunosorbent assay was used to detect the inflammatory factors. Proteins related to inflammation were evaluated using western blotting and immunohistochemical examination. Gut microbiota was analysed using 16S rRNA sequencing. RESULTS SZP significantly reduced 24 h urine albumin (p < 0.05) of DN mice. Compared to DN group, SZP significantly decreased the homeostasis model assessment of insulin resistance index, serum creatinine and blood urea nitrogen levels (20.27 ± 3.50 vs. 33.64 ± 4.85, 19.22 ± 3.77 vs. 32.52 ± 3.05 μmol/L, 13.23 ± 1.42 vs. 16.27 ± 0.77 mmol/L, respectively), and mitigated renal damage. SZP also regulated gut microbiota and decreased the abundance of Gram-negative bacteria (Proteobacteria, Klebsiella and Escherichia-Shigella). Subsequently, SZP reduced lipopolysaccharides levels (1.06- to 1.93-fold) of DN mice. Furthermore, SZP inhibited the expression levels of TLR4, phospho-NF-κB p65, NLRP3 proteins and interleukin (IL)-18 and IL-1β. CONCLUSIONS These results demonstrated that SZP improved intestinal flora disorder and inhibited the TLR4/NF-κB/NLRP3 pathway to alleviate DN.
Collapse
Affiliation(s)
- Fan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - LingZhi Ren
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - YanYang Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - HongMei Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - WeiPing Xu
- Nuclear Medicine Department, Guangdong Provincial Peoples Hospital, Guangzhou, China
| |
Collapse
|
19
|
Wang A, Zhao J, Qin Y, Zhang Y, Xing Y, Wang Y, Yu Z, Yan J, Han M, Yuan J, Hui Y, Guo S, Ning X, Sun S. Alterations of the gut microbiota in the lupus nephritis: a systematic review. Ren Fail 2023; 45:2285877. [PMID: 37994423 PMCID: PMC11001323 DOI: 10.1080/0886022x.2023.2285877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Emerging evidence suggests that gut microbiota dysbiosis may play a critical role in the development of lupus nephritis (LN). However, the specific characteristics of the gut microbiota in individuals with LN have not been fully clarified. METHODS The PubMed, Web of Science, and Embase databases were systematically searched for clinical and animal studies related to the relationship between LN and gut microbiota from inception until October 1, 2023. A semiquantitative analysis was used to assess the changes in gut microbial profiles. RESULTS A total of 15 clinical studies were selected for analysis, which included 138 LN patients, 441 systemic lupus erythematosus patients, and 1526 healthy controls (HCs). Five different types of LN mouse models were included in 5 animal studies. The alpha diversity was decreased in LN patients compared to HCs. A significant decrease in the Firmicutes/Bacteroidetes (F/B) ratio is considered a hallmark of pathological conditions. Specifically, alterations in the abundance of the phylum Proteobacteria, genera Streptococcus and Lactobacillus, and species Ruminococcus gnavus and Lactobacillus reuteri may play a critical role in the pathogenesis of LN. Remarkably, the gut taxonomic chain Bacteroidetes-Bacteroides-Bacteroides thetaiotaomicron was enriched in LN patients, which could be a crucial characteristic of LN patients. The increased level of interleukin-6, imbalance of regulatory T cells and T helper 17 cells, and decreased level of the intestinal tight junction proteins zonula occludens-1 and claudin-1 also might be related to the pathogenesis of LN. CONCLUSIONS Specific changes in the abundance of gut microbiota such as decreased F/B ratio, and the level of inflammatory indicators, and markers of intestinal barrier dysfunction may play a crucial role in the pathogenesis of LN. These factors could be effective diagnostic and potential therapeutic targets for LN.
Collapse
Affiliation(s)
- Anjing Wang
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Nephrology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Yumeng Zhang
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuwei Wang
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jipeng Yan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Mei Han
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yueqing Hui
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shuxian Guo
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
20
|
Ren F, Jin Q, Jin Q, Qian Y, Ren X, Liu T, Zhan Y. Genetic evidence supporting the causal role of gut microbiota in chronic kidney disease and chronic systemic inflammation in CKD: a bilateral two-sample Mendelian randomization study. Front Immunol 2023; 14:1287698. [PMID: 38022507 PMCID: PMC10652796 DOI: 10.3389/fimmu.2023.1287698] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background The association of gut microbiota (GM) and chronic kidney disease (CKD), and the relevancy of GM and chronic systemic inflammation in CKD, were revealed on the basis of researches on gut-kidney axis in previous studies. However, their causal relationships are still unclear. Objective To uncover the causal relationships between GM and CKD, as well as all known GM from eligible statistics and chronic systemic inflammation in CKD, we performed two-sample Mendelian randomization (MR) analysis. Materials and methods We acquired the latest and most comprehensive summary statistics of genome-wide association study (GWAS) from the published materials of GWAS involving GM, CKD, estimated glomerular filtration rate (eGFR), c-reactive protein (CRP) and urine albumin creatine ratio (UACR). Subsequently, two-sample MR analysis using the inverse-variance weighted (IVW) method was used to determine the causality of exposure and outcome. Based on it, additional analysis and sensitivity analysis verified the significant results, and the possibility of reverse causality was also assessed by reverse MR analysis during this study. Results At the locus-wide significance threshold, IVW method and additional analysis suggested that the protective factors for CKD included family Lachnospiraceae (P=0.049), genus Eubacterium eligens group (P=0.002), genus Intestinimonas (P=0.009), genus Streptococcu (P=0.003) and order Desulfovibrionales (P=0.001). Simultaneously, results showed that genus LachnospiraceaeUCG010 (P=0.029) was a risk factor for CKD. Higher abundance of genus Desulfovibrio (P=0.048) was correlated with higher eGFR; higher abundance of genus Parasutterella (P=0.018) was correlated with higher UACR; higher abundance of class Negativicutes (P=0.003), genus Eisenbergiella (P=0.021), order Selenomonadales (P=0.003) were correlated with higher CRP levels; higher abundance of class Mollicutes (0.024), family Prevotellaceae (P=0.030), phylum Tenericutes (P=0.024) were correlated with lower levels of CRP. No significant pleiotropy or heterogeneity was found in the results of sensitivity analysis, and no significant causality was found in reverse MR analysis. Conclusion This study highlighted associations within gut-kidney axis, and the causal relationships between GM and CKD, as well as GM and chronic systemic inflammation in CKD were also revealed. Meanwhile, we expanded specific causal gut microbiota through comprehensive searches. With further studies for causal gut microbiota, they may have the potential to be new biomarkers for targeted prevention of CKD and chronic systemic inflammation in CKD.
Collapse
Affiliation(s)
- Feihong Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiubai Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiyun Qian
- Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Xuelei Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Mafra D, Kemp JA, Cardozo LFMF, Borges NA, Nerbass FB, Alvarenga L, Kalantar-Zadeh K. COVID-19 and Nutrition: Focus on Chronic Kidney Disease. J Ren Nutr 2023; 33:S118-S127. [PMID: 37632513 DOI: 10.1053/j.jrn.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 08/28/2023] Open
Abstract
Some chronic diseases, including chronic kidney disease (CKD), may be associated with poor outcomes, including a high rate of hospitalization and death after COVID-19 infection. In addition to the vaccination program, diet intervention is essential for boosting immunity and preventing complications. A healthy diet containing bioactive compounds may help mitigate inflammatory responses and oxidative stress caused by COVID-19. In this review, we discuss dietary interventions for mitigating COVID-19 complications, including in persons with CKD, which can worsen COVID-19 symptoms and its clinical outcomes, while diet may help patients with CKD to resist the ravages of COVID-19 by improving the immune system, modulating gut dysbiosis, mitigating COVID-19 complications, and reducing hospitalization and mortality. The concept of food as medicine, also known as culinary medicine, for patients with CKD can be extrapolated to COVID-19 infection because healthy foods and nutraceuticals have the potential to exert an important antiviral, anti-inflammatory, and antioxidant role.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro Rio de Janeiro, Brazil; Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.
| | - Julie A Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Natália A Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Fabiana B Nerbass
- Research Department, Fundação Pró-Rim, Joinville, Santa Catarina, Brazil
| | - Lívia Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Kamyar Kalantar-Zadeh
- Divsion of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine, Orange, California
| |
Collapse
|
22
|
Zhong HJ, Xie X, Chen WJ, Zhuang YP, Hu X, Cai YL, Zeng HL, Xiao C, Li Y, Ding Y, Xue L, Chen M, Zhang J, Wu Q, He XX. Washed microbiota transplantation improves renal function in patients with renal dysfunction: a retrospective cohort study. J Transl Med 2023; 21:740. [PMID: 37858192 PMCID: PMC10588208 DOI: 10.1186/s12967-023-04570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Changes in the gut microbiota composition is a hallmark of chronic kidney disease (CKD), and interventions targeting the gut microbiota present a potent approach for CKD treatment. This study aimed to evaluate the efficacy and safety of washed microbiota transplantation (WMT), a modified faecal microbiota transplantation method, on the renal activity of patients with renal dysfunction. METHODS A comparative analysis of gut microbiota profiles was conducted in patients with renal dysfunction and healthy controls. Furthermore, the efficacy of WMT on renal parameters in patients with renal dysfunction was evaluated, and the changes in gut microbiota and urinary metabolites after WMT treatment were analysed. RESULTS Principal coordinate analysis revealed a significant difference in microbial community structure between patients with renal dysfunction and healthy controls (P = 0.01). Patients with renal dysfunction who underwent WMT exhibited significant improvement in serum creatinine, estimated glomerular filtration rate, and blood urea nitrogen (all P < 0.05) compared with those who did not undergo WMT. The incidence of adverse events associated with WMT treatment was low (2.91%). After WMT, the Shannon index of gut microbiota and the abundance of several probiotic bacteria significantly increased in patients with renal dysfunction, aligning their gut microbiome profiles more closely with those of healthy donors (all P < 0.05). Additionally, the urine of patients after WMT demonstrated relatively higher levels of three toxic metabolites, namely hippuric acid, cinnamoylglycine, and indole (all P < 0.05). CONCLUSIONS WMT is a safe and effective method for improving renal function in patients with renal dysfunction by modulating the gut microbiota and promoting toxic metabolite excretion.
Collapse
Affiliation(s)
- Hao-Jie Zhong
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglinxia Road 19, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Xianliezhong Road 100, Guangzhou, 510000, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Xianliezhong Road 100, Guangzhou, 510000, China
| | - Wen-Jia Chen
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglinxia Road 19, Guangzhou, 510000, China
| | - Yu-Pei Zhuang
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglinxia Road 19, Guangzhou, 510000, China
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Hu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglinxia Road 19, Guangzhou, 510000, China
| | - Ying-Li Cai
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglinxia Road 19, Guangzhou, 510000, China
| | - Hong-Lie Zeng
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglinxia Road 19, Guangzhou, 510000, China
| | - Chuanxing Xiao
- Guangzhou Treatgut Biotechnology Co., Ltd, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Xianliezhong Road 100, Guangzhou, 510000, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Xianliezhong Road 100, Guangzhou, 510000, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Xianliezhong Road 100, Guangzhou, 510000, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Xianliezhong Road 100, Guangzhou, 510000, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Xianliezhong Road 100, Guangzhou, 510000, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Xianliezhong Road 100, Guangzhou, 510000, China.
| | - Xing-Xiang He
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglinxia Road 19, Guangzhou, 510000, China.
| |
Collapse
|
23
|
Saxami G, Kerezoudi EN, Eliopoulos C, Arapoglou D, Kyriacou A. The Gut-Organ Axis within the Human Body: Gut Dysbiosis and the Role of Prebiotics. Life (Basel) 2023; 13:2023. [PMID: 37895405 PMCID: PMC10608660 DOI: 10.3390/life13102023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The human gut microbiota (GM) is a complex microbial ecosystem that colonises the gastrointestinal tract (GIT) and is comprised of bacteria, viruses, fungi, and protozoa. The GM has a symbiotic relationship with its host that is fundamental for body homeostasis. The GM is not limited to the scope of the GIT, but there are bidirectional interactions between the GM and other organs, highlighting the concept of the "gut-organ axis". Any deviation from the normal composition of the GM, termed "microbial dysbiosis", is implicated in the pathogenesis of various diseases. Only a few studies have demonstrated a relationship between GM modifications and disease phenotypes, and it is still unknown whether an altered GM contributes to a disease or simply reflects its status. Restoration of the GM with probiotics and prebiotics has been postulated, but evidence for the effects of prebiotics is limited. Prebiotics are substrates that are "selectively utilized by host microorganisms, conferring a health benefit". This study highlights the bidirectional relationship between the gut and vital human organs and demonstrates the relationship between GM dysbiosis and the emergence of certain representative diseases. Finally, this article focuses on the potential of prebiotics as a target therapy to manipulate the GM and presents the gaps in the literature and research.
Collapse
Affiliation(s)
- Georgia Saxami
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
| | - Evangelia N. Kerezoudi
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Christos Eliopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—Demeter, L. Sof. Venizelou 1, 14123 Lykovryssi, Greece; (C.E.); (D.A.)
| | - Dimitrios Arapoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—Demeter, L. Sof. Venizelou 1, 14123 Lykovryssi, Greece; (C.E.); (D.A.)
| | - Adamantini Kyriacou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
| |
Collapse
|
24
|
Tran NT, Chaidee A, Surapinit A, Yingklang M, Roytrakul S, Charoenlappanit S, Pinlaor P, Hongsrichan N, Nguyen Thi H, Anutrakulchai S, Cha'on U, Pinlaor S. Strongyloides stercoralis infection reduces Fusicatenibacter and Anaerostipes in the gut and increases bacterial amino-acid metabolism in early-stage chronic kidney disease. Heliyon 2023; 9:e19859. [PMID: 37809389 PMCID: PMC10559256 DOI: 10.1016/j.heliyon.2023.e19859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Understanding gut bacterial composition and proteome changes in patients with early-stage chronic kidney disease (CKD) could lead to better methods of controlling the disease progression. Here, we investigated the gut microbiome and microbial functions in patients with S. stercoralis infection (strongyloidiasis) and early-stage CKD. Thirty-five patients with early stages (1-3) of CKD were placed in two groups matched for population characteristics and biochemical parameters, 12 patients with strongyloidiasis in one group and 23 uninfected patients in the other. From every individual, a sample of their feces was obtained and processed for 16S rRNA sequencing and metaproteomic analysis using tandem liquid chromatography-mass spectrometry (LC-MS/MS). Strongyloides stercoralis infection per se did not significantly alter gut microbial diversity. However, certain genera (Bacteroides, Faecalibacterium, Fusicatenibacter, Sarcina, and Anaerostipes) were significantly more abundant in infection-free CKD patients than in infected individuals. The genera Peptoclostridium and Catenibacterium were enriched in infected patients. Among the significantly altered genera, Fusicatenibacter and Anaerostipes were the most correlated with renal parameters. The relative abundance of members of the genus Fusicatenibacter was moderately positively correlated with estimated glomerular filtration rate (eGFR) (r = 0.335, p = 0.049) and negatively with serum creatinine (r = -0.35, p = 0.039). Anaerostipes, on the other hand, showed a near-significant positive correlation with eGFR (r = 0.296, p = 0.084). Individuals with S. stercoralis infection had higher levels of bacterial proteins involved in amino-acid metabolism. Analysis using STITCH predicted that bacterial amino-acid metabolism may also be involved in the production of colon-derived uremic toxin (indole), a toxic substance known to promote CKD. Strongyloides stercoralis infection is, therefore, associated with reduced abundance of Fusicatenibacter and Anaerostipes (two genera possibly beneficial for kidney function) and with increased bacterial amino-acid metabolism in the early-stages of CKD, potentially producing uremic toxin. This study provides useful information for prevention of progression of CKD beyond the early stages.
Collapse
Affiliation(s)
- Na T.D. Tran
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medical Laboratory Science, Danang University of Medical Technology and Pharmacy, Danang, Viet Nam
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Apisit Chaidee
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Achirawit Surapinit
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Sitiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Nuttanan Hongsrichan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Hai Nguyen Thi
- Department of Parasitology, Faculty of Basic Medicine, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen, Viet Nam
| | - Sirirat Anutrakulchai
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Ubon Cha'on
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
25
|
Balkrishna A, Sinha S, Kumar A, Arya V, Gautam AK, Valis M, Kuca K, Kumar D, Amarowicz R. Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers and role of phytoconstituents in its management. Biomed Pharmacother 2023; 165:115183. [PMID: 37487442 DOI: 10.1016/j.biopha.2023.115183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
Sepsis has evolved as an enormous health issue amongst critically ill patients. It is a major risk factor that results in multiple organ failure and shock. Acute kidney injury (AKI) is one of the most frequent complications underlying sepsis, which portends a heavy burden of mortality and morbidity. Thus, the present review is aimed to provide an insight into the recent progression in the molecular mechanisms targeting dysregulated immune response and cellular dysfunction involved in the development of sepsis-associated AKI, accentuating the phytoconstituents as eligible candidates for attenuating the onset and progression of sepsis-associated AKI. The pathogenesis of sepsis-mediated AKI entails a complicated mechanism and is likely to involve a distinct constellation of hemodynamic, inflammatory, and immune mechanisms. Novel biomarkers like neutrophil gelatinase-associated lipocalin, soluble triggering receptor expressed on myeloid cells 1, procalcitonin, alpha-1-microglobulin, and presepsin can help in a more sensitive diagnosis of sepsis-associated AKI. Many bioactive compounds like curcumin, resveratrol, baicalin, quercetin, and polydatin are reported to play an important role in the prevention and management of sepsis-associated AKI by decreasing serum creatinine, blood urea nitrogen, cystatin C, lipid peroxidation, oxidative stress, IL-1β, TNF-α, NF-κB, and increasing the activity of antioxidant enzymes and level of PPARγ. The plant bioactive compounds could be developed into a drug-developing candidate in managing sepsis-mediated acute kidney injury after detailed follow-up studies. Lastly, the gut-kidney axis may be a more promising therapeutic target against the onset of septic AKI, but a deeper understanding of the molecular pathways is still required.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Sugandh Sinha
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India.
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ajay Kumar Gautam
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, Hradec Kralove, Czech Republic.
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
26
|
Liu P, Yang J, Chen Y, Zhu Y, Tang Y, Xu X, He H. Alterations of gut microbiota and metabolome in early chronic kidney disease patients complicated with hyperuricemia. Heliyon 2023; 9:e20328. [PMID: 37809388 PMCID: PMC10560056 DOI: 10.1016/j.heliyon.2023.e20328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Object This study aims to investigate the changes in gut microbiota and metabolism of patients with chronic kidney disease (CKD) stage 1-2, as well as the potential impact of hyperuricemia (HUA) on these factors in CKD stage 1-2 patients. Methods In this study, fecal samples were collected from CKD stage 1-2 without HUA patients (CKD-N group), CKD stage 1-2 with HUA patients (CKD-H group), and healthy people controls (HCs group). The samples were then subjected to the microbiome (16S rRNA gene sequencing) and metabolome (liquid chromatography-tandem mass spectrometry) analyses. The multi-omics datasets were analyzed individually and integrated for combined analysis using various bioinformatics approaches. Results Gut microbial dysbiosis was found in CKD-N and CKD-H patients. At the phylum level, compared to HCs group, Bacteroidetes decreased but Proteobacteria increased in CKD-H group significantly. Fusobacteria in CKD-N group was significantly lower than HCs group. At genus level, [Eubacterium]_ventriosum_group, Fusobacterium, Agathobacter, Parabacteroides, and Roseburia significantly changed in CKD groups. [Ruminococcus]_gnavus_group was significantly lower in CKD-H group than CKD-N group. Moreover, the fecal metabolome of CKD-N and CKD-H altered significantly. d-glutamine and d-glutamate metabolism, arginine and proline metabolism, histidine metabolism, and lysine biosynthesis were down-regulated in the CKD-N group. Phenylalanine metabolism, arginine and proline metabolism, purine metabolism, and beta-alanine metabolism were up-regulated in the CKD-H group. There was a significant difference between the two CKD groups in phenylalanine metabolism. The abundance change of [Ruminococcus]_gnavus_group, [Eubacterium]_ventriosum_group, UCG-002, Alistipes, and Bifidobacterium had a close correlation with differential metabolites. Conclusion The gut microbiota and metabolic status undergo significant changes in CKD patients compared to healthy people. Additionally, HUA has been found to impact the gut microbiota of CKD patients, as well as their metabolism. The close association between gut microbiota and metabolites suggests that the former plays a crucial role in metabolism.
Collapse
Affiliation(s)
- Ping Liu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Jianli Yang
- East China University of Science and Technology, Shanghai, China
| | - Yu Chen
- East China University of Science and Technology, Shanghai, China
| | - Yifan Zhu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Yuyan Tang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Xudong Xu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Haidong He
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
27
|
Kim KR, Kim SM, Kim JH. A pilot study of alterations of the gut microbiome in canine chronic kidney disease. Front Vet Sci 2023; 10:1241215. [PMID: 37691637 PMCID: PMC10484476 DOI: 10.3389/fvets.2023.1241215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Gut dysbiosis has been noted in humans and animals with chronic kidney disease (CKD). However, little is known about the gut microbiome in canine patients with CKD. This study aimed to analyze and compare the gut microbiome profiles of healthy and CKD dogs, including differences in the gut microbiome between each CKD stage. Methods The study was conducted on 29 client-owned dogs who underwent physical examination, complete blood count (CBC), serum biochemistry, and urinalysis. The gut microbiome profile of healthy dogs (n = 10) and dogs with CKD (n = 19) was analyzed employing 16S rRNA sequencing. Results Significant differences were seen in the composition of the gut microbiome, with increased operational taxonomic units from the phylum Proteobacteria (p = 0.035), family Enterobacteriaceae (p < 0.001), and genus Enterococcus (p = 0.002) in dogs with CKD, and a decrease in the genus Ruminococcus (p = 0.007). Furthermore, an increase in both the progression of CKD and abundance of genus Klebsiella (Jonckheere-Terpstra test statistic value (JT) = 2.852, p = 0.004) and Clostridium (JT = 2.018, p = 0.044) was observed. Discussion Our study demonstrated that in dogs with CKD, the composition of the gut microbiome varied depending on the stage of CKD. Alterations in gut microbiome composition observed in CKD patients are characterized by an increase in proteolytic bacteria and a decrease in saccharolytic bacteria. These findings suggest specific gut microbiota could be targeted for clinical management of uremic dogs with CKD.
Collapse
Affiliation(s)
- Kyung-Ryung Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | | | - Jung-Hyun Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Zhao XN, Liu SX, Wang ZZ, Zhang S, You LL. Roxadustat alleviates the inflammatory status in patients receiving maintenance hemodialysis with erythropoiesis-stimulating agent resistance by increasing the short-chain fatty acids producing gut bacteria. Eur J Med Res 2023; 28:230. [PMID: 37430374 DOI: 10.1186/s40001-023-01179-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) have improved the treatment of renal anemia, especially in patients resistant to erythropoiesis-stimulating agents (ESAs). HIF facilitates maintain gut microbiota homeostasis, which plays an important role in inflammation and iron metabolism, which are in turn key factors affecting ESA resistance. The current study aimed to investigate the effects of roxadustat on inflammation and iron metabolism and on the gut microbiota in patients with ESA resistance. METHODS We conducted a self-controlled, single-center study including 30 patients with ESA resistance undergoing maintenance hemodialysis. All patients received roxadustat without iron agents for renal anemia. Hemoglobin and inflammatory factors were monitored. Fecal samples were collected before and after 3 months' administration and the gut microbiota were analyzed by 16S ribosomal RNA gene sequencing. RESULTS Hemoglobin levels increased after treatment with roxadustat for 3 months (P < 0.05). Gut microbiota diversity and abundance also changed, with increases in short-chain fatty acid (SCFA)-producing bacteria (Acidaminococcaceae, Butyricicoccus, Ruminococcus bicirculans, Ruminococcus bromii, Bifidobacterium dentium, Eubacterium hallii) (P < 0.05). Serum SCFA levels also increased (P < 0.05). Inflammatory factors, including interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α, interferon-γ, and endotoxin gradually decreased (P < 0.05). Serum hepcidin, ferritin, and total and unsaturated iron-binding capacities decreased (P < 0.05), while soluble transferrin receptor levels increased at each time point (P < 0.05). There were no significant differences in serum iron and transferrin saturation at each time point. The abundance of Alistipes shahii was significantly negatively correlated with IL-6 and TNF-α (P < 0.05). CONCLUSIONS Roxadustat alleviated renal anemia in patients with ESA resistance by decreasing inflammatory factors and hepcidin levels and improving iron utilization. These effects were at least partly mediated by improved diversity and abundance of SCFA-producing gut bacteria, probably via activation of HIF.
Collapse
Affiliation(s)
- Xiu-Nan Zhao
- Department of Nephrology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
| | - Shu-Xin Liu
- Department of Nephrology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China.
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China.
- School of Clinical Medicine, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Road, Dalian, 116024, Liaoning, China.
| | - Zhen-Zhen Wang
- Department of Nephrology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
| | - Shuang Zhang
- Department of Nephrology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
| | - Lian-Lian You
- Department of Nephrology, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian Municipal Central Hospital, No. 826, Xinan Road, Dalian, 116033, Liaoning, China
| |
Collapse
|
29
|
Wu Y, Pan M, Zou Z, Rong X, Yang H, Xiao Z, Wang H, Liu T, Huang W, Shi M, Zhao C. Urinary microbiota shift is associated with a decline in renal function. LIFE MEDICINE 2023; 2. [DOI: 10.1093/lifemedi/lnad014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Affiliation(s)
- Yonglin Wu
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai 200032 , China
| | - Miaomiao Pan
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai 200032 , China
| | - Zheng Zou
- Department of Urology, Youyi Road Community Health Service Centre for Baoshan District , Shanghai 201999 , China
| | - Xingyu Rong
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University , Kyoto 606-8501 , Japan
| | - Hao Yang
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai 200032 , China
| | - Zhenming Xiao
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai 200032 , China
| | - Huijing Wang
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine and Health Science , Shanghai 201318 , China
| | - Tao Liu
- Department of Urology, Youyi Road Community Health Service Centre for Baoshan District , Shanghai 201999 , China
| | - Wu Huang
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai 200032 , China
| | - Meifang Shi
- Department of Urology, Youyi Road Community Health Service Centre for Baoshan District , Shanghai 201999 , China
| | - Chao Zhao
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai 200032 , China
- Shanghai Frontiers Science Center of Pathogenic Microbes and Infection , Shanghai 200032 , China
| |
Collapse
|
30
|
Voroneanu L, Burlacu A, Brinza C, Covic A, Balan GG, Nistor I, Popa C, Hogas S, Covic A. Gut Microbiota in Chronic Kidney Disease: From Composition to Modulation towards Better Outcomes-A Systematic Review. J Clin Med 2023; 12:jcm12051948. [PMID: 36902734 PMCID: PMC10003930 DOI: 10.3390/jcm12051948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND A bidirectional kidney-gut axis was described in patients with chronic kidney disease (CKD). On the one hand, gut dysbiosis could promote CKD progression, but on the other hand, studies reported specific gut microbiota alterations linked to CKD. Therefore, we aimed to systematically review the literature on gut microbiota composition in CKD patients, including those with advanced CKD stages and end-stage kidney disease (ESKD), possibilities to shift gut microbiota, and its impact on clinical outcomes. MATERIALS AND METHODS We performed a literature search in MEDLINE, Embase, Scopus, and Cochrane databases to find eligible studies using pre-specified keywords. Additionally, key inclusion and exclusion criteria were pre-defined to guide the eligibility assessment. RESULTS We retrieved 69 eligible studies which met all inclusion criteria and were analyzed in the present systematic review. Microbiota diversity was decreased in CKD patients as compared to healthy individuals. Ruminococcus and Roseburia had good power to discriminate between CKD patients and healthy controls (AUC = 0.771 and AUC = 0.803, respectively). Roseburia abundance was consistently decreased in CKD patients, especially in those with ESKD (p < 0.001). A model based on 25 microbiota dissimilarities had an excellent predictive power for diabetic nephropathy (AUC = 0.972). Several microbiota patterns were observed in deceased ESKD patients as compared to the survivor group (increased Lactobacillus, Yersinia, and decreased Bacteroides and Phascolarctobacterium levels). Additionally, gut dysbiosis was associated with peritonitis and enhanced inflammatory activity. In addition, some studies documented a beneficial effect on gut flora composition attributed to synbiotic and probiotic therapies. Large randomized clinical trials are required to investigate the impact of different microbiota modulation strategies on gut microflora composition and subsequent clinical outcomes. CONCLUSIONS Patients with CKD had an altered gut microbiome profile, even at early disease stages. Different abundance at genera and species levels could be used in clinical models to discriminate between healthy individuals and patients with CKD. ESKD patients with an increased mortality risk could be identified through gut microbiota analysis. Modulation therapy studies are warranted.
Collapse
Affiliation(s)
- Luminita Voroneanu
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Alexandru Burlacu
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Department of Interventional Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| | - Crischentian Brinza
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Department of Interventional Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| | - Andreea Covic
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Correspondence:
| | - Gheorghe G. Balan
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, St. 1 Spiridon Emergency County Hospital, 700111 Iasi, Romania
| | - Ionut Nistor
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Cristina Popa
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Simona Hogas
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| | - Adrian Covic
- Nephrology Department, Dialysis and Renal Transplant Center, “Dr. C.I. Parhon” University Hospital, 700503 Iasi, Romania
- Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine, 700115 Iasi, Romania
| |
Collapse
|
31
|
Zheng L, Luo M, Zhou H, Chen J. Natural products from plants and microorganisms: Novel therapeutics for chronic kidney disease via gut microbiota regulation. Front Pharmacol 2023; 13:1068613. [PMID: 36733377 PMCID: PMC9887141 DOI: 10.3389/fphar.2022.1068613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Dysbiosis of gut microbiota plays a fundamental role in the pathogenesis and development of chronic kidney disease (CKD) and its complications. Natural products from plants and microorganisms can achieve recognizable improvement in renal function and serve as an alternative treatment for chronic kidney disease patients with a long history, yet less is known on its beneficial effects on kidney injury by targeting the intestinal microbiota. In this review, we summarize studies on the effects of natural products from plants and microorganisms, including herbal medicines and their bioactive extracts, polysaccharides from plants and microorganisms, and phytochemicals, on the prevention and treatment of chronic kidney disease through targeting gut microflora. We describe the strategies of these anti-CKD effects in animal experiments including remodulation of gut microbiota structure, reduction of uremic toxins, enhancement of short-chain fatty acid (SCFA) production, regulation of intestinal inflammatory signaling, and improvement in intestinal integrity. Meanwhile, the clinical trials of different natural products in chronic kidney disease clinical practice were also analyzed and discussed. These provide information to enable a better understanding of the renoprotective effects of these effective natural products from plants and microorganisms in the treatment of chronic kidney disease. Finally, we propose the steps to prove the causal role of the intestinal microflora in the treatment of chronic kidney disease by natural products from plants and microorganisms. We also assess the future perspective that natural active products from plants and microorganisms can beneficially delay the onset and progression of kidney disease by targeting the gut flora and highlight the remaining challenges in this area. With the continuous deepening of studies in recent years, it has been proved that gut microbiota is a potential target of natural active products derived from plants and microorganisms for chronic kidney disease treatment. Fully understanding the functions and mechanisms of gut microbiota in these natural active products from plants and microorganisms is conducive to their application as an alternative therapeutic in the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mingjing Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Haokui Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
32
|
Wang H, Ainiwaer A, Song Y, Qin L, Peng A, Bao H, Qin H. Perturbed gut microbiome and fecal and serum metabolomes are associated with chronic kidney disease severity. MICROBIOME 2023; 11:3. [PMID: 36624472 PMCID: PMC9827681 DOI: 10.1186/s40168-022-01443-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a severe public health problem associated with a disordered gut microbiome. However, the functional alterations of microbiota and their cross talk with metabolism pathways based on disease severity remain unclear. RESULTS We performed metagenomics and untargeted metabolomics in a cohort of 68 patients with CKD of differing severities and 20 healthy controls to characterize the complex interplay between the gut microbiome and fecal and serum metabolites during CKD progression. We identified 26 microbial species that significantly changed in patients with CKD; 18 species changed as the disease progressed, and eight species changed only in a specific CKD group. These distinct changes in gut microbiota were accompanied by functional alterations in arginine and proline, arachidonic acid, and glutathione metabolism and ubiquinone and other terpenoid-quinone biosynthesis pathways during CKD progression. Further metabolomic analyses revealed that the distributions of toxic and pro-oxidant metabolites from these four essential metabolic pathways varied in the feces and serum as CKD progressed. Furthermore, we observed a complex co-occurrence between CKD severity-related bacteria and the characterized metabolites from the four essential metabolic pathways. Notably, Ruminococcus bromii, fecal hydroquinone, and serum creatinine were identified as the main contributors to the integrated network, indicating their key roles in CKD progression. Moreover, a noninvasive model including R. bromii and fecal hydroquinone, L-cystine, and 12-keto-tetrahydro-LTB4 levels classified the CKD severity (area under the curve [AUC]: > 0.9) and had better performance than the serum creatinine level for mild CKD (AUC: 0.972 vs. 0.896). CONCLUSIONS Perturbed CKD severity-related gut microbiota may contribute to unbalanced toxic and pro-oxidant metabolism in the gut and host, accelerating CKD progression, which may be an early diagnostic and therapeutic target for CKD. Video Abstract.
Collapse
Affiliation(s)
- Haichao Wang
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Aisima Ainiwaer
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Yaxiang Song
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Ling Qin
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Ai Peng
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Hui Bao
- Department of Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| |
Collapse
|
33
|
Teixeira RR, de Andrade LS, Pereira NBF, Montenegro H, Hoffmann C, Cuppari L. Gut microbiota profile of patients on peritoneal dialysis: comparison with household contacts. Eur J Clin Nutr 2023; 77:90-97. [PMID: 35906334 DOI: 10.1038/s41430-022-01190-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Differences in patients gut microbiota composition with the potential for dysbiosis have been associated with chronic kidney disease (CKD). However, factors other than the disease itself, such as diet and cohabitation, have not been evaluated when gut microbiota of CKD patients was compared with that of healthy controls. The aim of this study was to compare the gut microbiota composition between patients on peritoneal dialysis (PD) and age-matched household contacts with normal renal function. METHODS Fecal samples were collected from 20 patients [men: 70%; age: 53.5 years (48.2-66; median and interquartile range); length on PD: 14 months (5.2-43.5) and 20 controls. The region V4 of the 16S ribosomal RNA gene was PCR-amplified and sequenced on Illumina MiSeq platform. Dietary intake and diet quality were assessed by a 3-day food record and a diet quality index, respectively. RESULTS No difference was found between the gut microbiota composition of patients and controls, assessed by alpha and beta diversities (p > 0.05) and genera differential abundance (p > 0.05). The most abundant phyla in both groups were Firmicutes (PD = 45%; Control: 47%; p = 0.65) and Bacteroidetes (PD = 41%; Control: 45%; p = 0.17). The phylum Proteobacteria, known as a potential marker of gut dysbiosis, was not different in proportions between groups (p > 0.05). No difference was observed regarding diet quality and dietary intake of fiber, protein and other nutrients (p > 0.05). CONCLUSION Gut microbiota of patients on PD did not differ from household contacts. This result suggests that cohabitation and dietary intake might have outweighed the disease influence on gut microbiota composition of our PD patients.
Collapse
Affiliation(s)
| | | | | | | | - Christian Hoffmann
- Food Research Center, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Lilian Cuppari
- Nutrition Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
- Division of Nephrology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
34
|
Kemp JA, Alvarenga L, Cardozo LFMF, Dai L, Stenvinkel P, Shiels PG, Hackeng TM, Schurgers LJ, Mafra D. Dysbiosis in Patients with Chronic Kidney Disease: Let Us Talk About Vitamin K. Curr Nutr Rep 2022; 11:765-779. [PMID: 36138326 DOI: 10.1007/s13668-022-00438-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW This narrative review aimed to summarize the current evidence on the connection between dysbiosis and vitamin K deficiency in patients with chronic kidney disease (CKD). The presence of dysbiosis (perturbations in the composition of the microbiota) has been described in several non-communicable diseases, including chronic kidney disease, and it has been hypothesized that dysbiosis may cause vitamin K deficiency. Patients with CKD present both vitamin K deficiency and gut dysbiosis; however, the relationship between gut dysbiosis and vitamin K deficiency remains to be addressed. RECENT FINDINGS Recently, few studies in animals have demonstrated that a dysbiotic environment is associated with low production of vitamin K by the gut microbiota. Vitamin K plays a vital role in blood coagulation as well as in the cardiovascular and bone systems. It serves as a cofactor for γ-glutamyl carboxylases and thus is essential for the post-translational modification and activation of vitamin K-dependent calcification regulators, such as osteocalcin, matrix Gla protein, Gla-rich protein, and proteins C and S. Additionally, vitamin K executes essential antioxidant and anti-inflammatory functions. Dietary intake is the main source of vitamin K; however, it also can be produced by gut microbiota. This review discusses the effects of uremia on the imbalance in gut microbiota, vitamin K-producing bacteria, and vitamin K deficiency in CKD patients, leading to a better understanding and raising hypothesis for future clinical studies.
Collapse
Affiliation(s)
- Julie Ann Kemp
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Livia Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Lu Dai
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Glasgow, UK
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Brazil.
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
- Unidade de Pesquisa Clínica, Rua Marquês Do Paraná, Niterói, RJ, 30324033-900, Brazil.
| |
Collapse
|
35
|
Wang X, Li F, Zhang N, Ungerfeld E, Guo L, Zhang X, Wang M, Ma Z. Effects of Supplementing A Yeast Culture in a Pelleted Total Mixed Ration on Fiber Degradation, Fermentation Parameters, and the Bacterial Community in the Rumen of Sheep. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Metabolomics Profiling of Nephrotic Syndrome towards Biomarker Discovery. Int J Mol Sci 2022; 23:ijms232012614. [PMID: 36293474 PMCID: PMC9603939 DOI: 10.3390/ijms232012614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Nephrotic syndrome (NS) is a kidney illness characterized by excessive proteinuria, hypoalbuminemia, edema, and hyperlipidemia, which may lead to kidney failure and necessitate renal transplantation. End-stage renal disease, cardiovascular issues, and mortality are much more common in those with NS. Therefore, the present study aimed to identify potential new biomarkers associated with the pathogenesis and diagnosis of NS. The liquid chromatography–mass spectrometry (LC–MS) metabolomics approach was applied to profile the metabolome of human serum of patients with NS. A total of 176 metabolites were significantly altered in NS compared to the control. Arginine, proline, and tryptophan metabolism; arginine, phenylalanine, tyrosine, and tryptophan biosynthesis were the most common metabolic pathways dysregulated in NS. Furthermore, alanyl-lysine and isoleucyl-threonine had the highest discrimination between NS and healthy groups. The candidate biomarkers may lead to understanding the possible metabolic alterations associated with NS and serve as potential diagnostic biomarkers.
Collapse
|
37
|
Asgharian M, Gholizadeh P, Samadi Kafil H, Ghojazadeh M, Samadi A, Soleymani J, Jouyban A, Tayebi Khosroshahi H. Correlation of inflammatory biomarkers with the diversity of Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae and Lactobacillaceae families in the intestinal microbiota of patients with end stage renal disease. Adv Med Sci 2022; 67:304-310. [PMID: 35994929 DOI: 10.1016/j.advms.2022.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/17/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Serum levels of inflammatory cytokines and uremic toxins, and their inter-correlations with the diversity of Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae and Lactobacillaceae families in intestinal microbiota were investigated in patients with end stage renal disease (ESRD). METHODS Stool and blood samples from 20 ESRD patients on maintenance hemodialysis were collected. DNA genome of the bacterial composition of the stool samples was extracted and evaluated by the sequencing analysis of 16S rRNA genes. Serum levels of inflammatory cytokines and uremic toxins were then analyzed. RESULTS The mean serum concentrations of TNF-α, IL-6, indoxyl sulfate (IS) and p-cresol (PC) were 305.99 ± 12.03 ng/L, 159.95 ± 64.22 ng/L, 36.76 ± 5.09 μg/mL and 0.39 ± 0.15 μg/mL, respectively. The most significant positive correlation was observed between Prevotellaceae family and total antioxidant capacity (TAC), Lactobacilli species and CRP and PC, as well as Scardovia wiggsiae and IS (p < 0.001). A negative correlation was also found between Bacteroides clarus and PC. Patients with ESRD on maintenance hemodialysis had elevated levels of PC and IS and increased levels of the inflammatory markers. The most positive correlation was found between microbiota and CRP and PC, while the most negative one was between microbiota and IL-1 and TAC. CONCLUSIONS The abundance and diversity of Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae and Lactobacillaceae families and their correlations with clinical parameters could provide benefits in the ESRD patients but they could not promote the symptoms.
Collapse
Affiliation(s)
- Mostafa Asgharian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Ghojazadeh
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Samadi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, Nicosia, North Cyprus, Mersin, Turkey
| | | |
Collapse
|
38
|
Cheng X, Zhou T, He Y, Xie Y, Xu Y, Huang W. The role and mechanism of butyrate in the prevention and treatment of diabetic kidney disease. Front Microbiol 2022; 13:961536. [PMID: 36016798 PMCID: PMC9396028 DOI: 10.3389/fmicb.2022.961536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) remains the leading cause of the end-stage renal disease and is a major burden on the healthcare system. The current understanding of the mechanisms responsible for the progression of DKD recognizes the involvement of oxidative stress, low-grade inflammation, and fibrosis. Several circulating metabolites that are the end products of the fermentation process, released by the gut microbiota, are known to be associated with systemic immune-inflammatory responses and kidney injury. This phenomenon has been recognized as the “gut–kidney axis.” Butyrate is produced predominantly by gut microbiota fermentation of dietary fiber and undigested carbohydrates. In addition to its important role as a fuel for colonic epithelial cells, butyrate has been demonstrated to ameliorate obesity, diabetes, and kidney diseases via G-protein coupled receptors (GPCRs). It also acts as an epigenetic regulator by inhibiting histone deacetylase (HDAC), up-regulation of miRNAs, or induction of the histone butyrylation and autophagy processes. This review aims to outline the existing literature on the treatment of DKD by butyrate in animal models and cell culture experiments, and to explore the protective effects of butyrate on DKD and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Tingting Zhou
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Tingting Zhou,
| | - Yanqiu He
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yumei Xie
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- *Correspondence: Yong Xu,
| | - Wei Huang
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Wei Huang,
| |
Collapse
|
39
|
Tian Y, Gu C, Yan F, Gu Y, Feng Y, Chen J, Sheng J, Hu L, Jiang P, Guo W, Feng N. Alteration of Skin Microbiome in CKD Patients Is Associated With Pruritus and Renal Function. Front Cell Infect Microbiol 2022; 12:923581. [PMID: 35837475 PMCID: PMC9274276 DOI: 10.3389/fcimb.2022.923581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 12/02/2022] Open
Abstract
Dysbiotic gut microbiome in chronic kidney disease (CKD) patients has been extensively explored in recent years. Skin microbiome plays a crucial role in patients with skin diseases or even systemic disorders. Pruritus is caused by the retention of uremic solutes in the skin. Until now, no studies have investigated the role of skin microbiome in CKD and its association with pruritus. Here, we aim to examine the bacterial profile of skin microbiome in CKD and whether it is correlated to pruritus. A total of 105 CKD patients and 38 healthy controls (HC) were recruited. Skin swab was used to collect skin samples at the antecubital fossa of participants. Bacterial 16S rRNA genes V3–V4 region was sequenced on NovaSeq platform. On the day of skin sample collection, renal function was assessed, and numeric rating scale was used to measure pruritus severity. Principal coordinate analysis (PCoA) revealed a significant difference in bacterial composition between the groups of CKD and HC. A depletion of bacterial diversity was observed in CKD patients. Akkermansia, Albimonas, Escherichia–Shigella, etc. showed significant higher abundance in CKD patients, whereas Flavobacterium, Blastomonas, Lautropia, etc. significantly declined in patients. Escherichia–Shigella achieved an acceptable diagnostic biomarker with area under the curve (AUC) value of 0.784 in the receiver operating characteristics (ROC) curve. In addition, CKD patients with pruritus (P-CKD) had a different bacterial community comparing to those without pruritus (non-P-CKD) and HC group. Several bacterial genera showing significant difference between P-CKD and non-P-CKD/HC, such as Oribacterium, significantly declined in P-CKD patients than that in the HC group, and Methylophaga significantly increased in P-CKD patients compared to that in HC subjects. Escherichia–Shigella was positively associated with the levels of pruritus severity, blood urea nitrogen (BUN), uric acid, and urine protein; Oribacterium was negatively associated with pruritus severity, whereas it was positively associated with estimated glomerular filtration rate (eGFR) and 24-h urine volume. The dysbiotic of skin microbiome in CKD patients and its association with pruritus and renal function shed a light on skin probiotics.
Collapse
Affiliation(s)
- Yu Tian
- Department of Urology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Chaoqun Gu
- Department of Urology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Feng Yan
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Yifeng Gu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yangkun Feng
- School of Medicine, Nantong University, Nantong, China
| | - Jie Chen
- Department of Urology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Jiayi Sheng
- Department of Urology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Lei Hu
- Department of Urology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Peng Jiang
- Department of Urology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
- *Correspondence: Peng Jiang, ; Wei Guo, ; Ninghan Feng,
| | - Wei Guo
- Department of Urology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
- *Correspondence: Peng Jiang, ; Wei Guo, ; Ninghan Feng,
| | - Ninghan Feng
- Department of Urology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
- *Correspondence: Peng Jiang, ; Wei Guo, ; Ninghan Feng,
| |
Collapse
|
40
|
Bian J, Liebert A, Bicknell B, Chen XM, Huang C, Pollock CA. Faecal Microbiota Transplantation and Chronic Kidney Disease. Nutrients 2022; 14:nu14122528. [PMID: 35745257 PMCID: PMC9228952 DOI: 10.3390/nu14122528] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Faecal microbiota transplantation (FMT) has attracted increasing attention as an intervention in many clinical conditions, including autoimmune, enteroendocrine, gastroenterological, and neurological diseases. For years, FMT has been an effective second-line treatment for Clostridium difficile infection (CDI) with beneficial outcomes. FMT is also promising in improving bowel diseases, such as ulcerative colitis (UC). Pre-clinical and clinical studies suggest that this microbiota-based intervention may influence the development and progression of chronic kidney disease (CKD) via modifying a dysregulated gut–kidney axis. Despite the high morbidity and mortality due to CKD, there are limited options for treatment until end-stage kidney disease occurs, which results in death, dialysis, or kidney transplantation. This imposes a significant financial and health burden on the individual, their families and careers, and the health system. Recent studies have suggested that strategies to reverse gut dysbiosis using FMT are a promising therapy in CKD. This review summarises the preclinical and clinical evidence and postulates the potential therapeutic effect of FMT in the management of CKD.
Collapse
Affiliation(s)
- Ji Bian
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
| | - Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Brian Bicknell
- College of Health and Medicine, Australian National University, Deacon, ACT 2600, Australia;
| | - Xin-Ming Chen
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
| | - Chunling Huang
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
- Correspondence: (C.H.); (C.A.P.); Tel.: +61-2-9926-4784 (C.H.); +61-2-9926-4652 (C.A.P.)
| | - Carol A. Pollock
- Kolling Institute, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (J.B.); (X.-M.C.)
- Correspondence: (C.H.); (C.A.P.); Tel.: +61-2-9926-4784 (C.H.); +61-2-9926-4652 (C.A.P.)
| |
Collapse
|
41
|
Hu J, Wei S, Gu Y, Wang Y, Feng Y, Sheng J, Hu L, Gu C, Jiang P, Tian Y, Guo W, Lv L, Liu F, Zou Y, Yan F, Feng N. Gut Mycobiome in Patients With Chronic Kidney Disease Was Altered and Associated With Immunological Profiles. Front Immunol 2022; 13:843695. [PMID: 35784313 PMCID: PMC9245424 DOI: 10.3389/fimmu.2022.843695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Mounting evidence suggests that bacterial dysbiosis and immunity disorder are associated with patients with chronic kidney disease (CKD), but the mycobiome is beginning to gain recognition as a fundamental part of our microbiome. We aim to characterize the profile of the mycobiome in the gut of CKD patients and its correlation to serum immunological profiles. Methods and materials Ninety-two CKD patients and sex-age-body mass index (BMI)-matched healthy controls (HCs) were recruited. Fresh samples were collected using sterile containers. ITS transcribed spacer ribosomal RNA gene sequencing was performed on the samples. An immunoturbidimetric test was used to assess the serum levels of immunological features. Results The CKD cohort displayed a different microbial community from that in the HC cohort according to principal coordinate analysis (PCoA). (P=0.001). The comparison of the two cohorts showed that the CKD cohort had significantly higher gut microbial richness and diversity (P<0.05). The CKD cohort had lower abundances of Candida, Bjerkandera, Rhodotorula, and Ganoderma compared to the HC cohort, while it had higher Saccharomyces (P<0.05). However, the microbial community alteration was inconsistent with the severity of kidney damage in patients, as only patients in CKD stage 1~3 had differed microbial community concerning for HCs based on PCoA (P<0.05). The serum concentration of the kappa light chain in CKD patients was positively associated with Saccharomyces, whereas the it was negatively associated with Ganoderma (P<0.05). Conclusions Not only was gut mycobiome dysbiosis observed in CKD patients, but the dysbiosis was also associated with the immunological disorder. These findings suggest that therapeutic strategies targeting gut mycobiome might be effective.
Collapse
Affiliation(s)
- Jialin Hu
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nantong University, Wuxi, China
| | - Shichao Wei
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nantong University, Wuxi, China
| | - Yifeng Gu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Wang
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nantong University, Wuxi, China
| | - Yangkun Feng
- School of Medicine, Nantong University, Nantong, China
| | - Jiayi Sheng
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Lei Hu
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Chaoqun Gu
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nantong University, Wuxi, China
| | - Peng Jiang
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nantong University, Wuxi, China
| | - Yu Tian
- Department of Nephrology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Wei Guo
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nantong University, Wuxi, China
| | - Longxian Lv
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fengping Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yeqing Zou
- School of Basic Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Feng Yan
- Department of Nephrology, Affiliated Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No.2 Hospital, Nantong University, Wuxi, China
| |
Collapse
|
42
|
Exploration of the correlation between intestinal flora and peritoneal dialysis-related peritonitis. Clin Exp Nephrol 2022; 26:1030-1038. [DOI: 10.1007/s10157-022-02239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
|
43
|
Liu C, Zhang S, Shi H, Zhou H, Zhuang J, Cao Y, Ward N, Wang J. Atp11b Deletion Affects the Gut Microbiota and Accelerates Brain Aging in Mice. Brain Sci 2022; 12:709. [PMID: 35741595 PMCID: PMC9221138 DOI: 10.3390/brainsci12060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
The microbiota-gut-brain axis has attracted significant attention with respect to studying the mechanisms of brain aging; however, the specific connection between gut microbiota and aging remains unclear. The abnormal expression and mutation of proteins belonging to the P4-ATPase family, including Atp11b, results in a variety of neurological diseases. The results of our analysis demonstrate that there was a shift in the abundance of certain gut microbiota in Atp11b-knockout (KO) mice. Specifically, there was an increase in pro-inflammatory bacteria that accelerate aging and a decrease in probiotics that delay aging. Consequently, an enhanced oxidative stress response was observed, which was characterized by a reduction in the superoxide dismutase (SOD) activity and an increase in malondialdehyde (MDA) and reactive oxygen species (ROS) levels. In addition, our data demonstrate that there was a decrease in the number of cells in the dentate gyrus (DG) region of the hippocampus, and aggravation of aging-related pathological features such as senescence β-galactosidase (SA-β-Gal), p-HistoneH2AX (Ser139), and p16INK4. Moreover, KO mice show typical aging-associated behavior, such as memory impairment and slow pain perception. Taken together, we demonstrate a possible mechanism of aging induced by gut microbiota in Atp11b-KO mice, which provides a novel perspective for the treatment of aging through the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Cuiping Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.L.); (S.Z.); (H.S.); (H.Z.); (J.Z.); (Y.C.)
| | - Shibo Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.L.); (S.Z.); (H.S.); (H.Z.); (J.Z.); (Y.C.)
| | - Hongwei Shi
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.L.); (S.Z.); (H.S.); (H.Z.); (J.Z.); (Y.C.)
| | - Haicong Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.L.); (S.Z.); (H.S.); (H.Z.); (J.Z.); (Y.C.)
| | - Junyi Zhuang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.L.); (S.Z.); (H.S.); (H.Z.); (J.Z.); (Y.C.)
| | - Yiyang Cao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.L.); (S.Z.); (H.S.); (H.Z.); (J.Z.); (Y.C.)
| | - Natalie Ward
- Banner Ocotillo Medical Center, 1405 S Alma School Rd, Chandler, AZ 85286, USA;
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (C.L.); (S.Z.); (H.S.); (H.Z.); (J.Z.); (Y.C.)
| |
Collapse
|
44
|
Widiasih E, Subagio HW, Lestariningsih L. The Role of Gut Dysbiosis in Malnutrition Mechanism in CKD-5 HD Patients. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Patients with terminal stage chronic kidney disease who have undergone hemodialysis (PGK-5 HD) have a high risk of developing malnutrition, which is characterized by wasting protein-energy and micronutrient deficiencies. Studies show a high prevalence of malnutrition in CKD-5 HD patients. The pathogenic mechanisms of malnutrition in CKD-5 HD are complex and involve the interaction of several pathophysiological changes including decreased appetite and nutrient intake, hormonal disturbances, metabolic imbalances, inflammation, increased catabolism, and abnormalities associated with dialysis action. A clear understanding of the pathophysiological mechanisms involved in the development of malnutrition in CKD-5 HD is required to develop strategies and interventions that are appropriate, effective, and reduce negative clinical outcomes. This article is a review of the pathophysiological mechanisms of malnutrition in CKD-5 HD patients caused by chronic inflammation due to intestinal dysbiosis.
Collapse
|
45
|
Mizdrak M, Kumrić M, Kurir TT, Božić J. Emerging Biomarkers for Early Detection of Chronic Kidney Disease. J Pers Med 2022; 12:jpm12040548. [PMID: 35455664 PMCID: PMC9025702 DOI: 10.3390/jpm12040548] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) is a major and serious global health problem that leads to kidney damage as well as multiple systemic diseases. Early diagnosis and treatment are two major measures to prevent further deterioration of kidney function and to delay adverse outcomes. However, the paucity of early, predictive and noninvasive biomarkers has undermined our ability to promptly detect and treat this common clinical condition which affects more than 10% of the population worldwide. Despite all limitations, kidney function is still measured by serum creatinine, cystatin C, and albuminuria, as well as estimating glomerular filtration rate using different equations. This review aims to provide comprehensive insight into diagnostic methods available for early detection of CKD. In the review, we discuss the following topics: (i) markers of glomerular injury; (ii) markers of tubulointerstitial injury; (iii) the role of omics; (iv) the role of microbiota; (v) and finally, the role of microRNA in the early detection of CKD. Despite all novel findings, none of these biomarkers have met the criteria of an ideal early marker. Since the central role in CKD progression is the proximal tubule (PT), most data from the literature have analyzed biomarkers of PT injury, such as KIM-1 (kidney injury molecule-1), NGAL (neutrophil gelatinase-associated lipocalin), and L-FABP (liver fatty acid-binding protein).
Collapse
Affiliation(s)
- Maja Mizdrak
- Department of Nephrology and Hemodialysis, University Hospital of Split, 21000 Split, Croatia;
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (T.T.K.)
| | - Marko Kumrić
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (T.T.K.)
| | - Tina Tičinović Kurir
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (T.T.K.)
- Department of Endocrinology, Diabetes and Metabolic Disorders, University Hospital of Split, 21000 Split, Croatia
| | - Joško Božić
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (T.T.K.)
- Correspondence:
| |
Collapse
|
46
|
Jia YJ, Li TY, Han P, Chen Y, Pan LJ, Jia CS. Effects of different courses of moxibustion treatment on intestinal flora and inflammation of a rat model of knee osteoarthritis. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:173-181. [PMID: 35101368 DOI: 10.1016/j.joim.2022.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVE This study was done to determine the effects of different courses of moxibustion on a rat knee osteoarthritis (KOA) model, and explore the dose-effect relationship of moxibustion on KOA from the perspectives of intestinal flora and inflammatory factors. METHODS Wistar rats were randomly divided into five groups: normal, model, moxibustion for 2 weeks, moxibustion for 4 weeks and moxibustion for 6 weeks groups (n = 5 each group). A KOA rat model was induced by monosodium iodoacetate, and moxibustion intervention was performed at the acupoints "Dubi" (ST35) and "Zusanli" (ST36), once every other day. Pathologic changes in the cartilage of rat knee joints were assessed after intervention, and fecal samples were subjected to 16S rRNA high-throughput sequencing for microbial diversity analysis. RESULTS Damage to the knee articular cartilage was obvious in the model group, which also had increased levels of pro-inflammatory factors, decreased levels of anti-inflammatory factors, and intestinal flora disorders with decreased diversity. The degree of cartilage damage in the 4 and 6 weeks of moxibustion groups was significantly improved compared with the model group. The 4 and 6 weeks of moxibustion groups also demonstrated reduced levels of interleukin-1β and tumor necrosis factor-α and increased levels of interleukin-10 (P < 0.05). Both the abundance and diversity of the intestinal flora were increased, approaching those of the normal group. Abundances of probiotics Eubacterium coprostanoligenes group and Ruminococcaceae UCG-014 increased, while that of the pathogenic bacteria Lachnospiraceae NK4A136 group decreased (P < 0.05). Although the abundance of Lachnospiraceae NK4A136 group decreased in the 2 weeks of moxibustion group compared with the model group (P < 0.05), there was no statistically significant difference in serum inflammatory factors, flora species diversity or degree of pathological damage compared with the model group. CONCLUSION Moxibustion treatment led to significant improvements in the intestinal flora and inflammatory factors of rats with KOA. Moxibustion treatment of 4 and 6 weeks led to better outcomes than the 2-week course. Moxibustion for 4 and 6 weeks can regulate intestinal flora dysfunction with increased probiotics and reduced pathogenic bacteria, reduce pro-inflammatory factors and increase anti-inflammatory factors. No significant differences were seen between the effects of moxibustion for 4 weeks and 6 weeks.
Collapse
Affiliation(s)
- Ye-Juan Jia
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Tian-Yu Li
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Peng Han
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Yu Chen
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Li-Jia Pan
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China
| | - Chun-Sheng Jia
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei Province, China.
| |
Collapse
|
47
|
Zhou J, Yang C, Lei W, Yang Z, Chen J, Lin H, Li Q, Yuan W. Exploration of the correlation between intestinal flora and Escherichia coli peritoneal dialysis-related peritonitis. BMC Nephrol 2022; 23:76. [PMID: 35193514 PMCID: PMC8864834 DOI: 10.1186/s12882-022-02704-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Escherichia coli peritonitis (EP) is a serious complication of peritoneal dialysis (PD). Gut microbiota alterations occur in end-stage renal disease (ESRD) patients. The relationship between the gut microbiota and PD-related peritonitis is still poorly understood. It is unclear whether the intestinal flora is involved in the pathogenesis of EP. METHODS We collected fecal samples from EP patients and normal group (NG) PD patients. 16S rRNA sequencing was used to analyze the gut microbiota of EP and NG patients. The demographic data and clinical indicators of all patients were collected. RESULTS Six EP patients and 28 NG patients were recruited for this study. The analysis of fecal community diversity with 16S rDNA sequencing showed an obvious change in the microbial structure of EP patients, where Bacteroidetes and Synergistetes were upregulated at different levels, while Bacilli and Lactobacillus were downregulated at different levels compared to the NG group. Additionally, decreased gene function associated with metabolic pathways was observed in EP patients. CONCLUSIONS The altered composition of the gut microbiota in EP patients provided deeper insights into the pathogenesis of EP, and these biomarkers might be established as potential therapeutic targets that deserve further exploration.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Nephrology and Rheumatology, Haikou People's Hospital Affiliated to Xiangya School of Medicine, Haikou, China
| | - Cuishun Yang
- Department of Nephrology and Rheumatology, Haikou People's Hospital Affiliated to Xiangya School of Medicine, Haikou, China
| | - Wenjuan Lei
- Department of Nephrology and Rheumatology, Haikou People's Hospital Affiliated to Xiangya School of Medicine, Haikou, China
| | - Zhen Yang
- Department of Nephrology and Rheumatology, Haikou People's Hospital Affiliated to Xiangya School of Medicine, Haikou, China
| | - Jianmei Chen
- Department of Nephrology and Rheumatology, Haikou People's Hospital Affiliated to Xiangya School of Medicine, Haikou, China
| | - Hua Lin
- Department of Nursing, Haikou People's Hospital Affiliated to Xiangya School of Medicine, Haikou, China
| | - Qingtian Li
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan ER Road, Guangzhou, 510080, China.
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China. .,Beijing Key Laboratory of Spinal Diseases, Beijing, China. .,Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
48
|
Chen H, Zhang N, Wu Y, Yang C, Xie Q, Deng C, Sun N. Investigation of Urinary Exosome Metabolic Patterns in Membranous Nephropathy by Titania‐Assisted Intact Exosome Mass Spectrometry. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Haolin Chen
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P. R. China
| | - Ning Zhang
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P. R. China
| | - Yonglei Wu
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P. R. China
| | - Chenjie Yang
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P. R. China
| | - Qionghong Xie
- Division of Nephrology Huashan Hospital Fudan University Shanghai 200040 P. R. China
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences Fudan University Shanghai 200433 P. R. China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology Zhongshan Hospital Fudan University Shanghai 200032 China
| |
Collapse
|
49
|
Alvarenga L, Cardozo LFMF, Leal VO, Kemp JA, Saldanha JF, Ribeiro-Alves M, Meireles T, Nakao LS, Mafra D. Can resveratrol supplementation reduce uremic toxins plasma levels from the gut microbiota in non-dialyzed chronic kidney disease patients? J Ren Nutr 2022; 32:685-691. [PMID: 35122992 DOI: 10.1053/j.jrn.2022.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Uremic toxins such as indoxyl sulfate (IS), p-cresyl sulfate (pCS), and indole-3-acetic acid (IAA) produced by the gut microbiota are recognized as risk factors for many comorbidities, including cardiovascular diseases. Chronic kidney disease (CKD) patients have an accumulation of these toxins and nutritional strategies have been proposed to mitigate gut dysbiosis and, consequently, reduce these toxins. This study aimed to evaluate the effects of resveratrol supplementation on the plasma levels of IS, pCS, and IAA in non-dialyzed CKD patients. METHODS In this placebo-controlled crossover study, twenty non-dialyzed patients were randomly divided into two groups: they received either one capsule/day containing 500 mg of trans-resveratrol (63 ± 7.5 years, glomerular filtration ratio (GFR): 34 ± 14 mL/min, body mass index (BMI): 26.8 ± 5.6 kg/m2) or a placebo containing 500 mg wheat flour (62 ± 8.4 years, GFR: 34 ± 13 mL/min, BMI: 28.6 ± 4.4 kg/m2) during four weeks. After eight weeks of washout (no supplementation), another four weeks of supplementation with crossover was initiated. IS, IAA, and pCS plasma levels were quantified by the Reverse Phase High-Efficiency Liquid Chromatography method with fluorescent detection. The mRNA expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB) in peripheral blood mononuclear cells was evaluated by polymerase chain reaction. C-reactive protein (CRP) plasma levels were also evaluated. RESULTS As expected, the uremic toxins levels were negatively correlated with GFR, but no effect of trans-resveratrol supplementation was found on levels of IS, IAA, and pCS. There was a positive correlation between IS and Nrf2 (r = 0.24, p = 0.03) and also between IS and CRP (r = 0.21, p = 0.05). CONCLUSION Supplementation with trans-resveratrol did not reduce the plasma levels of IS, pCS, and IAA in non-dialyzed CKD patients. The interactions among uremic toxins and anti- and pro-inflammatory pathways deserve more studies.
Collapse
Affiliation(s)
- L Alvarenga
- Graduate Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil
| | - L F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil
| | - V O Leal
- University Hospital Pedro Ernesto (HUPE), State University of Rio de Janeiro (UERJ)
| | - J A Kemp
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil
| | - J F Saldanha
- Graduate Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil
| | - M Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology, INI, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - T Meireles
- Federal University of Parana (UFPR), Department of Basic Pathology, Curitiba, Brazil
| | - L S Nakao
- Federal University of Parana (UFPR), Department of Basic Pathology, Curitiba, Brazil
| | - D Mafra
- Graduate Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil; Graduate Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil.
| |
Collapse
|
50
|
Rhubarb Enema Increasing Short-Chain Fatty Acids that Improves the Intestinal Barrier Disruption in CKD May Be Related to the Regulation of Gut Dysbiosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1896781. [PMID: 35097110 PMCID: PMC8794667 DOI: 10.1155/2022/1896781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022]
Abstract
The incidence of CKD seriously endangers people's health. Researchers have proposed that improving the intestinal barrier damage in CKD may be an effective target for delaying the progression of CKD. Rhubarb can effectively improve the intestinal barrier and renal fibrosis, which may be related to the regulation of gut dysbiosis, but the mechanism needs to be further studied. Short-chain fatty acids (SCFAs) are important metabolites of the gut microbiota and play an important role in maintaining the intestinal barrier. The purpose of this study was to investigate whether rhubarb enema regulates the production of short-chain fatty acid-related gut microbiota and improves the intestinal barrier damage of CKD. 5/6 nephrectomy rats were used as the animal model, sevelamer was used as the positive control group, and the sham operation rats were used as the control group. After 4 weeks of enema treatment, the general clinical indicators, short-chain fatty acid levels, renal pathology, intestinal tissue pathology, intestinal tight junction protein, and changes in gut microbiota were detected. The results showed that rhubarb enema can increase the level of short-chain fatty acids in the 5/6 nephrectomy model rats, improve the intestinal barrier damage, inhibit the decrease of intestinal tight junction proteins, reduce inflammation levels, improve kidney pathology, reduce blood creatinine levels, and regulate the intestinal tract, the abundance, and composition of the flora. Further correlation analysis showed that rhubarb enema increased the level of short-chain fatty acids in 5/6 nephrectomy model rats, which may be related to the 7 strains that may regulate the production of short-chain fatty acids. This study indicated that rhubarb enema can improve the intestinal barrier damage of 5/6 nephrectomy model rats and improve CKD, which may be related to the regulation of short-chain fatty acid-producing gut microbiota.
Collapse
|