1
|
Zhang Y, Zhuang H, Chen K, Zhao Y, Wang D, Ran T, Zou D. Intestinal fibrosis associated with inflammatory bowel disease: Known and unknown. Chin Med J (Engl) 2025:00029330-990000000-01450. [PMID: 40012095 DOI: 10.1097/cm9.0000000000003545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Indexed: 02/28/2025] Open
Abstract
ABSTRACT Intestinal fibrosis is a major complication of inflammatory bowel disease (IBD), leading to a high incidence of surgical interventions and significant disability. Despite its clinical relevance, no targeted pharmacological therapies are currently available. This review aims to explore the underlying mechanisms driving intestinal fibrosis and address unresolved scientific questions, offering insights into potential future therapeutic strategies. We conducted a literature review using data from PubMed up to October 2024, focusing on studies related to IBD and fibrosis. Intestinal fibrosis results from a complex network involving stromal cells, immune cells, epithelial cells, and the gut microbiota. Chronic inflammation, driven by factors such as dysbiosis, epithelial injury, and immune activation, leads to the production of cytokines like interleukin (IL)-1β, IL-17, and transforming growth factor (TGF)-β. These mediators activate various stromal cell populations, including fibroblasts, pericytes, and smooth muscle cells. The activated stromal cells secrete excessive extracellular matrix components, thereby promoting fibrosis. Additionally, stromal cells influence the immune microenvironment through cytokine production. Future research would focus on elucidating the temporal and spatial relationships between immune cell-driven inflammation and stromal cell-mediated fibrosis. Additionally, investigations are needed to clarify the differentiation origins of excessive extracellular matrix-producing cells, particularly fibroblast activation protein (FAP)+ fibroblasts, in the context of intestinal fibrosis. In conclusion, aberrant stromal cell activation, triggered by upstream immune signals, is a key mechanism underlying intestinal fibrosis. Further investigations into immune-stromal cell interactions and stromal cell activation are essential for the development of therapeutic strategies to prevent, alleviate, and potentially reverse fibrosis.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
2
|
Zhou M, Chen Y, Jin W, Li P, Hu J, Guo X. Traditional Chinese Medicine: A Promising Treatment Option for Intestinal Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2107-2129. [PMID: 39581857 DOI: 10.1142/s0192415x24500812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Intestinal fibrosis, a common complication of inflammatory bowel disease, in particular in Crohn's disease, arises from chronic inflammation, leading to intestinal narrowing, structural damage, and functional impairment that significantly impact patients' quality of life. Current treatment options for intestinal fibrosis are limited, with surgery being the primary intervention. Traditional Chinese Medicine (TCM) has emerged as a promising approach in preventing and treating intestinal fibrosis. However, there is a scarcity of literature summarizing the mechanisms underlying TCM's efficacy in this context. To address this gap, we conducted a comprehensive review, uncovering multiple mechanisms through which TCM mitigates intestinal fibrosis. These mechanisms include immune cell balance regulation, suppression of inflammatory responses, reduction of inflammatory mediators, alleviation of colon tissue damage, restoration of intestinal function, modulation of growth factors to inhibit fibroblast activation, dynamic regulation of TIMPs and MMPs to reduce extracellular matrix deposition, inhibition of epithelial-mesenchymal transition and endothelial-mesenchymal transition, autophagy modulation, maintenance of the intestinal mucosal barrier, prevention of tissue damage by harmful factors, and regulation of cell proliferation and apoptosis. This study aims to bridge existing knowledge gaps by presenting recent evidence supporting the utilization of TCM in both clinical and experimental research settings.
Collapse
Affiliation(s)
- Meng'en Zhou
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yan Chen
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wenqi Jin
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Peng Li
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Jie Hu
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiutian Guo
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
3
|
Kayama H, Takeda K. Regulation of intestinal epithelial homeostasis by mesenchymal cells. Inflamm Regen 2024; 44:42. [PMID: 39327633 PMCID: PMC11426228 DOI: 10.1186/s41232-024-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
The gastrointestinal tract harbors diverse microorganisms in the lumen. Epithelial cells segregate the luminal microorganisms from immune cells in the lamina propria by constructing chemical and physical barriers through the production of various factors to prevent excessive immune responses against microbes. Therefore, perturbations of epithelial integrity are linked to the development of gastrointestinal disorders. Several mesenchymal stromal cell populations, including fibroblasts, myofibroblasts, pericytes, and myocytes, contribute to the establishment and maintenance of epithelial homeostasis in the gut through regulation of the self-renewal, proliferation, and differentiation of intestinal stem cells. Recent studies have revealed alterations in the composition of intestinal mesenchymal stromal cells in patients with inflammatory bowel disease and colorectal cancer. A better understanding of the interplay between mesenchymal stromal cells and epithelial cells associated with intestinal health and diseases will facilitate identification of novel biomarkers and therapeutic targets for gastrointestinal disorders. This review summarizes the key findings obtained to date on the mechanisms by which functionally distinct mesenchymal stromal cells regulate epithelial integrity in intestinal health and diseases at different developmental stages.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Xin S, Liu X, He C, Gao H, Wang B, Hua R, Gao L, Shang H, Sun F, Xu J. Inflammation accelerating intestinal fibrosis: from mechanism to clinic. Eur J Med Res 2024; 29:335. [PMID: 38890719 PMCID: PMC11184829 DOI: 10.1186/s40001-024-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Intestinal fibrosis is a prevalent complication of IBD that that can frequently be triggered by prolonged inflammation. Fibrosis in the gut can cause a number of issues, which continue as an ongoing challenge to healthcare systems worldwide. The primary causes of intestinal fibrosis are soluble molecules, G protein-coupled receptors, epithelial-to-mesenchymal or endothelial-to-mesenchymal transition, and the gut microbiota. Fresh perspectives coming from in vivo and in vitro experimental models demonstrate that fibrogenic pathways might be different, at least to some extent, independent of the ones that influence inflammation. Understanding the distinctive procedures of intestinal fibrogenesis should provide a realistic foundation for targeting and blocking specific fibrogenic pathways, estimating the risk of fibrotic consequences, detecting early fibrotic alterations, and eventually allowing therapy development. Here, we first summarize the inflammatory and non-inflammatory components of fibrosis, and then we elaborate on the underlying mechanism associated with multiple cytokines in fibrosis, providing the framework for future clinical practice. Following that, we discuss the relationship between modernization and disease, as well as the shortcomings of current studies. We outline fibrosis diagnosis and therapy, as well as our recommendations for the future treatment of intestinal fibrosis. We anticipate that the global review will provides a wealth of fresh knowledge and suggestions for future fibrosis clinical practice.
Collapse
Affiliation(s)
- Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Department of Clinical Laboratory, Aerospace Clinical Medical College, Aerospace Central Hospital, Beijing, 100039, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, China
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Rieder F, Mukherjee PK, Massey WJ, Wang Y, Fiocchi C. Fibrosis in IBD: from pathogenesis to therapeutic targets. Gut 2024; 73:854-866. [PMID: 38233198 PMCID: PMC10997492 DOI: 10.1136/gutjnl-2023-329963] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Intestinal fibrosis resulting in stricture formation and obstruction in Crohn's disease (CD) and increased wall stiffness leading to symptoms in ulcerative colitis (UC) is among the largest unmet needs in inflammatory bowel disease (IBD). Fibrosis is caused by a multifactorial and complex process involving immune and non-immune cells, their soluble mediators and exposure to luminal contents, such as microbiota and environmental factors. To date, no antifibrotic therapy is available. Some progress has been made in creating consensus definitions and measurements to quantify stricture morphology for clinical practice and trials, but approaches to determine the degree of fibrosis within a stricture are still lacking. OBJECTIVE We herein describe the current state of stricture pathogenesis, measuring tools and clinical trial endpoints development. DESIGN Data presented and discussed in this review derive from the past and recent literature and the authors' own research and experience. RESULTS AND CONCLUSIONS Significant progress has been made in better understanding the pathogenesis of fibrosis, but additional studies and preclinical developments are needed to define specific therapeutic targets.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William J Massey
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yan Wang
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Oey O, Sunjaya AF, Khan Y, Redfern A. Stromal inflammation, fibrosis and cancer: An old intuition with promising potential. World J Clin Oncol 2023; 14:230-246. [PMID: 37583950 PMCID: PMC10424089 DOI: 10.5306/wjco.v14.i7.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/19/2023] Open
Abstract
It is now well established that the biology of cancer is influenced by not only malignant cells but also other components of the tumour microenvironment. Chronic inflammation and fibrosis have long been postulated to be involved in carcinogenesis. Chronic inflammation can promote tumorigenesis via growth factor/cytokine-mediated cellular proliferation, apoptotic resistance, immunosuppression; and free-radical-induced oxidative deoxyribonucleic acid damage. Fibrosis could cause a perturbation in the dynamics of the tumour microenvironment, potentially damaging the genome surveillance machinery of normal epithelial cells. In this review, we will provide an in-depth discussion of various diseases characterised by inflammation and fibrosis that have been associated with an increased risk of malignancy. In particular, we will present a comprehensive overview of the impact of alterations in stromal composition on tumorigenesis, induced as a consequence of inflammation and/or fibrosis. Strategies including the application of various therapeutic agents with stromal manipulation potential and targeted cancer screening for certain inflammatory diseases which can reduce the risk of cancer will also be discussed.
Collapse
Affiliation(s)
- Oliver Oey
- Faculty of Medicine, University of Western Australia, Perth 6009, Crawley NA, Australia
- Department of Medical Oncology, Sir Charles Gardner Hospital, Nedlands 6009, Australia
| | - Angela Felicia Sunjaya
- Institute of Cardiovascular Science, University College London, London WC1E 6DD, United Kingdom
| | - Yasir Khan
- Department of Medical Oncology, St John of God Midland Public and Private Hospital, Midland 6056, WA, Australia
| | - Andrew Redfern
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch 6150, WA, Australia
| |
Collapse
|
7
|
Liu J, Gong W, Liu P, Li Y, Jiang H, Wu X, Zhao Y, Ren J. Macrophages-microenvironment crosstalk in fibrostenotic inflammatory bowel disease: from basic mechanisms to clinical applications. Expert Opin Ther Targets 2022; 26:1011-1026. [PMID: 36573664 DOI: 10.1080/14728222.2022.2161889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Intestinal fibrosis is a common complication of Inflammatory Bowel Disease (IBD) with no available drugs. The current therapeutic principle is surgical intervention as the core. Intestinal macrophages contribute to both the progression of inflammation and fibrosis. Understanding the role of macrophages in the intestinal microenvironment could bring new hope for fibrosis prevention or even reversal. AREAS COVERED This article reviewed the most relevant reports on macrophage in the field of intestinal fibrosis. The authors discussed current opinions about how intestinal macrophages function and interact with surrounding mediators during inflammation resolution and fibrostenotic IBD. Based on biological mechanisms findings, authors summarized related clinical trial outcomes. EXPERT OPINION The plasticity of intestinal macrophages allows them to undergo dramatic alterations in their phenotypes or functions when exposed to gastrointestinal environmental stimuli. They exhibit distinct metabolic characteristics, secrete various cytokines, express unique surface markers, and transmit different signals. Nevertheless, the specific mechanism through which the intestinal macrophages contribute to intestinal fibrosis remains unclear. It should further elucidate a novel therapeutic approach by targeting macrophages, especially distinct mechanisms in specific subgroups of macrophages involved in the progression of fibrogenesis in IBD.
Collapse
Affiliation(s)
- Juanhan Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Wenbin Gong
- Department of General Surgery, Southeast University, 210096, Nanjing, P. R. China
| | - Peizhao Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yangguang Li
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Xiuwen Wu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Jianan Ren
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| |
Collapse
|
8
|
Targeting Myocardial Fibrosis—A Magic Pill in Cardiovascular Medicine? Pharmaceutics 2022; 14:pharmaceutics14081599. [PMID: 36015225 PMCID: PMC9414721 DOI: 10.3390/pharmaceutics14081599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Fibrosis, characterized by an excessive accumulation of extracellular matrix, has long been seen as an adaptive process that contributes to tissue healing and regeneration. More recently, however, cardiac fibrosis has been shown to be a central element in many cardiovascular diseases (CVDs), contributing to the alteration of cardiac electrical and mechanical functions in a wide range of clinical settings. This paper aims to provide a comprehensive review of cardiac fibrosis, with a focus on the main pathophysiological pathways involved in its onset and progression, its role in various cardiovascular conditions, and on the potential of currently available and emerging therapeutic strategies to counteract the development and/or progression of fibrosis in CVDs. We also emphasize a number of questions that remain to be answered, and we identify hotspots for future research.
Collapse
|
9
|
Challagundla N, Shah D, Yadav S, Agrawal-Rajput R. Saga of monokines in shaping tumour-immune microenvironment: Origin to execution. Cytokine 2022; 157:155948. [PMID: 35764025 DOI: 10.1016/j.cyto.2022.155948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
Cellular communication mediated by cytokines is an important mechanism dictating immune responses, their cross talk and final immune output. Cytokines play a major role in dictating the immune outcome to cancer by regulating the events of development, differentiation and activation of innate immune cells. Cytokines are pleiotropic in nature, hence understanding their role individually or as member of network cytokines is critical to delineate their role in tumour immunity. Tumour systemically manipulates the immune system to evade and escape immune recognition for their uncontrollable growth and metastasis. The developing tumour comprise a large and diverse set of myeloid cells which are vulnerable to manipulation by the tumour-microenvironment. The innate immune cells of the monocytic lineage skew the fate of the adaptive immune cells and thus dictating cancer elimination or progression. Targeting cells at tumour cite is preposterous owing to their tight network, poor reach and abundance of immunosuppressive mechanisms. Monocytic lineage-derived cytokines (monokines) play crucial role in tumour regression or progression by either directly killing the tumour cells with TNFα or promoting its growth by TGFβ. In addition, the monokines like IL-12, IL-1β, IL-6, IL-10 and TGFβ direct the adaptive immune cells to secrete anti-tumour cytokines, TNFα, IFNγ, perforin and granzyme or pro-tumour cytokines, IL-10 and TGFβ. In this review, we elucidate the roles of monokines in dictating the fate of tumour by regulating responses at various stages of generation, differentiation and activation of immune cells along with the extensive cross talk. We have attempted to delineate the synergy and antagonism of major monokines among themselves or with tumour-derived or adaptive immune cytokines. The review provides an update on the possibilities of placing monokines to potential practical use as cytokine therapy against cancer.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Dhruvi Shah
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
10
|
Cao Q, Mertens RT, Sivanathan KN, Cai X, Xiao P. Macrophage orchestration of epithelial and stromal cell homeostasis in the intestine. J Leukoc Biol 2022; 112:313-331. [PMID: 35593111 PMCID: PMC9543232 DOI: 10.1002/jlb.3ru0322-176r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/06/2022] Open
Abstract
The intestinal tract is a complex ecosystem where numerous cell types of epithelial, immune, neuronal, and endothelial origin coexist in an intertwined, highly organized manner. The functional equilibrium of the intestine relies heavily on the proper crosstalk and cooperation among each cell population. Furthermore, macrophages are versatile, innate immune cells that participate widely in the modulation of inflammation and tissue remodeling. Emerging evidence suggest that macrophages are central in orchestrating tissue homeostasis. Herein, we describe how macrophages interact with epithelial cells, neurons, and other types of mesenchymal cells under the context of intestinal inflammation, followed by the therapeutic implications of cellular crosstalk pertaining to the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Randall Tyler Mertens
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kisha Nandini Sivanathan
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Xuechun Cai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Tissue Niches Formed by Intestinal Mesenchymal Stromal Cells in Mucosal Homeostasis and Immunity. Int J Mol Sci 2022; 23:ijms23095181. [PMID: 35563571 PMCID: PMC9100044 DOI: 10.3390/ijms23095181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal tract is the largest mucosal surface in our body and accommodates the majority of the total lymphocyte population. Being continuously exposed to both harmless antigens and potentially threatening pathogens, the intestinal mucosa requires the integration of multiple signals for balancing immune responses. This integration is certainly supported by tissue-resident intestinal mesenchymal cells (IMCs), yet the molecular mechanisms whereby IMCs contribute to these events remain largely undefined. Recent studies using single-cell profiling technologies indicated a previously unappreciated heterogeneity of IMCs and provided further knowledge which will help to understand dynamic interactions between IMCs and hematopoietic cells of the intestinal mucosa. In this review, we focus on recent findings on the immunological functions of IMCs: On one hand, we discuss the steady-state interactions of IMCs with epithelial cells and hematopoietic cells. On the other hand, we summarize our current knowledge about the contribution of IMCs to the development of intestinal inflammatory conditions, such as infections, inflammatory bowel disease, and fibrosis. By providing a comprehensive list of cytokines and chemokines produced by IMCs under homeostatic and inflammatory conditions, we highlight the significant immunomodulatory and tissue niche forming capacities of IMCs.
Collapse
|
12
|
Watanabe D, Kamada N. Contribution of the Gut Microbiota to Intestinal Fibrosis in Crohn's Disease. Front Med (Lausanne) 2022; 9:826240. [PMID: 35198577 PMCID: PMC8859331 DOI: 10.3389/fmed.2022.826240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
In Crohn's disease (CD), intestinal fibrosis is a critical determinant of a patient's prognosis. Although inflammation may be a prerequisite for the initiation of intestinal fibrosis, research shows that the progression or continuation of intestinal fibrosis can occur independently of inflammation. Thus, once initiated, intestinal fibrosis may persist even if medical treatment controls inflammation. Clearly, an understanding of the pathophysiological mechanisms of intestinal fibrosis is required to diminish its occurrence. Accumulating evidence suggests that the gut microbiota contributes to the pathogenesis of intestinal fibrosis. For example, the presence of antibodies against gut microbes can predict which CD patients will have intestinal complications. In addition, microbial ligands can activate intestinal fibroblasts, thereby inducing the production of extracellular matrix. Moreover, in various animal models, bacterial infection can lead to the development of intestinal fibrosis. In this review, we summarize the current knowledge of the link between intestinal fibrosis in CD and the gut microbiota. We highlight basic science and clinical evidence that the gut microbiota can be causative for intestinal fibrosis in CD and provide valuable information about the animal models used to investigate intestinal fibrosis.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
13
|
Lin SN, Mao R, Qian C, Bettenworth D, Wang J, Li J, Bruining D, Jairath V, Feagan B, Chen M, Rieder F. Development of Anti-fibrotic Therapy in Stricturing Crohn's Disease: Lessons from Randomized Trials in Other Fibrotic Diseases. Physiol Rev 2021; 102:605-652. [PMID: 34569264 DOI: 10.1152/physrev.00005.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis is considered an inevitable complication of Crohn's disease (CD) that results in symptoms of obstruction and stricture formation. Endoscopic or surgical treatment is required to treat the majority of patients. Progress in the management of stricturing CD is hampered by the lack of effective anti-fibrotic therapy; however, this situation is likely to change because of recent advances in other fibrotic diseases of the lung, liver and skin. In this review, we summarized data from randomized controlled trials (RCT) of anti-fibrotic therapies in these conditions. Multiple compounds have been tested for the anti-fibrotic effects in other organs. According to their mechanisms, they were categorized into growth factor modulators, inflammation modulators, 5-hydroxy-3-methylgultaryl-coenzyme A (HMG-CoA) reductase inhibitors, intracellular enzymes and kinases, renin-angiotensin system (RAS) modulators and others. From our review of the results from the clinical trials and discussion of their implications in the gastrointestinal tract, we have identified several molecular candidates that could serve as potential therapies for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Chenchen Qian
- Department of Internal Medicine, UPMC Pinnacle, Harrisburg, Pennsylvania, United States
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - David Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Vipul Jairath
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Brian Feagan
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
14
|
Wang J, Lin S, Brown JM, van Wagoner D, Fiocchi C, Rieder F. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol Rev 2021; 302:211-227. [PMID: 33993489 DOI: 10.1111/imr.12974] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) worldwide has resulted in a global public health challenge. Intestinal fibrosis leading to stricture formation and bowel obstruction is a frequent complication in Crohn's disease (CD), and the lack of anti-fibrotic therapies makes elucidation of fibrosis mechanisms a priority. Progress has shown that mesenchymal cells, cytokines, microbial products, and mesenteric adipocytes are jointly implicated in the pathogenesis of intestinal fibrosis. This recent information puts prevention or reversal of intestinal strictures within reach through innovative therapies validated by reliable clinical trial endpoints. Here, we review the role of immune and non-immune components of the pathogenesis of intestinal fibrosis, including new cell clusters, cytokine networks, host-microbiome interactions, creeping fat, and their translation for endpoint development in anti-fibrotic clinical trials.
Collapse
Affiliation(s)
- Jie Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jonathan Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - David van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
15
|
Pourvali K, Monji H. Obesity and intestinal stem cell susceptibility to carcinogenesis. Nutr Metab (Lond) 2021; 18:37. [PMID: 33827616 PMCID: PMC8028194 DOI: 10.1186/s12986-021-00567-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Background Obesity is a top public health problem associated with an increase in colorectal cancer incidence. Stem cells are the chief cells in tissue homeostasis that self-renew and differentiate into other cells to regenerate the organ. It is speculated that an increase in stem cell pool makes cells susceptible to carcinogenesis. In this review, we looked at the recent investigations linking obesity/high-fat diet-induced obesity to intestinal carcinogenesis with regard to intestinal stem cells and their niche. Findings High-fat diet-induced obesity may rise intestinal carcinogenesis by increased Intestinal stem cells (ISC)/progenitor’s population, stemness, and niche independence through activation of PPAR-δ with fatty acids, hormonal alterations related to obesity, and low-grade inflammation. However, these effects may possibly relate to the interaction between fats and carbohydrates, and not a fatty acid per se. Nonetheless, literature studies are inconsistency in their results, probably due to the differences in the diet components and limitations of genetic models used. Conclusion High-fat diet-induced obesity affects carcinogenesis by changing ISC proliferation and function. However, a well-matched diet and the reliable colorectal cancer models that mimic human carcinogenesis is necessary to clearly elucidate the influence of high-fat diet-induced obesity on ISC behavior.
Collapse
Affiliation(s)
- Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran
| | - Hadi Monji
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran.
| |
Collapse
|
16
|
Konstantinidis AO, Adamama-Moraitou KK, Pardali D, Dovas CI, Brellou GD, Papadopoulos T, Jergens AE, Allenspach K, Rallis TS. Colonic mucosal and cytobrush sample cytokine mRNA expression in canine inflammatory bowel disease and their correlation with disease activity, endoscopic and histopathologic score. PLoS One 2021; 16:e0245713. [PMID: 33471872 PMCID: PMC7817028 DOI: 10.1371/journal.pone.0245713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/09/2020] [Indexed: 01/02/2023] Open
Abstract
Canine inflammatory bowel disease (IBD) is a group of chronic gastrointestinal disorders, the pathogenesis of which remains elusive, but it possibly involves the interaction of the intestinal immune system with luminal microbiota and food-derived antigens. Mucosal cytokines profiles in canine IBD have been investigated mainly in small intestinal disease, while data on cytokine profiles in large intestinal IBD are limited. The objective of this study was to measure colonic mucosal and cytobrush sample messenger (m)RNA expression of interleukin (IL)-1β, IL-2, IL-12p40, IL-23p19, tumor necrosis factor-alpha (TNF-α) and chemokine C-C motif ligand (CCL28) in dogs with IBD and healthy controls using quantitative real-time polymerase chain reaction (PCR), and assess their correlation with clinical disease activity, endoscopic and histopathologic score. Dogs with IBD had a significantly increased mRNA expression of IL-1β, IL-23p19 and CCL28 in the colonic mucosa, compared to healthy controls. None of the selected cytokines had significantly different mRNA expression in the colonic cytobrush samples between the two groups or between the colonic mucosa and cytobrush samples of dogs with IBD. Finally, there was a statistically significant correlation of clinical disease activity with endoscopic activity score and fibrosis and atrophy of the colonic mucosa in dogs with large intestinal IBD. IL-1β, IL-23p19 and CCL28 could play a role in the pathogenesis of canine large intestinal IBD. Colonic cytokine expression does not correlate with clinical disease activity and/or endoscopic score. However, clinical signs reflect the severity of endoscopic lesions.
Collapse
Affiliation(s)
- Alexandros O. Konstantinidis
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- * E-mail:
| | - Katerina K. Adamama-Moraitou
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Pardali
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysostomos I. Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia D. Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theologos Papadopoulos
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Albert E. Jergens
- Department of Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States of America
| | - Karin Allenspach
- Department of Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States of America
| | - Timoleon S. Rallis
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
17
|
Yang B, Zhang G, Elias M, Zhu Y, Wang J. The role of cytokine and immune responses in intestinal fibrosis. J Dig Dis 2020; 21:308-314. [PMID: 32410365 DOI: 10.1111/1751-2980.12879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/11/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
The rapidly increasing incidence of inflammatory bowel disease (IBD) in South America, eastern Europe, Asia, and Africa has resulted in a global public health challenge. Intestinal fibrosis is a common complication in patients with long-term IBD, which may develop into stenosis and subsequent obstruction. Hitherto, the origin of IBD is unclear and several factors may be involved, including genetic, immune, environmental and microbial influences. Little is known about how the recurrent inflammation in patients with IBD develops into intestinal fibrosis and currently, there is no suitable treatment to reverse intestinal fibrosis in these patients. Here, we review the role of immune components in the pathogenesis of IBD and intestinal fibrosis, including cytokine networks, host-microbiome interactions, and immune cell trafficking.
Collapse
Affiliation(s)
- Bo Yang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ge Zhang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yijun Zhu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.,Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jie Wang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Thomson CA, Nibbs RJ, McCoy KD, Mowat AM. Immunological roles of intestinal mesenchymal cells. Immunology 2020; 160:313-324. [PMID: 32181492 DOI: 10.1111/imm.13191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
The intestine is continuously exposed to an enormous variety and quantity of antigens and innate immune stimuli derived from both pathogens and harmless materials, such as food and commensal bacteria. Accordingly, the intestinal immune system is uniquely adapted to ensure appropriate responses to the different kinds of challenge; maintaining tolerance to harmless antigens in the steady-state, whilst remaining poised to deal with potential pathogens. To accomplish this, leucocytes of the intestinal immune system have to adapt to a constantly changing environment and interact with many different non-leucocytic intestinal cell types, including epithelial and endothelial cells, neurons, and a heterogenous network of intestinal mesenchymal cells (iMC). These interactions are intricately involved in the generation of protective immunity, the elaboration of inflammatory responses, and the development of inflammatory conditions, such as inflammatory bowel diseases. Here we discuss recent insights into the immunological functions of iMC under homeostatic and inflammatory conditions, focusing particularly on iMC in the mucosa and submucosa, and highlighting how an appreciation of the immunology of iMC may help understand the pathogenesis and treatment of disease.
Collapse
Affiliation(s)
- Carolyn A Thomson
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert J Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Allan Mcl Mowat
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
19
|
Franzè E, Monteleone I, Laudisi F, Rizzo A, Dinallo V, Di Fusco D, Colantoni A, Ortenzi A, Giuffrida P, Di Carlo S, Sica GS, Di Sabatino A, Monteleone G. Cadherin-11 Is a Regulator of Intestinal Fibrosis. J Crohns Colitis 2020; 14:406-417. [PMID: 31504344 DOI: 10.1093/ecco-jcc/jjz147] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Although the mechanisms underlying the formation of intestinal fibrostrictures in Crohn's disease [CD] are not fully understood, activation of fibroblasts and excessive collagen deposition are supposed to contribute to the development of such complications. Here, we investigated the role of cadherin-11 [CDH-11], a fibroblast-derived protein that induces collagen production in various organs, in intestinal fibrosis. METHODS CDH-11 expression was evaluated in inflammatory [I] and fibrostricturing [FS] CD mucosal samples, ulcerative colitis [UC] mucosal samples, and ileal and colonic control samples, by real-time polymerase chain reaction, western blotting, and immunohistochemistry. CDH-11 expression was evaluated in normal and in CD intestinal fibroblasts stimulated with inflammatory/fibrogenic cytokines. FS CD fibroblasts were cultured either with a specific CDH-11 antisense oligonucleotide [AS], or activating CDH-11 fusion protein and activation of RhoA/ROCK, and TGF-β pathways and collagen production were evaluated by western blotting. Finally, we assessed the susceptibility of CDH-11-knockout [KO] mice to colitis-induced intestinal fibrosis. RESULTS CDH-11 RNA and protein expression were increased in both CD and UC as compared with controls. In CD, the greater expression of CDH-11 was seen in FS samples. Stimulation of fibroblasts with TNF-α, interleukin [IL]-6, IFN-γ, IL-13, and IL-1β enhanced CDH-11 expression. Knockdown of CDH-11 in FS CD fibroblasts impaired RhoA/ROCK/TGF-β signalling and reduced collagen synthesis, whereas activation of CDH-11 increased collagen secretion. CDH-11 KO mice were largely protected from intestinal fibrosis. CONCLUSIONS Data show that CDH-11 expression is up-regulated in inflammatory bowel disease [IBD] and suggest a role for this protein in the control of intestinal fibrosis.
Collapse
Affiliation(s)
- Eleonora Franzè
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Ivan Monteleone
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Angelamaria Rizzo
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Paolo Giuffrida
- Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Sara Di Carlo
- Department of Surgery, University 'TOR VERGATA' of Rome, Rome, Italy
| | - Giuseppe S Sica
- Department of Surgery, University 'TOR VERGATA' of Rome, Rome, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| |
Collapse
|
20
|
Digby-Bell JL, Atreya R, Monteleone G, Powell N. Interrogating host immunity to predict treatment response in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17:9-20. [PMID: 31767987 DOI: 10.1038/s41575-019-0228-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
IBD treatment is undergoing a transformation with an expanding repertoire of drugs targeting different aspects of the immune response. Three novel classes of drugs have emerged in the past decade that target leukocyte trafficking to the gut (vedolizumab), neutralize key cytokines with antibodies (ustekinumab) and inhibit cytokine signalling pathways (tofacitinib). In advanced development are other drugs for IBD, including therapies targeting other cytokines such as IL-23 and IL-6. However, all agents tested so far are hampered by primary and secondary loss of response, so it is desirable to develop personalized strategies to identify which patients should be treated with which drugs. Stratification of patients with IBD by clinical parameters alone lacks sensitivity, and alternative modalities are now needed to deliver precision medicine in IBD. High-resolution profiling of immune response networks in individual patients is a promising approach and different technical platforms, including in vivo real-time molecular endoscopy, tissue transcriptomics and germline genetics, are promising tools to help predict responses to specific therapies. However, important challenges remain regarding the clinical utility of these technologies, including their scalability and accessibility. This Review focuses on unravelling some of the complexity of mucosal immune responses in IBD pathogenesis and how current and emerging analytical platforms might be harnessed to effectively stratify and individualise IBD therapy.
Collapse
Affiliation(s)
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Nick Powell
- School of Immunology and Microbial Sciences, King's College London, London, UK. .,Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
21
|
Martin JC, Chang C, Boschetti G, Ungaro R, Giri M, Grout JA, Gettler K, Chuang LS, Nayar S, Greenstein AJ, Dubinsky M, Walker L, Leader A, Fine JS, Whitehurst CE, Mbow ML, Kugathasan S, Denson LA, Hyams JS, Friedman JR, Desai PT, Ko HM, Laface I, Akturk G, Schadt EE, Salmon H, Gnjatic S, Rahman AH, Merad M, Cho JH, Kenigsberg E. Single-Cell Analysis of Crohn's Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy. Cell 2019; 178:1493-1508.e20. [PMID: 31474370 PMCID: PMC7060942 DOI: 10.1016/j.cell.2019.08.008] [Citation(s) in RCA: 545] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/06/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Clinical benefits of cytokine blockade in ileal Crohn's disease (iCD) are limited to a subset of patients. Here, we applied single-cell technologies to iCD lesions to address whether cellular heterogeneity contributes to treatment resistance. We found that a subset of patients expressed a unique cellular module in inflamed tissues that consisted of IgG plasma cells, inflammatory mononuclear phagocytes, activated T cells, and stromal cells, which we named the GIMATS module. Analysis of ligand-receptor interaction pairs identified a distinct network connectivity that likely drives the GIMATS module. Strikingly, the GIMATS module was also present in a subset of patients in four independent iCD cohorts (n = 441), and its presence at diagnosis correlated with failure to achieve durable corticosteroid-free remission upon anti-TNF therapy. These results emphasize the limitations of current diagnostic assays and the potential for single-cell mapping tools to identify novel biomarkers of treatment response and tailored therapeutic opportunities.
Collapse
Affiliation(s)
- Jerome C Martin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christie Chang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gilles Boschetti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ryan Ungaro
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Mamta Giri
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John A Grout
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kyle Gettler
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ling-Shiang Chuang
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shikha Nayar
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander J Greenstein
- Department of Colorectal Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marla Dubinsky
- Department of Pediatrics, Susan and Leonard Feinstein IBD Clinical Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Walker
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Leader
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jay S Fine
- Boehringer Ingelheim Pharmaceuticals, Immunology and Respiratory Diseases Research, Ridgefield, CT 06877, USA
| | - Charles E Whitehurst
- Boehringer Ingelheim Pharmaceuticals, Immunology and Respiratory Diseases Research, Ridgefield, CT 06877, USA
| | - M Lamine Mbow
- Boehringer Ingelheim Pharmaceuticals, Immunology and Respiratory Diseases Research, Ridgefield, CT 06877, USA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, CT, USA
| | | | | | - Huaibin M Ko
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ilaria Laface
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guray Akturk
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Helene Salmon
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adeeb H Rahman
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Judy H Cho
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ephraim Kenigsberg
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
22
|
Keshavarzian M, Meyer CA, Hayenga HN. In Silico Tissue Engineering: A Coupled Agent-Based Finite Element Approach. Tissue Eng Part C Methods 2019; 25:641-654. [PMID: 31392930 DOI: 10.1089/ten.tec.2019.0103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Over the past two decades, the increase in prevalence of cardiovascular diseases and the limited availability of autologous blood vessels and saphenous vein grafts have motivated the development of tissue-engineered vascular grafts (TEVGs). However, compliance mismatch and poor mechanical properties of the TEVGs remain as two major issues that need to be addressed. Researchers have investigated the role of various culture conditions and mechanical conditioning in deposition and orientation of collagen fibers, which are the key structural components in the vascular wall; however, the intrinsic complexity of mechanobiological interactions demands implementing new engineering approaches that allow researchers to investigate various scenarios more efficiently. In this study, we utilized a coupled agent-based finite element analysis (AB-FEA) modeling approach to study the effect of various loading modes (uniaxial, biaxial, and equibiaxial), boundary conditions, stretch magnitudes, and growth factor concentrations on growth and remodeling of smooth muscle cell-populated TEVGs, with specific focus on collagen deposition and orientation. Our simulations (12 weeks of culture) showed that biaxial cyclic loading (and not uniaxial or equibiaxial) leads to alignment of collagen fibers in the physiological directions. Moreover, axial boundary conditions of the TEVG act as determinants of fiber orientations. Decreasing the serum concentration, from 10% to 5% or 1%, significantly decreased the growth and remodeling speed, but only affected the fiber orientation in the 1% serum case. In conclusion, in silico tissue engineering has the potential to evolve the future of tissue engineering, as it will allow researchers to conceptualize various interactions and investigate numerous scenarios with great speed. In this study, we were able to predict the orientation of collagen fibers in TEVGs using a coupled AB-FEA model in less than 8 h. Impact Statement Tissue-engineered vascular grafts (TEVGs) hold potential to replace the current gold standard of vascular grafting, saphenous vein grafts. However, developing TEVGs that mimic the mechanical performance of the native tissue remains a challenging task. We developed a computational model of the grafts' remodeling processes and studied the effects of various loading mechanisms and culture conditions on collagen fiber orientation, which is a key factor in mechanical performance of the grafts. We were able to predict the fiber orientations accurately and show that biaxial loading and axial boundary conditions are important factors in collagen fiber organization.
Collapse
Affiliation(s)
| | - Clark A Meyer
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas
| | - Heather N Hayenga
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
23
|
Chen Y, Zhang H, Mats L, Liu R, Deng Z, Mine Y, Tsao R. Anti-inflammatory Effect and Cellular Uptake Mechanism of Peptides from Common Bean ( Phaseolus vulga L.) Milk and Yogurts in Caco-2 Mono- and Caco-2/EA.hy926 Co-culture Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8370-8381. [PMID: 31271280 DOI: 10.1021/acs.jafc.9b03079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Naturally occurring dietary peptides derived from gastrointestinal digestates of common bean milk and yogurt were studied for their bioaccessibility, bioavailability, and anti-inflammatory activity in both Caco-2 mono- and Caco-2/EA.hy926 co-culture cell models. Anti-inflammatory activities of these peptide extracts were found to be strongly associated with cellular uptake by the intestinal epithelial cells. Mechanisms underlying the cellular uptake were studied by examining the role of peptide transporter 1 and calcium sensing reporter. Three peptides, including γ-glutamyl-S-methylcysteine, γ-glutamyl-leucine, and leucine-leucine-valine, were found to be transported across the Caco-2 cell monolayer and detected by liquid chromatography-tandem mass spectrometry. A strong anti-inflammatory effect was observed in the basolateral EA.hy926 cells (co-culture model), as shown in their inhibition of tumor necrosis factor α-induced pro-inflammatory mediators of the nuclear factor κB and mitogen-activated protein kinase signal cascades. The results suggest that these peptides can be absorbed and possibly have systemic inhibition on inflammatory responses in vascular endothelial cells, indicating potential preventive effects on vascular diseases.
Collapse
Affiliation(s)
- Yuhuan Chen
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang , Jiangxi 330047 , People's Republic of China
- Guelph Research & Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Hua Zhang
- Guelph Research & Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Lili Mats
- Guelph Research & Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Ronghua Liu
- Guelph Research & Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology , University of Nanchang , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Yoshinori Mine
- Department of Food Science , University of Guelph , 50 Stone Road East , Guelph , Ontario N1G 2W1 , Canada
| | - Rong Tsao
- Guelph Research & Development Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| |
Collapse
|
24
|
Li J, Mao R, Kurada S, Wang J, Lin S, Chandra J, Rieder F. Pathogenesis of fibrostenosing Crohn's disease. Transl Res 2019; 209:39-54. [PMID: 30981697 DOI: 10.1016/j.trsl.2019.03.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Crohn's disease (CD) is a chronic inflammatory disease, which could affect any part of the gastrointestinal tract. A severe complication of CD is fibrosis-associated strictures, which can cause bowel obstruction. Unfortunately, there is no specific antifibrotic therapy available. More than 80% of the patients with CD will have to undergo at least 1 surgery in their life and recurrence of strictures after surgery is common. Investigations on the mechanism of fibrostenosing CD have revealed that fibrosis is mainly driven by expansion of mesenchymal cells including fibroblasts, myofibroblasts, and smooth muscle cells. Being exposed to a pro-fibrotic milieu, these cells increase the secretion of extracellular matrix, as well as crosslinking enzymes, which drive tissue stiffness and remodeling. Fibrogenesis can become independent of inflammation in later stages of disease, which offers unique therapeutic potential. Exciting new evidence suggests smooth muscle cell hyperplasia as a strong contributor to luminal narrowing in fibrostenotic CD. Approval of new drugs in other fibrotic diseases, such as idiopathic pulmonary fibrosis, as well as new targets associated with fibrosis found in CD, such as cadherins or specific integrins, shed light on the development of novel antifibrotic approaches in CD.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ren Mao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Satya Kurada
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
25
|
Treatments for Crohn's Disease-Associated Bowel Damage: A Systematic Review. Clin Gastroenterol Hepatol 2019; 17:847-856. [PMID: 30012430 DOI: 10.1016/j.cgh.2018.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Despite significant advances in the treatment of Crohn's disease (CD), most patients still develop stricturing or penetrating complications that require surgical resections. We performed a systematic review of mechanisms and potential treatments for tissue damage lesions in CD patients. METHODS We searched the PubMed, MBASE, and Cochrane databases from January 1960 to July 2017 for full-length articles on CD, fibrosis, damage lesions, mesenchymal stem cells, and/or treatment. We also searched published conference abstracts and performed manual searches of all reference lists of relevant articles. RESULTS Mechanisms of intestinal damage in patients with CD include fibroblast proliferation and migration, activation of stellate cells, recruitment of intestinal or extra-intestinal fibroblast, and cell trans-differentiation. An altered balance of metalloproteinases and tissue inhibitors of metalloproteinases might contribute to fistula formation. Treatment approaches that reduce excessive transforming growth factor beta (TGFB) activation might be effective in treating established intestinal damage. Stem cell therapies have been effective in tissue damage lesions in CD. Particularly, randomized controlled trials have shown local injections of mesenchymal stem cells to heal perianal fistulas. CONCLUSION In a systematic review of mechanisms and treatments of bowel wall damage in patients with CD, we found a need to test drugs that reduce TGFB and increase healing of transmural damage lesions and to pursue research on local injection of mesenchymal stem cells.
Collapse
|
26
|
Lim D, Kim W, Lee C, Bae H, Kim J. Macrophage Depletion Protects against Cigarette Smoke-Induced Inflammatory Response in the Mouse Colon and Lung. Front Physiol 2018; 9:47. [PMID: 29483875 PMCID: PMC5816061 DOI: 10.3389/fphys.2018.00047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Cigarette smoke (CS) is considered as a major risk factor for pulmonary and intestinal inflammation. CS leads to macrophage infiltration in the mucosae of the lung and colon, inducing the uncontrolled secretion of inflammatory mediators, and thus promoting inflammatory response. In this study, we investigated whether macrophage depletion modulates cigarette smoke (CS)-induced inflammatory response in both the lung and colon. The mice were exposed to CS for 30 min, after which they were rested in a fresh air environment for 30 min. The total duration of exposure to CS was 2 h per day for 4 weeks. Macrophage depletion state was made with the injection of clodronate containing liposome. Individual body weights were measured twice a week, and the mice were sacrificed on day 28. Hematoxylin and eosin (H&E) staining was performed in the lung and colon tissue to determine histological changes. Inflammatory mediators' synthesis was analyzed using ELISA and western blotting. Clodronate liposome treatment ameliorated pathological changes associated with the infiltration of immune cells in the lung and colon. Also, clodronate liposome injected mice showed significantly lower level of inflammatory mediators, including cytokines and chemokine and proteases. Our results indicated that macrophage depletion by clodronate liposome treatment attenuates CS-induced inflammatory response in both the lung and colon.
Collapse
Affiliation(s)
- Dahae Lim
- Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Woogyeong Kim
- Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Chanju Lee
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyunsu Bae
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jinju Kim
- Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
27
|
Macarak E, Rosenbloom J. The Pathogenesis of Intraabdominal Adhesions: Similarities and Differences to Luminal Fibrosis. FIBROSTENOTIC INFLAMMATORY BOWEL DISEASE 2018:319-346. [DOI: 10.1007/978-3-319-90578-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Kusaka S, Nishida A, Takahashi K, Bamba S, Yasui H, Kawahara M, Inatomi O, Sugimoto M, Andoh A. Expression of human cathelicidin peptide LL-37 in inflammatory bowel disease. Clin Exp Immunol 2017; 191:96-106. [PMID: 28872665 DOI: 10.1111/cei.13047] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 12/13/2022] Open
Abstract
Cathelicidin peptide LL-37 plays an important role in the early host response against invading pathogens via its broad-spectrum anti-microbial activity. In this study, we investigated LL-37 expression in the inflamed mucosa of inflammatory bowel disease (IBD) patients. Furthermore, the regulatory mechanism of LL-37 induction was investigated in human colonic subepithelial myofibroblasts (SEMFs). LL-37 mRNA expression and protein secretion were analysed using real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Intracellular signalling pathways were analysed using immunoblotting and specific small interference RNA (siRNA). The expression of LL-37 mRNA was increased significantly in the inflamed mucosa of ulcerative colitis and Crohn's disease. The Toll-like receptor (TLR)-3 ligand, polyinosinic-polycytidylic acid (poly(I:C), induced LL-37 mRNA expression and stimulated LL-37 secretion in colonic SEMFs. The transfection of siRNAs specific for intracellular signalling proteins [Toll/IL-1R domain-containing adaptor-inducing interferon (IFN) (TRIF), tumour necrosis factor receptor-associated factor (TRAF)6, transforming growth factor β-activated kinase (TAK)1] suppressed the poly(I:C)-induced LL-37 mRNA expression significantly. Poly(I:C)-induced phosphorylation of mitogen-activated protein kinases (MAPKs) and activated nuclear factor kappa B (NF-κB) and activating factor protein (AP)-1. siRNAs specific for NF-κB and c-Jun inhibited poly(I:C)-induced LL-37 mRNA expression. LL-37 suppressed lipopolysaccharide (LPS)-induced interleukin (IL)-6 and IL-8 expression significantly in colonic SEMFs. The expression of LL-37 was up-regulated in the inflamed mucosa of IBD patients. LL-37 was induced by TLR-3 stimulation and exhibited an anti-microbial effect via interaction with lipopolysaccharide (LPS).
Collapse
Affiliation(s)
- S Kusaka
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan.,Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - A Nishida
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - K Takahashi
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - S Bamba
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - H Yasui
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - M Kawahara
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - O Inatomi
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - M Sugimoto
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - A Andoh
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
29
|
Keshavarzian M, Meyer CA, Hayenga HN. Mechanobiological model of arterial growth and remodeling. Biomech Model Mechanobiol 2017; 17:87-101. [PMID: 28823079 DOI: 10.1007/s10237-017-0946-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 07/28/2017] [Indexed: 02/07/2023]
Abstract
A coupled agent-based model (ABM) and finite element analysis (FEA) computational framework is developed to study the interplay of bio-chemo-mechanical factors in blood vessels and their role in maintaining homeostasis. The agent-based model implements the power of REPAST Simphony libraries and adapts its environment for biological simulations. Coupling a continuum-level model (FEA) to a cellular-level model (ABM) has enabled this computational framework to capture the response of blood vessels to increased or decreased levels of growth factors, proteases and other signaling molecules (on the micro scale) as well as altered blood pressure. Performance of the model is assessed by simulating porcine left anterior descending artery under normotensive conditions and transient increases in blood pressure and by analyzing sensitivity of the model to variations in the rule parameters of the ABM. These simulations proved that the model is stable under normotensive conditions and can recover from transient increases in blood pressure. Sensitivity studies revealed that the model is most sensitive to variations in the concentration of growth factors that affect cellular proliferation and regulate extracellular matrix composition (mainly collagen).
Collapse
Affiliation(s)
- Maziyar Keshavarzian
- Department of Biomedical Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Clark A Meyer
- Department of Biomedical Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Heather N Hayenga
- Department of Biomedical Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
30
|
Curciarello R, Docena GH, MacDonald TT. The Role of Cytokines in the Fibrotic Responses in Crohn's Disease. Front Med (Lausanne) 2017; 4:126. [PMID: 28824915 PMCID: PMC5545939 DOI: 10.3389/fmed.2017.00126] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022] Open
Abstract
Crohn’s disease is an idiopathic disorder of the gut thought to be caused by a combination of environmental and genetic factors in susceptible individuals. It is characterized by chronic transmural inflammation of the terminal ileum and colon, with typical transmural lesions. Complications, including fibrosis, mean that between 40 and 70% of patients require surgery in the first 10 years after diagnosis. Presently, there is no evidence that the current therapies which dampen inflammation modulate or reverse intestinal fibrosis. In this review, we focus on cytokines that may lead to fibrosis and stenosis and the contribution of experimental models for understanding and treatment of gut fibrosis.
Collapse
Affiliation(s)
- Renata Curciarello
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Instituto de Estudios Inmunológicos y Fisiopatológicos -IIFP-CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo H Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos -IIFP-CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Thomas T MacDonald
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
31
|
Valatas V, Filidou E, Drygiannakis I, Kolios G. Stromal and immune cells in gut fibrosis: the myofibroblast and the scarface. Ann Gastroenterol 2017; 30:393-404. [PMID: 28655975 PMCID: PMC5479991 DOI: 10.20524/aog.2017.0146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/19/2017] [Indexed: 02/07/2023] Open
Abstract
Post-inflammatory scarring is the end-result of excessive extracellular matrix (ECM) accumulation and tissue architectural destruction. It represents a failure to effectively remodel ECM and achieve proper reinstitution and healing during chronic relapsing inflammatory processes. Scarring may affect the functionality of any organ, and in the case of inflammatory bowel disease (IBD)-associated fibrosis leads to stricture formation and often surgery to remove the affected bowel. The activated myofibroblast is the final effector cell that overproduces ECM under the influence of various mediators generated by an intense interplay of classic and non-classic immune cells. This review focuses on how proinflammatory mediators from various sources produced in different stages of intestinal inflammation can form profibrotic pathways that eventually lead to tissue scarring through sustained activation of myofibroblasts.
Collapse
Affiliation(s)
- Vassilis Valatas
- Laboratory of Gastroenterology, Faculty of Medicine, University of Crete, Heraklion (Vassilis Valatas, Ioannis Drygiannakis)
| | - Eirini Filidou
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis (Eirini Filidou, George Kolios), Greece
| | - Ioannis Drygiannakis
- Laboratory of Gastroenterology, Faculty of Medicine, University of Crete, Heraklion (Vassilis Valatas, Ioannis Drygiannakis)
| | - George Kolios
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis (Eirini Filidou, George Kolios), Greece
| |
Collapse
|
32
|
Koliaraki V, Pallangyo CK, Greten FR, Kollias G. Mesenchymal Cells in Colon Cancer. Gastroenterology 2017; 152:964-979. [PMID: 28111227 DOI: 10.1053/j.gastro.2016.11.049] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023]
Abstract
Mesenchymal cells in the intestine comprise a variety of cell types of diverse origins, functions, and molecular markers. They provide mechanical and structural support and have important functions during intestinal organogenesis, morphogenesis, and homeostasis. Recent studies of the human transcriptome have revealed their importance in the development of colorectal cancer, and studies from animal models have provided evidence for their roles in the pathogenesis of colitis-associated cancer and sporadic colorectal cancer. Mesenchymal cells in tumors, called cancer-associated fibroblasts, arise via activation of resident mesenchymal cell populations and the recruitment of bone marrow-derived mesenchymal stem cells and fibrocytes. Cancer-associated fibroblasts have a variety of activities that promote colon tumor development and progression; these include regulation of intestinal inflammation, epithelial proliferation, stem cell maintenance, angiogenesis, extracellular matrix remodeling, and metastasis. We review the intestinal mesenchymal cell-specific pathways that regulate these processes, with a focus on their roles in mediating interactions between inflammation and carcinogenesis. We also discuss how increasing our understanding of intestinal mesenchymal cell biology and function could lead to new strategies to identify and treat colitis-associated cancers.
Collapse
Affiliation(s)
| | - Charles K Pallangyo
- Muhimbili University of Health and Allied Sciences, School of Medicine, Dar es Salaam, Tanzania
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany; German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.
| | - George Kollias
- Biomedical Sciences Research Centre "Alexander Fleming," Vari, Greece; Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
33
|
Sailaja BS, He XC, Li L. The regulatory niche of intestinal stem cells. J Physiol 2016; 594:4827-36. [PMID: 27060879 DOI: 10.1113/jp271931] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/29/2016] [Indexed: 12/14/2022] Open
Abstract
The niche constitutes a unique category of cells that support the microenvironment for the maintenance and self-renewal of stem cells. Intestinal stem cells reside at the base of the crypt, which contains adjacent epithelial cells, stromal cells and smooth muscle cells, and soluble and cell-associated growth and differentiation factors. We summarize here recent advances in our understanding of the crucial role of the niche in regulating stem cells. The stem cell niche maintains a balance among quiescence, proliferation and regeneration of intestinal stem cells after injury. Mesenchymal cells, Paneth cells, immune cells, endothelial cells and neural cells are important regulatory components that secrete niche ligands, growth factors and cytokines. Intestinal homeostasis is regulated by niche signalling pathways, specifically Wnt, bone morphogenetic protein, Notch and epidermal growth factor. These insights into the regulatory stem cell niche during homeostasis and post-injury regeneration offer the potential to accelerate development of therapies for intestine-related disorders.
Collapse
Affiliation(s)
- Badi Sri Sailaja
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66101, USA
| |
Collapse
|
34
|
Roulis M, Flavell RA. Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation 2016; 92:116-131. [PMID: 27165847 DOI: 10.1016/j.diff.2016.05.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/19/2016] [Accepted: 05/03/2016] [Indexed: 01/14/2023]
Abstract
In this Review we summarize our current understanding of the biology of mesenchymal cells of the intestinal lamina propria focusing mainly on fibroblasts and myofibroblasts. The topics covered include 1) the embryonic origin of mesenchymal cells of the intestinal lamina propria and their heterogeneity in adults, 2) the role of the mesenchyme in intestinal development, 3) the physiological function of fibroblasts and myofibroblasts in adults as part of the intestinal stem cell niche and the mucosal immune system and 4) the involvement of fibroblasts and myofibroblasts in epithelial homeostasis upon injury and in the pathogenesis of diseases such as Inflammatory Bowel Diseases, fibrosis and cancer. We emphasize studies addressing the function of intestinal mesenchymal cells in vivo, and also discuss major open questions and current challenges in this field.
Collapse
Affiliation(s)
- Manolis Roulis
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
35
|
Monteleone I, Zorzi F, Marafini I, Di Fusco D, Dinallo V, Caruso R, Izzo R, Franzè E, Colantoni A, Pallone F, Monteleone G. Aryl hydrocarbon receptor-driven signals inhibit collagen synthesis in the gut. Eur J Immunol 2016; 46:1047-57. [PMID: 26786786 DOI: 10.1002/eji.201445228] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/10/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Fibrostrictures (FS) are a major complication of Crohn's disease (CD). Pathogenesis of FS is not fully understood, but activation of fibroblasts and excessive collagen deposition are crucial in the development of FS. Here, we investigated the role of aryl hydrocarbon receptor (AhR) in intestinal fibrosis. AhR RNA and protein expression were evaluated in intestinal fibroblasts of CD patients and controls. CD fibroblasts were stimulated with TGF-β1 or TNF-α in the presence or absence of the AhR activator Ficz, an AhR antagonist CH223191, or a specific AhR-silencing RNA. In CD fibroblasts, TGF-β1 and TNF-α increased Col1A1, Col3A1 and α-SMA transcripts and collagen secretion and this effect was reduced by Ficz and upregulated by CH22319. TGF-β1 or TNF-α induced activation of p38 and ERK1/2 MAP kinases was decreased by Ficz and increased by CH223191. The inhibitory effect of Ficz on Map kinase activation and collagen induction was abolished by AhR silencing. To assess the role of AhR in vivo, mice with trinitrobenzene-sulfonic-acid induced colonic fibrosis were given Ficz or CH223191. Mice given either Ficz or CH223191 produced less or more collagen respectively as compared with control mice. Our results indicate that AhR is a negative regulator of profibrotic signals in the gut.
Collapse
Affiliation(s)
- Ivan Monteleone
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Francesca Zorzi
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Irene Marafini
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Davide Di Fusco
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Vincenzo Dinallo
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Roberta Caruso
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Roberta Izzo
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Eleonora Franzè
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Alfredo Colantoni
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Francesco Pallone
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | | |
Collapse
|
36
|
Interleukin (IL)-1β Is a Strong Inducer of IL-36γ Expression in Human Colonic Myofibroblasts. PLoS One 2015; 10:e0138423. [PMID: 26562662 PMCID: PMC4643060 DOI: 10.1371/journal.pone.0138423] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/30/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUNDS AND AIMS Interleukin (IL)-36 cytokines are members of the IL-1 cytokine family. In this study, we investigated the expression of IL-36γ in human colonic myofibroblasts to explore the molecular mechanisms underlying IL-36γ induction. MATERIALS AND METHODS IL-36 mRNA was analyzed by real-time PCR method. Secretion of IL-36γ protein was evaluated by Western blot and ELISA analyses. Molecular mechanism of IL-36γ induction was evaluated by siRNA analyses and immunofluorescence experiments. RESULTS IL-36γ mRNA expression was scarcely detected in the cells without stimulation. IL-1β induced a marked increase of IL-36γ mRNA expression. TNF-α markedly enhanced IL-1β-induced IL-36γ mRNA expression. These responses were confirmed at the protein levels. The inhibitors for ERK1/2 (PD98059 and U0216) and a p38 MAPK (SB203580) significantly reduced the IL-1β-induced IL-36γ mRNA expression. In addition, the siRNAs specific for NF-κB p65 and AP-1 (c-Jun) significantly reduced the expression of IL-1β-induced IL-36γ mRNA. CONCLUSIONS Colonic myofibroblasts are cellular source of IL-36γ in the intestine. IL-36γ expression was induced by the combination of IL-1β and TNF-α via activation of MAPKs and transcription factors, NF-κB and AP-1.
Collapse
|
37
|
Lee YS, Yang H, Yang JY, Kim Y, Lee SH, Kim JH, Jang YJ, Vallance BA, Kweon MN. Interleukin-1 (IL-1) signaling in intestinal stromal cells controls KC/ CXCL1 secretion, which correlates with recruitment of IL-22- secreting neutrophils at early stages of Citrobacter rodentium infection. Infect Immun 2015; 83:3257-67. [PMID: 26034212 PMCID: PMC4496604 DOI: 10.1128/iai.00670-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 01/13/2023] Open
Abstract
Attaching and effacing pathogens, including enterohemorrhagic Escherichia coli in humans and Citrobacter rodentium in mice, raise serious public health concerns. Here we demonstrate that interleukin-1 receptor (IL-1R) signaling is indispensable for protection against C. rodentium infection in mice. Four days after infection with C. rodentium, there were significantly fewer neutrophils (CD11b+ Ly6C+ Ly6G+) in the colons of IL-1R−/− mice than in wild-type mice. Levels of mRNA and protein of KC/CXCL1 were also significantly reduced in colon homogenates of infected IL-1R−/− mice relative to wild-type mice. Of note, infiltrated CD11b+ Ly6C+ Ly6G+ neutrophils were the main source of IL-22 secretion after C. rodentium infection. Interestingly, intestinal stromal cells isolated from IL-1R−/− mice secreted lower levels of KC/CXCL1 than stromal cells from wild-type mice during C. rodentium infection. Similar effects were found when mouse intestinal stromal cells and human nasal polyp stromal cells were treated with IL-1R antagonists (i.e., anakinra) in vitro. These results suggest that IL-1 signaling plays a pivotal role in activating mucosal stromal cells to secrete KC/CXCL1, which is essential for infiltration of IL-22-secreting neutrophils upon bacterial infection.
Collapse
Affiliation(s)
- Yong-Soo Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Hyungjun Yang
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Jin-Young Yang
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Yeji Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Su-Hyun Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Ji Heui Kim
- Department of Otolaryngology, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Yong Ju Jang
- Department of Otolaryngology, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Bruce A. Vallance
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
38
|
Williams TM, Leeth RA, Rothschild DE, McDaniel DK, Coutermarsh-Ott SL, Simmons AE, Kable KH, Heid B, Allen IC. Caspase-11 attenuates gastrointestinal inflammation and experimental colitis pathogenesis. Am J Physiol Gastrointest Liver Physiol 2015; 308:G139-50. [PMID: 25414099 PMCID: PMC4297855 DOI: 10.1152/ajpgi.00234.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/11/2014] [Indexed: 02/08/2023]
Abstract
Nucleotide-binding domain and leucine-rich repeat containing protein inflammasome formation plays an essential role in modulating immune system homeostasis in the gut. Recently, a caspase-11 noncanonical inflammasome has been characterized and appears to modulate many biological functions that were previously considered to be solely dependent on caspase-1 and the canonical inflammasome. To better elucidate the function of this noncanonical inflammasome during inflammatory bowel disease, experimental colitis was induced in wild-type and Casp11(-/-) mice utilizing dextran sulfate sodium (DSS). Here, we report that caspase-11 attenuates acute experimental colitis pathogenesis. Casp11(-/-) mice showed significantly increased morbidity and colon inflammation following DSS exposure. Subsequent cytokine analysis revealed that IL-1β and IL-18 levels in the colon were significantly reduced in the Casp11(-/-) mice compared with the wild-type animals. Additional mechanistic studies utilizing IL-1β and IL-18 reconstitution revealed that Casp11(-/-) hypersensitivity was associated with the loss of both of these cytokines. Bone marrow reconstitution experiments further revealed that caspase-11 gene expression and function in both hematopoietic- and nonhematopoietic-derived cells contribute to disease attenuation. Interestingly, unlike caspase-1, caspase-11 does not appear to influence relapsing remitting disease progression or the development of colitis-associated tumorigenesis. Together, these data identify caspase-11 as a critical factor protecting the host during acute DSS-induced colonic injury and inflammation but not during chronic inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Tere M Williams
- Virginia Tech, Virginia Maryland Regional College of Veterinary Medicine, Department of Biomedical Sciences and Pathobiology, Blacksburg, Virginia
| | - Rachel A Leeth
- Virginia Tech, Virginia Maryland Regional College of Veterinary Medicine, Department of Biomedical Sciences and Pathobiology, Blacksburg, Virginia
| | - Daniel E Rothschild
- Virginia Tech, Virginia Maryland Regional College of Veterinary Medicine, Department of Biomedical Sciences and Pathobiology, Blacksburg, Virginia
| | - Dylan K McDaniel
- Virginia Tech, Virginia Maryland Regional College of Veterinary Medicine, Department of Biomedical Sciences and Pathobiology, Blacksburg, Virginia
| | - Sheryl L Coutermarsh-Ott
- Virginia Tech, Virginia Maryland Regional College of Veterinary Medicine, Department of Biomedical Sciences and Pathobiology, Blacksburg, Virginia
| | - Alysha E Simmons
- Virginia Tech, Virginia Maryland Regional College of Veterinary Medicine, Department of Biomedical Sciences and Pathobiology, Blacksburg, Virginia
| | - Kye H Kable
- Virginia Tech, Virginia Maryland Regional College of Veterinary Medicine, Department of Biomedical Sciences and Pathobiology, Blacksburg, Virginia
| | - Bettina Heid
- Virginia Tech, Virginia Maryland Regional College of Veterinary Medicine, Department of Biomedical Sciences and Pathobiology, Blacksburg, Virginia
| | - Irving C Allen
- Virginia Tech, Virginia Maryland Regional College of Veterinary Medicine, Department of Biomedical Sciences and Pathobiology, Blacksburg, Virginia
| |
Collapse
|
39
|
Zhang C, Nong Y, Tong S, Yao Q, Wen L, Zhang Z, Wei L, Cheng J, Feng Y, Song Z. Triptolide improves early survival of mesenchymal stem cells transplanted into rat myocardium. Cardiology 2014; 128:73-85. [PMID: 24557329 DOI: 10.1159/000356551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/27/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate whether triptolide can prolong the survival of rat mesenchymal stem cells (MSCs) transfected with the mouse hyperpolarization-activated cyclic nucleotide-gated channel 4 (mHCN4) gene in the myocardium. METHODS Grafted cell survival was determined using a sex-mismatched cell transplantation model and analysis of Y chromosome-specific Sry gene expression from hearts harvested at different time points after cell transplantation. ELISA and RT-PCR were used to measure protein and mRNA levels, respectively, of nuclear factor (NF)-κB, IL-1β, IL-6 and TNF-α. RESULTS Donor cell numbers decreased over time. Pretreatment with triptolide improved graft survival both 24 (29.3 ± 0.9%) and 72 h (17.5 ± 1.2%) after transplantation of MSCs and resulted in a 2.5-fold increase in the total cell number 72 h after cell transplantation. The mRNA expression and protein content of NF-κB, IL-1β, IL-6 and TNF-α were significantly reduced in the triptolide-treated group compared with the control groups. In addition, triptolide downregulated Bax but upregulated Bcl-2 in the injected region. CONCLUSIONS Transient treatment with triptolide may significantly improve the early survival of MSCs in vivo. The mechanism underlying this effect involves attenuating the inflammatory response via inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Changhai Zhang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Guo L, Ning W, Tan Z, Gong Z, Li X. Mechanism of matrix metalloproteinase axis-induced neointimal growth. J Mol Cell Cardiol 2014; 66:116-25. [DOI: 10.1016/j.yjmcc.2013.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/24/2013] [Accepted: 11/18/2013] [Indexed: 01/11/2023]
|
41
|
Takahashi K, Imaeda H, Fujimoto T, Ban H, Bamba S, Tsujikawa T, Sasaki M, Fujiyama Y, Andoh A. Regulation of eotaxin-3/CC chemokine ligand 26 expression by T helper type 2 cytokines in human colonic myofibroblasts. Clin Exp Immunol 2013; 173:323-31. [PMID: 23607908 DOI: 10.1111/cei.12117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2013] [Indexed: 12/12/2022] Open
Abstract
Eotaxins induce the trafficking of eosinophils to the sites of inflammation via CC chemokine receptor 3 (CCR3). In this study, we investigated eotaxin-3/CC chemokine ligand 26 (CCL26) expression in the inflamed mucosa of patients with inflammatory bowel disease (IBD), and characterized the molecular mechanisms responsible for eotaxin-3 expression in human colonic myofibroblasts. Eotaxin-3 mRNA and protein expression was evaluated by real time-polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Eotaxin-3 mRNA expression was elevated significantly in the active lesions of ulcerative colitis (UC) patients. Significant elevations were also observed in the active lesions of Crohn's disease (CD) patients, but this was significantly lower than that detected in the active UC lesions. There were no significant increases in the inactive lesions of UC or CD patients. Colonic myofibroblasts were identified as a major source of eotaxin-3 in the colonic mucosa, and interleukin (IL)-4 and IL-13 enhanced eotaxin-3 mRNA and protein expression significantly in these cells. There was a significant positive correlation between mucosal eotaxin-3 and IL-4 mRNA expression in the active lesions of IBD patients. The IL-4- and IL-13-induced eotaxin-3 mRNA expression was regulated by the signal transducer and activator of transcription-6 (STAT-6) and suppressor of cytokine signalling (SOCS)1-mediated pathways. Interferon (IFN)-γ acts as a negative regulator on the IL-4- and IL-13-induced eotaxin-3 expression via STAT-1 activation. Eotaxin-3 expression was elevated specifically in the active lesions of IBD, in particular UC. Eotaxin-3 derived from colonic myofibroblasts may play an important role in the pathophysiology of UC.
Collapse
Affiliation(s)
- K Takahashi
- Division of Mucosal Immunology, Graduate School, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Biancheri P, Pender SL, Ammoscato F, Giuffrida P, Sampietro G, Ardizzone S, Ghanbari A, Curciarello R, Pasini A, Monteleone G, Corazza GR, Macdonald TT, Di Sabatino A. The role of interleukin 17 in Crohn's disease-associated intestinal fibrosis. FIBROGENESIS & TISSUE REPAIR 2013; 6:13. [PMID: 23834907 PMCID: PMC3733737 DOI: 10.1186/1755-1536-6-13] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 06/13/2013] [Indexed: 02/07/2023]
Abstract
Background Interleukin (IL)-17A and IL-17E (also known as IL-25) have been implicated in fibrosis in various tissues. However, the role of these cytokines in the development of intestinal strictures in Crohn’s disease (CD) has not been explored. We investigated the levels of IL-17A and IL-17E and their receptors in CD strictured and non-strictured gut, and the effects of IL-17A and IL-17E on CD myofibroblasts. Results IL-17A was significantly overexpressed in strictured compared with non-strictured CD tissues, whereas no significant difference was found in the expression of IL-17E or IL-17A and IL-17E receptors (IL-17RC and IL-17RB, respectively) in strictured and non-strictured CD areas. Strictured CD explants released significantly higher amounts of IL-17A than non-strictured explants, whereas no difference was found as for IL-17E, IL-6, or tumor necrosis factor-α production. IL-17A, but not IL-17E, significantly inhibited myofibroblast migration, and also significantly upregulated matrix metalloproteinase (MMP)-3, MMP-12, tissue inhibitor of metalloproteinase-1 and collagen production by myofibroblasts from strictured CD tissues. Conclusions Our results suggest that IL-17A, but not IL-17E, is pro-fibrotic in CD. Further studies are needed to clarify whether the therapeutic blockade of IL-17A through the anti-IL-17A monoclonal antibody secukinumab is able to counteract the fibrogenic process in CD.
Collapse
Affiliation(s)
- Paolo Biancheri
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hsieh MH, Chou PC, Chou CL, Ho SC, Joa WC, Chen LF, Sheng TF, Lin HC, Wang TY, Chang PJ, Wang CH, Kuo HP. Matrix metalloproteinase-1 polymorphism (-1607G) and disease severity in non-cystic fibrosis bronchiectasis in Taiwan. PLoS One 2013; 8:e66265. [PMID: 23776649 PMCID: PMC3679085 DOI: 10.1371/journal.pone.0066265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/02/2013] [Indexed: 01/02/2023] Open
Abstract
Objectives Bronchiectasis is characterized by an irreversible dilatation of bronchi and is associated with lung fibrosis. MMP-1 polymorphism may alter its transcriptional activity, and differentially modulate bronchial destruction and lung fibrosis. Design To investigate the association of MMP-1 polymorphisms with disease severity in non-cystic fibrosis (CF) bronchiectasis patients, 51 normal subjects and 113 patients with bronchiectasis were studied. The associations between MMP-1 polymorphisms, lung function, and disease severity evaluated by high resolution computed tomography (HRCT) were analyzed. Results The frequency of MMP-1(-1607G) allele was significantly higher in patients with bronchiectasis than normal subjects (70.8% vs 45.1%, p<0.01). Forced expiratory volume in 1 second (FEV1) was decreased in bronchiectasis patients with 1G/1G (1.2±0.1 L, n = 14) and 1G/2G (1.3±0.1 L, n = 66) genotypes compared to the 2G/2G genotype (1.7±0.1 L, n = 33, p<0.01). Six minute walking distance was decreased in bronchiectasis patients with 1G/1G and 1G/2G compared to that of 2G/2G genotype. Disease severity evaluated by HRCT score significantly increased in bronchiectasis patients with 1G/1G and 1G/2G genotypes compared to that of 2G/2G genotype. Bronchiectasis patients with at least one MMP-1 (-1607G) allele showed increased tendency for hospitalization. Serum levels of pro-MMP-1, active MMP-1 and TGF-β1 were significantly increased in patients with bronchiectasis with 1G/1G and 1G/2G genotype compared with 2G/2G genotype or normal subjects. Under IL-1β stimulation, peripheral blood monocytes from subjects with 1G/2G or 1G/1G genotype secreted higher levels of TGF-β1compared to subjects with 2G/2G genotype. Conclusion This is the first report to address the influence of MMP-1 polymorphisms on lung function and airway destruction in non-CF bronchiectasis patients. Bronchiectasis patients with MMP-1(-1607G) polymorphism may be more vulnerable to permanent lung fibrosis or airway destruction due to the enhanced MMP-1 and TGF-β1 activity. Upregulated MMP-1 activity results in proteolytic destruction of matrix, and leads to subsequent fibrosis.
Collapse
Affiliation(s)
- Meng-Heng Hsieh
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Taipei, Taiwan
| | - Pai-Chien Chou
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Taipei, Taiwan
| | - Chun-Liang Chou
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Taipei, Taiwan
| | - Shu-Chuan Ho
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Taipei, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Ching Joa
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Taipei, Taiwan
| | - Li-Fei Chen
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Taipei, Taiwan
| | - Te-Fang Sheng
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Taipei, Taiwan
| | - Horng-Chyuan Lin
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Taipei, Taiwan
| | - Tsai-Yu Wang
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Taipei, Taiwan
| | - Po-Jui Chang
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Taipei, Taiwan
| | - Chun-Hua Wang
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Taipei, Taiwan
- * E-mail:
| | - Han-Pin Kuo
- Department of Thoracic Medicine, Chang Gung Medical Foundation, Taipei, Taiwan
| |
Collapse
|
44
|
Drygiannakis I, Valatas V, Sfakianaki O, Bourikas L, Manousou P, Kambas K, Ritis K, Kolios G, Kouroumalis E. Proinflammatory cytokines induce crosstalk between colonic epithelial cells and subepithelial myofibroblasts: implication in intestinal fibrosis. J Crohns Colitis 2013; 7:286-300. [PMID: 22578910 DOI: 10.1016/j.crohns.2012.04.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Colonic epithelial cells and adjacent subepithelial myofibroblasts are important counterparts in the pathogenesis of intestinal inflammation and fibrosis. We investigated the possible crosstalk between them, whilst focusing on the mucosal inflammation pathways that potentially trigger intestinal fibrosis. METHODS We studied the effects of proinflammatory cytokines (IL-1α, TNF-α, IFN-γ) on human colonic epithelial cell lines and the effects of epithelial cell-conditioned media on primary human colonic subepithelial myofibroblasts isolated from normal controls or patients with inflammatory Crohn's disease along with the corresponding 18CO cell line. Readouts included production of TGF-β and TIMP-1, total collagen synthesis, matrix metalloproteinases MMP-2 and MMP-9 and myofibroblast migration/mobility. RESULTS Proinflammatory cytokines upregulated TGF-β and TIMP-1 in colonic epithelial cells. Conditioned medium from these epithelial cell cultures induced production of MMP-9 and collagen and inhibited the migration/mobility of subepithelial myofibroblasts. MMP-9 production depended on endothelin receptor A signalling on responding myofibroblasts. Collagen up-regulation was independent of TGF-β, CTGF, TF and endothelin. Subepithelial myofibroblasts isolated from Crohn's disease patients had similar responses to those isolated from normal controls, with the exception of higher basal collagen production. CONCLUSIONS Our study indicates that colonic epithelial cells may respond to an inflammatory milieu by inducing myofibroblast functions similar to those observed during intestinal fibrosis.
Collapse
|
45
|
Antonelli A, Fallahi P, Ferrari SM, Corrado A, Sebastiani M, Giuggioli D, Miccoli M, Zignego AL, Sansonno D, Marchi S, Ferri C. Parallel increase of circulating CXCL11 and CXCL10 in mixed cryoglobulinemia, while the proinflammatory cytokine IL-6 is associated with high serum Th2 chemokine CCL2. Clin Rheumatol 2013; 32:1147-54. [DOI: 10.1007/s10067-013-2246-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/29/2013] [Accepted: 03/20/2013] [Indexed: 12/15/2022]
|
46
|
Abstract
A growing body of evidence suggests that non-hematopoietic stromal cells of the intestine have multiple roles in immune responses and inflammation at this mucosal site. Despite this, many still consider gut stromal cells as passive structural entities, with past research focused heavily on their roles in fibrosis, tumor progression, and wound healing, rather than their contributions to immune function. In this review, we discuss our current knowledge of stromal cells in intestinal immunity, highlighting the many immunological axes in which stromal cells have a functional role. We also consider emerging data that broaden the potential scope of their contribution to immunity in the gut and argue that these so-called "non-immune" cells are reclassified in light of their diverse contributions to intestinal innate immunity and the maintenance of mucosal homeostasis.
Collapse
|
47
|
Role of N-acetylcysteine and GSH redox system on total and active MMP-2 in intestinal myofibroblasts of Crohn's disease patients. Int J Colorectal Dis 2013; 28:915-24. [PMID: 23271497 PMCID: PMC3712135 DOI: 10.1007/s00384-012-1632-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2012] [Indexed: 02/04/2023]
Abstract
PURPOSE Intestinal subepithelial myofibroblasts (ISEMFs)(1) are the predominant source of matrix metalloproteinase-2 (MMP-2) in gut, and a decrease in glutathione/oxidized glutathione (GSH/GSSG) ratio, intracellular redox state index, occurs in the ISEMFs of patients with Crohn's disease (CD). The aim of this study is to demonstrate a relationship between MMP-2 secretion and activation and changes of GSH/GSSG ratio in ISEMFs stimulated or not with tumor necrosis factor alpha (TNFα). METHODS ISEMFs were isolated from ill and healthy colon mucosa of patients with active CD. Buthionine sulfoximine, GSH synthesis inhibitor, and N-acetylcysteine (NAC), precursor of GSH synthesis, were used to modulate GSH/GSSG ratio. GSH and GSSG were measured by HPLC and MMP-2 by ELISA Kit. RESULTS In cells, stimulated or not with TNFα, a significant increase in MMP-2 secretion and activation, related to increased oxidative stress, due to low GSH/GSSG ratio, was detected. NAC treatment, increasing this ratio, reduced MMP-2 secretion and exhibited a direct effect on the secreted MMP-2 activity. In NAC-treated and TNFα-stimulated ISEMFs of CD patients' MMP-2 activity were restored to physiological value. The involvement of c-Jun N-terminal kinase pathway on redox regulation of MMP-2 secretion has been demonstrated. CONCLUSION For the first time, in CD patient ISEMFs, a redox regulation of MMP-2 secretion and activation related to GSH/GSSG ratio and inflammatory state have been demonstrated. This study suggests that compounds able to maintain GSH/GSSG ratio to physiological values can be useful to restore normal MMP-2 levels reducing in CD patient intestine the dysfunction of epithelial barrier.
Collapse
|
48
|
Giménez-Bastida JA, Larrosa M, González-Sarrías A, Tomás-Barberán F, Espín JC, García-Conesa MT. Intestinal ellagitannin metabolites ameliorate cytokine-induced inflammation and associated molecular markers in human colon fibroblasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8866-8876. [PMID: 22463485 DOI: 10.1021/jf300290f] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Pomegranate ellagitannins (ETs) are transformed in the gut to ellagic acid (EA) and its microbiota metabolites, urolithin A (Uro-A) and urolithin B (Uro-B). These compounds exert anti-inflammatory effects in vitro and in vivo. The aim of this study was to investigate the effects of Uro-A, Uro-B, and EA on colon fibroblasts, cells that play a key role in intestinal inflammation. CCD18-Co colon fibroblasts were exposed to a mixture of Uro-A, Uro-B, and EA, at concentrations comparable to those found in the colon (40 μM Uro-A, 5 μM Uro-B, 1 μM EA), both in the presence or in the absence of IL-1β (1 ng/mL) or TNF-α (50 ng/mL), and the effects on fibroblast migration and monocyte adhesion were determined. The levels of several growth factors and adhesion cytokines were also measured. The mixture of metabolites significantly inhibited colon fibroblast migration (∼70%) and monocyte adhesion to fibroblasts (∼50%). These effects were concomitant with a significant down-regulation of the levels of PGE(2), PAI-1, and IL-8, as well as other key regulators of cell migration and adhesion. Of the three metabolites tested, Uro-A exhibited the most significant anti-inflammatory effects. The results show that a combination of the ET metabolites found in colon, urolithins and EA, at concentrations achievable in the intestine after the consumption of pomegranate, was able to moderately improve the inflammatory response of colon fibroblasts and suggest that consumption of ET-containing foods has potential beneficial effects on gut inflammatory diseases.
Collapse
Affiliation(s)
- Juan A Giménez-Bastida
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Zahedmanesh H, Van Oosterwyck H, Lally C. A multi-scale mechanobiological model of in-stent restenosis: deciphering the role of matrix metalloproteinase and extracellular matrix changes. Comput Methods Biomech Biomed Engin 2012; 17:813-28. [DOI: 10.1080/10255842.2012.716830] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Aomatsu T, Imaeda H, Takahashi K, Fujimoto T, Kasumi E, Yoden A, Tamai H, Fujiyama Y, Andoh A. Tacrolimus (FK506) suppresses TNF-α-induced CCL2 (MCP-1) and CXCL10 (IP-10) expression via the inhibition of p38 MAP kinase activation in human colonic myofibroblasts. Int J Mol Med 2012; 30:1152-8. [PMID: 22895606 DOI: 10.3892/ijmm.2012.1094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/09/2012] [Indexed: 11/06/2022] Open
Abstract
In order to investigate the molecular mechanisms underlying the immunosuppressive effects of tacrolimus (FK506) on intestinal inflammation, we examined whether FK506 effects cytokine/chemokine secretion in human colonic myofibroblasts. Human colonic myofibroblasts were isolated from normal human colonic tissue. The mRNA and protein expression for human CCL2 and CXCL10 were analyzed by real-time PCR and ELISA, respectively. p38 MAP kinase activation was evaluated by western blotting. Tacrolimus (1 µM) suppressed tumor necrosis factor (TNF)-α-induced CCL2 and CXCL10 mRNA expression, but did not modulate TNF-α-induced interleukin (IL)-6 or CXCL8 mRNA expression. Dose-dependent, inhibitory effects of tacrolimus on CCL2 and CXCL10 expression were observed at the mRNA and protein levels. Significant inhibitory effects of tacrolimus were observed at concentrations as low as 0.5 µM for CCL2 and 0.1 µM for CXCL10, respectively. TNF-α-induced CCL2 and CXCL10 expression depended on p38 MAP kinase activation, and tacrolimus strongly inhibited the TNF-α-induced phosphorylation of p38 MAP kinase. Tacrolimus did not affect interferon (IFN)-γ-induced signaling transducer and activator of transcription (STAT)-1 phosphorylation, nor did it modulate CXCL10 mRNA and protein expression. In conclusion, tacrolimus suppressed CCL2 and CXCL10 expression in human colonic myofibroblasts. These inhibitory effects of tacrolimus may play key roles in the therapeutic effects of colonic inflammation in inflammatory bowel disease (IBD) patients.
Collapse
Affiliation(s)
- Tomoki Aomatsu
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu 520-2192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|