1
|
Pimple P, Shah J, Singh P. Emerging Phytochemical Formulations for Management of Rheumatoid Arthritis: A Review. Curr Drug Deliv 2025; 22:15-40. [PMID: 38299275 DOI: 10.2174/0115672018270434240105110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/02/2023] [Accepted: 12/17/2023] [Indexed: 02/02/2024]
Abstract
Rheumatoid arthritis (RA) is a T-cell-mediated chronic inflammatory disorder affecting 0.5-1% of the global population. The disease with unknown etiology causes slow destruction of joints, advancing to significant deterioration of an individual's quality of life. The present treatment strategy comprises the use of disease-modifying anti-rheumatic drugs (DMARDs) coupled with or without nonsteroidal anti-inflammatory drugs or glucocorticoids. Additionally, involves co-therapy of injectable biological DMARDs in case of persistent or recurrent arthritis. The availability of biological DMARDs and the implementation of the treat-to-target approach have significantly improved the outcomes for patients suffering from RA. Nevertheless, RA requires continuous attention due to inadequate response of patients, development of tolerance and severe side effects associated with long-term use of available treatment regimens. An estimated 60-90% of patients use alternative methods of treatment, such as herbal therapies, for the management of RA symptoms. Over the past few decades, researchers have exploring natural phytochemicals to alleviate RA and associated symptoms. Enormous plant-origin phytochemicals such as alkaloids, flavonoids, steroids, terpenoids and polyphenols have shown anti-inflammatory and immunomodulatory activity against RA. However, phytochemicals have certain limitations, such as high molecular weight, poor water solubility, poor permeability, poor stability and extensive first-pass metabolism, limiting absorption and bioavailability. The use of nanotechnology has aided to extensively improve the pharmacokinetic profile and stability of encapsulated drugs. The current review provides detailed information on the therapeutic potential of phytochemicals. Furthermore, the review focuses on developed phytochemical formulations for RA, with emphasis on clinical trials, regulatory aspects, present challenges, and future prospects.
Collapse
Affiliation(s)
- Prachi Pimple
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| | - Jenny Shah
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| | - Prabha Singh
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| |
Collapse
|
2
|
Steenekamp EM, Liebenberg W, Lemmer HJR, Gerber M. Formulation and Ex Vivo Evaluation of Ivermectin Within Different Nano-Drug Delivery Vehicles for Transdermal Drug Delivery. Pharmaceutics 2024; 16:1466. [PMID: 39598589 PMCID: PMC11597838 DOI: 10.3390/pharmaceutics16111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Ivermectin gained widespread attention as the "miracle drug" during the coronavirus disease 2019 (COVID-19) pandemic. Its inclusion in the 21st World Health Organization (WHO) List of Essential Medicines is attributed to its targeted anti-helminthic response, high efficacy, cost-effectiveness and favorable safety profile. Since the late 2000s, this bio-inspired active pharmaceutical ingredient (API) gained renewed interest for its diverse therapeutic capabilities. However, producing ivermectin formulations does remain challenging due to its poor water solubility, resulting in low bioavailability after oral administration. Therefore, the transdermal drug delivery of ivermectin was considered to overcome these challenges, which are observed after oral administration. Methods: Ivermectin was incorporated in a nano-emulsion, nano-emulgel and a colloidal suspension as ivermectin-loaded nanoparticles. The nano-drug delivery vehicles were optimized, characterized and evaluated through in vitro membrane release studies, ex vivo skin diffusion studies and tape-stripping to determine whether ivermectin was successfully released from its vehicle and delivered transdermally and/or topically throughout the skin. This study concluded with cytotoxicity tests using the methyl thiazolyl tetrazolium (MTT) and neutral red (NR) assays on both human immortalized epidermal keratinocytes (HaCaT) and human immortalized dermal fibroblasts (BJ-5ta). Results: Ivermectin was successfully released from each vehicle, delivered transdermally and topically throughout the skin and demonstrated little to no cytotoxicity at concentrations that diffused through the skin. Conclusions: The type of nano-drug delivery vehicle used to incorporate ivermectin influences its delivery both topically and transdermally, highlighting the dynamic equilibrium between the vehicle, the API and the skin.
Collapse
Affiliation(s)
| | | | | | - Minja Gerber
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2531, South Africa; (E.M.S.); (W.L.); (H.J.R.L.)
| |
Collapse
|
3
|
Brito S, Baek M, Bin BH. Skin Structure, Physiology, and Pathology in Topical and Transdermal Drug Delivery. Pharmaceutics 2024; 16:1403. [PMID: 39598527 PMCID: PMC11597055 DOI: 10.3390/pharmaceutics16111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Several industries are increasingly focused on enhancing the delivery of active ingredients through the skin to optimize therapeutic outcomes. By facilitating the penetration of active ingredients through the skin barrier, these enhancers can significantly improve the efficacy of various formulations, ranging from skincare products to therapeutic agents targeting systemic circulation. As the understanding of skin physiology and the mechanisms of drug absorption deepen, these industries are adopting permeation enhancers more widely, ultimately leading to better patient outcomes and expanded treatment options. However, the structure and physiological function of the skin can vary according to different factors, such as the area of the body and between individuals. These variations, along with external environmental exposures, aging and pathological conditions, introduce complexities that must be carefully considered when designing effective delivery systems. Considering the intricacies of skin structure and physiology, tailoring systems to account for regional differences, individual variability, and changes induced by environmental factors or disease is critical to optimizing therapeutic outcomes. This review discusses the features of skin structure, physiology, and pathologies, as well as the application of permeation enhancers in these contexts. Furthermore, it addresses the use of animal skin models in transdermal delivery and dermatological studies, along with the latest developments in this field.
Collapse
Affiliation(s)
- Sofia Brito
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Moonki Baek
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Bum-Ho Bin
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- Department of Biological Sciences, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
4
|
Naaz A, Turnquist HR, Gorantla VS, Little SR. Drug delivery strategies for local immunomodulation in transplantation: Bridging the translational gap. Adv Drug Deliv Rev 2024; 213:115429. [PMID: 39142608 DOI: 10.1016/j.addr.2024.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Drug delivery strategies for local immunomodulation hold tremendous promise compared to current clinical gold-standard systemic immunosuppression as they could improve the benefit to risk ratio of life-saving or life-enhancing transplants. Such strategies have facilitated prolonged graft survival in animal models at lower drug doses while minimizing off-target effects. Despite the promising outcomes in preclinical animal studies, progression of these strategies to clinical trials has faced challenges. A comprehensive understanding of the translational barriers is a critical first step towards clinical validation of effective immunomodulatory drug delivery protocols proven for safety and tolerability in pre-clinical animal models. This review overviews the current state-of-the-art in local immunomodulatory strategies for transplantation and outlines the key challenges hindering their clinical translation.
Collapse
Affiliation(s)
- Afsana Naaz
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15213, United States.
| | - Heth R Turnquist
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States.
| | - Vijay S Gorantla
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States; Departments of Surgery, Ophthalmology and Bioengineering, Wake Forest School of Medicine, Wake Forest Institute of Regenerative Medicine, Winston Salem, NC, 27101, United States.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
5
|
Firdous SO, Sagor MMH, Arafat MT. Advances in Transdermal Delivery of Antimicrobial Peptides for Wound Management: Biomaterial-Based Approaches and Future Perspectives. ACS APPLIED BIO MATERIALS 2024; 7:4923-4943. [PMID: 37976446 DOI: 10.1021/acsabm.3c00731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Antimicrobial peptides (AMPs), distinguished by their cationic and amphiphilic nature, represent a critical frontier in the battle against antimicrobial resistance due to their potent antimicrobial activity and a broad spectrum of action. However, the clinical translation of AMPs faces hurdles, including their susceptibility to degradation, limited bioavailability, and the need for targeted delivery. Transdermal delivery has immense potential for optimizing AMP administration for wound management. Leveraging the skin's accessibility and barrier properties, transdermal delivery offers a noninvasive approach that can circumvent systemic side effects and ensure sustained release. Biomaterial-based delivery systems, encompassing nanofibers, hydrogels, nanoparticles, and liposomes, have emerged as key players in enhancing the efficacy of transdermal AMP delivery. These biomaterial carriers not only shield AMPs from enzymatic degradation but also provide controlled release mechanisms, thereby elevating stability and bioavailability. The synergistic interaction between the transdermal approach and biomaterial-facilitated formulations presents a promising strategy to overcome the multifaceted challenges associated with AMP delivery. Integrating advanced technologies and personalized medicine, this convergence allows the reimagining of wound care. This review amalgamates insights to propose a pathway where AMPs, transdermal delivery, and biomaterial innovation harmonize for effective wound management.
Collapse
Affiliation(s)
- Syeda Omara Firdous
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Md Mehadi Hassan Sagor
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| |
Collapse
|
6
|
Jain M, Trapani G, Trappmann B, Ravoo BJ. Stiffness Modulation and Pulsatile Release in Dual Responsive Hydrogels. Angew Chem Int Ed Engl 2024; 63:e202403760. [PMID: 38517945 DOI: 10.1002/anie.202403760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
Inspired by nature, self-regulation can be introduced in synthetic hydrogels by incorporating chemo-mechanical signals or coupled chemical reactions to maintain or adapt the material's physico-chemical properties when exposed to external triggers. In this work, we present redox and light dual stimuli responsive hydrogels capable of rapidly adapting the polymer crosslinking network while maintaining hydrogel stability. Upon irradiation with UV light, polymer hydrogels containing redox responsive disulfide crosslinks and light responsive ortho-nitrobenzyl moieties show a release of payload accompanied by adaptation of the hydrogel network towards higher stiffness due to in situ crosslinking by S-nitrosylation. Whereas the hydrogel design allows the network to either become softer in presence of reducing agent glutathione or stiffer upon UV irradiation, simultaneous application of both stimuli induces network self-regulation resulting in a pulsatile form of payload release from the hydrogel. Finally, adaptive stiffness was used to make tunable hydrogels as substrates for different cell lines.
Collapse
Affiliation(s)
- Mehak Jain
- Organic Chemistry Institute and Center for Soft Nanoscience, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Giuseppe Trapani
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
| | - Britta Trappmann
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Münster, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
7
|
Pires PC, Damiri F, Zare EN, Hasan A, Neisiany RE, Veiga F, Makvandi P, Paiva-Santos AC. A review on natural biopolymers in external drug delivery systems for wound healing and atopic dermatitis. Int J Biol Macromol 2024; 263:130296. [PMID: 38382792 DOI: 10.1016/j.ijbiomac.2024.130296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Despite the advantages of topical administration in the treatment of skin diseases, current marketed preparations face the challenge of the skin's barrier effect, leading to low therapeutic effectiveness and undesirable side effects. Hence, in recent years the management of skin wounds, the main morbidity-causing complication in hospital environments, and atopic dermatitis, the most common inflammatory skin disease, has become a great concern. Fortunately, new, more effective, and safer treatments are already under development, with chitosan, starch, silk fibroin, agarose, hyaluronic acid, alginate, collagen, and gelatin having been used for the development of nanoparticles, liposomes, niosomes and/or hydrogels to improve the delivery of several molecules for the treatment of these diseases. Biocompatibility, biodegradability, increased viscosity, controlled drug delivery, increased drug retention in the epidermis, and overall mitigation of adverse effects, contribute to an effective treatment, additionally providing intrinsic antimicrobial and wound healing properties. In this review, some of the most recent success cases of biopolymer-based drug delivery systems as part of nanocarriers, semi-solid hydrogel matrices, or both (hybrid systems), for the management of skin wounds and atopic dermatitis, are critically discussed, including composition and in vitro, ex vivo and in vivo characterization, showing the promise of these external drug delivery systems.
Collapse
Affiliation(s)
- Patrícia C Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca, Morocco; Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), University Sultan Moulay Slimane (USMS), Beni Mellal 23000, Morocco
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran; Centre of Research Impact and Outcome, Chitkara University, Rajpura-140401, Punjab, India
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar.
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Pooyan Makvandi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India; Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
8
|
Hameed H, Faheem S, Paiva-Santos AC, Sarwar HS, Jamshaid M. A Comprehensive Review of Hydrogel-Based Drug Delivery Systems: Classification, Properties, Recent Trends, and Applications. AAPS PharmSciTech 2024; 25:64. [PMID: 38514495 DOI: 10.1208/s12249-024-02786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
As adaptable biomaterials, hydrogels have shown great promise in several industries, which include the delivery of drugs, engineering of tissues, biosensing, and regenerative medicine. These hydrophilic polymer three-dimensional networks have special qualities like increased content of water, soft, flexible nature, as well as biocompatibility, which makes it excellent candidates for simulating the extracellular matrix and promoting cell development and tissue regeneration. With an emphasis on their design concepts, synthesis processes, and characterization procedures, this review paper offers a thorough overview of hydrogels. It covers the various hydrogel material types, such as natural polymers, synthetic polymers, and hybrid hydrogels, as well as their unique characteristics and uses. The improvements in hydrogel-based platforms for controlled drug delivery are examined. It also looks at recent advances in bioprinting methods that use hydrogels to create intricate tissue constructions with exquisite spatial control. The performance of hydrogels is explored through several variables, including mechanical properties, degradation behaviour, and biological interactions, with a focus on the significance of customizing hydrogel qualities for particular applications. This review paper also offers insights into future directions in hydrogel research, including those that promise to advance the discipline, such as stimuli-responsive hydrogels, self-healing hydrogels, and bioactive hydrogels. Generally, the objective of this review paper is to provide readers with a detailed grasp of hydrogels and all of their potential uses, making it an invaluable tool for scientists and researchers studying biomaterials and tissue engineering.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
9
|
Thaitirarot S, Shuwisitkul D, Udompataikul M, Kamanamool N, Kanokrungsee S. The efficacy of a transdermal hydrogel patch containing betamethasone dipropionate for treatment of chronic hand eczema: A single-blind, randomized and controlled trial. Contact Dermatitis 2024; 90:153-160. [PMID: 37828631 DOI: 10.1111/cod.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/08/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Topical corticosteroids under occlusion have been used to enhance the treatment of eczema. However, no study has investigated the efficacy of a steroid-containing transdermal patch for the treatment of chronic hand eczema. METHODS We conducted a randomized, controlled, assessor-blinded trial to determine the efficacy of a transdermal patch containing betamethasone dipropionate compared to topical betamethasone dipropionate ointment in the treatment of mild to moderate chronic hand eczema. The patients were included and assigned to receive either the transdermal patch once daily at night or the ointment twice daily for a period of 8 weeks. The outcomes were assessed using the Hand Eczema Severity Index (HECSI), Physical Global Assessment (PGA) score, self-reported compliance, level of patient satisfaction, quality of life, and side effects. RESULTS Fifty-six patients completed this study. At 8 weeks, there was a significant reduction in the HECSI scores in both the transdermal patch and topical ointment groups compared to those measured at baseline (14.61 to 1.86, p < 0.001; 18.46 to 3.43, p < 0.001, respectively) without a statistically significant difference between the two groups. Similarly, the two groups did not show any significant difference in the PGA scores, quality of life and side effects. However, the transdermal patch group reported better compliance and a higher level of patient satisfaction than the topical ointment group. CONCLUSION The transdermal corticosteroid patch has proven to be a safe and effective treatment, comparable to topical corticosteroids, after 8 weeks of use. Its sustained-release properties, along with once-daily use, can improve patient satisfaction and promote greater adherence to the treatment. TRIAL REGISTRATION This study was registered with the Thai Clinical Trials Registry (www. CLINICALTRIALS in.th) under registration number TCTR20220413003.
Collapse
Affiliation(s)
- Sirinan Thaitirarot
- Department of Dermatology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | | | - Montree Udompataikul
- Department of Dermatology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Nanticha Kamanamool
- Department of Preventive and Social Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Silada Kanokrungsee
- Department of Dermatology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
10
|
Vlad RA, Dudici (Vlăgea) TC, Syed MA, Antonoaea P, Rédai EM, Todoran N, Cotoi CT, Bîrsan M, Ciurba A. Impact of the Preparation Method on the Formulation Properties of Allantoin Hydrogels: Evaluation Using Semi-Solid Control Diagram (SSCD) Principles. Gels 2024; 10:58. [PMID: 38247781 PMCID: PMC10815641 DOI: 10.3390/gels10010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Allantoin possesses numerous beneficial properties for the skin, like anti-irritant effects, wound healing, skin hydration, and epithelization. In this paper, we investigated a suitable preparation method for an allantoin hydrogel using the Semi-Solid Control Diagram (SSCD) method and characterized its rheological and consistency behavior. To accomplish this, xanthan gum (XG) was selected as a model gelling agent. Briefly, four hydrogels were prepared, two without allantoin (coded M01 and M02) and two with allantoin (M1 and M2). Similarly, the formulations were either prepared through magnetic stirring (M01 and M1) or homogenization in a mortar (M02 and M2). The prepared hydrogels were evaluated using the SSCD for specific parameters and indexes. The Good Quality Index (GQI) shows a higher value for the formulation, M1 = 6.27, compared to M2 = 5.45. This result is also underlined by the value of M01 = 6.45, which is higher than M02 = 6.38. Considering the consistency, the formulation M01 possessed the highest spreadability, followed by M02 and then the allantoin hydrogels M1 and M2. The rheological behavior had a thixotropic pseudoplastic flow for all the formulations. The use of SSCD pictographs outlined the rheological properties that need improvement, the method that is suitable to prepare the allantoin hydrogels, and the influence of the allantoin suspended in the XG hydrogel.
Collapse
Affiliation(s)
- Robert-Alexandru Vlad
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| | - Teodora-Cătălina Dudici (Vlăgea)
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| | - Muhammad Ali Syed
- Department of Pharmaceutical Sciences, Faculty of Chemistry and Life Sciences, Government College University Lahore, Lahore 54000, Pakistan
| | - Paula Antonoaea
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| | - Emöke Margit Rédai
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| | - Nicoleta Todoran
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| | - Cornelia-Titiana Cotoi
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| | - Magdalena Bîrsan
- Faculty of Pharmacy, Department of Drug Industry and Pharmaceutical Biotechnology, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universităţii Street, 700115 Iasi, Romania
| | - Adriana Ciurba
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38th Gheorghe Marinescu Street, 540142 Targu Mures, Romania
| |
Collapse
|
11
|
Ijaz F, Tahir HM, Ali S, Ali A, Khan HA, Muzamil A, Manzoor HH, Qayyum KA. Biomolecules based hydrogels and their potential biomedical applications: A comprehensive review. Int J Biol Macromol 2023; 253:127362. [PMID: 37827396 DOI: 10.1016/j.ijbiomac.2023.127362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The need for biocompatible drug carriers has been significantly increased from the past few years. Researchers show great interest in the development of more versatile and sophisticated biomaterials based drug carriers. Hydrogels are beneficial drug carriers and easily release the controlled amount of drug at target site due to its tunable structure. The hydrogels made-up of potent biological macromolecules including collagen, gelatin, fibrin, elastin, fibroin, chitosan, starch, alginate, agarose and carrageenan have been proven as versatile biomaterials. These are three-dimensional polymeric networks, synthesized by crosslinking of hydrophilic polymers. The biological macromolecules based hydrogels containing therapeutic substances are used in a wide range of biomedical applications including wound healing, tissue engineering, cosmetics and contact lenses. However, many aspects related to hydrogels such as the mechanism of cross-linking and molecular entanglement are not clear. So, there is a need to do more research and exploration toward the extensive and cost-effective use of hydrogels. The present review article elaborately discusses the biomolecules based hydrogels and their possible biomedical applications in different fields.
Collapse
Affiliation(s)
- Fatima Ijaz
- Department of Zoology, Government College University Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University Lahore, Pakistan.
| | | | - Ayesha Muzamil
- Department of Zoology, Government College University Lahore, Pakistan
| | | | | |
Collapse
|
12
|
Shriky B, Babenko M, Whiteside BR. Dissolving and Swelling Hydrogel-Based Microneedles: An Overview of Their Materials, Fabrication, Characterization Methods, and Challenges. Gels 2023; 9:806. [PMID: 37888379 PMCID: PMC10606778 DOI: 10.3390/gels9100806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Polymeric hydrogels are a complex class of materials with one common feature-the ability to form three-dimensional networks capable of imbibing large amounts of water or biological fluids without being dissolved, acting as self-sustained containers for various purposes, including pharmaceutical and biomedical applications. Transdermal pharmaceutical microneedles are a pain-free drug delivery system that continues on the path to widespread adoption-regulatory guidelines are on the horizon, and investments in the field continue to grow annually. Recently, hydrogels have generated interest in the field of transdermal microneedles due to their tunable properties, allowing them to be exploited as delivery systems and extraction tools. As hydrogel microneedles are a new emerging technology, their fabrication faces various challenges that must be resolved for them to redeem themselves as a viable pharmaceutical option. This article discusses hydrogel microneedles from a material perspective, regardless of their mechanism of action. It cites the recent advances in their formulation, presents relevant fabrication and characterization methods, and discusses manufacturing and regulatory challenges facing these emerging technologies before their approval.
Collapse
Affiliation(s)
- Bana Shriky
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK;
| | | | - Ben R. Whiteside
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK;
| |
Collapse
|
13
|
Han W, Liu F, Li Y, Liu G, Li H, Xu Y, Sun S. Advances in Natural Polymer-Based Transdermal Drug Delivery Systems for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301670. [PMID: 37098629 DOI: 10.1002/smll.202301670] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Indexed: 06/19/2023]
Abstract
As an alternative to traditional oral and intravenous injections with limited efficacy, transdermal drug delivery (TDD) has shown great promise in tumor treatment. Over the past decade, natural polymers have been designed into various nanocarriers due to their excellent biocompatibility, biodegradability, and easy availability, providing more options for TDD. In addition, surface functionalization modification of the rich functional groups of natural polymers, which in turn are developed into targeted and stimulus-responsive functional materials, allows precise delivery of drugs to tumor sites and release of drugs in response to specific stimuli. It not only improves the treatment efficiency of tumor but also reduces the toxic and side effects to normal tissues. Therefore, the development of natural polymer-based TDD (NPTDD) systems has great potential in tumor therapy. In this review, the mechanism of NPTDD systems such as penetration enhancers, nanoparticles, microneedles, hydrogels and nanofibers prepared from hyaluronic acid, chitosan, sodium alginate, cellulose, heparin and protein, and their applications in tumor therapy are overviewed. This review also outlines the future prospects and current challenges of NPTDD systems for local treatment tumors.
Collapse
Affiliation(s)
- Weiqiang Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116023, P. R. China
| | - Yuyao Li
- Nursing College of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Guoxin Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang, 050018, China
| |
Collapse
|
14
|
Chen X, Xiao H, Shi X, Zhao Q, Xu X, Fan P, Xiao D. Bibliometric analysis and visualization of transdermal drug delivery research in the last decade: global research trends and hotspots. Front Pharmacol 2023; 14:1173251. [PMID: 37397493 PMCID: PMC10313210 DOI: 10.3389/fphar.2023.1173251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Transdermal delivery has become a crucial field in pharmaceutical research. There has been a proliferation of innovative methods for transdermal drug delivery. In recent years, the number of publications regarding transdermal drug delivery has been rising rapidly. To investigate the current research trends and hotspots in transdermal drug delivery, a comprehensive bibliometric analysis was performed. Methods: An extensive literature review was conducted to gather information on transdermal drug delivery that had been published between 2003 and 2022. The articles were obtained from the Web of Science (WOS) and the National Center for Biotechnology Information (NCBI) databases. Subsequently, the collected data underwent analysis and visualization using a variety of software tools. This approach enables a deeper exploration of the hotspots and emerging trends within this particular research domain. Results: The results showed that the number of articles published on transdermal delivery has increased steadily over the years, with a total of 2,555 articles being analyzed. The most frequently cited articles were related to the optimization of drug delivery and the use of nanotechnology in transdermal drug delivery. The most active countries in the field of transdermal delivery research were the China, United States, and India. Furthermore, the hotspots over the past 2 decades were identified (e.g., drug therapy, drug delivery, and pharmaceutical preparations and drug design). The shift in research focus reflects an increasing emphasis on drug delivery and control release, rather than simply absorption and penetration, and suggests a growing interest in engineering approaches to transdermal drug delivery. Conclusion: This study provided a comprehensive overview of transdermal delivery research. The research indicated that transdermal delivery would be a rapidly evolving field with many opportunities for future research and development. Moreover, this bibliometric analysis will help researchers gain insights into transdermal drug delivery research's hotspots and trends accurately and quickly.
Collapse
Affiliation(s)
- Xinghan Chen
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Burns and Plastic Surgery, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Haitao Xiao
- Department of Burns and Plastic Surgery, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Xiujun Shi
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiao Zhao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xuewen Xu
- Department of Burns and Plastic Surgery, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Ping Fan
- Department of Pharmacy, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
15
|
Singh AK, Itkor P, Lee YS. State-of-the-Art Insights and Potential Applications of Cellulose-Based Hydrogels in Food Packaging: Advances towards Sustainable Trends. Gels 2023; 9:433. [PMID: 37367104 DOI: 10.3390/gels9060433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Leveraging sustainable packaging resources in the circular economy framework has gained significant attention in recent years as a means of minimizing waste and mitigating the negative environmental impact of packaging materials. In line with this progression, bio-based hydrogels are being explored for their potential application in a variety of fields including food packaging. Hydrogels are three-dimensional, hydrophilic networks composed of a variety of polymeric materials linked by chemical (covalent bonds) or physical (non-covalent interactions) cross-linking. The unique hydrophilic nature of hydrogels provides a promising solution for food packaging systems, specifically in regulating moisture levels and serving as carriers for bioactive substances, which can greatly affect the shelf life of food products. In essence, the synthesis of cellulose-based hydrogels (CBHs) from cellulose and its derivatives has resulted in hydrogels with several appealing features such as flexibility, water absorption, swelling capacity, biocompatibility, biodegradability, stimuli sensitivity, and cost-effectiveness. Therefore, this review provides an overview of the most recent trends and applications of CBHs in the food packaging sector including CBH sources, processing methods, and crosslinking methods for developing hydrogels through physical, chemical, and polymerization. Finally, the recent advancements in CBHs, which are being utilized as hydrogel films, coatings, and indicators for food packaging applications, are discussed in detail. These developments have great potential in creating sustainable packaging systems.
Collapse
Affiliation(s)
- Ajit Kumar Singh
- Department of Packaging, Yonsei University, Wonju 26393, Republic of Korea
| | - Pontree Itkor
- Department of Packaging, Yonsei University, Wonju 26393, Republic of Korea
| | - Youn Suk Lee
- Department of Packaging, Yonsei University, Wonju 26393, Republic of Korea
| |
Collapse
|
16
|
Slavkova M, Tzankov B, Popova T, Voycheva C. Gel Formulations for Topical Treatment of Skin Cancer: A Review. Gels 2023; 9:gels9050352. [PMID: 37232944 DOI: 10.3390/gels9050352] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Skin cancer, with all its variations, is the most common type of cancer worldwide. Chemotherapy by topical application is an attractive strategy because of the ease of application and non-invasiveness. At the same time, the delivery of antineoplastic agents through the skin is difficult because of their challenging physicochemical properties (solubility, ionization, molecular weight, melting point) and the barrier function of the stratum corneum. Various approaches have been applied in order to improve drug penetration, retention, and efficacy. This systematic review aims at identifying the most commonly used techniques for topical drug delivery by means of gel-based topical formulations in skin cancer treatment. The excipients used, the preparation approaches, and the methods characterizing gels are discussed in brief. The safety aspects are also highlighted. The combinatorial formulation of nanocarrier-loaded gels is also reviewed from the perspective of improving drug delivery characteristics. Some limitations and drawbacks in the identified strategies are also outlined and considered within the future scope of topical chemotherapy.
Collapse
Affiliation(s)
- Marta Slavkova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Borislav Tzankov
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Teodora Popova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Christina Voycheva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
17
|
Leong MY, Kong YL, Burgess K, Wong WF, Sethi G, Looi CY. Recent Development of Nanomaterials for Transdermal Drug Delivery. Biomedicines 2023; 11:biomedicines11041124. [PMID: 37189742 DOI: 10.3390/biomedicines11041124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
Nano-engineered medical products first appeared in the last decade. The current research in this area focuses on developing safe drugs with minimal adverse effects associated with the pharmacologically active cargo. Transdermal drug delivery, an alternative to oral administration, offers patient convenience, avoids first-pass hepatic metabolism, provides local targeting, and reduces effective drug toxicities. Nanomaterials provide alternatives to conventional transdermal drug delivery including patches, gels, sprays, and lotions, but it is crucial to understand the transport mechanisms involved. This article reviews the recent research trends in transdermal drug delivery and emphasizes the mechanisms and nano-formulations currently in vogue.
Collapse
Affiliation(s)
- Moong Yan Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Yeo Lee Kong
- Department of Engineering and Applied Science, America Degree Program, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| | - Kevin Burgess
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, TX 77842, USA
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
18
|
Ullah I, Farooq AS, Naz I, Ahmad W, Ullah H, Sehar S, Nawaz A. Fabrication of Polymeric Hydrogels Containing Esomeprazole for Oral Delivery: In Vitro and In Vivo Pharmacokinetic Characterization. Polymers (Basel) 2023; 15:polym15071798. [PMID: 37050412 PMCID: PMC10097100 DOI: 10.3390/polym15071798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Hydrogel is one of the most interesting and excellent candidates for oral drug delivery. The current study focuses on formulation development of hydrogels for controlled oral delivery of esomeprazole. The hydrogels were prepared by solution casting method by dissolving polymers in Polyvinyl alcohol (PVA) solution. Calcium alginate, Hydroxyl propyl methylcellulose (HPMC), acrylic acid and chondroitin sulfate were used in the preparation of hydrogels. Fourier transform infrared (FTIR) analysis showed no incompatibilities between drug and excipients used in the preparation of formulations. The hydrogels were characterized for size and surface morphology. Drug encapsulation efficiency was measured by Ultraviolet-visible (UV-VIS) spectroscopy. In vitro release studies were carried out using dissolution apparatus. The formulated hydrogels were then compared with the marketed product in vivo using rabbits. The result indicates that prepared hydrogels have a uniform size with a porous surface. The esomeprazole encapsulation efficiency of the prepared hydrogels was found to be 83.1 ± 2.16%. The esomeprazole-loaded hydrogel formulations showed optimum and Pharmacopeial acceptable range swelling behavior. The release of esomeprazole is controlled for 24 h (85.43 ± 0.32% in 24 h). The swelling and release of drug results make the prepared hydrogels a potential candidate for the controlled delivery of esomeprazole. The release of the drug from prepared hydrogel followed the super case transport-2 mechanism. The in vivo studies showed that prepared hydrogel formulations showed controlled and prolonged release of esomeprazole as compared to drug solution and marketed product. The formulations were kept for stability studies; there was no significant change observed in physical parameters, i.e., (appearance, color change and grittiness) at 40 °C ± 2/75% ± RH. There was a negligible difference in the drug content observed after the stability study suggested that all the formulations are stable under the given conditions for 60 days. The current study provides a valuable perspective on the controlled release profile of Hydroxyl propyl methylcellulose (HPMC) and calcium alginate-based esomeprazole hydrogels.
Collapse
Affiliation(s)
- Irshad Ullah
- Department of Pharmacy, University of Swabi, Swabi 94640, Khyber Pakhtunkhwa, Pakistan
| | - Ayesha Shuja Farooq
- Department of Biochemistry, Science Unit, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia
| | - Iffat Naz
- Department of Biology, Science Unit, Deanship of Educational Services, Qassim University, Buraydah 51452, Saudi Arabia
| | - Waqar Ahmad
- Department of Pharmacy, University of Swabi, Swabi 94640, Khyber Pakhtunkhwa, Pakistan
| | - Hidayat Ullah
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29220, Khyber Pakhtunkhwa, Pakistan
| | - Shama Sehar
- Department of Environmental Engineering, College of Engineering, University of Technology, Salmabad 18041, Bahrain
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
19
|
Hottmann NM, Raines K, Droog M, Steiner JM, Thieman Mankin KM. In vitro elution of amikacin from four hydrogel preparations: A pilot study. Vet Surg 2023; 52:460-466. [PMID: 36544386 DOI: 10.1111/vsu.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/27/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To determine in vitro elution of amikacin from poloxamer 407 NF, 1% carboxymethylcellulose (CMC), 3% CMC, 5% CMC, and control (sterile water). STUDY DESIGN Descriptive in vitro. SAMPLE POPULATION Triplicate samples from each experimental group. METHODS Amikacin solution was prepared in poloxamer 407 NF, 1% CMC, 3% CMC, 5% CMC, or sterile water. Then, 1 ml of phosphate-buffered saline (PBS) was added to each of three aliquots per base and the samples were incubated at 37°C. PBS was removed and replaced at 1, 4, 8, 12, 24, 48, 72, 96, 120, 144, 168, 192, 216, and 240 hours and amikacin concentration was measured. RESULTS The highest median concentration of amikacin in the eluent of poloxamer 407 NF, 3% CMC, and 5% CMC was observed at 48 hours: 3300, 3030, and 2190 μg/ml, respectively. The highest median concentration of amikacin in the eluent of 1% CMC and sterile water were observed at 1 hour: 13300 and 15600 μg/ml, respectively. Median eluent concentration of amikacin exceeded 2000 μg/ml (the reported minimum inhibitory concentration [MIC] of certain biofilm-producing methicillin-resistant Staphylococcus pseudintermedius) from 24 to 96 hours for poloxamer 407 NF, 24-72 hours for 3% CMC, 48-72 hours for 5% CMC, 1-4 hours for 1% CMC, and 1-4 hours for sterile water. CONCLUSION Amikacin elution from tested substances reached or exceeded target MIC during the 240 hours tested. CLINICAL SIGNIFICANCE Hydrogel-amikacin solutions may be useful topical treatment options for some infected wounds. In vivo safety and efficacy should be evaluated.
Collapse
Affiliation(s)
- Natasha M Hottmann
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Katherine Raines
- Veterinary Medical Teaching Hospital, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Madeline Droog
- Veterinary Medical Teaching Hospital, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Joerg M Steiner
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Kelley M Thieman Mankin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
20
|
Farasati Far B, Isfahani AA, Nasiriyan E, Pourmolaei A, Mahmoudvand G, Karimi Rouzbahani A, Namiq Amin M, Naimi-Jamal MR. An Updated Review on Advances in Hydrogel-Based Nanoparticles for Liver Cancer Treatment. LIVERS 2023; 3:161-189. [DOI: 10.3390/livers3020012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
More than 90% of all liver malignancies are hepatocellular carcinomas (HCCs), for which chemotherapy and immunotherapy are the ideal therapeutic choices. Hepatocellular carcinoma is descended from other liver diseases, such as viral hepatitis, alcoholism, and metabolic syndrome. Normal cells and tissues may suffer damage from common forms of chemotherapy. In contrast to systemic chemotherapy, localized chemotherapy can reduce side effects by delivering a steady stream of chemotherapeutic drugs directly to the tumor site. This highlights the significance of controlled-release biodegradable hydrogels as drug delivery methods for chemotherapeutics. This review discusses using hydrogels as drug delivery systems for HCC and covers thermosensitive, pH-sensitive, photosensitive, dual-sensitive, and glutathione-responsive hydrogels. Compared to conventional systemic chemotherapy, hydrogel-based drug delivery methods are more effective in treating cancer.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Attaripour Isfahani
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Elnaz Nasiriyan
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Ali Pourmolaei
- Chemical Engineering Department, Babol Noshirvani University of Technology Shariati Ave, Babol 47148-71167, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
| | - Arian Karimi Rouzbahani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | | |
Collapse
|
21
|
Eshaghi MM, Pourmadadi M, Rahdar A, Díez-Pascual AM. Improving quercetin anticancer activity through a novel polyvinylpyrrolidone/polyvinyl alcohol/TiO2 nanocomposite. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
22
|
Balavigneswaran CK, Jaiswal V, Venkatesan R, Karuppiah PS, Sundaram MK, Vasudha TK, Aadinath W, Ravikumar A, Saravanan HV, Muthuvijayan V. Mussel-Inspired Adhesive Hydrogels Based on Laponite-Confined Dopamine Polymerization as a Transdermal Patch. Biomacromolecules 2023; 24:724-738. [PMID: 36599131 DOI: 10.1021/acs.biomac.2c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transdermal patch for local drug delivery has attained huge attention as an attractive alternative to existing drug delivery techniques as it is painless and user-friendly. However, most adhesive hydrogels either do not have adequate adhesion with the skin or cause discomfort while being removed from the skin surface due to excessive adhesion. To address this challenge, we developed an adhesive hydrogel based on laponite-confined dopamine polymerization as a transdermal patch. Laponite RDS nanoclay was used to control the hydrogel's viscous behavior and dopamine polymerization. The laponite polymerized polydopamine (l-PDA) was incorporated into poly(vinyl alcohol) (PVA) to make the PVA-l-PDA hydrogel. The laponite-confined polymerization improved the hydrogels' water contact angle and adhesion strength. The adhesion strength of the PVA-l-PDA hydrogel was adequate to adhere to the evaluated goat skin, glass, and polypropylene surfaces. Notably, the PVA-l-PDA hydrogel was easy to peel off from the skin. Further, we evaluated the drug release profile in goat skin using lidocaine as a model drug. We observed the controlled release of lidocaine from the PVA-l-PDA hydrogel compared to the PVA-PDA hydrogel. In addition, the nanoclay-confined adhesive hydrogel did not show any cytotoxic effect in fibroblasts. Altogether, PVA-l-PDA hydrogels offer appropriate adhesive strength, toughness, and biocompatibility. Thus, the PVA-l-PDA hydrogel has the potential to be an efficient transdermal patch.
Collapse
Affiliation(s)
- Chelladurai Karthikeyan Balavigneswaran
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vaibhav Jaiswal
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Ramya Venkatesan
- Cancer Biology and Reproductive Endocrinology Lab, Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Prakash Shyam Karuppiah
- Research and Development Division, V.V.D and Sons Private Limited, Thoothukudi 628003, Tamil Nadu, India
| | - Manoj Kumar Sundaram
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - T K Vasudha
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - W Aadinath
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Akhil Ravikumar
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Hari Vishal Saravanan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
23
|
Araújo D, Rodrigues T, Roma-Rodrigues C, Alves VD, Fernandes AR, Freitas F. Chitin-Glucan Complex Hydrogels: Physical-Chemical Characterization, Stability, In Vitro Drug Permeation, and Biological Assessment in Primary Cells. Polymers (Basel) 2023; 15:polym15040791. [PMID: 36850075 PMCID: PMC9963717 DOI: 10.3390/polym15040791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Chitin-glucan complex (CGC) hydrogels were fabricated by coagulation of the biopolymer from an aqueous alkaline solution, and their morphology, swelling behavior, mechanical, rheological, and biological properties were studied. In addition, their in vitro drug loading/release ability and permeation through mimic-skin artificial membranes (Strat-M) were assessed. The CGC hydrogels prepared from 4 and 6 wt% CGC suspensions (Na51*4 and Na51*6 hydrogels, respectively) had polymer contents of 2.40 ± 0.15 and 3.09 ± 0.22 wt%, respectively, and displayed a highly porous microstructure, characterized by compressive moduli of 39.36 and 47.30 kPa and storage moduli of 523.20 and 7012.25 Pa, respectively. Both hydrogels had a spontaneous and almost immediate swelling in aqueous media, and a high-water retention capacity (>80%), after 30 min incubation at 37 °C. Nevertheless, the Na51*4 hydrogels had higher fatigue resistance and slightly higher-water retention capacity. These hydrogels were loaded with caffeine, ibuprofen, diclofenac, or salicylic acid, reaching entrapment efficiency values ranging between 13.11 ± 0.49% for caffeine, and 15.15 ± 1.54% for salicylic acid. Similar release profiles in PBS were observed for all tested APIs, comprising an initial fast release followed by a steady slower release. In vitro permeation experiments through Strat-M membranes using Franz diffusion cells showed considerably higher permeation fluxes for caffeine (33.09 µg/cm2/h) and salicylic acid (19.53 µg/cm2/h), compared to ibuprofen sodium and diclofenac sodium (4.26 and 0.44 µg/cm2/h, respectively). Analysis in normal human dermal fibroblasts revealed that CGC hydrogels have no major effects on the viability, migration ability, and morphology of the cells. Given their demonstrated features, CGC hydrogels are very promising structures, displaying tunable physical properties, which support their future development into novel transdermal drug delivery platforms.
Collapse
Affiliation(s)
- Diana Araújo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departmento Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Thomas Rodrigues
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departmento Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departmento Ciências da Vida, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- Correspondence: ; Tel.: +351-212948300
| |
Collapse
|
24
|
Leyva-Jiménez FJ, Oliver-Simancas R, Castangia I, Rodríguez-García AM, Alañón ME. Comprehensive review of natural based hydrogels as an upcoming trend for food packing. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Ugrinovic V, Milutinovic M, Bozic B, Petrovic R, Janackovic D, Panic V, Veljovic D. Poly(methacrylic acid)/gelatin interpenetrating network hydrogels reinforced by nano-structured hydroxyapatite particles—improved drug delivery systems. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2164281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Vukasin Ugrinovic
- Innovation Center of Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Milica Milutinovic
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Bojan Bozic
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Rada Petrovic
- Department of Inorganic Chemical Technology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Djordje Janackovic
- Department of Inorganic Chemical Technology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna Panic
- Innovation Center of Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Djordje Veljovic
- Department of Inorganic Chemical Technology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
26
|
Younas F, Zaman M, Aman W, Farooq U, Raja MAG, Amjad MW. Thiolated Polymeric Hydrogels for Biomedical Applications: A Review. Curr Pharm Des 2023; 29:3172-3186. [PMID: 37622704 DOI: 10.2174/1381612829666230825100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Hydrogels are a three-dimensional (3D) network of hydrophilic polymers. The physical and chemical crosslinking of polymeric chains maintains the structure of the hydrogels even when they are swollen in water. They can be modified with thiol by thiol epoxy, thiol-ene, thiol-disulfide, or thiol-one reactions. Their application as a matrix for protein and drug delivery, cellular immobilization, regenerative medicine, and scaffolds for tissue engineering was initiated in the early 21st century. This review focuses on the ingredients, classification techniques, and applications of hydrogels, types of thiolation by different thiol-reducing agents, along with their mechanisms. In this study, different applications for polymers used in thiolated hydrogels, including dextran, gelatin, polyethylene glycol (PEG), cyclodextrins, chitosan, hyaluronic acid, alginate, poloxamer, polygalacturonic acid, pectin, carrageenan gum, arabinoxylan, carboxymethyl cellulose (CMC), gellan gum, and polyvinyl alcohol (PVA) are reviewed.
Collapse
Affiliation(s)
- Farhan Younas
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Waqar Aman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Umer Farooq
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, PA 15213, USA
| |
Collapse
|
27
|
Moakes RJA, Grover LM, Robinson TE. Can We Structure Biomaterials to Spray Well Whilst Maintaining Functionality? BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010003. [PMID: 36671575 PMCID: PMC9855191 DOI: 10.3390/bioengineering10010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Structured fluid biomaterials, including gels, creams, emulsions and particle suspensions, are used extensively across many industries, including great interest within the medical field as controlled release vehicles to improve the therapeutic benefit of delivered drugs and cells. Colloidal forces within these materials create multiscale cohesive interactions, giving rise to intricate microstructures and physical properties, exemplified by increasingly complex mathematical descriptions. Yield stresses and viscoelasticity, typically arising through the material microstructure, vastly improve site-specific retention, and protect valuable therapeutics during application. One powerful application route is spraying, a convenient delivery method capable of applying a thin layer of material over geometrically uneven surfaces and hard-to-reach anatomical locations. The process of spraying is inherently disruptive, breaking a bulk fluid in successive steps into smaller elements, applying multiple forces over several length scales. Historically, spray research has focused on simple, inviscid solutions and dispersions, far from the complex microstructures and highly viscoelastic properties of concentrated colloidal biomaterials. The cohesive forces in colloidal biomaterials appear to conflict with the disruptive forces that occur during spraying. This review explores the physical bass and mathematical models of both the multifarious material properties engineered into structured fluid biomaterials and the disruptive forces imparted during the spray process, in order to elucidate the challenges and identify opportunities for rational design of sprayable, structured fluid biomaterials.
Collapse
|
28
|
Soradech S, Kengkwasingh P, Williams AC, Khutoryanskiy VV. Synthesis and Evaluation of Poly(3-hydroxypropyl Ethylene-imine) and Its Blends with Chitosan Forming Novel Elastic Films for Delivery of Haloperidol. Pharmaceutics 2022; 14:pharmaceutics14122671. [PMID: 36559165 PMCID: PMC9785711 DOI: 10.3390/pharmaceutics14122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to develop novel elastic films based on chitosan and poly(3-hydroxypropyl ethyleneimine) or P3HPEI for the rapid delivery of haloperidol. P3HPEI was synthesized using a nucleophilic substitution reaction of linear polyethyleneimine (L-PEI) with 3-bromo-1-propanol. 1H-NMR and FTIR spectroscopies confirmed the successful conversion of L-PEI to P3HPEI, and the physicochemical properties and cytotoxicity of P3HPEI were investigated. P3HPEI had good solubility in water and was significantly less toxic than the parent L-PEI. It had a low glass transition temperature (Tg = -38.6 °C). Consequently, this new polymer was blended with chitosan to improve mechanical properties, and these materials were used for the rapid delivery of haloperidol. Films were prepared by casting from aqueous solutions and then evaporating the solvent. The miscibility of polymers, mechanical properties of blend films, and drug release profiles from these formulations were investigated. The blends of chitosan and P3HPEI were miscible in the solid state and the inclusion of P3HPEI improved the mechanical properties of the films, producing more elastic materials. A 35:65 (%w/w) blend of chitosan-P3HPEI provided the optimum glass transition temperature for transmucosal drug delivery and so was selected for further investigation with haloperidol, which was chosen as a model hydrophobic drug. Microscopic and X-ray diffractogram (XRD) data indicated that the solubility of the drug in the films was ~1.5%. The inclusion of the hydrophilic polymer P3HPEI allowed rapid drug release within ~30 min, after which films disintegrated, demonstrating that the formulations are suitable for application to mucosal surfaces, such as in buccal drug delivery. Higher release with increasing drug loading allows flexible dosing. Blending P3HPEI with chitosan thus allows the selection of desirable physicochemical and mechanical properties of the films for delivery of haloperidol as a poorly water-soluble drug.
Collapse
Affiliation(s)
- Sitthiphong Soradech
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6DX, UK
- Expert Centre of Innovative Herbal Products, Thailand Institute of Scientific and Technological Research, Pathum Thani 12120, Thailand
| | - Pattarawadee Kengkwasingh
- Expert Centre of Innovative Herbal Products, Thailand Institute of Scientific and Technological Research, Pathum Thani 12120, Thailand
| | - Adrian C. Williams
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6DX, UK
| | - Vitaliy V. Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6DX, UK
- Correspondence: ; Tel.: +44-(0)118-378-6119
| |
Collapse
|
29
|
Li M, Wang Q, Chen N, Yao S, Sun X, Quan P, Chen Y. Probing Pharmaceutical Strategies to Promote the Skin Delivery of Asiatic Acid from Hydrogels: Enhancement Effects of Organic Amine Counterions, Chemical Enhancers, and Microneedle Pretreatment. Pharmaceutics 2022; 14:pharmaceutics14112532. [PMID: 36432722 PMCID: PMC9697078 DOI: 10.3390/pharmaceutics14112532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Asiatic acid (AA) is a pentacyclic triterpene isolated from Centella asiatica, holding great promise for treating a variety of skin disorders. However, the dermal application of AA is limited by its poor solubility and permeability. This study aimed to identify a hydrogel formulation for AA and improve its skin penetration by various penetration enhancement methods. Four kinds of hydrogel bases were selected to prepare the AA hydrogel, in which different organic amines and chemical enhancers were incorporated in combination with microneedle pretreatment. The results showed that AA had good release profiles in the presence of hyaluronic acid as the hydrogel base and organic amines as the counter-ions. Diethylamine and Span 80 could promote drug penetration into the skin, and pretreatment with microneedles could further increase the drug permeability. In conclusion, the optimized hyaluronic acid hydrogel has great potential for use in the topical delivery of AA, and its penetration via the skin can be further improved by different pharmaceutical approaches.
Collapse
Affiliation(s)
- Mingming Li
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qiuyue Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Sicheng Yao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Peng Quan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence: (P.Q.); (Y.C.)
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang 110122, China
- Correspondence: (P.Q.); (Y.C.)
| |
Collapse
|
30
|
Dsouza A, Constantinidou C, Arvanitis TN, Haddleton DM, Charmet J, Hand RA. Multifunctional Composite Hydrogels for Bacterial Capture, Growth/Elimination, and Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47323-47344. [PMID: 36222596 PMCID: PMC9614723 DOI: 10.1021/acsami.2c08582] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Hydrogels are cross-linked networks of hydrophilic polymer chains with a three-dimensional structure. Owing to their unique features, the application of hydrogels for bacterial/antibacterial studies and bacterial infection management has grown in importance in recent years. This trend is likely to continue due to the rise in bacterial infections and antimicrobial resistance. By exploiting their physicochemical characteristics and inherent nature, hydrogels have been developed to achieve bacterial capture and detection, bacterial growth or elimination, antibiotic delivery, or bacterial sensing. Traditionally, the development of hydrogels for bacterial/antibacterial studies has focused on achieving a single function such as antibiotic delivery, antibacterial activity, bacterial growth, or bacterial detection. However, recent studies demonstrate the fabrication of multifunctional hydrogels, where a single hydrogel is capable of performing more than one bacterial/antibacterial function, or composite hydrogels consisting of a number of single functionalized hydrogels, which exhibit bacterial/antibacterial function synergistically. In this review, we first highlight the hydrogel features critical for bacterial studies and infection management. Then, we specifically address unique hydrogel properties, their surface/network functionalization, and their mode of action for bacterial capture, adhesion/growth, antibacterial activity, and bacterial sensing, respectively. Finally, we provide insights into different strategies for developing multifunctional hydrogels and how such systems can help tackle, manage, and understand bacterial infections and antimicrobial resistance. We also note that the strategies highlighted in this review can be adapted to other cell types and are therefore likely to find applications beyond the field of microbiology.
Collapse
Affiliation(s)
- Andrea Dsouza
- Warwick
Manufacturing Group, The University of Warwick, Coventry, United Kingdom CV4 7AL
| | | | - Theodoros N. Arvanitis
- Institute
of Digital Healthcare, Warwick Manufacturing Group, The University of Warwick, Coventry, United Kingdom CV4 7AL
| | - David M. Haddleton
- Department
of Chemistry, The University of Warwick, Coventry, United Kingdom CV4 7AL
| | - Jérôme Charmet
- Warwick
Manufacturing Group, The University of Warwick, Coventry, United Kingdom CV4 7AL
- Warwick
Medical School, The University of Warwick, Coventry, United Kingdom CV4 7AL
- School
of Engineering—HE-Arc Ingénierie, HES-SO University of Applied Sciences Western Switzerland, 2000 Neuchâtel, Switzerland
| | - Rachel A. Hand
- Department
of Chemistry, The University of Warwick, Coventry, United Kingdom CV4 7AL
| |
Collapse
|
31
|
Do NH, Truong QT, Le PK, Ha AC. Recent developments in chitosan hydrogels carrying natural bioactive compounds. Carbohydr Polym 2022; 294:119726. [DOI: 10.1016/j.carbpol.2022.119726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
|
32
|
Shakya N, Budha Chettri S, Joshi S, Rajbhandary A. Utilization of FMOC-3F-PHE hydrogel for encapsulation of Zanthoxylum armatum and Cinnamomum camphora oil for enhancing their antibacterial activity. BMC Res Notes 2022; 15:278. [PMID: 35962412 PMCID: PMC9373397 DOI: 10.1186/s13104-022-06163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Objective While essential oils have many applications in medicine, not many studies have been done in the past to address issues of active targeting, enhancing bioavailability and reducing toxicity at higher concentrations. Herein, we used Fmoc-3F-Phe amino acid hydrogels to address such issues by encapsulating essential oils, Zanthoxylum armatum and Cinnamomum camphora, in its system and allowing sustained-release of these oils onto bacterial assays of E. coli ATCC 25922, P. hauseri NBRC 3851, M. luteus KACC 13377, and B. subtilis ATCC 66333 for probing enhanced antibacterial properties of the oils by prolonging its efficacy through controlled-release mechanism. Results We found that while Zanthoxylum oil showed no particular difference in enhancing the antibacterial property against the three fast growing bacteria, however profound variation was observed against slow growing bacteria B. subtilis. The hydrogel encapsulated oil was able to retain its antibacterial property for a longer time while directly applied oil could not for this bacteria. Even for highly volatile camphor oil, the oil itself failed to show any antibacterial property with direct use, however the hydrogel encapsulated oil was able to show excellent antibacterial property for B. subtilis and M. luteus through prohibition of sublimation via encapsulation. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06163-4.
Collapse
Affiliation(s)
- Nasla Shakya
- Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | | | - Susan Joshi
- Tri-Chandra Multiple Campus, Durbar Marga, Kathmandu, Nepal
| | - Annada Rajbhandary
- Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal.
| |
Collapse
|
33
|
Radiation synthesis and anticancer drug delivery of poly(acrylic acid/acrylamide) magnetite hydrogel. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractHydrogels had gained considerable importance in drug delivery systems. Polyacrylic acid/acrylamide (AAc/AAm) and polyacrylic acid/acrylamide doped with magnetite (AAc/AAm)Fe3O4 hydrogels have been prepared by ɣ-radiations and characterized by Fourier transform infrared spectra (IR), X-ray diffractions (XRD), scanning electron microscope (SEM) and transmittance electron microscope (TEM). The morphology and the particle size were determined from TEM images. The average particle size of Fe3O4 was found to be 12 nm. The degree of cross-linking of Poly (AAc/AAm) hydrogel was determined from the gel fraction at different radiation doses and compositions. Swelling of the hydrogel was studied at different conditions. The magnetism of (AAc/AAm) Fe3O4 was studied by vibrating sample magnetometer and the results indicated super-paramagnetic character of (AAc/AAm)Fe3O4. The band gap (Eg) was determined and the values suggested semi-conductivity of the hydrogels. Doxorubicin loading and release by (AAc/AAm)Fe3O4 hydrogel was studied and indicated that the hydrogel can load 78% of doxorubicin.
Collapse
|
34
|
Latif MS, Al-Harbi FF, Nawaz A, Rashid SA, Farid A, Mohaini MA, Alsalman AJ, Hawaj MAA, Alhashem YN. Formulation and Evaluation of Hydrophilic Polymer Based Methotrexate Patches: In Vitro and In Vivo Characterization. Polymers (Basel) 2022; 14:polym14071310. [PMID: 35406184 PMCID: PMC9002860 DOI: 10.3390/polym14071310] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
This study attempted to develop and evaluate controlled-release matrix-type transdermal patches with different ratios of hydrophilic polymers (sodium carboxymethylcellulose and hydroxypropyl methylcellulose) for the local delivery of methotrexate. Transdermal patches were formulated by employing a solvent casting technique using blends of sodium carboxymethylcellulose (CMC-Na) and hydroxypropylmethylcellulose (HPMC) polymers as rate-controlling agents. The F1 formulated patch served as the control formulation with a 1:1 polymer concentration. The F9 formulation served as our optimized formulation due to suitable physicochemical properties yielded through the combination of CMC-Na and HPMC (5:1). Drug excipient compatibilities (ATR-FTIR) were performed as a preformulation study. The ATR-FTIR study depicted great compatibility between the drug and the polymers. Physicochemical parameters, kinetic modeling, in vitro drug release, ex vivo drug permeation, skin drug retention, and in vivo studies were also carried out for the formulated patches. The formulated patches exhibited a clear, smooth, elastic nature with good weight uniformity, % moisture uptake, drug content, and thickness. Physicochemical characterization revealed folding endurance ranging from 62 ± 2.21 to 78 ± 1.54, tensile strength from 9.42 ± 0.52 to 12.32 ± 0.72, % swelling index from 37.16 ± 0.17 to 76.24 ± 1.37, and % drug content from 93.57 ± 5.34 to 98.19 ± 1.56. An increase in the concentration of the CMC-Na polymer (F9) resulted in increased drug release from the formulated transdermal patches. Similarly, drug permeation and retention were found to be higher in the F9 formulation compared to the other formulations (F1–F8). A drug retention analysis revealed that the F9 formulation exhibited 13.43% drug retention in the deep layers of the skin compared to other formulations (F1–F8). The stability study indicated that, during the study period of 60 days, no significant changes in the drug content and physical characteristics were found. ATR-FTIR analysis of rabbit skin samples treated with the formulated transdermal patches revealed that hydrophilic polymers mainly affect the skin proteins (ceramide and keratins). A pharmacokinetic profile revealed Cmax was 1.77.38 ng/mL, Tmax was 12 h, and t1/2 was 17.3 ± 2.21. In vivo studies showed that the skin drug retention of F9 was higher compared to the drug solution. These findings reinforce that methotrexate-based patches can possibly be used for the management of psoriasis. This study can reasonably conclude that methotrexate transdermal matrix-type patches with CMC-Na and HPMC polymers at different concentrations effectively sustain drug release with prime permeation profiles and better bioavailability. Therefore, these formulated patches can be employed for the potential management of topical diseases, such as psoriasis.
Collapse
Affiliation(s)
- Muhammad Shahid Latif
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.S.L.); (S.A.R.)
| | - Fatemah F. Al-Harbi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.S.L.); (S.A.R.)
- Correspondence:
| | - Sheikh Abdur Rashid
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.S.L.); (S.A.R.)
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Mohammad Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Alahsa 31982, Saudi Arabia;
- King Abdullah International Medical Research Center, Alahsa 31982, Saudi Arabia
| | - Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Ahsa 31982, Saudi Arabia;
| | - Yousef N. Alhashem
- Clinical Laboratory Sciences Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia;
| |
Collapse
|
35
|
Araújo D, Rodrigues T, Alves VD, Freitas F. Chitin-Glucan Complex Hydrogels: Optimization of Gel Formation and Demonstration of Drug Loading and Release Ability. Polymers (Basel) 2022; 14:785. [PMID: 35215701 PMCID: PMC8877193 DOI: 10.3390/polym14040785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Chitin-glucan complex (CGC) hydrogels were fabricated through a freeze-thaw procedure for biopolymer dissolution in NaOH 5 mol/L, followed by a dialysis step to promote gelation. Compared to a previously reported methodology that included four freeze-thaw cycles, reducing the number of cycles to one had no significant impact on the hydrogels' formation, as well as reducing the total freezing time from 48 to 18 h. The optimized CGC hydrogels exhibited a high and nearly spontaneous swelling ratio (2528 ± 68%) and a water retention capacity of 55 ± 3%, after 2 h incubation in water, at 37 °C. Upon loading with caffeine as a model drug, an enhancement of the mechanical and rheological properties of the hydrogels was achieved. In particular, the compressive modulus was improved from 23.0 ± 0.89 to 120.0 ± 61.64 kPa and the storage modulus increased from 149.9 ± 9.8 to 315.0 ± 76.7 kPa. Although the release profile of caffeine was similar in PBS and NaCl 0.9% solutions, the release rate was influenced by the solutions' pH and ionic strength, being faster in the NaCl solution. These results highlight the potential of CGC based hydrogels as promising structures to be used as drug delivery devices in biomedical applications.
Collapse
Affiliation(s)
- Diana Araújo
- Associate Laboratory i4HB, School of Science and Technology, Institute for Health and Bioeconomy, NOVA University Lisbon, 2819-516 Caparica, Portugal; (D.A.); (T.R.)
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Thomas Rodrigues
- Associate Laboratory i4HB, School of Science and Technology, Institute for Health and Bioeconomy, NOVA University Lisbon, 2819-516 Caparica, Portugal; (D.A.); (T.R.)
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF, Linking Landscape, Environment, Agriculture and Food Research Center, Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Filomena Freitas
- Associate Laboratory i4HB, School of Science and Technology, Institute for Health and Bioeconomy, NOVA University Lisbon, 2819-516 Caparica, Portugal; (D.A.); (T.R.)
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
36
|
Martin Torrejon V, Deng Y, Luo G, Wu B, Song J, Hang S, Wang D. Role of Sodium Dodecyl Sulfate in Tailoring the Rheological Properties of High-Strength Gelatin Hydrogels. Gels 2021; 7:271. [PMID: 34940331 PMCID: PMC8701992 DOI: 10.3390/gels7040271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022] Open
Abstract
Gelatin hydrogels are widely used materials that may require surfactants to adjust their solution's surface tension for cell attachment, surface adsorption enhancement, or foaming. However, gelatin is a highly surface-active polymer, and its concentrated solutions usually do not require surfactants to achieve low surface tension. However, anionic surfactants, such as sodium dodecyl sulfate (SDS), interact strongly with gelatin to form complexes that impact its hydrogels' rheological properties, influencing processability and functionality. Nevertheless, there is a lack of systematic research on the impact of these complexes on high gelatin content (i.e., high strength) hydrogels' rheological properties. In this work, the SDS/gelatin ratio-dependent viscoelastic properties (e.g., gel strength, gelation kinetics, and melting/gelling temperature) of high-strength gelatin hydrogels were investigated using rheology and correlated to surface tension, viscometry, FTIR, and UV-Vis spectrophotometry. SDS-gelatin ratio was proved to be an important factor in tailoring the rheological properties of gelatin hydrogels. The gel strength, gelation kinetics, and melting/gelling temperature of the gelatin hydrogels linearly increased with SDS incorporation up to a maximum value, from which they started to decline. The findings of this work have wide applicability in tailoring the properties of gelatin-SDS solutions and hydrogels during their processing.
Collapse
Affiliation(s)
- Virginia Martin Torrejon
- Media and Communication School, Shenzhen Polytechnic, Shenzhen 518055, China;
- Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China; (Y.D.); (G.L.); (B.W.); (J.S.); (S.H.)
| | - Yanqiu Deng
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China; (Y.D.); (G.L.); (B.W.); (J.S.); (S.H.)
| | - Guidong Luo
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China; (Y.D.); (G.L.); (B.W.); (J.S.); (S.H.)
| | - Bingjie Wu
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China; (Y.D.); (G.L.); (B.W.); (J.S.); (S.H.)
| | - Jim Song
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China; (Y.D.); (G.L.); (B.W.); (J.S.); (S.H.)
| | - Song Hang
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China; (Y.D.); (G.L.); (B.W.); (J.S.); (S.H.)
| | - Dongmei Wang
- Media and Communication School, Shenzhen Polytechnic, Shenzhen 518055, China;
| |
Collapse
|
37
|
Development of an intelligent, stimuli-responsive transdermal system for efficient delivery of Ibuprofen against rheumatoid arthritis. Int J Pharm 2021; 610:121242. [PMID: 34737113 DOI: 10.1016/j.ijpharm.2021.121242] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022]
Abstract
The present study aimed to fabricate and evaluate the therapeutic efficacy of pH-responsive Ibuprofen (IB) nanoparticles (NPs) loaded transdermal hydrogel against rheumatoid arthritis (RA). The IB loaded Eudragit® L 100 (EL 100) nanoparticles were formulated through a modified nanoprecipitation technique and optimized using central composite design software. The optimized NPs were loaded into Carbopol® 934-based hydrogel by solvent evaporation method and were analyzed for physicochemical characteristics. The mean particle size of the prepared NPs was 48 nm with an entrapment efficiency of 90%. The transdermal hydrogel showed a pH-responsive sustained drug release and high penetration through the skin. Moreover, the prepared nanocarrier system exhibited therapeutic efficacy at inflamed joints' sites both in acute and chronic RA mice model. The therapeutic efficacy of the prepared formulation was confirmed through the results of various behavioral, biochemical, and cytokines-based assays. Similarly, the assessment of histopathological and radiological images, as well as the skin irritation studies further strengthens the potential use of the prepared formulation through the transdermal route. The current findings suggested that IB loaded pH-responsive NPs based transdermal hydrogel can be used as an efficient agent to manage RA.
Collapse
|
38
|
Esmaeili J, Barati A, Ai J, Nooshabadi VT, Mirzaei Z. Employing hydrogels in tissue engineering approaches to boost conventional cancer-based research and therapies. RSC Adv 2021; 11:10646-10669. [PMID: 35423538 PMCID: PMC8695814 DOI: 10.1039/d1ra00855b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is a complicated disease that involves the efforts of researchers to introduce and investigate novel successful treatments. Traditional cancer therapy approaches, especially chemotherapy, are prone to possible systemic side effects, such as the dysfunction of liver or kidney, neurological side effects and a decrease of bone marrow activity. Hydrogels, along with tissue engineering techniques, provide tremendous potential for scientists to overcome these issues through the release of drugs at the site of tumor. Hydrogels demonstrated competency as potent and stimulus-sensitive drug delivery systems for tumor removal, which is attributed to their unique features, including high water content, biocompatibility, and biodegradability. In addition, hydrogels have gained more attention as 3D models for easier and faster screening of cancer and tumors due to their potential in mimicking the extracellular matrix. Hydrogels as a reservoir can be loaded by an effective dosage of chemotherapeutic agents, and then deliver them to targets. In comparison to conventional procedures, hydrogels considerably decreased the total cost, duration of research, and treatment time. This study provides a general look into the potential role of hydrogels as a powerful tool to augment cancer studies for better analysis of cancerous cell functions, cell survival, angiogenesis, metastasis, and drug screening. Moreover, the upstanding application of drug delivery systems related to the hydrogel in order to sustain the release of desired drugs in the tumor cell-site were explored.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University Arak Iran
- Department of Tissue Engineering, TISSUEHUB CO. Tehran Iran
| | - Abolfazl Barati
- Department of Chemical Engineering, Faculty of Engineering, Arak University Arak Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Technologies, Tehran University of Medical Sciences Tehran 14177-55469 Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Technologies, Tehran University of Medical Sciences Tehran 14177-55469 Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences Semnan Iran
| | - Zeynab Mirzaei
- Faculty of Biomedical Engineering, Amirkabir University of Technology Hafez str. 424 Tehran Iran
- Department of Tissue Engineering, TISSUEHUB CO. Tehran Iran
| |
Collapse
|
39
|
Dehshahri A, Kumar A, Madamsetty VS, Uzieliene I, Tavakol S, Azedi F, Fekri HS, Zarrabi A, Mohammadinejad R, Thakur VK. New Horizons in Hydrogels for Methotrexate Delivery. Gels 2020; 7:2. [PMID: 33396629 PMCID: PMC7839000 DOI: 10.3390/gels7010002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Since its first clinical application, methotrexate (MTX) has been widely used for the treatment of human diseases. Despite great advantages, some properties such as poor absorption, short plasma half-life and unpredictable bioavailability have led researchers to seek novel delivery systems to improve its characteristics for parenteral and oral administration. Recently, great attention has been directed to hydrogels for the preparation of MTX formulations. This review describes the potential of hydrogels for the formulation of MTX to treat cancer, rheumatoid arthritis, psoriasis and central nervous system diseases. We will delineate the state-of-the-art and promising potential of hydrogels for systemic MTX delivery as well as transdermal delivery of the drug-using hydrogel-based formulations.
Collapse
Affiliation(s)
- Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA;
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; (S.T.); (F.A.)
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; (S.T.); (F.A.)
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Hojjat Samareh Fekri
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7619813159, Iran;
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Reza Mohammadinejad
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| |
Collapse
|
40
|
Ihsan J, Farooq M, Khan MA, Khan AS, Muhammad S, Ahmad N, Haleem A, Shah LA, Saeed S, Siddiq M. Acacia Gum Hydrogels Embedding the In Situ Prepared Silver Nanoparticles; Synthesis, Characterization, and Catalytic Application. Catal Letters 2020. [DOI: 10.1007/s10562-020-03380-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Ahsan A, Farooq MA, Parveen A. Thermosensitive Chitosan-Based Injectable Hydrogel as an Efficient Anticancer Drug Carrier. ACS OMEGA 2020; 5:20450-20460. [PMID: 32832798 PMCID: PMC7439394 DOI: 10.1021/acsomega.0c02548] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/24/2020] [Indexed: 05/31/2023]
Abstract
A thermosensitive, physically cross-linked injectable hydrogel was formulated for the effective and sustained delivery of disulfiram (DSF) to the cancer cells as there is no hydrogel formulation available until now for the delivery of DSF. As we know, hydrogels have an advantage over other drug delivery systems because of their unique properties, so we proposed to formulate an injectable hydrogel system for the sustained delivery of an anticancer drug (DSF) to cancer cells. To investigate the surface morphology, a scanning electron microscope study was carried out, and for thermal stability of hydrogels, TGA (thermogravimetric analysis) and DSC (differential scanning calorimetry) were performed. The rheological behavior of hydrogels was evaluated with the increasing temperature and time. These developed hydrogels possessing excellent biocompatibility could be injected at room temperature following rapid gel formation at body temperature. The swelling index and in vitro drug release studies were performed at different pH (6.8 and 7.4) and temperatures (25 and 37 °C). The cell viability of the blank hydrogel, free DSF solution, and Ch/DSF (chitosan/DSF)-loaded hydrogel was studied by MTT assay on SMMC-7721 cells for 24 and 48 h, which exhibited higher cytotoxicity in a dose-dependent manner in contrast to the free DSF solution. Moreover, the cellular uptake of DSF-loaded hydrogels was observed stronger as compared with free DSF. Hence, chitosan-based hydrogels loaded with DSF possessing exceptional properties can be used as a novel injectable anticancer drug for the sustained delivery of DSF for long-term cancer therapy.
Collapse
Affiliation(s)
- Anam Ahsan
- College
of Animal Science & Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, PR China
| | - Muhammad Asim Farooq
- Department
of Pharmaceutics, School of Pharmacy, China
Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Amna Parveen
- College
of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Republic
of Korea
| |
Collapse
|
42
|
Ahsan A, Farooq MA, Ahsan Bajwa A, Parveen A. Green Synthesis of Silver Nanoparticles Using Parthenium Hysterophorus: Optimization, Characterization and In Vitro Therapeutic Evaluation. Molecules 2020; 25:molecules25153324. [PMID: 32707950 PMCID: PMC7435648 DOI: 10.3390/molecules25153324] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 01/31/2023] Open
Abstract
Traditional synthetic techniques for silver nanoparticles synthesis involve toxic chemicals that are harmful to humans as well as the environment. The green chemistry method for nanoparticle synthesis is rapid, eco-friendly, and less toxic as compared to the traditional methods. In the present research, we synthesized silver nanoparticles employing a green chemistry approach from Parthenium hysterophorus leaf extract. The optimized parthenium silver nanoparticles (PrSNPs) had a mean particle size of 187.87 ± 4.89 nm with a narrow size distribution of 0.226 ± 0.009 and surface charge −34 ± 3.12 mV, respectively. The physicochemical characterization of optimized SNPs was done by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the transmission electron microscopy (TEM) analysis indicates the spherical shape of NPs with an average diameter of 20–25 nm. PrSNPs were investigated for in vitro antibacterial, antifungal, anti-inflammatory, and antioxidant properties, and showed excellent profiles. The cytotoxic activity was analyzed against two cancer cell lines, i.e., B16F10 and HepG2 for 24 h and 48 h. PrSNPs proved to be an excellent anticancer agent. These PrSNPs were also employed for the treatment of wastewater by monitoring the E. coli count, and it turned out to be reduced by 58%; hence these NPs could be used for disinfecting water. Hence, we can propose that PrSNPs could be a suitable candidate as an antimicrobial, antioxidant, anti-inflammatory, and antitumor agent for the treatment of several ailments.
Collapse
Affiliation(s)
- Anam Ahsan
- College of Animal Science & Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China;
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211100 Nanjing, China;
| | - Ali Ahsan Bajwa
- Weeds Research Unit, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia;
| | - Amna Parveen
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu Incheon 406–799, Korea
- Correspondence: ; Tel.: +82-10-5925-2733
| |
Collapse
|