1
|
Health Effect of N-Nitroso Diethylamine in Treated Water on Gut Microbiota Using a Simulated Human Intestinal Microbiota System. Processes (Basel) 2022. [DOI: 10.3390/pr10030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chlorination disinfection byproducts (CDBPs) can exert adverse human health effects. Many toxicology-based studies confirmed the health hazards of CDBPs, but little research has been done on gut microbiome. We explored the effect of CDBPs on intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). The results showed that CDBPs slightly inhibited the production of short-chain fatty acids, and the abundance of Actinobacteria decreased in the transverse colon and descending colon. The abundance of Proteobacteria increased in the ascending colon and descending colon, while it decreased in the transverse colon. The abundance of Firmicutes decreased in both the ascending colon and descending colon. In particular, the abundance of Lachnospiraceae members, Bilophila, Oscillospira, Parabacteroides, Desulfovibrio, and Roseburia increased in the ascending colon, while the abundance of Sutterella, Bacteroides, Escherichia, Phascolarctobacterium, Clostridium, Citrobacter, and Klebsiella increased in the descending colon. The Shannon index differed significantly in both the ascending colon and descending colon before and after exposure. Overall, we demonstrate the feasibility of applying the SHIME model to studying the effects of intestinal toxicity on health of chlorinated by-products. The findings of this study improve our understanding of the health impact of CDBPs on the intestinal microbiota and better control of CDBPs in treated water is recommended.
Collapse
|
2
|
Lee S, Lee W, Yang S, Suh YJ, Hong DG, Chang SC, Kim HS, Lee J. Di- n-butyl phthalate disrupts neuron maturation in primary rat embryo neurons and male C57BL/6 mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:56-70. [PMID: 34488563 DOI: 10.1080/15287394.2021.1973631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Di-n-butyl phthalate (DBP) is commonly used as a plasticizer and its usage continues to increase in conjunction with plastic consumption. DBP is readily released into air, drinking water, and soil, and unfortunately, is a potent endocrine disrupter that impairs central nervous system functions. Previously DBP was found to (1) arrest the cell cycle of C17.2 neural progenitor cells (NPCs) at the G1 phase, (2) reduce numbers of newly generated neural stem cells in the mouse hippocampus, and (3) adversely affect learning and memory. Other investigators also noted DBP-mediated neurotoxic effects, but as yet, no study has addressed the adverse effects of DBP on neuronal differentiation. Data demonstrated that at 200 μM DBP induced apoptosis in rat embryo primary neurons by increasing reactive oxygen species levels and inducing mitochondrial dysfunction. However, no significant effect was detected on neurons at concentrations of ≤100 μM. In contrast, doublecortin/microtubule associated protein-2 (DCX/MAP2) immunocytochemistry showed that DBP at 100 μM delayed neuronal maturation by increasing protein levels of DCX (an immature neuronal marker), without markedly affecting cell viability. Further in vivo studies confirmed that DCX+ cell numbers were significantly elevated in the hippocampus of DBP-treated mice, indicating that DBP delayed neuronal maturation, which is known to be associated with impaired memory retention. Data demonstrated that DBP might disrupt neuronal maturation, which is correlated with reduced neurocognitive functions.
Collapse
Affiliation(s)
- Seulah Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Wonjong Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute Of Food And Drug Safety Evaluation, Ministry of Food and Drug Safety, Heungdeok-gu, Korea
| | - Seonguk Yang
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Yeon Ji Suh
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Dong Geun Hong
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Seobu-ro, Republic of Korea1
| | | |
Collapse
|
3
|
Sedha S, Lee H, Singh S, Kumar S, Jain S, Ahmad A, Bin Jardan YA, Sonwal S, Shukla S, Simal-Gandara J, Xiao J, Huh YS, Han YK, Bajpai VK. Reproductive toxic potential of phthalate compounds - State of art review. Pharmacol Res 2021; 167:105536. [PMID: 33677105 DOI: 10.1016/j.phrs.2021.105536] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023]
Abstract
Phthalates are pervasive compounds, and due to the ubiquitous usage of phthalates, humans or even children are widely exposed to them. Since phthalates are not chemically bound to the plastic matrix, they can easily leach out to contaminate the peripheral environment. Various animal and human studies have raised vital health concern including developmental and reproductive toxicity of phthalate exposure. The present review is based upon the available literature on phthalates with respect to their reproductive toxic potential. Common reproductive effects such as declined fertility, reduced testis weight, variations in accessory sex organs and several female reproductive disorders appeared to be largely associated with the transitional phthalates. Among the higher molecular weight phthalates (≥ C7), di-isononyl phthalate (DINP) produces some minor effects on development of male reproductive tract and among low molecular weight phthalates (≤C3), di-methyl (DMP) and di-isobutyl (DIBP) phthalate produce some adverse effects on male reproductive system. Whereas transitional phthalates such as di-butyl phthalate, benzyl butyl phthalate, and di-(2-ethylhexyl) phthalate have shown adverse effects on female reproductive system. Owing to these, non-toxic alternatives to phthalates may be developed and use of phthalates could be rationalized as an important issue where human reproduction system is involved. Though, more epidemiological studies are needed to substantiate the reported findings on phthalates.
Collapse
Affiliation(s)
- Sapna Sedha
- Department of Biotechnology, Dr Hari Singh Gour Vishwavidyalaya, Sagar 470003, MP, India
| | - Hoomin Lee
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea
| | - Siddhartha Singh
- Government Girls P.G. College for Excellence, Sagar 470002, MP, India
| | - Sunil Kumar
- National Institute of Occupational Health - ICMR, Meghaninagar, Ahmedabad 380016, Gujarat, India
| | - Subodh Jain
- Department of Biotechnology, Dr Hari Singh Gour Vishwavidyalaya, Sagar 470003, MP, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sonam Sonwal
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea
| | - Shruti Shukla
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana 131028, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense E-32004, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense E-32004, Spain.
| | - Yun Suk Huh
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, South Korea.
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, South Korea.
| |
Collapse
|
4
|
Abarikwu SO, Simple G, Onuoha SC, Mokwenye I, Ayogu JF. Evaluation of the protective effects of quercetin and gallic acid against oxidative toxicity in rat's kidney and HEK-293 cells. Toxicol Rep 2020; 7:955-962. [PMID: 32874919 PMCID: PMC7451806 DOI: 10.1016/j.toxrep.2020.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Gallic acid has better antioxidant protective effect than quercetin in vivo. Quercetin has better antioxidant protective effect than gallic acid in vitro. The antioxidant effect of quercetin was at the least concentration tested. The antioxidant effect of gallic acid was at a higher concentrated tested. The in vivo dosage for the antioxidant effects of quercetin in the kidney is low.
Quercetin and gallic acid are phytochemicals with interesting pharmacological properties. We herein investigated the protective effect of quercetin (QUE) in comparison with gallic acid (GAL) against exogenously-induced oxidative damage in rats’ kidney and human embryonic kidney (HEK-293) cell lines. Adult Wistar rats were treated with QUE and GAL (50 mg/kg) separately or in combination with di-n-butylphthalate (DnBP) for 14 days; and HEK-293 cells were treated with different concentrations of GAL (25−294 μM) or QUE (2−17 μM or 28−165.43 μM) singly or in combination with H2O2 (200 μM). After treatment, the kidney and cell extracts were processed for biochemical analysis and histopathology. We found that GAL but not QUE prevented DnBP-induced increase in lipid peroxidation (2.603 ± 0.25 vs. 3.65 ± 0.21 μmol/mL). Treatment with QUE but not GAL was associated with increased plasma creatinine (729.09 ± 55.68 vs. 344.25 ± 50.78 μmol/l) and tissue malondialdehyde (3.72 ± 0.62 vs. 1.67 ± 0.47 μmol/mL) concentrations, along with histo-pathological changes such as glomerular and tubular degenerations. However, QUE exhibited wider therapeutic concentration ranges than GAL at which it inhibits lipid peroxidation in HEK-293 cells, and was found to inhibit H2O2-induced lipid peroxidation even at the lowest concentration (2 μM) that was tested (0.607 ± 0.074 vs. 0.927 ± 0.106 μmol/l). These suggest that the in vivo dosages required for the antioxidant protective effects of QUE in renal tissues are low.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | - Godwin Simple
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | - Samuel Chimezie Onuoha
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | - Ifeoma Mokwenye
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| | - Jean-Frances Ayogu
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
5
|
Dibutyl Phthalate (DBP)-Induced Apoptosis and Neurotoxicity are Mediated via the Aryl Hydrocarbon Receptor (AhR) but not by Estrogen Receptor Alpha (ERα), Estrogen Receptor Beta (ERβ), or Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Mouse Cortical Neurons. Neurotox Res 2016; 31:77-89. [PMID: 27581038 PMCID: PMC5209414 DOI: 10.1007/s12640-016-9665-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/11/2016] [Accepted: 08/20/2016] [Indexed: 12/24/2022]
Abstract
Dibutyl phthalate (di-n-butyl phthalate, DBP) is one of the most commonly used phthalate esters. DBP is widely used as a plasticizer in a variety of household industries and consumer products. Because phthalates are not chemically bound to products, they can easily leak out to enter the environment. DBP can pass through the placental and blood–brain barriers due to its chemical structure, but little is known about its mechanism of action in neuronal cells. This study demonstrated the toxic and apoptotic effects of DBP in mouse neocortical neurons in primary cultures. DBP stimulated caspase-3 and LDH activities as well as ROS formation in a concentration (10 nM–100 µM) and time-dependent (3–48 h) manner. DBP induced ROS formation at nanomolar concentrations, while it activated caspase-3 and LDH activities at micromolar concentrations. The biochemical effects of DBP were accompanied by decreased cell viability and induction of apoptotic bodies. Exposure to DBP reduced Erα and Pparγ mRNA expression levels, which were inversely correlated with protein expression of the receptors. Treatment with DBP enhanced Ahr mRNA expression, which was reflected by the increased AhR protein level observed at 3 h after exposure. ERα, ERβ, and PPARγ antagonists stimulated DBP-induced caspase-3 and LDH activities. AhR silencing demonstrated that DBP-induced apoptosis and neurotoxicity are mediated by AhR, which is consistent with the results from DBP-induced enhancement of AhR mRNA and protein expression. Our study showed that AhR is involved in DBP-induced apoptosis and neurotoxicity, while the ERs and PPARγ signaling pathways are impaired by the phthalate.
Collapse
|
6
|
Ferguson KK, Loch-Caruso R, Meeker JD. Urinary phthalate metabolites in relation to biomarkers of inflammation and oxidative stress: NHANES 1999-2006. ENVIRONMENTAL RESEARCH 2011; 111:718-26. [PMID: 21349512 PMCID: PMC3110976 DOI: 10.1016/j.envres.2011.02.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/28/2011] [Accepted: 02/03/2011] [Indexed: 05/18/2023]
Abstract
Phthalate esters are a class of compounds utilized extensively in widely-distributed consumer goods, and have been associated with various adverse health outcomes in previous epidemiologic research. Some of these health outcomes may be the result of phthalate-induced increases in oxidative stress or inflammation, which have been demonstrated in animal studies. The aim of this study was to explore the relationship between urinary phthalate metabolite concentrations and serum markers of inflammation and oxidative stress (C-reactive protein (CRP) and gamma glutamyltransferase (GGT), respectively). Subjects were participants in the National Health and Nutrition Examination Survey (NHANES) between the years 1999 and 2006. In multivariable linear regression models, we observed significant positive associations between CRP and mono-benzyl phthalate (MBzP) and mono-isobutyl phthalate (MiBP). There were CRP elevations of 6.0% (95% confidence interval (CI) 1.7-10.8%) and 8.3% (95% CI 2.9-14.0%) in relation to interquartile range (IQR) increases in urinary MBzP and MiBP, respectively. GGT was positively associated with mono(2-ethylhexyl) phthalate (MEHP) and an MEHP% variable calculated from the proportion of MEHP in comparison to other di(2-ethylhexyl) phthalate (DEHP) metabolites. IQR increases in MEHP and MEHP% were associated with 2.5% (95% CI 0.2-4.8%) and 3.7% (95% CI 1.7-5.7%) increases in GGT, respectively. CRP and GGT were also inversely related to several phthalate metabolites, primarily oxidized metabolites. In conclusion, several phthalate monoester metabolites that are detected in a high proportion of urine samples from the US general population are associated with increased serum markers of inflammation and oxidative stress. On the other hand, several oxidized phthalate metabolites were inversely associated with these markers. These relationships deserve further exploration in both experimental and observational studies.
Collapse
Affiliation(s)
- Kelly K Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | | |
Collapse
|
7
|
Meeker JD, Hu H, Cantonwine DE, Lamadrid-Figueroa H, Calafat AM, Ettinger AS, Hernandez-Avila M, Loch-Caruso R, Téllez-Rojo MM. Urinary phthalate metabolites in relation to preterm birth in Mexico city. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1587-92. [PMID: 20019910 PMCID: PMC2790514 DOI: 10.1289/ehp.0800522] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 06/16/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Rates of preterm birth have been rising over the past several decades. Factors contributing to this trend remain largely unclear, and exposure to environmental contaminants may play a role. OBJECTIVE We investigated the relationship between phthalate exposure and preterm birth. METHODS Within a large Mexican birth cohort study, we compared third-trimester urinary phthalate metabolite concentrations in 30 women who delivered preterm (< 37 weeks of gestation) with those of 30 controls (> or = 37 weeks of gestation). RESULTS Concentrations of most of the metabolites were similar to those reported among U.S. females, although in the present study mono-n-butyl phthalate (MBP) concentrations were higher and monobenzyl phthalate (MBzP) concentrations lower. In a crude comparison before correcting for urinary dilution, geometric mean urinary concentrations were higher for the phthalate metabolites MBP, MBzP, mono(3-carboxylpropyl) phthalate, and four metabolites of di(2-ethyl-hexyl) phthalate among women who subsequently delivered preterm. These differences remained, but were somewhat lessened, after correction by specific gravity or creatinine. In multivariate logistic regression analysis adjusted for potential confounders, elevated odds of having phthalate metabolite concentrations above the median level were found. CONCLUSIONS We found that phthalate exposure is prevalent among this group of pregnant women in Mexico and that some phthalates may be associated with preterm birth.
Collapse
Affiliation(s)
- John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ryu JY, Lee E, Kim HJ, Park H, Im JY, Kim J, Han SY, Kang IH, Park KL, Kim HS. Alterations of di( n-butyl)phthalate-induced oxidative stress in the testis of hypothyroid rats. TOXICOLOGICAL & ENVIRONMENTAL CHEMISTRY 2008; 90:113-126. [DOI: 10.1080/02772240701284451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
|
9
|
Lee E, Ahn MY, Kim HJ, Kim IY, Han SY, Kang TS, Hong JH, Park KL, Lee BM, Kim HS. Effect of di(n-butyl) phthalate on testicular oxidative damage and antioxidant enzymes in hyperthyroid rats. ENVIRONMENTAL TOXICOLOGY 2007; 22:245-55. [PMID: 17497641 DOI: 10.1002/tox.20259] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This study compared the effects of di(n-butyl) phthalate (DBP) on the oxidative damage and antioxidant enzymes activity in testes of hyperthyroid rats. Hyperthyroidism was induced in pubertal male rats by intraperitoneal injection of triiodothyronine (T3, 10 microg/kg body weight) for 30 days. An oral dose of DBP (750 mg/kg) was administered simultaneously to normal or hyperthyroid (T3) rats over a 30-day period. No changes in body weight were observed in the hyperthyroid groups (T3, T3 + DBP) compared with controls. There were significantly higher serum T3 levels observed in the hyperthyroid rats than in the control, but the serum thyroid stimulating hormone levels were markedly lower in the hyperthyroid rats. DBP significantly decreased the weight of the testes in the normal (DBP) and hyperthyroid (T3 + DBP) groups. The serum testosterone concentrations were significantly lower in only DBP group. DBP significantly increased the 8-hydroxy-2-deoxyguanosine (8-OHdG) level in the testes, whereas the DBP-induced 8-OHdG levels were slightly higher in T3 + DBP group. Superoxide dismutase and glutathione peroxidase activities were significantly higher in the testes of the DBP or T3 + DBP groups. Catalase (CAT) activity was significantly higher in the DBP treatment group, but the T3 + DBP group showed slightly lower DBP-induced CAT activity. The testicular expression of thyroid hormone receptor alpha-1 (TRalpha-1) was significantly higher in the DBP groups, and androgen receptor (AR) expression was not detected in the DBP treatment group. In addition, DBP significantly increased the peroxisome proliferator-activated receptor-r (PPAR-r) levels in the testis. These results suggest that hyperthyroidism can cause a change in the expression level of PPAR-r in testes, and may increase the levels of oxidative damage induced by the metabolic activation of DBP.
Collapse
Affiliation(s)
- Ena Lee
- Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University, San 30, Jangjun-Dong, Gumjung-Ku, Busan, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kim HS, Kim TS, Shin JH, Moon HJ, Kang IH, Kim IY, Oh JY, Han SY. Neonatal exposure to di(n-butyl) phthalate (DBP) alters male reproductive-tract development. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2004; 67:2045-2060. [PMID: 15513902 DOI: 10.1080/15287390490514859] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The purpose of this study was to evaluate male reproductive-organ development in early postnatal male rats following neonatal exposure to di(n-butyl) phthalate (DBP) and identify a mechanism of action. Neonatal male rats were injected subcutaneously from d 5 to 14 after birth with corn oil (control) and DBP (5, 10, or 20 mg/animal). Animals were killed at postnatal day (PND) 31 and PND 42, respectively, and testes, epididymis, seminal vesicles, ventral prostate, levator ani plus bulbocavernosus muscles (LABC), and Cowper's glands were weighed. In addition, the expressions of androgen receptor (AR), estrogen receptors (ERs), and steroidogenic factor-1 (SF-1) were also examined in the testes. Total body weights gains were significantly reduced at PND 29-31, but gradually recovered on PND 42. However, DBP (20 mg/animal) significantly reduced the weights of testes and accessory sex organs (seminal vesicles, LABC, and Cowper's glands), but not of the epididymis. These adverse effects persisted through puberty at PND 42. Serum testosterone levels did not show any significant changes in the control and DBP treatment groups. Histomorphological examination showed mild diffuse Leydig-cell hyperplasia in the interstitium of severely affected tubules on PND 31. Only a few multinuclear germ cells were observed. DBP (20 mg/animal) significantly decreased the expression of AR, whereas ER expression and SF-1 expression were increased in a dose-dependent manner on PND 31 in the rat testes. On PND 42, DBP (20 mg/animal) significantly inhibited ER expression in the testes, but not AR, ER, and SF-1. These results demonstrate that neonatal exposure to DBP produces permanent changes in the endocrine system and leads to abnormal male reproductive-tract development until puberty. Thus our data suggest that DBP is likely to exert its antiandrogenic actions through disruption of AR or ER expression during the early neonatal stage.
Collapse
Affiliation(s)
- Hyung Sik Kim
- Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University, Pusan, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kato K, Shoda S, Takahashi M, Doi N, Yoshimura Y, Nakazawa H. Determination of three phthalate metabolites in human urine using on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 788:407-11. [PMID: 12705982 DOI: 10.1016/s1570-0232(03)00041-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (on-line SPE-HPLC-MS/MS) method was developed for the analysis of metabolites of three phthalate esters in human urine at the low nanogram per milliliter level. The recoveries were above 84.3% and relative standard deviations varied from 0.8 to 4.8%. The compounds along with their deuterated internal standards were detected in the negative ion mode by selective reaction monitoring and the accuracy of the method was improved by isotope dilution. Monobutyl phthalate was detected with median level of 22.5 ng/ml. The median levels for monobenzyl phthalate and monoethylhexyl phthalate were less than the limit of quantitation (LOQ). The on-line SPE-HPLC-MS/MS method allowed the possibility of determining these metabolites within a short time, with increased sensitivity and by using decreased amounts of sample and solvent.
Collapse
Affiliation(s)
- Kayoko Kato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | |
Collapse
|