1
|
Quiroga D, Coy-Barrera C. Use of Chitosan as a Precursor for Multiple Applications in Medicinal Chemistry: Recent Significant Contributions. Mini Rev Med Chem 2024; 24:1651-1684. [PMID: 38500287 DOI: 10.2174/0113895575275799240306105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Chitosan (CS) is a polymer made up of mainly deacetylated β-1,4 D-glucosamine units, which is part of a large group of D-glucosamine oligomers known as chitooligosaccharides, which can be obtained from chitin, most abundant natural polymer after cellulose and central component of the shrimp exoskeleton. It is known that it can be used for the development of materials, among which its use stands out in wastewater treatment (removal of metal ions, dyes, and as a membrane in purification processes), food industry (anti-cholesterol and fat, packaging material, preservative, and food additive), agriculture (seed and fertilizer coating, controlled release agrochemicals), pulp and paper industry (surface treatment, adhesive paper), cosmetics (body creams, lotions, etc.), in the engineering of tissues, wound healing, as excipients for drug administration, gels, membranes, nanofibers, beads, microparticles, nanoparticles, scaffolds, sponges, and diverse biological ones, specifically antibacterial and antifungal activities. This article reviews the main contributions published in the last ten years regarding the use and application of CS in medical chemistry. The applications exposed here involve regenerative medicine in the design of bioprocesses and tissue engineering, Pharmaceutical sciences to obtain biomaterials, polymers, biomedicine, and the use of nanomaterials and nanotechnology, toxicology, and Clinical Pharmaceuticals, emphasizing the perspectives and the direction that can take research in this area.
Collapse
Affiliation(s)
- Diego Quiroga
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Carlos Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| |
Collapse
|
2
|
Trousil J, Dal NJK, Fenaroli F, Schlachet I, Kubíčková P, Janoušková O, Pavlova E, Škorič M, Trejbalová K, Pavliš O, Sosnik A. Antibiotic-Loaded Amphiphilic Chitosan Nanoparticles Target Macrophages and Kill an Intracellular Pathogen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201853. [PMID: 35691939 DOI: 10.1002/smll.202201853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this work, levofloxacin (LVX), a third-generation fluoroquinolone antibiotic, is encapsulated within amphiphilic polymeric nanoparticles of a chitosan-g-poly(methyl methacrylate) produced by self-assembly and physically stabilized by ionotropic crosslinking with sodium tripolyphosphate. Non-crosslinked nanoparticles display a size of 29 nm and a zeta-potential of +36 mV, while the crosslinked counterparts display 45 nm and +24 mV, respectively. The cell compatibility, uptake, and intracellular trafficking are characterized in the murine alveolar macrophage cell line MH-S and the human bronchial epithelial cell line BEAS-2B in vitro. Internalization events are detected after 10 min and the uptake is inhibited by several endocytosis inhibitors, indicating the involvement of complex endocytic pathways. In addition, the nanoparticles are detected in the lysosomal compartment. Then, the antibacterial efficacy of LVX-loaded nanoformulations (50% w/w drug content) is assessed in MH-S and BEAS-2B cells infected with Staphylococcus aureus and the bacterial burden is decreased by 49% and 46%, respectively. In contrast, free LVX leads to a decrease of 8% and 5%, respectively, in the same infected cell lines. Finally, intravenous injection to a zebrafish larval model shows that the nanoparticles accumulate in macrophages and endothelium and demonstrate the promise of these amphiphilic nanoparticles to target intracellular infections.
Collapse
Affiliation(s)
- Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | | | | | - Inbar Schlachet
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Pavla Kubíčková
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
- Department of Biology, Faculty of Science, University of J. E. Purkyně, Ústí nad Labem, 400 96, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 162 00, Czech Republic
| | - Miša Škorič
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, 612 42, Czech Republic
| | - Kateřina Trejbalová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Oto Pavliš
- Military Health Institute, Military Medical Agency, Prague, 160 00, Czech Republic
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Faculty of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
3
|
Frigaard J, Jensen JL, Galtung HK, Hiorth M. The Potential of Chitosan in Nanomedicine: An Overview of the Cytotoxicity of Chitosan Based Nanoparticles. Front Pharmacol 2022; 13:880377. [PMID: 35600854 PMCID: PMC9115560 DOI: 10.3389/fphar.2022.880377] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
The unique properties and applications of nanotechnology in targeting drug delivery, cosmetics, fabrics, water treatment and food packaging have received increased focus the last two decades. The application of nanoparticles in medicine is rapidly evolving, requiring careful investigation of toxicity before clinical use. Chitosan, a derivative of the natural polysaccharide chitin, has become increasingly relevant in modern medicine because of its unique properties as a nanoparticle. Chitosan is already widely used as a food additive and in food packaging, bandages and wound dressings. Thus, with an increasing application worldwide, cytotoxicity assessment of nanoparticles prepared from chitosan is of great interest. The purpose of this review is to provide an updated status of cytotoxicity studies scrutinizing the safety of chitosan nanoparticles used in biomedical research. A search in Ovid Medline from 23 March 1998 to 4 January 2022, with the combination of the search words Chitosan or chitosan, nanoparticle or nano particle or nanosphere or nanocapsule or nano capsule, toxicology or toxic or cytotoxic and mucosa or mucous membrane resulted in a total of 88 articles. After reviewing all the articles, those involving non-organic nanoparticles and cytotoxicity assays conducted exclusively on nanoparticles with anti-tumor effect (i.e., having cytotoxic effect) were excluded, resulting in 70 articles. Overall, the chitosan nanoparticles included in this review seem to express low cytotoxicity regardless of particle composition or cytotoxicity assay and cell line used for testing. Nonetheless, all new chitosan derivatives and compositions are recommended to undergo careful characterization and cytotoxicity assessment before being implemented on the market.
Collapse
Affiliation(s)
- Julie Frigaard
- Department of Oral Surgery and Oral Medicine, Institute of Clinical Odontology, University of Oslo, Oslo, Norway
- *Correspondence: Julie Frigaard,
| | - Janicke Liaaen Jensen
- Department of Oral Surgery and Oral Medicine, Institute of Clinical Odontology, University of Oslo, Oslo, Norway
| | | | - Marianne Hiorth
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Wang D, Marin L, Cheng X. Fluorescent chitosan-BODIPY macromolecular chemosensors for detection and removal of Hg 2+ and Fe 3+ ions. Int J Biol Macromol 2022; 198:194-203. [PMID: 34973270 DOI: 10.1016/j.ijbiomac.2021.12.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/26/2022]
Abstract
The detection of heavy metals, such as Hg2+ and Fe3+, is of great significance. In this work, fluorescent small-molecule BODIPY (BY-3) bearing CC group was synthesized firstly. And then, the chitosan-based polymer sensor CY-1 was synthesized through the spontaneous NH2/C≡C click reaction. The synthesized CY-1 can effectively bind and recognize Hg2+/Hg+ by the -C=N groups formed in the click reaction. Moreover, the macromolecular sensors CS-1 and CS-2 were synthesized by incorporating another recognition sites to CY-1. These synthesized macromolecular sensors can not only recognize Hg2+/Hg+, but also effectively recognize Fe3+/Fe2+. All of them exhibited significant quenching effect, visible to the naked eye under UV irradiation. The detection limit of CY-1 for Hg2+ was 1.51 × 10-6 mol/L, and the detection limit of CS-2 for Fe3+ was 2.30 × 10-6 mol/L. The BODIPY-chitosan sensors synthesized in this work have the functions of removing heavy metal ions besides the identifying ability. The maximum adsorption capacity of 1 g chitosan to Hg2+ was 108 mg as the best one. This article provides a new method to prepare macromolecular sensors for the detection and removal of heavy metal ions. As a useful natural polymer, chitosan's application scope was enlarged.
Collapse
Affiliation(s)
- Die Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
5
|
Wang D, Marin L, Cheng X. Chitosan-bodipy macromolecular fluorescent probes prepared by click reactions for highly sensitive and selective recognition of 2,4-dinitrophenylhydrazine. NEW J CHEM 2022. [DOI: 10.1039/d2nj03923k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chitosan-based probes were prepared and they could identify 2,4-dinitrophenylhydrazine (DNH). CC bonds formed in a click reaction act as recognizing sites for DNH.
Collapse
Affiliation(s)
- Die Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China, 430073
| | - Luminita Marin
- “Petru Poni’’ Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China, 430073
| |
Collapse
|
6
|
Krishnan V, Pandey GR, Babu KA, Paramasivam S, Kumar SS, Balasubramanian S, Ravichandiran V, Pazhani GP, Veerapandian M. Chitosan grafted butein: A metal-free transducer for electrochemical genosensing of exosomal CD24. Carbohydr Polym 2021; 269:118333. [PMID: 34294343 DOI: 10.1016/j.carbpol.2021.118333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022]
Abstract
Metal-free cost-efficient biocompatible molecules are beneficial for opto-electrochemical bioassays. Herein, chitosan (CS) conjugated butein is prepared via graft polymerization. Structural integrity between radical active sites of CS and its probable conjugation routes with reactive OH group of butein during grafting were comprehensively studied using optical absorbance/emission property, NMR, FT-IR and XPS analysis. Fluorescence emission of CS-conjugated butein (CSB) was studied in dried flaky state as well as in drop casted form. Cyclic voltammetric study of CSB modified glassy carbon electrode exhibits 2e-/2H+ transfer reaction in phosphate buffered saline electrolyte following a surface-confined process with a correlation coefficient of 0.99. Unlike pristine butein, CSB modified electrode display a highly reversible redox behavior under various pH ranging from 4 to 9. For the proof-of-concept CSB-modified flexible screen printed electrodes were processed for electrochemical biosensing of exosomal CD24 specific nucleic acid at an ultralow sample concentration, promising for ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Vinoth Krishnan
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, Tamil Nadu, India
| | - Gaurav R Pandey
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, Tamil Nadu, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Kannadasan Anand Babu
- Dr. A.P.J Abdul Kalam Centre of Excellence in Innovation and Entrepreneurship, Dr. M.G.R Educational and Research Institute, Chennai 600 095, Tamil Nadu, India
| | - Selvaraj Paramasivam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, Tamil Nadu, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Shanmugam Senthil Kumar
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, Tamil Nadu, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Subramanian Balasubramanian
- Electroplating and Metal Finishing Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, Tamil Nadu, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700 054, India
| | - Gururaja Perumal Pazhani
- Chettinad School of Pharmaceutical Sciences, Chettinad Academy of Research and Education, Rajiv Gandhi Salai, (OMR), Kelambakkam 603 103, Tamil Nadu, India
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, Tamil Nadu, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
7
|
Morris AS, Givens BE, Silva A, Salem AK. Copper Oxide Nanoparticle Diameter Mediates Serum‐Sensitive Toxicity in BEAS‐2B Cells. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Angie S. Morris
- Department of Pharmaceutical Sciences College of Pharmacy University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Department of Chemistry College of Liberal Arts and Sciences University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
| | - Brittany E. Givens
- Department of Pharmaceutical Sciences College of Pharmacy University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Department of Chemical and Biochemical Engineering College of Engineering University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Department of Chemical and Materials Engineering College of Engineering University of Kentucky Lexington KY 40506 USA
| | - Aaron Silva
- Department of Pharmaceutical Sciences College of Pharmacy University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Roy J. Carver Department of Biomedical Engineering College of Engineering University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences College of Pharmacy University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Department of Chemistry College of Liberal Arts and Sciences University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Department of Chemical and Biochemical Engineering College of Engineering University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
- Roy J. Carver Department of Biomedical Engineering College of Engineering University of Iowa 115 S. Grand Avenue, S228 PHAR Iowa City IA 52242 USA
| |
Collapse
|
8
|
Liu P, Wang R, Su W, Qian C, Li X, Gao L, Jiao T. Research advances in preparation and application of chitosan nanofluorescent probes. Int J Biol Macromol 2020; 163:1884-1896. [DOI: 10.1016/j.ijbiomac.2020.09.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
|
9
|
Vashist A, Atluri V, Raymond A, Kaushik A, Parira T, Huang Z, Durygin A, Tomitaka A, Nikkhah-Moshaie R, Vashist A, Agudelo M, Chand HS, Saytashev I, Ramella-Roman JC, Nair M. Development of Multifunctional Biopolymeric Auto-Fluorescent Micro- and Nanogels as a Platform for Biomedical Applications. Front Bioeng Biotechnol 2020; 8:315. [PMID: 32426338 PMCID: PMC7203429 DOI: 10.3389/fbioe.2020.00315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/23/2020] [Indexed: 01/04/2023] Open
Abstract
The emerging field of theranostics for advanced healthcare has raised the demand for effective and safe delivery systems consisting of therapeutics and diagnostics agents in a single monarchy. This requires the development of multi-functional bio-polymeric systems for efficient image-guided therapeutics. This study reports the development of size-controlled (micro-to-nano) auto-fluorescent biopolymeric hydrogel particles of chitosan and hydroxyethyl cellulose (HEC) synthesized using water-in-oil emulsion polymerization technique. Sustainable resource linseed oil-based polyol is introduced as an element of hydrophobicity with an aim to facilitate their ability to traverse the blood-brain barrier (BBB). These nanogels are demonstrated to have salient features such as biocompatibility, stability, high cellular uptake by a variety of host cells, and ability to transmigrate across an in vitro BBB model. Interestingly, these unique nanogel particles exhibited auto-fluorescence at a wide range of wavelengths 450-780 nm on excitation at 405 nm whereas excitation at 710 nm gives emission at 810 nm. In conclusion, this study proposes the developed bio-polymeric fluorescent micro- and nano- gels as a potential theranostic tool for central nervous system (CNS) drug delivery and image-guided therapy.
Collapse
Affiliation(s)
- Arti Vashist
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Venkata Atluri
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Andrea Raymond
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Ajeet Kaushik
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
- Division of Sciences, Art, and Sciences, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, United States
| | - Tiyash Parira
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Zaohua Huang
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
- Department of Otolaryngology, University of Miami School of Medicine, Miami, FL, United States
| | - Andriy Durygin
- CeSMEC, Florida International University, Miami, FL, United States
| | - Asahi Tomitaka
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Roozbeh Nikkhah-Moshaie
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Science, New Delhi, India
| | - Marisela Agudelo
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Hitendra S. Chand
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| | - Ilyas Saytashev
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Department of Cellular Biology, Pharmacology and Ophthalmology, Herbert Wertheim College of Medicine, Miami, FL, United States
| | - Jessica C. Ramella-Roman
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Department of Cellular Biology, Pharmacology and Ophthalmology, Herbert Wertheim College of Medicine, Miami, FL, United States
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Institute of NeuroImmune Pharmacology, Florida International University, Miami, FL, United States
| |
Collapse
|
10
|
Naim K, Nair ST, Yadav P, Shanavas A, Neelakandan PP. Supramolecular Confinement within Chitosan Nanocomposites Enhances Singlet Oxygen Generation. Chempluschem 2018; 83:418-422. [PMID: 31957367 DOI: 10.1002/cplu.201800041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/12/2018] [Indexed: 11/10/2022]
Abstract
The synthesis of water-soluble chitosan nanocomposites incorporating BODIPY and the investigation of their photosensitization properties is reported. It was observed that the singlet oxygen generation capability of nanocomposites containing a mixture of BODIPY and iodine-containing molecules are higher than that of the nanocomposites containing BODIPY alone. It is hypothesized that the supramolecular interactions between BODIPY and iodine-containing molecules confined within the nanocomposites lead to the enhanced singlet oxygen generation.
Collapse
Affiliation(s)
- Khalid Naim
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Sreejisha T Nair
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Pranjali Yadav
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Prakash P Neelakandan
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| |
Collapse
|
11
|
Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B 2018; 8:34-50. [PMID: 29872621 PMCID: PMC5985630 DOI: 10.1016/j.apsb.2017.11.005] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/05/2017] [Accepted: 10/07/2017] [Indexed: 12/14/2022] Open
Abstract
Natural biomacromolecules have attracted increased attention as carriers in biomedicine in recent years because of their inherent biochemical and biophysical properties including renewability, nontoxicity, biocompatibility, biodegradability, long blood circulation time and targeting ability. Recent advances in our understanding of the biological functions of natural-origin biomacromolecules and the progress in the study of biological drug carriers indicate that such carriers may have advantages over synthetic material-based carriers in terms of half-life, stability, safety and ease of manufacture. In this review, we give a brief introduction to the biochemical properties of the widely used biomacromolecule-based carriers such as albumin, lipoproteins and polysaccharides. Then examples from the clinic and in recent laboratory development are summarized. Finally the current challenges and future prospects of present biological carriers are discussed.
Collapse
Key Words
- ABD, albumin binding domain
- ACM, aclacinomycin
- ACS, absorbable collagen sponge
- ADH, adipic dihydrazide
- ART, artemisinin
- ASF, Antheraea mylitta silk fibroin
- ATRA, all-trans retinoic acid
- ATS, artesunate
- BCEC, brain capillary endothelial cells
- BMP-2, bone morphogenetic protein-2
- BSA, bovine serum albumin
- BSF, Bombyx mori silk fibroin
- Biomacromolecule
- CC-HAM, core-crosslinked polymeric micelle based hyaluronic acid
- CD, cyclodextrin
- CD-NPs, amphiphilic MMA–tBA β-CD star copolymers that are capable of forming nanoparticles
- CD-g-CS, chitosan grafted with β-cyclodextrin
- CD/BP, cyclodextrin–bisphosphonate complexes
- CIA, collagen-induced arthritis
- CM, collagen matrices
- CMD-ChNP, carboxylmethyl dextran chitosan nanoparticle
- DHA, dihydroartesunate
- DOXO-EMCH, (6-maleimidocaproyl)hydrazone derivative of doxorubicin
- DOX–TRF, doxorubincin–transferrin conjugate
- DTX-HPLGA, HA coated PLGA nanoparticulate docetaxel
- Drug delivery
- ECM, extracellular matrix
- EMT, epithelial mesenchymal transition
- EPR, enhanced permeability and retention
- FcRn, neonatal Fc receptor
- GAG, glycosaminoglycan
- GC-DOX, glycol–chitosan–doxorubicin conjugate
- GDNF, glial-derived neurotrophic factor
- GO, grapheme oxide
- GSH, glutathione
- Gd, gadolinium
- HA, hyaluronic acid
- HA-CA, catechol-modified hyaluronic acid
- HCF, heparin-conjugated fibrin
- HDL, high density lipoprotein
- HEK, human embryonic kidney
- HSA, human serum albumin
- IDL, intermediate density lipoprotein
- INF, interferon
- LDL, low density lipoprotein
- LDLR, low density lipoprotein receptor
- LDV, leucine–aspartic acid–valine
- LMWH, low molecular weight heparin
- MSA, mouse serum albumin
- MTX–HSA, methotrexate–albumin conjugate
- NIR, near-infrared
- NSCLC, non-small cell lung cancer
- OP-Gel-NS, oxidized pectin-gelatin-nanosliver
- PEC, polyelectrolyte
- PTX, paclitaxel
- Polysaccharide
- Protein
- RES, reticuloendothelial system
- RGD, Arg–Gly–Asp peptide
- SF, silk fibroin
- SF-CSNP, silk fibroin modified chitosan nanoparticle
- SFNP, silk fibroin nanoparticle
- SPARC, secreted protein acidic and rich in cysteine
- TRAIL, tumor-necrosis factor-related apoptosis-inducing ligand
- Tf, transferrin
- TfR, transferrin receptor
- Tissue engineering
- VEGF, vascular endothelial growth factor
- VLDL, very low density lipoprotein
- pDNA, plasmid DNA
- rHDL, recombinant HDL
- rhEGF-2/HA, recombinant human fibroblast growth factor type 2 in a hyaluronic acid carrier
Collapse
Affiliation(s)
| | | | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|