1
|
Fitrya, Elfita, Lamin S, Ashfa FA, Novita RP, Amriani A. The potency of ethyl acetate fraction of cempedak (Artocarpus champeden) leaves in attenuating the nephrotoxic effect in gentamicin-piroxicam-induced rat models. J Ayurveda Integr Med 2025; 16:101040. [PMID: 39799839 PMCID: PMC11773062 DOI: 10.1016/j.jaim.2024.101040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/25/2024] [Accepted: 07/03/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Nephrotoxicity is a condition characterized by a decline in kidney function due to the toxic effects of medications and substances, such as the nephrotoxic antibiotic gentamicin. Artocarpus champeden is a traditional medicinal plant that is commonly found in Indonesia. OBJECTIVE This study aims to evaluate the potential of the ethyl acetate fraction of Artocarpus champeden leaves (FEC) in improving kidney function in an animal model of nephrotoxicity induced by gentamicin and piroxicam. MATERIALS AND METHODS Three groups of animals were treated with FEC at dosages of 125, 250, and 500 mg/kg BW orally for four weeks following induction with 100 mg/kg gentamicin (Gen) intraperitoneally and 3.6 mg/kg piroxicam (Prx) orally. The nephroprotective effect of FEC was compared with the NaCMC (5%), ketosteril (55 mg/kg), and untreated groups as the normal, positive, and negative controls, respectively. The kidney biochemical examinations and histopathological analysis were conducted on the last day. RESULTS Compared to the negative control group, FEC-treated animals showed significant improvement in kidney function, correlating with increasing doses. The test group also exhibited increased creatinine clearance and improved cell structure, comparable to samples treated with ketosteril. The nephroprotective effect of FEC is likely attributed to its flavonoid content, acting through antioxidant and anti-inflammatory mechanisms. CONCLUSION The ethyl acetate fraction of A. champeden leaves demonstrated nephroprotective activity and has potential as a therapeutic agent for kidney damage and hypertension from natural sources.
Collapse
Affiliation(s)
- Fitrya
- Department of Pharmacy, Universitas Sriwijaya, South Sumatera, Indonesia.
| | - Elfita
- Department of Chemistry, Universitas Sriwijaya, South Sumatera, Indonesia
| | - Syafrina Lamin
- Department of Biology, Universitas Sriwijaya, South Sumatera, Indonesia
| | - Fima Amalia Ashfa
- Department of Pharmacy, Universitas Sriwijaya, South Sumatera, Indonesia
| | | | - Annisa Amriani
- Department of Pharmacy, Universitas Sriwijaya, South Sumatera, Indonesia
| |
Collapse
|
2
|
Shang Y, Zhu Y, Zhou S, Liu Y, Wei S, Zhou H, Jiang Y, Wang Y, Geng T, Wang Q, He J. A UPLC-MS/MS coupled with GC-MS method for quantification of twenty-one chemical ingredients from Suxiao Jiuxin pill in multiple tissue of rat and its application to tissue distribution study. J Pharm Biomed Anal 2025; 252:116461. [PMID: 39255555 DOI: 10.1016/j.jpba.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Suxiao Jiuxin pill (SJP) was a commonly-used traditional Chinese medicine for treating cardiovascular diseases. It was composed of the rhizome of Ligusticum chuanxiong Hort. and Borneolum Syntheticum. The distribution of SJP in vivo was still ambiguous. A UPLC-MS/MS coupled with GC-MS method was developed to quantify twenty-one chemical ingredients in multiple tissues from rat after administration of SJP. Protein precipitation and liquid-liquid microextraction were both utilized in sample pretreatment. All analytes were detected under acceptable specificity, linearity (correlation coefficient > 0.992), sensitivity (LLOQ < 12.5 ng/mL), precision (RSD < 14.8 %), accuracy (RE < ±14.6 %), extraction recovery (between 52.8 % and 124.1 %), matrix effect (ranged from 60.5 % and 149.7 %) and stability (RE < ±16.0 %). The established method was successfully applied in the tissue distribution study of SJP in rats. As a result, the distribution characteristics of ten analytes were clearly elucidated, including borneol, isoborneol, ligustilide, senkyunolide A, ferulic acid, senkyunolide I, levistolide A, neocnidilide, senkyunolide H and angelicide. The information provided by this research was greatly meaningful for the active chemical ingredient exploration and clinical application of SJP.
Collapse
Affiliation(s)
- Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yameng Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuting Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shujie Wei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hong Zhou
- Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited NO.6 Traditional Chinese Medicine Factory, Tianjin 300401, China
| | - Yongping Jiang
- Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited NO.6 Traditional Chinese Medicine Factory, Tianjin 300401, China
| | - Yuli Wang
- Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited Traditional Chinese Pharmacy Research Institute, Tianjin, 300457, China
| | - Tong Geng
- Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited Traditional Chinese Pharmacy Research Institute, Tianjin, 300457, China
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Cumaoglu MO, Makav M, Dag S, Uysal AY, Baser L, LeBaron TW, Alwazeer D. Combating oxidative stress and inflammation in gentamicin-induced nephrotoxicity using hydrogen-rich water. Tissue Cell 2024; 91:102604. [PMID: 39531856 DOI: 10.1016/j.tice.2024.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Gentamicin-induced nephrotoxicity primarily results from renal inflammatory cascades and increased oxidative stress. This study aims to examine the effects of hydrogen-rich water (HRW) on gentamicin-induced renal damage in rats. Thirty-two rats were equally divided into four groups, including control (no treatment), hydrogen, gentamicin, and gentamicin+hydrogen. At the end of one week, all animals were euthanized following ethical rules, and blood and tissue samples were analyzed for examining Malondialdehyde (MDA), glutathione (GSH), Tumor Necrosis Factor-Alfa (TNF-α), Tumor Necrosis Factor-Beta (TNF-β), Interleukin 6 (IL-6), endoglin, endocan, urea, creatinine, Na+, and K+ parameters. Levels of 8-Hydroxyguanosine (8-OHdG), MDA, and Bax were immunohistochemically analyzed. Data showed that while MDA (control P<0.0001, H2P<0.0001, Genta+H2P<0.0007), TNF-α (control P<0.0002, H2P<0.0040, Genta+H2P<0.0381), IL-6 (control P<0.0044, H2P<0.0070, Genta+H2P<0.0109), endocan (control P<0.0460, H2P<0.0286, Genta+H2P<0.0452), and endoglin (control P<0.0131, H2P<0.0164, Genta+H2P<0.0397), urea (control P<0.0024, H2P<0.0001, Genta+H2P<0.0180), and creatinine parameters (control P<0.0017, H2P<0.0178, Genta+H2P<0.0011) increased in the gentamicin group compared to the other groups, a decrease in these parameters was observed in the gentamicin+hydrogen group compared to the gentamicin group. The Genta group had greater levels of TNF-β than the control (P<0.0042) and H2 groups (P<0.0268). GSH content was higher in the hydrogen group compared to the gentamicin group. Immunohistochemically, 8-OHdG, MDA, and Bax expressions increased in the gentamicin group compared to the control group, whereas they decreased in the gentamicin+hydrogen group compared to the gentamicin group. Hydrogen may be an alternative treatment for oxidative stress-induced nephrotoxicity.
Collapse
Affiliation(s)
- Mustafa Oguz Cumaoglu
- Niğde Ömer Halisdemir University, Faculty of Medicine, Department of Emergency Medicine, Niğde, Türkiye.
| | - Mustafa Makav
- Kafkas University, Faculty of Veterinary Medicine, Department of Physiology, Kars, Türkiye
| | - Serpil Dag
- Kafkas University, Faculty of Veterinary Medicine, Department of Pathology, Kars, Türkiye
| | - Ayfer Yildiz Uysal
- Kafkas University, Faculty of Veterinary Medicine, Department of Pathology, Kars, Türkiye
| | - Lale Baser
- Kafkas University, Faculty of Veterinary Medicine, Department of Medical Biochemistry, Kars, Türkiye
| | - Tyler W LeBaron
- Molecular Hydrogen Institute, Cedar City, UT 84721, USA; Southern Utah University, Department of Kinesiology and Outdoor Recreation, Cedar City, UT 84720, USA
| | - Duried Alwazeer
- Iğdır University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Iğdır, Türkiye; Innovative Food Technologies Development, Application, and Research Center, Igdir University, Igdir 76000, Türkiye.
| |
Collapse
|
4
|
Wang S, Hong Y, Li Y, Zhang Z, Han J, Yang Z, Yang Y, Ma Z, Wang Q. Ferulic Acid Inhibits Arsenic-Induced Colon Injury by Improving Intestinal Barrier Function. ENVIRONMENTAL TOXICOLOGY 2024; 39:4821-4831. [PMID: 38881217 DOI: 10.1002/tox.24360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/13/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024]
Abstract
The prolonged exposure to arsenic results in intestinal barrier dysfunction, which is strongly concerned with detrimental processes such as oxidative stress and the inflammatory response. Ferulic acid (FA), as a phenolic acid, possesses the capability to mitigate arsenic-induced liver damage and cardiotoxic effects dependent on inhibition of oxidative stress and inflammatory responses. FA can mitigate testicular tissue damage and alveolar epithelial dysfunction, the mechanism of which may rely on nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) activation and nuclear factor-kappa B (NF-κB) pathway blocking. Based on the antioxidant and anti-inflammatory properties of FA, we speculated that FA might have the potential to inhibit arsenic-induced intestinal damage. To confirm this scientific hypothesis, mice exposed to sodium arsenite were treated with FA to observe colonic histopathology and TJ protein levels, and oxidative stress and TJ protein levels in Caco-2 cells exposed to sodium arsenite were assessed after FA intervention. In addition, molecular levels of NF-κB and Nrf2/HO-1 pathway in colon and Caco-2 cells were also detected. As shown in our data, FA inhibited arsenic-induced colon injury, which was reflected in the improvement of mucosal integrity, the decrease of down-regulated expression of tight junction (TJ) proteins (Claudin-1, Occludin, and ZO-1) and the inhibition of oxidative stress. Similarly, treatment with FA attenuated the inhibitory effect of arsenic on TJ protein expression in Caco-2 cells. In addition to suppressing the activation of NF-κB pathway, FA retrieved the activation of Nrf2/HO-1 pathway in colon and intestinal epithelial cells induced by arsenic. In summary, our findings propose that FA has the potential to mitigate arsenic-induced intestinal damage by preserving the integrity of intestinal epithelial TJs and suppressing oxidative stress. These results lay the groundwork for the potential use of FA in treating colon injuries caused by arsenic.
Collapse
Affiliation(s)
- Shumin Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yan Hong
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yuxiu Li
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhenfen Zhang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Jing Han
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhe Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yanping Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhaolei Ma
- Department of Geriatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Qi Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
5
|
Saha S, Mondal C, Mandal S, Ray MS, Lyndem LM. In vitro anthelmintic efficacy of Ferulic and Sinapic acid against zoonotic cestode Hymenolepis diminuta (Rudolphi, 1819). J Parasit Dis 2024; 48:501-513. [PMID: 39145371 PMCID: PMC11319579 DOI: 10.1007/s12639-024-01689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/13/2024] [Indexed: 08/16/2024] Open
Abstract
The present study is aimed to investigate potential in vitro anthelmintic efficacy of two phenolic compounds Ferulic acid and Sinapic acid against the parasite H. diminuta. Adult parasites collected from infected rat's intestine (maintained in our laboratory) were treated with 1, 2.5, 5, 10 and 20 mg/mL concentrations of both the compounds in RPMI-1640 media containing 1% Tween 20. Further, one group was treated in Praziquantel as a reference drug and another group of parasites were kept as control. The efficacy was evaluated on the basis of motility and mortality of the parasites. The paralyzed worms were further processed for the morphological and ultrastructural studies and observed through light and scanning electron microscopy. A significant dose-dependent efficacy was found in all treatment and decrease in relative movability value was also recorded in all the concentrations of two compounds treated parasites. The time taken for paralysis in 5 mg/mL of Ferulic acid and 10 mg/mL of Sinapic acid were 1.47 ± 0.04 h and 0.88 ± 0.03 h respectively which is accorded with the standard concentration of Praziquantel. Morphological micrographs revealed pronounced distortion and altered topography of scolex and tegument while histological study showed loss of uniform tegumental integrity with folds and cracks in the treated parasites. Further, extensive alteration in the scolex and irrevocable disruption all over the body surface with loss of trapezoid shape, shrinkage of tegument and sloughing off microtriches were observed in electron microscopic study. The study indicated that both the compounds possess strong activity against H. diminuta and further studies are required to understand their detailed mode of action to exploit them as potential alternative candidates for curing helminthiases.
Collapse
Affiliation(s)
- Samiparna Saha
- Parasitology Research Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, West Bengal 731235 India
| | - Chandrani Mondal
- Parasitology Research Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, West Bengal 731235 India
| | - Sudeshna Mandal
- Parasitology Research Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, West Bengal 731235 India
| | - Mou Singha Ray
- Parasitology Research Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, West Bengal 731235 India
| | - Larisha M. Lyndem
- Parasitology Research Laboratory, Department of Zoology, Visva-Bharati, Santiniketan, West Bengal 731235 India
| |
Collapse
|
6
|
Yin SH, Zhang WJ, Jiang LL, Wang GY, Jeon YJ, Ding Y, Li Y. Protective effects of the secondary metabolites from Quercus salicina Blume against gentamicin-induced nephrotoxicity in zebrafish (Danio rerio) model. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109952. [PMID: 38852915 DOI: 10.1016/j.cbpc.2024.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
To reveal the protective effect on the nephrotoxicity of Quercus salicina Blume(QS), a traditional medicine for the treatment of urolithiasis, the 50 % ethanol extract from the branches and leaves of QS was chemically studied by systematic solvent extraction and HPLC chromatography. Two phenolic acids and three flavonoids were identified by nuclear magnetic resonance spectroscopy, namely Ferulic acid (1), p-Hydroxycinnamic acid (2), Hesperidin (3), Formononetin (4), and Quercetin (5). At the same time, the gentamicin-induced nephrotoxicity of zebrafish was used as a model for the first time. The antioxidant activity of these derivatives with good antioxidant activity screened from free radical scavenging experiments in vitro (DPPH and ABTS) was evaluated in vivo, including protein levels (LPO, NO, GSH, and SOD), kidney injury factor (KIM-1), zebrafish kidney pathology and real-time PCR. The results showed that metabolites 1, 3, and 5 had strong antioxidant activity, and oxidative stress in renal tissue was significantly reduced; KIM-1, TNF-α, and IL-6 mRNA expression in a dose-dependent manner, which preliminarily revealed the protective effect of the secondary metabolites of QS on nephrotoxicity, and preliminarily discussed the structure-activity relationship. This study provides an experimental basis for further exploring the mechanism of QS in the kidney.
Collapse
Affiliation(s)
- Shuang-Hui Yin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Wen-Jun Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Lu-Lu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Guang-Yue Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - You-Jin Jeon
- School of Marine Biomedical Science, Je Ju National University, Je ju Daehakro, Je ju City 63243, Republic of Korea
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin Province, China.
| |
Collapse
|
7
|
Akcakavak G, Kazak F, Karatas O, Alakus H, Alakus I, Kirgiz O, Celik Z, Yilmaz Deveci MZ, Ozdemir O, Tuzcu M. Eucalyptol regulates Nrf2 and NF-kB signaling and alleviates gentamicin-induced kidney injury in rats by downregulating oxidative stress, oxidative DNA damage, inflammation, and apoptosis. Toxicol Mech Methods 2024; 34:413-422. [PMID: 38115227 DOI: 10.1080/15376516.2023.2297234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Gentamicin, an aminoglycoside antibiotic, is nowadays widely used in the treatment of gram-negative microorganisms. The antimicrobial, anti-inflammatory, and antioxidant activities of eucalyptol, a type of saturated monoterpene, have been reported in many studies. The aim of this study was to examine the possible effects of eucalyptol on gentamicin-induced renal toxicity. A total of 32 rats were divided into 4 groups; Control (C), Eucalyptol (EUC), Gentamicin (GEN), and Gentamicin + Eucalyptol (GEN + EUC). In order to induce renal toxicity, 100 mg/kg gentamicin was administered intraperitoneally (i.p.) for 10 consecutive days in the GEN and GEN + EUC groups. EUC and GEN + EUC groups were given 100 mg/kg orally of eucalyptol for 10 consecutive days. Afterwards, rats were euthanized and samples were taken and subjected to histopathological, biochemical, immunohistochemical, and real-time PCR examinations. The blood urea nitrogen (BUN) and creatinine (CRE) levels were significantly decreased in the GEN + EUC group (0.76 and 0.69-fold, respectively) compared to the GEN group. The glutathione peroxidase (GPx) and catalase (CAT) activities were significantly increased in the GEN + EUC group (1.35 and 2.67-fold, respectively) compared to the GEN group. In GEN group, Nuclear factor kappa B (NF-kB), Interleukin 1-beta (IL-1β), Inducible nitric oxide synthase (iNOS), Tumor necrosis factor-α (TNF-α), Caspase-3, 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and Nuclear factor erythroid 2-related factor (Nrf2) expression levels were found to be quite irregular. GEN + EUC group decreased the expressions of NF-kB, IL-1β, iNOS, TNF-α, Caspase-3, and 8-OHdG (0.55, 0.67, 0.54, 0.54, 0.63 and 0.67-fold, respectively), while it caused increased expression of Nrf2 (3.1 fold). In addition, eucalyptol treatment ameliorated the histopathological changes that occurred with gentamicin. The results of our study show that eucalyptol has anti-inflammatory, antioxidative, antiapoptotic, nephroprotective, and curative effects on gentamicin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Gokhan Akcakavak
- Department of Pathology, Yozgat Bozok University, Yozgat, Turkey
| | - Filiz Kazak
- Department of Biochemistry, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ozhan Karatas
- Department of Pathology, Cumhuriyet University, Sivas, Turkey
| | - Halil Alakus
- Department of Surgery Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ibrahim Alakus
- Department of Surgery Hatay Mustafa Kemal University, Hatay, Turkey
| | - Omer Kirgiz
- Department of Surgery Hatay Mustafa Kemal University, Hatay, Turkey
| | - Zeynep Celik
- Department of Pathology, Selcuk University, Konya, Turkey
| | | | - Ozgur Ozdemir
- Department of Pathology, Selcuk University, Konya, Turkey
| | - Mehmet Tuzcu
- Department of Pathology, Selcuk University, Konya, Turkey
| |
Collapse
|
8
|
Rahimi Monfared S, Valibeik A, Tavakoli Dastjerd N, Jafaripour L, Jafarian A, Nabi Moradi M, Ahmadvand H. Protective role of citronellol on antioxidant enzymes and oxidative damage induced by gentamicin in experimental nephrotoxic rats. Mol Biol Rep 2024; 51:382. [PMID: 38430358 DOI: 10.1007/s11033-024-09212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/04/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Gentamicin leads to nephrotoxicity with increasing oxidative stress. In the present research the role of citronellol on oxidative damage induced by gentamicin in nephrotoxic rats was evaluated. METHODS AND RESULTS Forty-twomale Wistar rats were randomly divided into seven equal groups; healthy control, gentamicin, DMSO, citronellol 50, citronellol 100, citronellol 200 and vitamin E. The animals were anesthetized after 12 days of treatment. Kidney and serum samples were received for biochemical, histological changes, and gene expression assessments. The levels of serum glutathione (GSH), serum and kidney glutathione peroxidase (GPX) and the expression of GPX gene against gentamicin group were increased in citronellol treatment groups. The levels of serum and kidney malondialdehyde (MDA), urine protein, serum creatinine and the gene expression of inflammatory factors including tumor necrosis factor-alpha (TNF-α) and Interleukin 6 (IL-6) against gentamicin group were decreased in these groups. Moreover, recuperation in histological alterations was shown in three groups receiving citronellol compared to the gentamicin group. CONCLUSIONS Citronellol with its antioxidant and anti-inflammatory properties can decrease kidney damage caused by nephrotoxicity induced by gentamicin.
Collapse
Affiliation(s)
- Sobhan Rahimi Monfared
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Valibeik
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Niloufar Tavakoli Dastjerd
- Department of Medical Biotechnology, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Leila Jafaripour
- Department of Anatomy, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Ashkan Jafarian
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Nabi Moradi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Ahmadvand
- Medical Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
9
|
Aurelien-Cabezas NS, Paz-Michel BA, Jacinto-Cortes I, Delgado-Enciso OG, Montes-Galindo DA, Cabrera-Licona A, Zaizar-Fregoso SA, Paz-Garcia J, Ceja-Espiritu G, Melnikov V, Guzman-Esquivel J, Rodriguez-Sanchez IP, Martinez-Fierro ML, Delgado-Enciso I. Protective Effect of Neutral Electrolyzed Saline on Gentamicin-Induced Nephrotoxicity: Evaluation of Histopathologic Parameters in a Murine Model. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:397. [PMID: 36837598 PMCID: PMC9968118 DOI: 10.3390/medicina59020397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Background and Objectives: Gentamicin (GM) is a nephrotoxic aminoglycoside. Neutral electrolyzed saline (SES) is a compound with anti-inflammatory, antioxidant, and immunomodulatory properties. The objective of the present study was to evaluate whether kidney damage by GM can be prevented and/or reversed through the administration of SES. Materials and Methods: The study was carried out as a prospective, single-blind, five-arm, parallel-group, randomized, preclinical trial. The nephrotoxicity model was established in male BALB/c mice by administering GM at a dose of 100 mg/kg/day intraperitoneally for 30 days, concomitantly administering (+) SES or placebo (physiologic saline solution), and then administering SES for another 30 days after the initial 30 days of GM plus SES or placebo. At the end of the test, the mice were euthanized, and renal tissues were evaluated histopathologically. Results: The GM + placebo group showed significant tubular injury, interstitial fibrosis, and increased interstitial infiltrate of inflammatory cells compared with the group without GM. Tubular injury and interstitial fibrosis were lower in the groups that received concomitant GM + SES compared with the GM + placebo group. SES administration for 30 days after the GM administration periods (GM + placebo and GM + SES for 30 days) did not reduce nephrotoxicity. Conclusions: Intraperitoneal administration of SES prevents gentamicin-induced histologic nephrotoxicity when administered concomitantly, but it cannot reverse the damage when administered later.
Collapse
Affiliation(s)
| | - Brenda A. Paz-Michel
- School of Medicine, University of Colima, Colima 28040, Mexico
- Department of Research, Esteripharma SA de CV, Atlacomulco 50450, Mexico
| | - Ivan Jacinto-Cortes
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico
| | - Osiris G. Delgado-Enciso
- School of Medicine, University of Colima, Colima 28040, Mexico
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico
| | | | | | - Sergio A. Zaizar-Fregoso
- School of Medicine, University of Colima, Colima 28040, Mexico
- Department of Research, Esteripharma SA de CV, Atlacomulco 50450, Mexico
| | - Juan Paz-Garcia
- Union Hospital Center, Villa de Álvarez, Colima 28970, Mexico
| | | | - Valery Melnikov
- School of Medicine, University of Colima, Colima 28040, Mexico
| | - Jose Guzman-Esquivel
- Clinical Epidemiology Research Unit, Mexican Institute of Social Security Institute, Villa de Álvarez 28984, Mexico
| | - Iram P. Rodriguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Unidad de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Ivan Delgado-Enciso
- School of Medicine, University of Colima, Colima 28040, Mexico
- Department of Research, Esteripharma SA de CV, Atlacomulco 50450, Mexico
| |
Collapse
|
10
|
Castañeda R, Cáceres A, Cruz SM, Aceituno JA, Marroquín ES, Barrios Sosa AC, Strangman WK, Williamson RT. Nephroprotective plant species used in traditional Mayan Medicine for renal-associated diseases. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115755. [PMID: 36181985 DOI: 10.1016/j.jep.2022.115755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of kidney disease has increased rapidly in recent years and has emerged as one of the leading causes of mortality worldwide. Natural products have been suggested as valuable nephroprotective agents due to their multi-target and synergistic effects on modulating important proteins involved in kidney injury. There is a large number of plant species that have been used traditionally for kidney-related conditions in Mesoamerican medicine by different cultural groups that could provide a valuable source of nephroprotective therapeutic candidates and could lead to potential drug discovery. AIM OF REVIEW This review aims to provide an overview of the currently known efficacy of plant species used traditionally in Mesoamerica by Mayan groups to treat kidney-related conditions and to analyze the phytochemical, pharmacological, molecular, toxicological, and clinical evidence to contribute to public health efforts and for directing future research. METHODS Primary sources of plant use reports for traditional kidney-related disorders in Mesoamerica were searched systematically from library catalogs, theses, and scientific databases (PubMed, Google Scholar; and Science Direct), and were filtered according to usage frequency in Mayan groups and plant endemism. The database of traditional plants was further analyzed based on associations with published reports of the phytochemical, pharmacological, molecular, toxicological, and clinical evidence. RESULTS The most reported kidney-related conditions used traditionally in Mayan medicine involve reducing renal damage (a cultural interpretation that considers an inflammatory or infectious condition), cleaning or purifying the blood and kidney, reducing kidney pain, and eliminating kidney stones. A total of 208 plants used for kidney-related problems by 10 Mayan groups were found, representing 143 native species, where only 42 have reported pharmacological activity against kidney damage, mainly approached by in vitro and in vivo models of chemical- or drug-induced nephrotoxicity, diabetes nephropathy, and renal injury produced by hypertension. Nephroprotective effects are mainly mediated by reducing oxidative stress, inflammatory response, fibrosis mechanisms, and apoptosis in the kidney. The most common nephroprotective compounds associated with traditional Mayan medicine were flavonoids, terpenoids, and phenolic acids. The most widely studied traditional plants in terms of pharmacological evidence, bioactive compounds, and mechanisms of action, are Annona muricata L., Carica papaya L., Ipomoea batatas (L.) Lam., Lantana camara L., Sechium edule (Jacq.) Sw., Tagetes erecta L., and Zea mays L. Most of the plant species with reported pharmacological activity against kidney damage were considered safe in toxicological studies. CONCLUSION Available pharmacological reports suggest that several herbs used in traditional Mayan medicine for renal-associated diseases may have nephroprotective effects and consistent pharmacological evidence, nephroprotective compounds, and mechanisms of action in different models of kidney injury. However, more research is required to fully understand the potential of traditional Mayan medicine in drug discovery given the limited ethnobotanical studies and data available for most species with regards to identification on bioactive components, pharmacological mechanisms, and the scarce number of clinical studies.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | | | - Sully M Cruz
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - J Agustín Aceituno
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - E Sebastián Marroquín
- School of Pharmacy, Faculty of Chemical Sciences and Pharmacy, University of San Carlos, Guatemala.
| | - Ana C Barrios Sosa
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, USA.
| | - Wendy K Strangman
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, USA.
| | - R Thomas Williamson
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, USA.
| |
Collapse
|
11
|
Diosmin prophylaxis reduces gentamicin-induced kidney damage in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:63-71. [PMID: 36121447 DOI: 10.1007/s00210-022-02295-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/09/2022] [Indexed: 01/29/2023]
Abstract
Gentamicin is an essential aminoglycoside antibiotic, but it is only used to treat severe bacterial infections due to its high nephrotoxicity in patients. We evaluated the preventive effects of diosmin (as a natural ingredient) on gentamicin-related kidney damage in rats. In this research, 28 male Wistar rats were divided into four groups: control, gentamicin (100 mg/kg (i.p.), daily for 1 week), gentamicin plus diosmin (50 mg/kg, p.o., daily for 2 weeks), and diosmin (50 mg/kg/day, p.o. for 2 weeks). After the final gavage, blood samples were collected for the determination of blood urea nitrogen (BUN) and creatinine. Kidneys are used for biochemical, inflammatory, and histological tests. The concentrations of creatinine, BUN, nitric oxide, malondialdehyde, tumor necrosis factor α (TNF-α), and interleukin 1 beta (IL-1β) were significantly increased. But, the level of glutathione and activities of catalase, glutathione peroxidase, and superoxide dismutase decreased during treatment with gentamicin. On the other hand, the concentrations of creatinine, BUN, nitric oxide, malondialdehyde, TNF-α, and IL-1β were significantly reduced, and the glutathione level, activities of catalase, and glutathione peroxidase were significantly increased via co-administration with diosmin. Diosmin had ameliorative impacts against gentamicin-related kidney injury due to its antioxidant and anti-inflammatory activities.
Collapse
|
12
|
Rivastigmine ameliorates gentamicin experimentally induced acute renal toxicity. Int Immunopharmacol 2023; 114:109492. [PMID: 36459920 DOI: 10.1016/j.intimp.2022.109492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
The current experiment aimed to identify the possible protective role of rivastigmine (RIVA) in gentamicin (GNT)-induced acute kidney injury (AKI) in rats. RIVA was administered in the presence and absence of GNT. Kidney function markers and serum and renal GNT concentrations were measured. Renal oxidative stress parameters as well as inflammatory and apoptotic biomarkers were evaluated. Renal histopathological assessment and nuclear factor kappa-B (NF-κB) immunohistochemical study were performed. GNT administration increased serum creatinine, urea, and cystatin C concentrations. RIVA ameliorated these changes via mitigating GNT-induced increases of renal oxidative stress, inflammation, and apoptotic parameters. RIVA showed a prompt improvement in the histopathological renal damage and a decrease in NF-κB immunoexpression. In conclusion, RIVA protective effects against GNT-induced AKI are mediated by decreasing GNT concentration in renal tissue and other effects like antioxidant and antiapoptotic effects possibly through its cholinergic anti-inflammatory action.
Collapse
|
13
|
Yuan M, Briscese K, Hong TS, Brunetti L. Natural products for the prevention of antibiotic-associated kidney injury. CURRENT OPINION IN TOXICOLOGY 2022; 32:100363. [PMID: 38884043 PMCID: PMC11178348 DOI: 10.1016/j.cotox.2022.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drug-induced acute kidney injury (AKI), especially from exposure to antibiotics, has a high prevalence secondary to their frequent prescription. Typically, drug-induced AKI results from acute tubular necrosis or acute interstitial nephritis. While some risk factors for the development of AKI in individuals treated with antibiotics are modifiable, others such as concomitant drug therapies to treat comorbidities, age, and pre-existing chronic kidney disease are not modifiable. As such, there is an urgent need to identify strategies to reduce the risk of AKI in individuals requiring antibiotic therapy. Natural products, especially those rich in active constituents possessing antioxidant properties are an attractive option to mitigate AKI risk. Given that mitochondrial dysfunction precedes AKI and natural products can restore mitochondrial health and counter the oxidative stress secondary to mitochondrial damage investigating their utility warrants further attention. The following review summarizes the available preclinical and clinical evidence that provides a foundation for future study.
Collapse
Affiliation(s)
- Marshall Yuan
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kelsey Briscese
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thomas S Hong
- Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Luigi Brunetti
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
14
|
Aoiadni N, Jdidi H, Feki AE, Fetoui H, Koubaa FG. Mitochondrial bioenergetics and redox dysfunction in nephrotoxicity induced by pyrethroid permethrin are ameliorated by flavonoid-rich fraction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63973-63987. [PMID: 35469380 DOI: 10.1007/s11356-022-20350-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The present study was designed to evaluate in vitro and in vivo the potential anti-inflammatory and nephroprotective potential of ethyl acetate fraction extracted from Fumaria officinalis (EAF) against permethrin (PER). Male wistar rats were treated daily by gavage during 7 days as follows: group C: negative control rats received 2 mL/kg bw of corn oil, group EAF: positive control rats received EAF at a dose of 200 mg/kg bw dissolved in water, group PER: rats received PER at a dose of 34.05 mg/kg bw and group (PER + EAF): rats received PER (34.05 mg/kg bw) and EAF (200 mg/kg bw). In vitro study showed the ability of EAF to inhibit protein denaturation and heat-induced hemolysis confirming its anti-inflammatory activity. In vivo, PER treatment decreased calcium (Ca) and phosphorus (P) levels and increased lactate dehydrogenase (LDH) activity in plasma. It induced oxidative stress objectified by an increase in the lipid peroxidation and protein oxidation and a perturbation of antioxidant system in kidney and mitochondria. The activities of NADH-ubiquinone reductase, ubiquinol-cytochrome C reductase and cytochrome C oxidase activities were reduced. These alterations were confirmed by histopathological studies. Co-treatment with EAF improved the antioxidant status and mitochondrial bioenergetics. The nephroprotective effects of EAF could be attributed to its modulation of detoxification enzymes and/or free radical scavenging actions.
Collapse
Affiliation(s)
- Nissaf Aoiadni
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Tunisia, Street of Soukra Km 3.5, BP 1171, 9 3000, Sfax, CP, Tunisia.
| | - Hajer Jdidi
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Tunisia, Street of Soukra Km 3.5, BP 1171, 9 3000, Sfax, CP, Tunisia
| | - Abdelfattah El Feki
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Tunisia, Street of Soukra Km 3.5, BP 1171, 9 3000, Sfax, CP, Tunisia
| | - Hamadi Fetoui
- Laboratory of Toxicology and Environmental Health.LR17ES06, Sciences Faculty of Sfax, University of Sfax, 14 BP1171, 3000, Sfax, Tunisia
| | - Fatma Ghorbel Koubaa
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Tunisia, Street of Soukra Km 3.5, BP 1171, 9 3000, Sfax, CP, Tunisia
| |
Collapse
|
15
|
Shukla D, Nandi NK, Singh B, Singh A, Kumar B, Narang RK, Singh C. Ferulic acid-loaded drug delivery systems for biomedical applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Zeng YQ, He JT, Hu BY, Li W, Deng J, Lin QL, Fang Y. Virgin coconut oil: A comprehensive review of antioxidant activity and mechanisms contributed by phenolic compounds. Crit Rev Food Sci Nutr 2022; 64:1052-1075. [PMID: 35997296 DOI: 10.1080/10408398.2022.2113361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Virgin coconut oil (VCO) is obtained by processing mature coconut cores with mechanical or natural methods. In recent years, VCO has been widely used in the food, pharmaceutical, and cosmetic industries because of its excellent functional activities. VCO has biological functions such as antioxidant, anti-inflammatory, antibacterial, and antiviral, and also has potential therapeutic effects on many chronic degenerative diseases. Among these functions, the antioxidant is the most basic and important function, which is mainly determined by phenolic compounds and medium-chain fatty acids (MCFAs). This review aims to elucidate the antioxidant functions of each phenolic compound in VCO, and discuss the antioxidant mechanisms of VCO in terms of the role of phenolic compounds with fat, intestinal microorganisms, and various organs. Besides, the composition of VCO and its application in various industries are summarized, and the biological functions of VCO are generalized, which should lay a foundation for further research on the antioxidant activity of VCO and provide a theoretical basis for the development of food additives with antioxidant activity.
Collapse
Affiliation(s)
- Yu-Qing Zeng
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jin-Tao He
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Bo-Yong Hu
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Wen Li
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Qin-Lu Lin
- Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
17
|
Liaqat H, Parveen A, Kim SY. Neuroprotective Natural Products’ Regulatory Effects on Depression via Gut–Brain Axis Targeting Tryptophan. Nutrients 2022; 14:nu14163270. [PMID: 36014776 PMCID: PMC9413544 DOI: 10.3390/nu14163270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
L-tryptophan (Trp) contributes to regulating bilateral communication of the gut–brain axis. It undergoes three major metabolic pathways, which lead to formation of kynurenine, serotonin (5-HT), and indole derivatives (under the control of the microbiota). Metabolites from the principal Trp pathway, kynurenic acid and quinolinic acid, exhibit neuroprotective activity, while picolinic acid exhibits antioxidant activity, and 5-HT modulates appetite, sleep cycle, and pain. Abnormality in Trp plays crucial roles in diseases, including depression, colitis, ulcer, and gut microbiota-related dysfunctions. To address these diseases, the use of natural products could be a favorable alternative because they are a rich source of compounds that can modulate the activity of Trp and combat various diseases through modulating different signaling pathways, including the gut microbiota, kynurenine pathway, and serotonin pathway. Alterations in the signaling cascade pathways via different phytochemicals may help us explore the deep relationships of the gut–brain axis to study neuroprotection. This review highlights the roles of natural products and their metabolites targeting Trp in different diseases. Additionally, the role of Trp metabolites in the regulation of neuroprotective and gastroprotective activities is discussed. This study compiles the literature on novel, potent neuroprotective agents and their action mechanisms in the gut–brain axis and proposes prospective future studies to identify more pharmaceuticals based on signaling pathways targeting Trp.
Collapse
Affiliation(s)
- Humna Liaqat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domzale, Slovenia
| | - Amna Parveen
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University Medical Campus, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: or (A.P.); (S.Y.K.)
| |
Collapse
|
18
|
Brkić BM, Rovčanin B, Stojanović M, Srebro D, Vučković S, Savić Vujović K. Chloroquine Attenuates Oxidative Stress in Gentamicin-Induced Nephrotoxicity in Rats. Dose Response 2022; 20:15593258221119871. [PMID: 36003319 PMCID: PMC9393693 DOI: 10.1177/15593258221119871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/25/2022]
Abstract
The wider application of gentamicin is limited by potential adverse effects
(nephrotoxicity and ototoxicity). The goal of our study was to investigate the effects of
chloroquine on biochemical and oxidative stress parameters in gentamicin-induced
nephrotoxicity in rats. Animals were randomly divided into 1 of 5 groups. First was Sham
group (0.9% NaCl) (n = 8); second group received gentamicin (n = 8); while third (n = 8),
fourth (n = 8) and fifth group (n = 8) received gentamicin and chloroquine in a dose of
0.3, 1 and 3 mg/kg, respectively. The urea and creatinine levels were significantly lower
in chloroquine treated groups in doses of 0.3 mg/kg and 1 mg/kg (P <
0.001). Total oxidant status and the oxidative stress index showed significantly lower
values in all chloroquine treated groups (P < 0.001;
P < 0.005). Malondialdehyde was lower in chloroquine treatment in
doses of 0.3 mg/kg (P < 0.005) and 3 mg/kg (P <
0.05). Chloroquine treatment markedly reduced the level of superoxide dismutase in doses
of 1 mg/kg (P < 0.01) and 3 mg/kg (P < 0.05). Our
study showed that chloroquine attenuates gentamicin-induced nephrotoxicity in rats
regarding biochemical and oxidative stress parameters.
Collapse
Affiliation(s)
- Branislava Medić Brkić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Branislav Rovčanin
- Centre for Endocrine Surgery, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragana Srebro
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sonja Vučković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Savić Vujović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Nephroprotective Effect of Asparagus africanus Lam. Root Extract against Gentamicin-Induced Nephrotoxicity in Swiss Albino Mice. J Toxicol 2022; 2022:8440019. [PMID: 35495873 PMCID: PMC9050328 DOI: 10.1155/2022/8440019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
The kidney is the organ most vulnerable to nephrotoxic drugs such as gentamicin. Nephrotoxicity is a rapid deterioration of kidney function due to various factors. Gentamicin causes nephrotoxicity, which was manifested by an increase in serum kidney biomarkers. Asparagus africanus is one of the ethnomedicinal plants used as traditional medicine for treating various ailments, including kidney disease in Ethiopian society. Thus, the aim of this study is to evaluate the nephroprotective effect of A. africanus root extract on gentamicin-induced nephrotoxicity. Using maceration techniques, 100 g of dried plant powder was extracted in 1 L of ethanol. The physicochemical screening of plant extracts revealed the presence of flavonoids, phenols, tannins, saponins, and steroids. The nephroprotective activity of A. africanus crude extract was evaluated on male Swiss albino mice. The crude ethanolic extract at 200 and 400 mg/kg doses showed strong nephroprotective effects by restoring biomarkers such as creatinine, uric acid, and blood urea nitrogen, which were damaged by gentamicin (p < 0.05) in a dose-dependent manner. The mice treated with higher doses (400 mg/kg) had a comparable nephroprotective effect compared to the positive control group (200 mg/kg silymarin; p > 0.05). The histopathology of the control group showed normal glomeruli, normal parenchyma, distal convoluted, and no tubular damage. The toxicant-induced group showed damage to glomeruli and inflammatory infiltration. Therefore, A. africanus root extract has a nephroprotective activity by retarding the gentamicin toxicity in male Swiss albino mice.
Collapse
|
20
|
Protective Effects of Ferulic Acid on Deoxynivalenol-Induced Toxicity in IPEC-J2 Cells. Toxins (Basel) 2022; 14:toxins14040275. [PMID: 35448884 PMCID: PMC9027710 DOI: 10.3390/toxins14040275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Deoxynivalenol (DON), a mycotoxin that contaminates crops such as wheat and corn, can cause severe acute or chronic injury when ingested by animals or humans. This study investigated the protective effect of ferulic acid (FA), a polyphenolic substance, on alleviating the toxicity induced by DON (40 μM) in IPEC-J2 cells. The experiments results showed that FA not only alleviated the decrease in cell viability caused by DON (p < 0.05), but increased the level of superoxide dismutase (SOD) (p < 0.01), glutathione peroxidase (GSH-Px), (catalase) CAT and glutathione (GSH) (p < 0.05) through the nuclear factor erythroid 2-related factor 2 (Nrf2)-epoxy chloropropane Kelch sample related protein-1 (keap1) pathway, and then decreased the levels of intracellular oxidative stress. Additionally, FA could alleviate DON-induced inflammation through mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-B (NF-κB) pathways, down-regulated the secretion of interleukin-6 (IL-6) (p < 0.0001), interleukin-8 (IL-8) (p < 0.05), interleukin-1β (IL-1β), interferon-γ (IFN-γ) and further attenuated the DON-induced intracellular apoptosis (10.7% to 6.84%) by regulating the expression of Bcl2-associated X protein (Bax) (p < 0.0001), B-cell lymphoma-2 (Bcl-2) (p < 0.0001), and caspase-3 (p < 0.0001). All these results indicate that FA exhibits a significantly protective effect against DON-induced toxicity.
Collapse
|
21
|
Bulboacă AE, Porfire AS, Rus V, Nicula CA, Bulboacă CA, Bolboacă SD. Protective Effect of Liposomal Epigallocatechin-Gallate in Experimental Gentamicin-Induced Hepatotoxicity. Antioxidants (Basel) 2022; 11:412. [PMID: 35204293 PMCID: PMC8869534 DOI: 10.3390/antiox11020412&set/a 900137139+983262882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Our study aimed to assess the effect of liposomal epigallocatechin-gallate (LEGCG) compared with epigallocatechin-gallate (EGCG) solution on hepatic toxicity induced by gentamicin (G) administration in rats. Five groups were evaluated, a control group (no G administration) and four groups that received G (1 mL, i.p, 80 mg/kg b.w. (body weight/day), for 7 days) to which we associated daily administration 30 min before G of EGCG (G-EGCG, 2.5 mg/0.1 kg b.w.), LEGCG (G-LEGCG, 2.5 mg/0.1 kg b.w.) or silymarin (100 mg/kg b.w./day). The nitro-oxidative stress (NOx), catalase (CAT), TNF-α, transaminases, creatinine, urea, metalloproteinase (MMP) 2 and 9, and liver histopathological changes were evaluated. LEGCG exhibited better efficacy than EGCG, improving the oxidant/antioxidant balance (p = 0.0125 for NOx and 0.0032 for CAT), TNF-α (p < 0.0001), MMP-2 (p < 0.0001), aminotransferases (p = 0.0001 for AST and 0.0136 for ALT), creatinine (p < 0.0001), urea (p = 0.0006) and histopathologic liver changes induced by gentamicin. Our study demonstrated the beneficial effect of EGCG with superior results of the liposomal formulation for hepatoprotection in experimental hepatic toxicity induced by gentamicin.
Collapse
Affiliation(s)
- Adriana Elena Bulboacă
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Vasile Rus
- Department of Cell Biology, Histology and Embryology, University of Agricultural Sciences and Veterinary Medicine, 400375 Cluj-Napoca, Romania;
| | - Cristina Ariadna Nicula
- Department of Ophthalmology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Corneliu Angelo Bulboacă
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
22
|
Protective Effect of Liposomal Epigallocatechin-Gallate in Experimental Gentamicin-Induced Hepatotoxicity. Antioxidants (Basel) 2022; 11:antiox11020412. [PMID: 35204293 PMCID: PMC8869534 DOI: 10.3390/antiox11020412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Our study aimed to assess the effect of liposomal epigallocatechin-gallate (LEGCG) compared with epigallocatechin-gallate (EGCG) solution on hepatic toxicity induced by gentamicin (G) administration in rats. Five groups were evaluated, a control group (no G administration) and four groups that received G (1 mL, i.p, 80 mg/kg b.w. (body weight/day), for 7 days) to which we associated daily administration 30 min before G of EGCG (G-EGCG, 2.5 mg/0.1 kg b.w.), LEGCG (G-LEGCG, 2.5 mg/0.1 kg b.w.) or silymarin (100 mg/kg b.w./day). The nitro-oxidative stress (NOx), catalase (CAT), TNF-α, transaminases, creatinine, urea, metalloproteinase (MMP) 2 and 9, and liver histopathological changes were evaluated. LEGCG exhibited better efficacy than EGCG, improving the oxidant/antioxidant balance (p = 0.0125 for NOx and 0.0032 for CAT), TNF-α (p < 0.0001), MMP-2 (p < 0.0001), aminotransferases (p = 0.0001 for AST and 0.0136 for ALT), creatinine (p < 0.0001), urea (p = 0.0006) and histopathologic liver changes induced by gentamicin. Our study demonstrated the beneficial effect of EGCG with superior results of the liposomal formulation for hepatoprotection in experimental hepatic toxicity induced by gentamicin.
Collapse
|
23
|
Protective Effect of Liposomal Epigallocatechin-Gallate in Experimental Gentamicin-Induced Hepatotoxicity. Antioxidants (Basel) 2022. [DOI: 10.3390/antiox11020412
expr 847787495 + 893919512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Our study aimed to assess the effect of liposomal epigallocatechin-gallate (LEGCG) compared with epigallocatechin-gallate (EGCG) solution on hepatic toxicity induced by gentamicin (G) administration in rats. Five groups were evaluated, a control group (no G administration) and four groups that received G (1 mL, i.p, 80 mg/kg b.w. (body weight/day), for 7 days) to which we associated daily administration 30 min before G of EGCG (G-EGCG, 2.5 mg/0.1 kg b.w.), LEGCG (G-LEGCG, 2.5 mg/0.1 kg b.w.) or silymarin (100 mg/kg b.w./day). The nitro-oxidative stress (NOx), catalase (CAT), TNF-α, transaminases, creatinine, urea, metalloproteinase (MMP) 2 and 9, and liver histopathological changes were evaluated. LEGCG exhibited better efficacy than EGCG, improving the oxidant/antioxidant balance (p = 0.0125 for NOx and 0.0032 for CAT), TNF-α (p < 0.0001), MMP-2 (p < 0.0001), aminotransferases (p = 0.0001 for AST and 0.0136 for ALT), creatinine (p < 0.0001), urea (p = 0.0006) and histopathologic liver changes induced by gentamicin. Our study demonstrated the beneficial effect of EGCG with superior results of the liposomal formulation for hepatoprotection in experimental hepatic toxicity induced by gentamicin.
Collapse
|
24
|
Çelik R, Mert H, Comba B, Mert N. Effects of cinnamaldehyde on glucose-6-phosphate dehydrogenase activity, some biochemical and hematological parameters in diabetic rats. Biomarkers 2022; 27:270-277. [PMID: 35078379 DOI: 10.1080/1354750x.2022.2032351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
CONTEXT Diabetes is a metabolic disorder related to blood insulin deficiency and high glucose level. Cinnamaldehyde is an important component of cinnamon and has an effect on blood glucose. OBJECTIVE It was aimed to investigate the the effect of cinnamaldehyde on the liver glutathione (GSH), glucose-6-phosphate dehidrogenase (G6PD) activity, blood glucose, protein, lipid and erythrocyte parameters, live weight in diabetic rats. MATERIAL AND METHODS Rat used for this research were divided 4 group as control, diabetic, cinnamaldehyde and diabetic + cinnamaldehyde group. The live weight and fasting blood glucose level, taken from tail vein were recorded every ten days. End of the trail the blood samples were taken from rats. Biochemical parameters with autoanalyzer and hematological parameters with blood cell counter were determined in blood. The activity of G6PD and GSH amounts were measured with ELISA in the liver tissues. RESULTS Blood sugar, triglyceride, total cholesterol, VLDL, LDL, and urea levels increased in diabetic rats, and cinnemaldehyde significantly decreased these parameters. Cinnemaldehyde also showed a positive effect on body weight, blood total protein, and mean corpuscular volume in diabetes. A decrease in HbA1c and an increase in liver G6PD, GSH activity were found in treatment group, but these changes were not statistically significant. CONCLUSION In conclusion, the antidiabetic, hypolipidemic and antioxidant effects of cinnamaldehyde were determined. It has also been shown to improve anemia, ürea levels and weight loss.
Collapse
Affiliation(s)
| | - Handan Mert
- Van Yuzuncu Yil University, Faculty of Veterinary Medicine, Department of Biochemistry, 65080 Van, Turkey
| | - Bahat Comba
- Hitit University, Technical Science Vocational High School, Department of Laboratory Technology,19600, Corum, Turkey
| | - Nihat Mert
- Van Yuzuncu Yil University, Faculty of Veterinary Medicine, Department of Biochemistry, 65080 Van, Turkey
| |
Collapse
|
25
|
Ungur RA, Borda IM, Codea RA, Ciortea VM, Năsui BA, Muste S, Sarpataky O, Filip M, Irsay L, Crăciun EC, Căinap S, Jivănescu DB, Pop AL, Singurean VE, Crișan M, Groza OB, Martiș (Petruț) GS. A Flavonoid-Rich Extract of Sambucus nigra L. Reduced Lipid Peroxidation in a Rat Experimental Model of Gentamicin Nephrotoxicity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:772. [PMID: 35160718 PMCID: PMC8837157 DOI: 10.3390/ma15030772] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022]
Abstract
The use of gentamicin (GM) is limited due to its nephrotoxicity mediated by oxidative stress. This study aimed to evaluate the capacity of a flavonoid-rich extract of Sambucus nigra L. elderflower (SN) to inhibit lipoperoxidation in GM-induced nephrotoxicity. The HPLC analysis of the SN extract recorded high contents of rutin (463.2 ± 0.0 mg mL-1), epicatechin (9.0 ± 1.1 µg mL-1), and ferulic (1.5 ± 0.3 µg mL-1) and caffeic acid (3.6 ± 0.1 µg mL-1). Thirty-two Wistar male rats were randomized into four groups: a control group (C) (no treatment), GM group (100 mg kg-1 bw day-1 GM), GM+SN group (100 mg kg-1 bw day-1 GM and 1 mL SN extract day-1), and SN group (1 mL SN extract day-1). Lipid peroxidation, evaluated by malondialdehyde (MDA), and antioxidant enzymes activity-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX)-were recorded in renal tissue after ten days of experimental treatment. The MDA level was significantly higher in the GM group compared to the control group (p < 0.0001), and was significantly reduced by SN in the GM+SN group compared to the GM group (p = 0.021). SN extract failed to improve SOD, CAT, and GPX activity in the GM+SN group compared to the GM group (p > 0.05), and its action was most probably due to the ability of flavonoids (rutin, epicatechin) and ferulic and caffeic acids to inhibit synthesis and neutralize reactive species, to reduce the redox-active iron pool, and to inhibit lipid peroxidation. In this study, we propose an innovative method for counteracting GM nephrotoxicity with a high efficiency and low cost, but with the disadvantage of the multifactorial environmental variability of the content of SN extracts.
Collapse
Affiliation(s)
- Rodica Ana Ungur
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Ileana Monica Borda
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Răzvan Andrei Codea
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Viorela Mihaela Ciortea
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Bogdana Adriana Năsui
- Department of Community Health, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Sevastița Muste
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania; (S.M.); (G.S.M.)
| | - Orsolya Sarpataky
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Miuța Filip
- Raluca Ripan Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania;
| | - Laszlo Irsay
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Elena Cristina Crăciun
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Simona Căinap
- Department of Mother and Child, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Delia Bunea Jivănescu
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Anca Lucia Pop
- Department of Clinical Laboratory, Food Safety, Nutrition, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania;
| | - Victoria Emilia Singurean
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Maria Crișan
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Oana Bianca Groza
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Georgiana Smaranda Martiș (Petruț)
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania; (S.M.); (G.S.M.)
| |
Collapse
|
26
|
Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci 2021; 284:119921. [PMID: 34481866 DOI: 10.1016/j.lfs.2021.119921] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Ferulic acid, a kind of phenolic substance widely existing in plants, is an important active component of many traditional Chinese medicines. So far, it has been proved that ferulic acid has a variety of biological activities, especially in oxidative stress, inflammation, vascular endothelial injury, fibrosis, apoptosis and platelet aggregation. Many studies have shown that ferulic acid can inhibit PI3K/AKT pathway, the production of ROS and the activity of aldose reductase. The anti-inflammatory effect of ferulic acid is mainly related to the levels of PPAR γ, CAM and NF-κ B and p38 MAPK signaling pathways. Ferulic acid not only protects vascular endothelium by ERK1/2 and NO/ET-1 signal, but also plays an anti-fibrosis role by TGF-β/Smad and MMPs/TIMPs system. Moreover, ferulic acid has ant-apoptotic and anti-platelet effects. In addition to the pharmacological effects of ferulic acid, its pharmacokinetics and derivatives were also discussed in this paper. This review provides the latest summary of the latest research on ferulic acid.
Collapse
|
27
|
Hakyemez IN, Cevizci MN, Aksoz E, Yilmaz K, Uysal S, Altun E. Protective effects of p-coumaric acid against gentamicin-induced nephrotoxicity in rats. Drug Chem Toxicol 2021; 45:2825-2832. [PMID: 34702126 DOI: 10.1080/01480545.2021.1993703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The most important side effect of gentamicin (GM) is nephrotoxicity. p-Coumaric acid (PCA) is a phenolic compound that scavenges free radicals, reduces fibrosis, and tissue damage. This study investigates the protective effect of PCA on tissue damage and kidney function in gentamicin-induced nephrotoxicity (GIN). Thirty-five rats were separated into five groups and each group contained seven animals: control group, ethanol group, GM group, PCA group, and GM + PCA group. At the end of the seven-day treatment, the rats were sacrificed after blood and kidney tissue samples were taken. While serum urea, creatinine, and neutrophil gelatinase-associated lipocalin (NGAL) levels increased significantly in the GM group compared to the control, they showed a significant decrease in the GM + PCA group compared to the GM. Serum tumor necrosis factor-α (TNF-α) and tissue malondialdehyde (MDA) levels were significantly increased in the GM group compared to the control. While the tissue total oxidant status (TOS) and oxidative stress index (OSI) values of the GM group were significantly higher than the control, they showed a significant decrease in the GM + PCA group compared to the GM. In the histopathological examination, significant tubular necrosis and tubulointerstitial inflammation were detected in the proximal tubules in the GM group compared to the control, while a significant decrease was observed in the severity of these findings in the GM + PCA group compared to the GM. This study shows that PCA has biochemical and histopathological ameliorating effects on GIN in the rat model.
Collapse
Affiliation(s)
- Ismail Necati Hakyemez
- Department of Infectious Diseases, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| | - Mehmet Nuri Cevizci
- Department of Pediatric Surgery, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| | - Elif Aksoz
- Department of Medical Pharmacology, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| | - Kenan Yilmaz
- Department of Pediatric Nephrology, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| | - Saliha Uysal
- Department of Medical Biochemistry, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| | - Eren Altun
- Department of Medical Pathology, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| |
Collapse
|
28
|
Rampelotto CR, Pereira VG, da Silva Silveira L, Rossato A, Machado AK, Sagrillo MR, Gündel A, Burger ME, Schaffazick SR, de Bona da Silva C. Ferulic acid-loaded nanocapsules: Evaluation of mucosal interaction, safety and antioxidant activity in human mononucleated cells. Toxicol In Vitro 2021; 78:105259. [PMID: 34666174 DOI: 10.1016/j.tiv.2021.105259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/17/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022]
Abstract
Ferulic acid (FA) is a phenolic compound that has antioxidant, anti-inflammatory and anticarcinogenic properties besides presenting cytoprotective activity. It has limited oral bioavailability what is a challenge to its therapeutic application. In this way, this investigation aimed to develop FA-loaded nanocapsule suspensions (NC-FA) prepared with ethylcellulose and evaluate their in vitro release profile, mucoadhesion and irritation potential; scavenging capacity, cytotoxicity, cytoprotection and genoprotection against hydrogen peroxide-induced damage in hMNC (human Mononucleated Cells) culture. The nanocapsules presented physicochemical characteristics compatible with colloidal systems (NC-FA: 112 ± 3 nm; NC-B (without FA): 107 ± 3 nm; PdI < 0.2; Span<2.0 and negative zeta potential). In addition, the nanoparticulate system promoted the FA controlled release, increasing the half-life twice through the in vitro dialysis method. NC-FA and NC-B were able to interact with mucin, which is an indicative of mucoadhesive properties and the association of FA with nanocapsules showed decreased irritation by HET-CAM method. Besides, the NC-FA did not present cytotoxicity in hMNC and improved the ATBS radical scavenging capacity. Besides, it prevented, treated and reversed oxidative conditions in a H2O2-induced model in hMNC. Thus, this nanocarrier formulation is promising to perform more preclinical investigations focusing on diseases involving oxidative mechanisms.
Collapse
Affiliation(s)
- Camila Reck Rampelotto
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Viviane Gonçalves Pereira
- Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Aline Rossato
- Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, RS, Brazil
| | | | - Michele Rorato Sagrillo
- Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, RS, Brazil
| | | | - Marilise Escobar Burger
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Scheila Rezende Schaffazick
- Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristiane de Bona da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Departamento de Farmácia Industrial, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
29
|
Recent Advances on Bioactive Ingredients of Morchella esculenta. Appl Biochem Biotechnol 2021; 193:4197-4213. [PMID: 34524632 DOI: 10.1007/s12010-021-03670-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022]
Abstract
Morchella esculenta (M. esculenta) is a delicious edible mushroom prized for its special flavor and strong health promoting abilities. Several bioactive ingredients including polysaccharides, polyphenolic compounds, proteins, and protein hydrolysates all contribute to the biological activities of M. esculenta. Different polysaccharides could be extracted and purified depending on the extraction methods and M. esculenta studied. Monosaccharide composition of M. esculenta polysaccharides (MEP) generally includes mannose, galactose, and glucose, etc. MEP possess multiple bioactivities such as antioxidant, anti-inflammation, immunoregulation, hypoglycemic activity, atherosclerosis prevention and antitumor ability. Other components like polyphenols, protein hydrolysates, and several crude extracts are also reported with strong bioactivities. In terms of potential applications of M. esculenta and its metabolites as nutritional supplements and drug supplements, this review aims to comprehensively summarize the structural characteristics, biological activities, research progress, and research trends of the active ingredients produced by M. esculenta. Among the various biological activities, the substances extracted from both natural collected and submerged fermented M. esculenta are promising for antioxidants, immunomodulation, anti-cancer and anti-inflammatory applications. However, further researches on the extraction conditions and chemical structure of bioactive compounds produced by M. esculenta still need investigations.
Collapse
|
30
|
Gao C, Liu C, Chen Y, Wang Q, Hao Z. Protective effects of natural products against drug-induced nephrotoxicity: A review in recent years. Food Chem Toxicol 2021; 153:112255. [PMID: 33989732 DOI: 10.1016/j.fct.2021.112255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Drug-induced nephrotoxicity (DIN) is a major cause of kidney damage and is associated with high mortality and morbidity, which limits the clinical use of certain therapeutic or diagnostic agents, such as antineoplastic drugs, antibiotics, immunosuppressive agents, non-steroidal anti-inflammatory drugs (NSAIDs), and contrast agents. However, in recent years, a number of studies have shown that many natural products (NPs), including phytochemicals, various plants extracts, herbal formulas, and NPs derived from animals, confer protective effects against DIN through multi-targeting therapeutic mechanisms, such as inhibition of oxidative stress, inflammation, apoptosis, fibrosis, and necroptosis, regulation of autophagy, maintenance of cell polarity, etc., by regulating multiple signaling pathways and novel molecular targets. In this review, we summarize and discuss the protective effects and mechanisms underlying the action of NPs against DIN found in recent years, which will contribute to the development of promising renal protective agents.
Collapse
Affiliation(s)
- Chen Gao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chang Liu
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuwei Chen
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qingtao Wang
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhihui Hao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
31
|
Babaeenezhad E, Hadipour Moradi F, Rahimi Monfared S, Fattahi MD, Nasri M, Amini A, Dezfoulian O, Ahmadvand H. D-Limonene Alleviates Acute Kidney Injury Following Gentamicin Administration in Rats: Role of NF- κB Pathway, Mitochondrial Apoptosis, Oxidative Stress, and PCNA. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6670007. [PMID: 33510839 PMCID: PMC7822690 DOI: 10.1155/2021/6670007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
Clinical application of gentamicin (GM) is well known to be associated with the development of acute kidney injury (AKI). This study was the first to investigate the possible protective effects of D-limonene (D-lim) on AKI following GM administration in rats. 32 rats arranged in four groups (n = 8): (1) the control group received saline intraperitoneally (0.5 ml/day) and orally (0.5 ml/day), (2) the D-lim group received D-lim (100 mg/kg) orally and saline (0.5 ml/day) intraperitoneally, (3) the GM group received GM (100 mg/kg/day) intraperitoneally and saline (0.5 ml/day) orally, and (4) the treated group received intraperitoneal GM (100 mg/kg) and oral D-lim (100 mg/kg). All treatments were performed daily for 12 consecutive days. Results revealed that D-lim ameliorated GM-induced AKI, oxidative stress, mitochondrial apoptosis, and inflammation. D-lim showed nephroprotective effects as reflected by the decrease in serum urea and creatinine and improvement of renal histopathological changes. D-lim alleviated GM-induced oxidative stress by increasing the activities of renal catalase, serum and renal glutathione peroxidase, and renal superoxide dismutase and decreasing renal malondialdehyde and serum nitric oxide levels. Intriguingly, D-lim suppressed mitochondrial apoptosis by considerably downregulating Bax and caspase-3 (Casp-3) mRNA and protein expressions and markedly enhancing Bcl2 mRNA and protein expressions. Furthermore, D-lim significantly decreases GM-induced inflammatory response through downregulation of NF-κB, IL-6, and TNF-α mRNA and/or protein expressions and decrease in renal myeloperoxidase activity. Finally, D-lim remarkably downregulated PCNA protein expression in the treated group compared with the GM group. In brief, this study showed that D-lim alleviated AKI following GM administration in rats, partially through its antioxidant, anti-inflammatory, and antiapoptotic activities as well as downregulation of PCNA expression.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forouzan Hadipour Moradi
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sobhan Rahimi Monfared
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Davood Fattahi
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nasri
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abdolhakim Amini
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Hassan Ahmadvand
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|