1
|
Yu H, Li J, Qu W, Wang W, Wang J. High-efficiency removal of As(iii) from groundwater using siderite as the iron source in the electrocoagulation process. RSC Adv 2024; 14:19206-19218. [PMID: 38882474 PMCID: PMC11178034 DOI: 10.1039/d4ra02716g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024] Open
Abstract
Electrocoagulation technology, due to its simplicity and ease of operation, is often considered for treating arsenic-contaminated groundwater. However, challenges such as anode wear have hindered its development and application. This study aims to develop a siderite-filled anode electrocoagulation system for efficient removal of As(iii) and investigate its effectiveness. The impact of operational parameters on the removal rate of As(iii) was analyzed through single-factor tests, and the stability and superiority of the device were evaluated. The response surface methodology was employed to analyze the interactions between various factors and determine the optimal operational parameters by integrating data from these tests. Under conditions where the removal rate of As reached 99.3 ± 0.37%, with an initial concentration of As(iii) at 400 μg L-1, current intensity at 30 mA, initial solution pH value at 7, and Na2SO4 concentration at 10 mM. The flocculant used was subjected to characterization analysis to examine its structure, morphology, and elemental composition under these optimal operational parameters. The oxidation pathway for As(iii) within this system relies on integrated results from direct electrolysis as well as ˙O2 -, ˙OH, and Fe(iv) mediated oxidation processes. The elimination of arsenic encompasses two fundamental mechanisms: firstly, the direct adsorption of As(iii) by highly adsorbent flocculants like γ-FeOOH and magnetite (Fe3O4); secondly, the oxidation of As(iii) into As(v), followed by its reaction with siderite or other compounds to generate a dual coordination complex or iron arsenate, thus expediting its eradication. The anodic electrocoagulation system employing siderite as a filler exhibits remarkable efficiency and cost-effectiveness, while ensuring exceptional stability, thereby providing robust theoretical underpinnings for the application of electrocoagulation technology in arsenic removal.
Collapse
Affiliation(s)
- Haitao Yu
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
| | - Junfeng Li
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| | - Wenying Qu
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| | - Wenhuai Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| | - Jiankang Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University Shihezi 832000 Xinjiang PR China
- Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps Shihezi 832000 Xinjiang PR China
| |
Collapse
|
2
|
Gökkuş Ö, Brillas E, Sirés I. Sequential use of a continuous-flow electrocoagulation reactor and a (photo)electro-Fenton recirculation system for the treatment of Acid Brown 14 diazo dye. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169143. [PMID: 38070549 DOI: 10.1016/j.scitotenv.2023.169143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
The decolorization and TOC removal of solutions of Acid Brown 14 (AB14) diazo dye containing 50 mg L-1 of total organic carbon (TOC) have been first studied in a continuous-flow electrocoagulation (EC) reactor of 3 L capacity with Fe electrodes of ∼110 cm2 area each. Total loss of color with poor TOC removal was found in chloride, sulfate, and/or hydrogen carbonate matrices after 18 min of this treatment. The best performance was found using 5 anodes and 4 cathodes of Fe at 13.70 A and low liquid flow rate of 10 L h-1, in aerated 39.6 mM NaCl medium within a pH range of 4.0-10.0. The effluent obtained from EC was further treated by electro-Fenton (EF) using a 2.5 L pre-pilot flow plant, which was equipped with a filter-press cell comprising a Pt anode and an air-diffusion cathode for H2O2 electrogeneration. Operating with 0.10-1.0 mM Fe2+ as catalyst at pH 3.0 and 50 mA cm-2, a similar TOC removal of 68 % was found as maximal in chloride and sulfate media using the sequential EC-EF process. The EC-treated solutions were also treated by photoelectro-Fenton (PEF) employing a photoreactor with a 125 W UVA lamp. The sequential EC-PEF process yielded a much higher TOC reduction, close to 90 % and 97 % in chloride and sulfate media, respectively, due to the rapid photolysis of the final Fe(III)-carboxylate complexes. The formation of recalcitrant chloroderivatives from generated active chlorine limited the mineralization in the chloride matrix. For practical applications of this two-step technology, the high energy consumption of the UVA lamp in PEF could be reduced by using free sunlight.
Collapse
Affiliation(s)
- Ömür Gökkuş
- Department of Environmental Engineering, Erciyes University, 38039 Kayseri, Türkiye
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
3
|
Nidheesh PV, Mousset E, Thiam A. Recent advancements in peroxicoagulation process: An updated review. CHEMOSPHERE 2023; 339:139627. [PMID: 37487987 DOI: 10.1016/j.chemosphere.2023.139627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The present article describes the recent advancements (since 2018) in peroxicoagulation (PC) process, which was introduced by Professor Enric Brillas and his group in 1997. Instead of checking the efficiency of PC process to degrade a targeted pollutant in synthetic wastewater, researchers started testing its efficacy for the treatment of complex real wastewater. Applications like disinfection and removal of heavy metals as well as oxidative removal of arsenite from water were tested recently. To improve the efficiency of PC process, modifications were made for electrode materials (both anode and cathode) and electrolytic cells. Performance of PC process in combination with other treatment technologies is also discussed.
Collapse
Affiliation(s)
- P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR - National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | | | - Abdoulaye Thiam
- Programa Institucional de Fomento a La Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile.
| |
Collapse
|
4
|
Bani-Melhem K, Al-Kilani MR, Tawalbeh M. Evaluation of scrap metallic waste electrode materials for the application in electrocoagulation treatment of wastewater. CHEMOSPHERE 2023; 310:136668. [PMID: 36209869 DOI: 10.1016/j.chemosphere.2022.136668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The constant need for sacrificial electrodes is one of the limitations of applying the EC in wastewater treatment. Accordingly, this study proposes a sustainable alternative in reusing scrap metallic wastes as electrode materials. Four different types of metallic wastes (beverage cans, used aluminum (Al) foil, scrap iron, and scrap mild steel) are proposed as sacrificial electrodes for grey water (GW) treatment using the EC technique. At electrical current densities (CD) ranging between 5 and 20 mA/cm2, the treatment performance was evaluated for a reaction time of 10 min in terms of the removal efficiency of some key parameters such as color, turbidity, chemical oxygen demand (COD), and electrical conductivity, energy and material consumption, and metal contamination of GW from electrodes. The results demonstrated that using metallic wastes as sacrificial electrodes can achieve a considerable reduction in color, turbidity, COD, and electric conductivity of about 97.2%, 99%, 88%, and 89%, respectively. However, their reuse as electrodes revealed some important concerns. Al foil undergoes quick and substantial perforation and loss of surface area during electrolysis. The scrap iron and scrap mild steel were found to cause metal contamination by increasing Fe ions in the treated GW. Generally, metal scrap wastes can serve effectively as alternative sustainable electrodes. However, further research is recommended regarding the operating costs, which are considered crucial aspects of the EC process in terms of energy consumption and the most efficient method of fabricating the metallic wastes into a form suitable for reuse in the EC technique.
Collapse
Affiliation(s)
- Khalid Bani-Melhem
- Department of Water Management and Environment, Faculty of Prince El-Hassan Bin Talal for Natural Resources and Environment, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Muhammad Rasool Al-Kilani
- Department of Land, Water and Environment, Faculty of Agriculture, University of Jordan, Amman, 11942, Jordan
| | - Muhammad Tawalbeh
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
5
|
Nidheesh PV, Khan FM, Kadier A, Akansha J, Bote ME, Mousazadeh M. Removal of nutrients and other emerging inorganic contaminants from water and wastewater by electrocoagulation process. CHEMOSPHERE 2022; 307:135756. [PMID: 35917977 DOI: 10.1016/j.chemosphere.2022.135756] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The continual discharge of emerging inorganic pollutants into natural aquatic systems and their negative effects on the environment have motivated the researchers to explore and develop clean and efficient water treatment strategies. Electrocoagulation (EC) is a rapid and promising pollutant removal approach that does not require any chemical additives or complicated process management. Therefore, inorganic pollutant treatment via the EC process is considered one of the most feasible processes. The potential developments of EC process may make the process a wise choice for water treatment in the future. Thus, the present study mainly focuses on the use of EC technology to remove nutrients and other emerging inorganic pollutants from water medium. The operating factors that influence EC process efficiency are explained. The major advancement of the EC technique as well as field-implemented units are also discussed. Overall, this study mainly focuses on emerging issues, present advancements, and techno-economic considerations in EC process.
Collapse
Affiliation(s)
- P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India.
| | - Farhan M Khan
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - J Akansha
- School of Civil Engineering, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632 014, India
| | - Million Ebba Bote
- Department of Water Supply and Environmental Engineering, Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, PoBox - 378, Ethiopia
| | - Milad Mousazadeh
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran; Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
6
|
Water Treatment Using Natural Coagulant and Electrocoagulation Process: A Comparison Study. Int J Anal Chem 2022; 2022:4640927. [PMID: 36211813 PMCID: PMC9536971 DOI: 10.1155/2022/4640927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Water treatment is the primary consideration before utilizing water for different purposes. Surface water is highly vulnerable to pollution, either due to natural or anthropogenic processes. The main targets of this study were to investigate surface water treatment using Moringa Oleifera (MO), the electrocoagulation process (EC), and the Moringa Oleifera assisted electrocoagulation process (MOAEC). The Moringa Oleifera, EC process, and Moringa Oleifera-assisted EC process are effective mechanisms for the removal of COD (Chemical Oxygen Demand), BOD (Biological Oxygen Demand), TDS (Total Dissolved Solids), phosphate, TSS (Total Suspended Solids), and color from surface water. Different operating parameters such as pH (5–11), the dosage of coagulant (0.2–0.5 g), contact time or reaction time (20–50 minutes), current (0.2–0.5 A), and settling time (5–20 minutes) were considered. The maximum removal efficiency using Moringa Oleifera and the EC process was COD (85.48%), BOD (78.50%), TDS (84.5%), phosphate (95.70%), TSS (93.90%), color (94.50%), and COD (90.50%), BOD (87%), TDS (97.50%), phosphate (89.10%), TSS (95.80%), and color (96.15%), respectively. Similarly, with the application of MOAEC, 91.47%, 89.35%, 97.0%, 90.20%, 9.10%, and 95.70% of COD, BOD, TDS, phosphate, TSS, and color were removed, respectively. The EC process and MOAEC were more effective in the removal of COD, BOD, TDS, TSS, and color than using MO. More phosphate was removed using MO than the EC process and MOAEC. Additionally, the effects of different operating parameters were studied on the removal efficiency.
Collapse
|
7
|
Wang S, Zhou E, Wei X, Liu R, Li C, Pan L, Zheng Y, Xing N. Collaborative Construction of a Silver Nanocluster Fluorescent Probe Using the Pyridinium-Based Ionic Liquid [C 4py][DCA]. ACS OMEGA 2022; 7:20241-20249. [PMID: 35722004 PMCID: PMC9201884 DOI: 10.1021/acsomega.2c02172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
A silver nanocluster fluorescent probe was synthesized by using the pyridinium-based ionic liquid [C4py][DCA] as the protective agent, AgNO3 as the precursor, and NaBH4 as the reducing agent. The presence of pyridine group enhanced the fluorescence intensity of Ag nanoclusters and facilitated the coordination interaction between Ag nanoclusters and AsO3 3-. Therefore, the collaborative construction of a silver nanocluster probe using the pyridinium-based ionic liquid [C4py][DCA] offered outstanding selectivity and sensitivity to detect AsO3 3- in water. More interestingly, the fluorescent probe quenched by AsO3 3- could be recovered with the addition of H2O2. This fluorescent probe provided a rapid and superior method for the detection of As(III) in the linear concentration range of 0-60 ppb with the lowest detection limit of 0.60 ppb. The mechanism of fluorescence quenching was a static quenching, considered to be due to electron migration between functional groups on the surface of Ag nanoclusters constructed with [C4py][DCA] and AsO3 3-.
Collapse
|
8
|
Treatment of arsenite contaminated water by electrochemically activated persulfate oxidation process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119999] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Nidheesh PV, Scaria J, Babu DS, Kumar MS. An overview on combined electrocoagulation-degradation processes for the effective treatment of water and wastewater. CHEMOSPHERE 2021; 263:127907. [PMID: 32835972 DOI: 10.1016/j.chemosphere.2020.127907] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Electrocoagulation (EC) process is found as effective water and wastewater treatment method, as it can able to remove a variety of pollutants, treat various industrial wastewater, and able to handle fluctuations in pollutant quality and quantity. The performance of EC process can be improved significantly in combination with degradation processes. Different combinations of EC process with Fenton, electro-Fenton, photo-Fenton, photocatalysis, sonochemical treatment, ozonation, indirect electrochemical oxidation, anodic oxidation and sulfate radical based advanced oxidation process are found very effective for the treatment of water and wastewater. Enhanced performance of EC process in combination with degradation process was reported in most of the articles.
Collapse
Affiliation(s)
- P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - Jaimy Scaria
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - D Syam Babu
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - M Suresh Kumar
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
10
|
Chanikya P, Nidheesh P, Syam Babu D, Gopinath A, Suresh Kumar M. Treatment of dyeing wastewater by combined sulfate radical based electrochemical advanced oxidation and electrocoagulation processes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117570] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Akansha J, Nidheesh PV, Gopinath A, Anupama KV, Suresh Kumar M. Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process. CHEMOSPHERE 2020; 253:126652. [PMID: 32272308 DOI: 10.1016/j.chemosphere.2020.126652] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
As dairy industries has been emerged as one of the most rapidly developing industry in both small as well as large scale, the volume of effluent generated is also very high. In the present study, aerated electrocoagulation combined with phytoremediation treatment was conducted in dairy industry wastewater. Electrocoagulation was performed with aluminium and iron electrodes and effect of various operating parameters such as electrode combination, pH, and voltage were tested. Electrocoagulation was found effective at neutral pH and its efficiency increased with increase in applied voltage. The maximum COD removal efficiency of 86.4% was obtained in case of Al-Fe electrode combination with aeration at 120 min reaction time, initial pH 7, voltage 5 V. Significant growth of Canna indica was observed in electrocoagulation treated wastewater compared to raw dairy wastewater. COD removal of 97% was achieved when combined electrocoagulation and phytoremediation process was used. Thus, it proves to be a proficient method for the treatment of dairy industry wastewater. In addition to the above, bacterial toxicity tests were performed to investigate the toxic nature of wastewater and the results showed that both treated and untreated wastewater favoured bacterial growth.
Collapse
Affiliation(s)
- J Akansha
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Vellore Institute of Technology, Vellore, Tamilnadu, India
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - Ashitha Gopinath
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - K V Anupama
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - M Suresh Kumar
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
12
|
Syam Babu D, Nidheesh PV, Suresh Kumar M. Arsenite removal from aqueous solution by aerated iron electrocoagulation process. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1708932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- D. Syam Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - P. V. Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - M. Suresh Kumar
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| |
Collapse
|