1
|
Huang H, Qin J, Wen Z, Liu Y, Chen C, Wang C, Li H, Yang X. Effects of natural extract interventions in prostate cancer: A systematic review and network meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155598. [PMID: 38608596 DOI: 10.1016/j.phymed.2024.155598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Over years, there has been a widespread quest for effective dietary patterns and natural extracts to mitigate prostate cancer risk. However, despite numerous experimental studies conducted on various natural extracts, the evidence substantiating their efficacy remains largely insufficient. This dearth of compelling evidence presents a significant challenge in advocating for their widespread use as preventive measures against prostate cancer. OBJECTIVE Our study endeavors to undertake a network meta-analysis to evaluate the influence of natural extracts on prostate cancer. METHODS Researchers systematically searched through Embase, PubMed, Cochrane Library, and Web of Science databases until December 2023. The main focus was on assessing primary outcomes comprising prostate-specific antigen (PSA), insulin-like growth factor-binding protein-3 (IGFBP-3), insulin-like growth factor-1 (IGF-1). We conducted data analysis utilizing StataMP 15.0 software. Therapeutic effects were ranked based on the probability values derived from Surface Under the Cumulative Ranking curve (SUCRA). Additionally, cluster analysis was employed to assess the impacts of natural extracts on three distinct outcomes. RESULTS Following screening procedures, the 28 eligible studies were incorporated, the selected studies encompassed 1,566 prostate cancer patients and evaluated 16 different natural extract treatments. Specifically, 24 trials included PSA indicators, 10 included IGF-1 indicators, and 8 included IGFBP-3 indicators. The findings revealed that, based on the SUCRA values, the combined therapy of silybin with selenium (74%) appears to be the most effective approach for reducing serum PSA levels. Simultaneously, silybin alone (84.6%) stands out as the most promising option for decreasing serum IGF-1 levels. Lastly, concerning IGFBP-3, silybin alone (67.7%) emerges as the optimal choice. Twelve studies provided comprehensive information on adverse drug reactions/events (ADR/ADE), whereas five articles did not report any significant ADR/ADE. CONCLUSION The NMA suggests that, compared to placebo, utilizing silybin either alone or in combination with selenium has been shown to enhance therapeutic effects, offering potential benefits to patients with prostate cancer. This study can offer valuable insights for prostate patients considering natural extract treatments. Further evidence is required to confirm the safety profile of these treatments.
Collapse
Affiliation(s)
- Haotian Huang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiao Qin
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhi Wen
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Liu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Caixia Chen
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chongjian Wang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hongyuan Li
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xuesong Yang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
2
|
Sauter ER, Mohammed A. Natural Products for Cancer Prevention and Interception: Preclinical and Clinical Studies and Funding Opportunities. Pharmaceuticals (Basel) 2024; 17:136. [PMID: 38276009 PMCID: PMC10820118 DOI: 10.3390/ph17010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Multiple agents derived from natural products (NPs) have been evaluated for cancer prevention and interception, either alone or in combination. The National Cancer Institute (NCI) is very interested in advancing research to identify additional agents that, alone or in combination, may prove useful in cancer prevention. Below, we provide an overview of NP studies in cancer prevention and interception, both individual agents and combination interventions. Given that findings from many preclinical studies evaluating individual agents have generally not been confirmed in human studies, our focus with individual NPs in this review is on studies involving humans, especially clinical trials. Fewer combination intervention studies have been conducted, so we have broadened our review to include preclinical studies. We conclude with how the Division of Cancer Prevention (DCP) within the NCI is providing funding to encourage the research community to propose natural product studies in cancer prevention and interception to advance the field.
Collapse
Affiliation(s)
- Edward R. Sauter
- Breast and Gynecologic Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Altaf Mohammed
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA;
| |
Collapse
|
3
|
Abir MH, Mahamud AGMSU, Tonny SH, Anu MS, Hossain KHS, Protic IA, Khan MSU, Baroi A, Moni A, Uddin MJ. Pharmacological potentials of lycopene against aging and aging-related disorders: A review. Food Sci Nutr 2023; 11:5701-5735. [PMID: 37823149 PMCID: PMC10563689 DOI: 10.1002/fsn3.3523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/25/2023] [Accepted: 06/13/2023] [Indexed: 10/13/2023] Open
Abstract
Aging and aging-related chronic disorders are one of the principal causes of death worldwide. The prevalence of these disorders is increasing gradually and globally. Considering this unwavering acceleration of the global burden, seeking alternatives to traditional medication to prevent the risk of aging disorders is needed. Among them, lycopene, a carotenoid, is abundant in many fruits and vegetables, including tomatoes, grapefruits, and watermelons, and it has a unique chemical structure to be a potent antioxidant compound. This nutraceutical also possesses several anti-aging actions, including combating aging biomarkers and ameliorating several chronic disorders. However, no systematic evaluation has yet been carried out that can comprehensively elucidate the effectiveness of lycopene in halting the course of aging and the emergence of chronic diseases linked to aging. This review, therefore, incorporates previous pre-clinical, clinical, and epidemiological studies on lycopene to understand its potency in treating aging disorders and its role as a mimic of caloric restriction. Lycopene-rich foods are found to prevent or attenuate aging disorders in various research. Based on the evidence, this review suggests the clinical application of lycopene to improve human health and alleviate the prevalence of aging and aging disorders.
Collapse
Affiliation(s)
- Mehedy Hasan Abir
- ABEx Bio‐Research CenterDhakaBangladesh
- Faculty of Food Science and TechnologyChattogram Veterinary and Animal Sciences UniversityChattogramBangladesh
| | - A. G. M. Sofi Uddin Mahamud
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Food Safety and Regulatory ScienceChung‐Ang UniversityAnseong‐siGyeonggi‐doRepublic of Korea
| | - Sadia Haque Tonny
- Faculty of AgricultureBangladesh Agricultural UniversityMymensinghBangladesh
| | - Mithila Saha Anu
- Department of Fisheries Biology and GeneticsFaculty of Fisheries, Bangladesh Agricultural UniversityMymensinghBangladesh
| | | | - Ismam Ahmed Protic
- Department of Plant PathologyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Md Shihab Uddine Khan
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Artho Baroi
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Akhi Moni
- ABEx Bio‐Research CenterDhakaBangladesh
| | | |
Collapse
|
4
|
Essa MM, Bishir M, Bhat A, Chidambaram SB, Al-Balushi B, Hamdan H, Govindarajan N, Freidland RP, Qoronfleh MW. Functional foods and their impact on health. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:820-834. [PMID: 36908338 PMCID: PMC9998796 DOI: 10.1007/s13197-021-05193-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
Functional foods play an important role in maintaining a healthy lifestyle and reducing the risk factors of various diseases. Most foods have a functional element which is responsible for improving the healthy state. All food substances such as fruits, vegetables, cereals, meat, fish, dairy contain functional ingredients. A wide range of naturally occurring substances from plant and animal sources having active components which play a role in physiological actions deserve attention for their optimal use in maintaining health. The market for functional food is keep on expanding, and the global market is projected to reach a value of at least 91 billion USD soon. Overwhelming evidence from preclinical (in vitro and in vivo) and clinical studies have shown that intake of functional foods could have an impact on the prevention of chronic diseases, especially cancer, cardiovascular diseases, gastrointestinal tract disorders and neurological diseases. Extensive research needs to be done to determine the potential health benefits for the proper application of these foods to improve health state and combat chronic disease progression. The aim of this review is to conduct a thorough literature survey, to understand the various classification of functional foods and their health benefits.
Collapse
Affiliation(s)
- Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
- College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O 34, Al-Khoud, Muscat, 123 Sultanate of Oman
| | - Muhammed Bishir
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Saravana Babu Chidambaram
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Buthaina Al-Balushi
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Hamdan Hamdan
- Department of Physiology, Al Faisal University, Riyadh, Saudi Arabia
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Nagamaniammai Govindarajan
- Department of Food Process Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpettu, Tamil Nadu India
| | - Robert P. Freidland
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY 40202 USA
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, 7227 Rachel Drive, Ypsilanti, MI 48917 USA
| |
Collapse
|
5
|
Gano CA, Fatima S, Failes TW, Arndt GM, Sajinovic M, Mahns D, Saedisomeolia A, Coorssen JR, Bucci J, de Souza P, Vafaee F, Scott KF. Anti-cancer potential of synergistic phytochemical combinations is influenced by the genetic profile of prostate cancer cell lines. Front Nutr 2023; 10:1119274. [PMID: 36960209 PMCID: PMC10029761 DOI: 10.3389/fnut.2023.1119274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023] Open
Abstract
Introduction Despite strong epidemiological evidence that dietary factors modulate cancer risk, cancer control through dietary intervention has been a largely intractable goal for over sixty years. The effect of tumour genotype on synergy is largely unexplored. Methods The effect of seven dietary phytochemicals, quercetin (0-100 μM), curcumin (0-80 μM), genistein, indole-3-carbinol (I3C), equol, resveratrol and epigallocatechin gallate (EGCG) (each 0-200 μM), alone and in all paired combinations om cell viability of the androgen-responsive, pTEN-null (LNCaP), androgen-independent, pTEN-null (PC-3) or androgen-independent, pTEN-positive (DU145) prostate cancer (PCa) cell lines was determined using a high throughput alamarBlue® assay. Synergy, additivity and antagonism were modelled using Bliss additivism and highest single agent equations. Patterns of maximum synergy were identified by polygonogram analysis. Network pharmacology approaches were used to identify interactions with known PCa protein targets. Results Synergy was observed with all combinations. In LNCaP and PC-3 cells, I3C mediated maximum synergy with five phytochemicals, while genistein was maximally synergistic with EGCG. In contrast, DU145 cells showed resveratrol-mediated maximum synergy with equol, EGCG and genistein, with I3C mediating maximum synergy with only quercetin and curcumin. Knockdown of pTEN expression in DU145 cells abrogated the synergistic effect of resveratrol without affecting the synergy profile of I3C and quercetin. Discussion Our study identifies patterns of synergy that are dependent on tumour cell genotype and are independent of androgen signaling but are dependent on pTEN. Despite evident cell-type specificity in both maximally-synergistic combinations and the pathways that phytochemicals modulate, these combinations interact with similar prostate cancer protein targets. Here, we identify an approach that, when coupled with advanced data analysis methods, may suggest optimal dietary phytochemical combinations for individual consumption based on tumour molecular profile.Graphical abstract.
Collapse
Affiliation(s)
- Carol A. Gano
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Shadma Fatima
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
- School of Biotechnology and Biological Sciences, UNSW Sydney, Sydney, NSW, Australia
- Shadma Fatima, ;
| | - Timothy W. Failes
- ACRF Drug Discovery Centre, Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Gregory M. Arndt
- ACRF Drug Discovery Centre, Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Mila Sajinovic
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - David Mahns
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ahmad Saedisomeolia
- School of Human Nutrition, McGill University, Sainte Anne-de-Bellevue, QC, Canada
| | - Jens R. Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Science, and Mathematics and Science, Brock University, St. Catharines, ON, Canada
| | - Joseph Bucci
- St George Hospital Clinical School, UNSW, Kogarah, NSW, Australia
| | - Paul de Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biological Sciences, UNSW Sydney, Sydney, NSW, Australia
- UNSW Data Science Hub (uDASH), UNSW Sydney, Sydney, NSW, Australia
| | - Kieran F. Scott
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
- *Correspondence: Kieran F. Scott,
| |
Collapse
|
6
|
The Anti-Cancer Activity of Lycopene: A Systematic Review of Human and Animal Studies. Nutrients 2022; 14:nu14235152. [PMID: 36501182 PMCID: PMC9741066 DOI: 10.3390/nu14235152] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/10/2022] Open
Abstract
Lycopene is a nutraceutical with health-promoting and anti-cancer activities, but due to a lack of evidence, there are no recommendations regarding its use and dosage. This review aimed to evaluate the benefits of lycopene supplementation in cancer prevention and treatment based on the results of in vivo studies. We identified 72 human and animal studies that were then analysed for endpoints such as cancer incidence, improvement in treatment outcomes, and the mechanisms of lycopene action. We concluded that the results of most of the reviewed in vivo studies confirmed the anti-cancer activities of lycopene. Most of the studies concerned prostate cancer, reflecting the number of in vitro studies. The reported mechanisms of lycopene action in vivo included regulation of oxidative and inflammatory processes, induction of apoptosis, and inhibition of cell division, angiogenesis, and metastasis formation. The predominance of particular mechanisms seemed to depend on tumour organ localisation and the local storage capacity of lycopene. Finally, there is a need to look for predictive factors to identify a population that may benefit from lycopene supplementation. The potential candidates appear to be race, single nucleotide polymorphisms in carotene-cleaving enzymes, some genetic abbreviations, and insulin-like growth factor-dependent and inflammatory diseases.
Collapse
|
7
|
Anti-prostate cancer protection and therapy in the framework of predictive, preventive and personalised medicine — comprehensive effects of phytochemicals in primary, secondary and tertiary care. EPMA J 2022; 13:461-486. [PMID: 35821883 PMCID: PMC9263437 DOI: 10.1007/s13167-022-00288-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/08/2022]
Abstract
According to the GLOBOCAN 2020, prostate cancer (PCa) is the most often diagnosed male cancer in 112 countries and the leading cancer-related death in 48 countries. Moreover, PCa incidence permanently increases in adolescents and young adults. Also, the rates of metastasising PCa continuously grow up in young populations. Corresponding socio-economic burden is enormous: PCa treatment costs increase more rapidly than for any other cancer. In order to reverse current trends in exploding PCa cases and treatment costs, pragmatic decisions should be made, in favour of advanced populational screening programmes and effective anti-PCa protection at the level of the health-to-disease transition (sub-optimal health conditions) demonstrating the highest cost-efficacy of treatments. For doing this, the paradigm change from reactive treatments of the clinically manifested PCa to the predictive approach and personalised prevention is essential. Phytochemicals are associated with potent anti-cancer activity targeting each stage of carcinogenesis including cell apoptosis and proliferation, cancer invasiveness and metastatic disease. For example, their positive effects are demonstrated for stabilising and restoring mitochondrial health quality, which if compromised is strongly associated with sub-optimal health conditions and strong predisposition to aggressive PCa sub-types. Further, phytochemicals significantly enhance response of cancer cells to anti-cancer therapies including radio- and chemotherapy. Evident plant-based mitigation of negative side-effects frequently observed for conventional anti-cancer therapies has been reported. Finally, dual anti-cancer and anti-viral effects of phytochemicals such as these of silibinin have been demonstrated as being highly relevant for improved PCa management at the level of secondary and tertiary care, for example, under pandemic conditions, since PCa-affected individuals per evidence are highly vulnerable towards COVID-19 infection. Here, we present a comprehensive data analysis towards clinically relevant anti-cancer effects of phytochemicals to be considered for personalised anti-PCa protection in primary care as well as for an advanced disease management at the level of secondary and tertiary care in the framework of predictive, preventive and personalised medicine.
Collapse
|
8
|
Pinker B, Barciszewska AM. mTOR Signaling and Potential Therapeutic Targeting in Meningioma. Int J Mol Sci 2022; 23:ijms23041978. [PMID: 35216092 PMCID: PMC8876623 DOI: 10.3390/ijms23041978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 12/30/2022] Open
Abstract
Meningiomas are the most frequent primary tumors arising in the central nervous system. They typically follow a benign course, with an excellent prognosis for grade I lesions through surgical intervention. Although radiotherapy is a good option for recurrent, progressive, or inoperable tumors, alternative treatments are very limited. mTOR is a protein complex with increasing therapeutical potential as a target in cancer. The current understanding of the mTOR pathway heavily involves it in the development of meningioma. Its activation is strongly dependent on PI3K/Akt signaling and the merlin protein. Both factors are commonly defective in meningioma cells, which indicates their likely function in tumor growth. Furthermore, regarding molecular tumorigenesis, the kinase activity of the mTORC1 complex inhibits many components of the autophagosome, such as the ULK1 or Beclin complexes. mTOR contributes to redox homeostasis, a vital component of neoplasia. Recent clinical trials have investigated novel chemotherapeutic agents for mTOR inhibition, showing promising results in resistant or recurrent meningiomas.
Collapse
Affiliation(s)
- Benjamin Pinker
- Medical Faculty, Karol Marcinkowski University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland
- Correspondence:
| | - Anna-Maria Barciszewska
- Intraoperative Imaging Unit, Chair and Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland;
- Department of Neurosurgery and Neurotraumatology, Heliodor Swiecicki Clinical Hospital, Przybyszewskiego 49, 60-355 Poznan, Poland
| |
Collapse
|
9
|
Goswami A, Patel N, Bhatt V, Raval M, Kundariya M, Sheth N. Lycopene loaded polymeric nanoparticles for prostate cancer treatment: Formulation, optimization using Box-behnken design and cytotoxicity studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Almeida TC, Seibert JB, Amparo TR, de Souza GHB, da Silva GN, Dos Santos DH. Modulation of Long Non-Coding RNAs by Different Classes of Secondary Metabolites from Plants: A Mini-Review on Antitumor Effects. Mini Rev Med Chem 2021; 22:1232-1255. [PMID: 34720079 DOI: 10.2174/1389557521666211101161548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
The broad pharmacological spectrum of plants is related to their secondary metabolism, which is responsible for the synthesis of different compounds that have multiple effects on cellular physiology. Among the biological effects presented by phytochemicals, their use for the prevention and treatment of cancer can be highlighted. This occurs due to several mechanisms of antitumor action demonstrated by these compounds, including regulation of the cell signaling pathways and inhibition of tumor growth. In this way, long non-coding RNAs (lncRNAs) appear to be promising targets for the treatment of cancer. Their deregulation has already been related to a variety of clinical-pathological parameters. However, the effects of secondary metabolites on lncRNAs are still restricted. For this reason, the present review aimed to gather data on phytochemicals with action on lncRNAs in order to confirm their possible antitumor potential. According to the literature, terpenoid and flavonoid are the main examples of secondary metabolites involved with lncRNAs activity. In addition, the lncRNAs H19, CASC2, HOTAIR, NKILA, CCAT1, MALAT1, AFAP1-AS1, MEG3, and CDKN2B-AS1 can be highlighted as important targets in the search for new anti-tumor agents since they act as modulating pathways related to cell proliferation, cell cycle, apoptosis, cell migration and invasion. Finally, challenges for the use of natural products as a commercial drug were also discussed. The low yield, selectivity index and undesirable pharmacokinetic parameters were emphasized as a difficulty for obtaining these compounds on a large scale and for improving the potency of its biological effect. However, the synthesis and/or development of formulations were suggested as a possible approach to solve these problems. All of these data together confirm the potential of secondary metabolites as a source of new anti-tumor agents acting on lncRNAs.
Collapse
Affiliation(s)
- Tamires Cunha Almeida
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | | - Tatiane Roquete Amparo
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | | - Glenda Nicioli da Silva
- Department of Clinical Analysis, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | |
Collapse
|
11
|
Liskova A, Koklesova L, Samec M, Abdellatif B, Zhai K, Siddiqui M, Šudomová M, Hassan ST, Kudela E, Biringer K, Giordano FA, Büsselberg D, Golubnitschaja O, Kubatka P. Targeting phytoprotection in the COVID-19-induced lung damage and associated systemic effects-the evidence-based 3PM proposition to mitigate individual risks. EPMA J 2021; 12:325-347. [PMID: 34367380 PMCID: PMC8329620 DOI: 10.1007/s13167-021-00249-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023]
Abstract
The risks related to the COVID-19 are multi-faceted including but by far not restricted to the following: direct health risks by poorly understood effects of COVID-19 infection, overloaded capacities of healthcare units, restricted and slowed down care of patients with non-communicable disorders such as cancer, neurologic and cardiovascular pathologies, among others; social risks-restricted and broken social contacts, isolation, professional disruption, explosion of aggression in the society, violence in the familial environment; mental risks-loneliness, helplessness, defenceless, depressions; and economic risks-slowed down industrial productivity, broken delivery chains, unemployment, bankrupted SMEs, inflation, decreased capacity of the state to perform socially important programs and to support socio-economically weak subgroups in the population. Directly or indirectly, the above listed risks will get reflected in a healthcare occupation and workload which is a tremendous long-term challenge for the healthcare capacity and robustness. The article does not pretend to provide solutions for all kind of health risks. However, it aims to present the scientific evidence of great clinical utility for primary, secondary, and tertiary care to protect affected individuals in a cost-effective manner. To this end, due to pronounced antimicrobial, antioxidant, anti-inflammatory, and antiviral properties, naturally occurring plant substances are capable to protect affected individuals against COVID-19-associated life-threatening complications such as lung damage. Furthermore, they can be highly effective, if being applied to secondary and tertiary care of noncommunicable diseases under pandemic condition. Thus, the stratification of patients evaluating specific health conditions such as sleep quality, periodontitis, smoking, chronic inflammation and diseases, metabolic disorders and obesity, vascular dysfunction, and cancers would enable effective managemenet of COVID-19-associated complications in primary, secondary, and tertiary care in the context of predictive, preventive, and personalized medicine (3PM).
Collapse
Affiliation(s)
- Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Basma Abdellatif
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Kevin Zhai
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Manaal Siddiqui
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461, Rajhrad, Czech Republic
| | - Sherif T.S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Erik Kudela
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
12
|
Ghosh S, Hazra J, Pal K, Nelson VK, Pal M. Prostate cancer: Therapeutic prospect with herbal medicine. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100034. [PMID: 34909665 PMCID: PMC8663990 DOI: 10.1016/j.crphar.2021.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is a major cause of morbidity and mortality in men worldwide. A geographic variation on the burden of the disease suggested that the environment, genetic makeup, lifestyle, and food habits modulate one's susceptibility to the disease. Although it has been generally thought to be an older age disease, and awareness and timely execution of screening programs have managed to contain the disease in the older population over the last decades, the incidence is still increasing in the population younger than 50. Existing treatment is efficient for PCa that is localized and responsive to androgen. However, the androgen resistant and metastatic PCa are challenging to treat. Conventional radiation and chemotherapies are associated with severe side effects in addition to being exorbitantly expensive. Many isolated phytochemicals and extracts of plants used in traditional medicine are known for their safety and diverse healing properties, including many with varying levels of anti-PCa activities. Many of the phytochemicals discussed here, as shown by many laboratories, inhibit tumor cell growth and proliferation by interfering with the components in the pathways responsible for the enhanced proliferation, metabolism, angiogenesis, invasion, and metastasis in the prostate cells while upregulating the mechanisms of cell death and cell cycle arrest. Notably, many of these agents simultaneously target multiple cellular pathways. We analyzed the available literature and provided an update on this issue in this review article.
Collapse
Affiliation(s)
- Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology Madras, Tamil Nadu, India
| | | | - Vinod K. Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Andhra Pradesh, India
| | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
13
|
Mamagkaki A, Bouris I, Parsonidis P, Vlachou I, Gougousi M, Papasotiriou I. Genistein as a dietary supplement; formulation, analysis and pharmacokinetics study. PLoS One 2021; 16:e0250599. [PMID: 33905453 PMCID: PMC8078810 DOI: 10.1371/journal.pone.0250599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/09/2021] [Indexed: 11/27/2022] Open
Abstract
The objective of this study is to improve and optimize the formulation of Genistein in capsules in order to result in a better pharmacokinetic profile comparing to existing commercial products. In order to do this, five different formulations of Genistein capsules were developed and examined by reviewing their disintegration and dissolution properties. Furthermore, flowability of the powder along with potent incompatibilities between Genistein and its excipients were monitored through their thermal properties. The final formulation of Genistein was quantified using HPLC analysis and then its stability was evaluated thoroughly in real time and accelerated conditions. Finally, with the target to have a product with actual results, in vitro and in vivo studies were conducted. The final product proved to have better results in disintegration and dissolution. Moreover, R.G.C.C.’s capsules exhibited enhanced action in human cell lines as well as impressive pharmacokinetic results in animal models. The in vitro results showed an advantage of the R.G.C.C. product compared to the commercial one, whereas its maximum concertation in vivo was determined 34% higher than the commercial one.
Collapse
Affiliation(s)
| | | | | | | | | | - Ioannis Papasotiriou
- Research Genetic Cancer Centre International GmbH Headquarters, Zug, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Bosland MC, Schmoll J, Watanabe H, Randolph C, Kato I. Randomized, Placebo-Controlled Six-Month Intervention Study of Soy Protein Isolate in Men with Biochemical Recurrence after Radical Prostatectomy: A Pilot Study. Nutr Cancer 2021; 74:555-564. [PMID: 33764851 DOI: 10.1080/01635581.2021.1903949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is evidence to suggest that soy may be beneficial for prostate cancer patients, but few randomized trials have addressed this. We examined the effect of 6-8 mo soy protein supplementation on prostate specific antigen (PSA) serum levels in men who recurred (PSA > 0.1 ng/ml) within three years of prostatectomy. Sixteen men were randomized to 20 g soy protein (∼24-26/day genistein; ∼40-43/day total isoflavones) or casein placebo. PSA was measured at base line and at 1, 2, 4, and 6-8 mo. Serum genistein levels greatly increased from baseline and cholesterol decreased in the soy group. In both treatment arms PSA increased similarly and PSA doubling times were not different over the 6-8 mo study duration. Two subjects in each group had stable PSA. A literature search for clinical studies of soy, isoflavones, and PSA revealed that supplementation with soy or isoflavones did not affect PSA in virtually all clinical studies identified. Although this study is too small to draw a definitive conclusion on the effect of soy protein on PSA in men with biochemical failure, the null finding in this study is consistent with the results of virtually all reports of soy and soy isoflavones in the literature.
Collapse
Affiliation(s)
- Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA.,Department of Urology, New York University School of Medicine, New York, New York, USA
| | - Joanne Schmoll
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Hiroko Watanabe
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Carla Randolph
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Ikuko Kato
- Departments of Oncology and Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
15
|
Safe S, Jayaraman A, Chapkin RS, Howard M, Mohankumar K, Shrestha R. Flavonoids: structure-function and mechanisms of action and opportunities for drug development. Toxicol Res 2021; 37:147-162. [PMID: 33868973 DOI: 10.1007/s43188-020-00080-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are polyphenolic phytochemicals produced in fruits, nuts and vegetables and dietary consumption of these structurally diverse compounds is associated with multiple health benefits including increased lifespan, decreased cardiovascular problems and low rates of metabolic diseases. Preclinical studies with individual flavonoids demonstrate that these compounds exhibit anti-inflammatory and anticancer activities and they enhance the immune system. Their effectiveness in both chemoprevention and chemotherapy is associated with their targeting of multiple genes/pathways including nuclear receptors, the aryl hydrocarbon receptor (AhR), kinases, receptor tyrosine kinases and G protein-coupled receptors. However, despite the remarkable preclinical activities of flavonoids, their clinical applications have been limited and this is due, in part, to problems in drug delivery and poor bioavailability and these problems are being addressed. Further improvements that will expand clinical applications of flavonoids include mechanism-based precision medicine approaches which will identify critical mechanisms of action of individual flavonoids with optimal activities that can be used in combination therapies.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843 USA
| | - Marcell Howard
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
16
|
Sadeghian M, Asadi M, Rahmani S, Sadeghi N, Hosseini SA, Zare Javid A. Lycopene Does Not Affect Prostate-Specific Antigen in Men with Non-Metastatic Prostate Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr Cancer 2020; 73:2796-2807. [PMID: 33355018 DOI: 10.1080/01635581.2020.1862254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several randomized controlled trials (RCTs) have investigated the effect of lycopene supplementation on serum levels of prostate-specific antigen (PSA) in patients with prostate cancer. However, results have been inconclusive. We systematically searched PubMed, Embase, and Scopus up to January 2020 to find RCTs investigating the effect of lycopene supplementation on serum levels of PSA in patients with non-metastatic prostate cancer. Using a random-effects model, the reported risk estimates were pooled. A total of six trials were included in the final analysis. we found no significant effect of lycopene on circulating PSA (WMD: -0.60, 95% CI: -2.01, 0.81 µg/L). However, we observed a significant reducing effect when the analysis was confined to studies that included patients with higher baseline levels of PSA (≥6.5 µg/L) (WMD: -3.74 µg/L, 95% CI: -5.15, -2.32, P < 0.001). Subgroup analysis based on the duration of intervention did not result in any significant effect. Non-linear dose-response analysis did not show any significant effects of lycopene dosage (Pnon-linearity = 0.50) and duration of the intervention (Pnon-linearity = 0.63) on serum levels of PSA. Although lycopene supplementation did not produce any reduction in PSA levels overall, a significant reducing effect was observed in patients with higher levels of baseline PSA. Due to the heterogeneity of our results, further high-quality clinical trials with long-term duration are required to determine the efficacy of lycopene in patients with non-metastatic prostate cancer.
Collapse
Affiliation(s)
- Mehdi Sadeghian
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Asadi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sepideh Rahmani
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Sadeghi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Zare Javid
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
17
|
Grammatikopoulou MG, Gkiouras K, Papageorgiou SΤ, Myrogiannis I, Mykoniatis I, Papamitsou T, Bogdanos DP, Goulis DG. Dietary Factors and Supplements Influencing Prostate Specific-Antigen (PSA) Concentrations in Men with Prostate Cancer and Increased Cancer Risk: An Evidence Analysis Review Based on Randomized Controlled Trials. Nutrients 2020; 12:nu12102985. [PMID: 33003518 PMCID: PMC7600271 DOI: 10.3390/nu12102985] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
The quest for dietary patterns and supplements efficient in down-regulating prostate-specific antigen (PSA) concentrations among men with prostate cancer (PCa) or increased PCa risk has been long. Several antioxidants, including lycopene, selenium, curcumin, coenzyme Q10, phytoestrogens (including isoflavones and flavonoids), green tea catechins, cernitin, vitamins (C, E, D) and multivitamins, medicinal mushrooms (Ganoderma lucidum), fruit extracts (saw palmetto, cranberries, pomegranate), walnuts and fatty acids, as well as combined supplementations of all, have been examined in randomized controlled trials (RCTs) in humans, on the primary, secondary, and tertiary PCa prevention level. Despite the plethora of trials and the variety of examined interventions, the evidence supporting the efficacy of most dietary factors appears inadequate to recommend their use.
Collapse
Affiliation(s)
- Maria G. Grammatikopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41334 Larissa, Greece; (M.G.G.); (D.P.B.)
| | - Konstantinos Gkiouras
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41334 Larissa, Greece; (M.G.G.); (D.P.B.)
- Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, GR-54124 Thessaloniki, Greece; (S.Τ.P.); (I.M.)
- Correspondence: (K.G.); (D.G.G.)
| | - Stefanos Τ. Papageorgiou
- Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, GR-54124 Thessaloniki, Greece; (S.Τ.P.); (I.M.)
| | - Ioannis Myrogiannis
- Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, GR-54124 Thessaloniki, Greece; (S.Τ.P.); (I.M.)
| | - Ioannis Mykoniatis
- Institute for the Study of Urological Diseases (ISUD), 33 Nikis Avenue, GR-54622 Thessaloniki, Greece;
- 1st Department of Urology and Center for Sexual and Reproductive Health, G. Gennimatas—Aghios Demetrius General Hospital, 41 Ethnikis Amynis Street, Aristotle University of Thessaloniki, GR-54635 Thessaloniki, Greece
| | - Theodora Papamitsou
- Laboratory of Histology and Embryology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41334 Larissa, Greece; (M.G.G.); (D.P.B.)
- Division of Transplantation, Immunology and Mucosal Biology, MRC Centre for Transplantation, King’s College London Medical School, London SE5 9RS, UK
| | - Dimitrios G. Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-56429 Thessaloniki, Greece
- Correspondence: (K.G.); (D.G.G.)
| |
Collapse
|
18
|
Marmitt DJ, Bitencourt S, Silva GRD, Rempel C, Goettert MI. RENISUS Plants and Their Potential Antitumor Effects in Clinical Trials and Registered Patents. Nutr Cancer 2020; 73:1821-1848. [PMID: 32835511 DOI: 10.1080/01635581.2020.1810290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022]
Abstract
Cancer is a significant cause of morbidity and mortality. Scientific advances, coupled with potential flaws in current treatments, are driving research into the discovery of new bioactive molecules. This systematic review focused on scientific studies with clinical trials and patents registered on the National Relation of Medicinal Plants of Interest to the Unified Health System (RENISUS) plants (or derivative compounds) with antitumor potential. Studies with 19 different forms of cancer were found, the prostate being the organ with the highest research incidence and the species Glycine max, Curcuma longa, and Zingiber officinale, beside the phytochemicals curcumin and soy isoflavone were the most tested in clinical trials/patents.
Collapse
Affiliation(s)
- Diorge Jônatas Marmitt
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Shanna Bitencourt
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Gustavo Rodrigo da Silva
- Centro de Ciências Biológicas e da Saúde, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Claudete Rempel
- Programa de Pós-graduação em Ambiente e Desenvolvimento/Programa de Pós-graduação em Sistemas Ambientais Sustentáveis, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Márcia Inês Goettert
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| |
Collapse
|
19
|
Rowles JL, Smith JW, Applegate CC, Miller RJ, Wallig MA, Kaur A, Sarol JN, Musaad S, Clinton SK, O'Brien WD, Erdman JW. Dietary Tomato or Lycopene Do Not Reduce Castration-Resistant Prostate Cancer Progression in a Murine Model. J Nutr 2020; 150:1808-1817. [PMID: 32369574 PMCID: PMC7330476 DOI: 10.1093/jn/nxaa107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Dietary tomato products or lycopene protect against prostate carcinogenesis, but their impact on the emergence of castration-resistant prostate cancer (CRPC) is unknown. OBJECTIVE We hypothesized that tomato or lycopene products would reduce the emergence of CRPC. METHODS Transgenic adenocarcinoma of the mouse prostate (TRAMP) mice were castrated at 12-13 wk and the emergence of CRPC was monitored by ultrasound in each study. In Study 1, TRAMP mice (n = 80) were weaned onto an AIN-93G-based control diet (Con-L, n = 28), a 10% tomato powder diet (TP-L, 10% lyophilized w/w, n = 26), or a control diet followed by a tomato powder diet after castration (TP-Int1, n = 26). In Study 2, TRAMP mice (n = 85) were randomized onto a control diet with placebo beadlets (Con-Int, n = 29), a tomato diet with placebo beadlets (TP-Int2, n = 29), or a control diet with lycopene beadlets (Lyc-Int, n = 27) following castration (aged 12 wk). Tumor incidence and growth were monitored by ultrasound beginning at an age of 10 wk. Mice were euthanized 4 wk after tumor detection or aged 30 wk if no tumor was detected. Tissue weights were compared by ANOVA followed by Dunnett's test. Tumor volumes were compared using generalized linear mixed model regression. RESULTS Ultrasound estimates for the in vivo tumor volume were strongly correlated with tumor weight at necropsy (R2 = 0.75 and 0.94, P <0.001 for both Studies 1 and 2, respectively). Dietary treatments after castration did not significantly impact cancer incidence, time to tumor detection, or final tumor weight. CONCLUSIONS In contrast to studies of de novo carcinogenesis in multiple preclinical models, tomato components had no significant impact on the emergence of CRPC in the TRAMP model. It is possible that specific mutant subclones of prostate cancer may continue to show some antiproliferative response to tomato components, but further studies are needed to confirm this.
Collapse
Affiliation(s)
- Joe L Rowles
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joshua W Smith
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Catherine C Applegate
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rita J Miller
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew A Wallig
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amandeep Kaur
- Interdisciplinary Health Sciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jesus N Sarol
- Interdisciplinary Health Sciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Salma Musaad
- Interdisciplinary Health Sciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Steven K Clinton
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Molecular Carcinogenesis and Chemoprevention Program, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - William D O'Brien
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
20
|
Mirahmadi M, Azimi-Hashemi S, Saburi E, Kamali H, Pishbin M, Hadizadeh F. Potential inhibitory effect of lycopene on prostate cancer. Biomed Pharmacother 2020; 129:110459. [PMID: 32768949 DOI: 10.1016/j.biopha.2020.110459] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Studying prostate cancer is important due to its high annual incidences and mortality rates in the world. Although prostate cancer mortality rates are reduced using new therapy, complicated routes and side effects of these current drugs require a daily available treatment for prevention. Lycopene is a natural, prominent, and effective product which has a high value in diet. The anti-cancer effect, non-toxicity, safety and preventive or therapeutic roles of lycopene have been investigated in several studies. In the current review, we have collected information about the anti-cancer, anti-progressive and apoptotic effects of lycopene on prostate cancer. This article is a summary of the most important original and review articles on lycopene and its anticancer effects that are systematically categorized and presents information about the molecular structure, different sources, biological functions, and its in-vivo and in-vitro effects of lycopene on variety of cancerous and normal cells. The clinical studies provide a clear image for continuous use of this adjunctive dietary for different type of cancers, especially prostate cancer in men. In addition, this article discusses the various molecular pathways activated by lycopene that eventually prevent or suppress cancer. Lycopene has been found to effectively suppress the progression and proliferation, arrest in-cell cycle, and induce apoptosis of prostate cancer cells in both in-vivo and in-vitro conditions. Additionally, lycopene showed that it could modulate the signaling pathways and their protein for the treatment or prevention of prostate cancer.
Collapse
Affiliation(s)
- Mahdi Mirahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cancer Research, Nastran Center for Cancer Prevention (NCCP), Mashhad, Iran
| | - Shayan Azimi-Hashemi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mandana Pishbin
- Iranian Blood Transfusion Organization, Khorasan Razavi Center, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Vikkurthi R, Devi TB, Gupta SC, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2020; 80:306-339. [DOI: 10.1016/j.semcancer.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
|
22
|
Microbiological Advances in Bioactives from High Altitude. MICROBIOLOGICAL ADVANCEMENTS FOR HIGHER ALTITUDE AGRO-ECOSYSTEMS & SUSTAINABILITY 2020. [DOI: 10.1007/978-981-15-1902-4_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Bisol Â, de Campos PS, Lamers ML. Flavonoids as anticancer therapies: A systematic review of clinical trials. Phytother Res 2019; 34:568-582. [PMID: 31752046 DOI: 10.1002/ptr.6551] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/25/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
Flavonoids have been proposed as potential chemotherapeutic agents because they are toxic against cancer cells but not harmful to healthy cells. This systematic review analyzed flavonoid effectiveness in human cancer chemotherapy. Overall, 22 phase II and 1 phase III clinical trials (PubMed, Scopus, and Web of Science) that used flavonoids as a single agent or combined with other therapeutics against hematopoietic/lymphoid or solid cancer published by January 2019 were selected for analysis. Flavopiridol was the most commonly used flavonoid (at a dose of 50-mg/m2 IV) for all tumor types. Aside from the relatively low rate of complete response (CR) or partial response (PR) with any administration protocol, flavonoids showed higher positive outcomes for hematopoietic and lymphoid tissues (140 patients with CR and 88 with PR among 615 patients in 11 trials) than for solid tumors (4 patients with CR and 21 with PR among 525 patients in 12 trials). However, because of the high variety in administration schedule, more studies are needed to further understand how flavonoids can promote positive outcomes for cancer patients.
Collapse
Affiliation(s)
- Ângela Bisol
- Basic Research Center in Dentistry, Dentistry School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Paloma Santos de Campos
- Basic Research Center in Dentistry, Dentistry School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Lazzaron Lamers
- Basic Research Center in Dentistry, Dentistry School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
24
|
Soares NDCP, Elias MDB, Lima Machado C, Trindade BB, Borojevic R, Teodoro AJ. Comparative Analysis of Lycopene Content from Different Tomato-Based Food Products on the Cellular Activity of Prostate Cancer Cell Lines. Foods 2019; 8:E201. [PMID: 31185698 PMCID: PMC6617171 DOI: 10.3390/foods8060201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Lycopene is more bioavailable in processed tomato products than in raw tomatoes, since arrangement of cis-isomers of lycopene during food processing and storage may increase its biological activity. The aim of the study is evaluate the influence of lycopene content from different tomato-based food products (extract, paste, ketchup and sauce) on cell proliferation, cell cycle, and rate of apoptosis of human prostate cancer cell lines. DU-145 and PC-3 cell lines were treated with lycopene content from different tomato-based food products (500-5000 μg/mL) for 96 h. The data showed a decrease in cell viability in both DU-145 and PC-3 cells after treatment with all lycopene extracts from tomato-based food products. Analysis of cell cycle revealed a decrease in the percentage of prostate cancer cells in G0/G1 and G2/M phases after 96 h of treatment when using lycopene content from tomato paste and tomato extract. However, lycopene extracted from tomato sauce and ketchup promoted a decrease in the percentage of cells in G0/G1 phase and an increase in S and G2/M phases after 96 h of treatment. Lycopene content from all of those tomato-based food products also increased apoptosis in both prostate cancer cell lines. In this regard, lycopene has proved to be a potent inhibitor of cell viability, arrest cell cycle and increase the apoptosis in human prostate cancer cells, suggesting an effect in the balance of human prostate cancer cell lines growth.
Collapse
Affiliation(s)
- Nathalia da Costa Pereira Soares
- Food Science Department, Chemistry Institute, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149-Cidade Universitária, Rio de Janeiro 21941-909, Brazil.
| | - Monique de Barros Elias
- Nutritional Biochemistry Core, Laboratory of Functional Foods, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Avenida Pasteur 296-Urca, Rio de Janeiro 22290-240, Brazil.
| | - Clara Lima Machado
- Nutritional Biochemistry Core, Laboratory of Functional Foods, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Avenida Pasteur 296-Urca, Rio de Janeiro 22290-240, Brazil.
| | - Bruno Boquimpani Trindade
- Nutritional Biochemistry Core, Laboratory of Functional Foods, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Avenida Pasteur 296-Urca, Rio de Janeiro 22290-240, Brazil.
| | - Radovan Borojevic
- Regenerative Medicine Centre, Faculdade de Medicina de Petrópólis (FASE), Avenida Barão do Rio Branco 1003-Petrópolis, Rio de Janeiro 25680-120, Brazil.
| | - Anderson Junger Teodoro
- Nutritional Biochemistry Core, Laboratory of Functional Foods, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Avenida Pasteur 296-Urca, Rio de Janeiro 22290-240, Brazil.
| |
Collapse
|
25
|
Vidoni C, Ferraresi A, Secomandi E, Vallino L, Dhanasekaran DN, Isidoro C. Epigenetic targeting of autophagy for cancer prevention and treatment by natural compounds. Semin Cancer Biol 2019; 66:34-44. [PMID: 31054926 DOI: 10.1016/j.semcancer.2019.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/16/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Abstract
Despite the undeniable progress made in the last decades, cancer continues to challenge the scientists engaged in searching for an effective treatment for its prevention and cure. One of the malignant hallmarks that characterize cancer cell biology is the altered metabolism of sugars and amino acids. Autophagy is a pathway allowing the macromolecular turnover via recycling of the substrates resulting from the lysosomal degradation of damaged or redundant cell molecules and organelles. As such, autophagy guarantees the proteome quality control and cell homeostasis. Data from in vitro, in animals and in patients researches show that dysregulation of autophagy favors carcinogenesis and cancer progression, making this process an ineluctable target of cancer therapy. The autophagy process is regulated at genetic, epigenetic and post-translational levels. Targeting autophagy with epigenetic modifiers could represent a valuable strategy to prevent or treat cancer. A wealth of natural products from terrestrial and marine living organisms possess anti-cancer activity. Here, we review the experimental proofs demonstrating the ability of natural compounds to regulate autophagy in cancer via epigenetics. The hope is that in the near future this knowledge could translate into effective intervention to prevent and cure cancer.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy.
| |
Collapse
|
26
|
Sahin I, Bilir B, Ali S, Sahin K, Kucuk O. Soy Isoflavones in Integrative Oncology: Increased Efficacy and Decreased Toxicity of Cancer Therapy. Integr Cancer Ther 2019; 18:1534735419835310. [PMID: 30897972 PMCID: PMC6431760 DOI: 10.1177/1534735419835310] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022] Open
Abstract
Soy consumption in human diet has been linked to decreased incidence of a variety of cancers, suggesting a potential role of soy products in cancer prevention and control. Furthermore, a substantial body of evidence in the literature suggests that soy supplementation may improve the efficacy and prevent the adverse effects of cancer chemotherapy and radiation therapy. Isoflavones constitute the predominant anticancer bioactive compounds in soy. Genistein, which is the most abundant and active isoflavone in soy, has a multitude of effects on cancer cells, including inhibition of NF-κB activation and DNA methylation, enhancement of histone acetylation, inhibition of cell growth and metastasis, and antiangiogenic, anti-inflammatory, and anti-oxidant effects. Isoflavones are orally bioavailable, easily metabolized, and usually considered safe. In this article, we review in vitro and in vivo evidence as well as the results of clinical and epidemiological studies on the effects of soy isoflavones, with a focus on sensitization of cancer cells to chemotherapy and radiation while at the same time protecting normal cells from the harmful effects of these treatments.
Collapse
Affiliation(s)
- Ilyas Sahin
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Birdal Bilir
- Emory University School of Medicine, Atlanta, GA, USA
- Emory University, Atlanta, GA, USA
| | | | | | - Omer Kucuk
- Emory University School of Medicine, Atlanta, GA, USA
- Emory University, Atlanta, GA, USA
| |
Collapse
|
27
|
Hedayati N, Naeini MB, Nezami A, Hosseinzadeh H, Wallace Hayes A, Hosseini S, Imenshahidi M, Karimi G. Protective effect of lycopene against chemical and natural toxins: A review. Biofactors 2019; 45:5-23. [PMID: 30339717 DOI: 10.1002/biof.1458] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022]
Abstract
People are exposed to a number of environmental, occupational, and therapeutic toxic agents which may be natural or man made. These hazardous substances may manifest as direct side effects on the function of organs or indirectly induced alteration of gene expression, cancer-associated metabolic pathways, and/or alter homeostasis. Lycopene, as a one of the most potent antioxidant, is found in fruits and vegetables. High-intake of lycopene has been shown to be effective in decreasing the risk of both natural toxins including mycotoxins, bacterial toxins, and chemical toxins including heavy metals, pesticides as well as herbicides. Recently, there is growing attention in understanding the mechanisms of the phytochemicals and carotenoids as antioxidative, antiapoptotic, radical scavenging, and chelating agents and their roles in the modulation of inflammatory pathways. This review summarizes available data from several recent studies about lycopene and its role against chemical and natural toxicants. © 2018 BioFactors, 45(1):5-23, 2019.
Collapse
Affiliation(s)
- Narges Hedayati
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehri Bemani Naeini
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Nezami
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
- Michigan State University Institute for Integrative Toxicology, East Lansing, MI, USA
| | - Sarasadat Hosseini
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Sivoňová MK, Kaplán P, Tatarková Z, Lichardusová L, Dušenka R, Jurečeková J. Androgen receptor and soy isoflavones in prostate cancer. Mol Clin Oncol 2018; 10:191-204. [PMID: 30680195 DOI: 10.3892/mco.2018.1792] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Androgens and androgen receptor (AR) play a critical role not only in normal prostate development, but also in prostate cancer. For that reason, androgen deprivation therapy (ADT) is the primary treatment for prostate cancer. However, the majority of patients develop castration-resistant prostate cancer, which eventually leads to mortality. Novel therapeutic approaches, including dietary changes, have been explored. Soy isoflavones have become a focus of interest because of their positive health benefits on numerous diseases, particularly hormone-related cancers, including prostate and breast cancers. An important strategy for the prevention and/or treatment of prostate cancer might thus be the action of soy isoflavones on the AR signaling pathway. The current review article provides a detailed overview of the anticancer potential of soy isoflavones (genistein, daidzein and glycitein), as mediated by their effect on AR.
Collapse
Affiliation(s)
- Monika Kmetová Sivoňová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Peter Kaplán
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.,Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Zuzana Tatarková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lucia Lichardusová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Róbert Dušenka
- Department of Urology, Jessenius Faculty of Medicine and UHM in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jana Jurečeková
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
29
|
Moran NE, Mohn ES, Hason N, Erdman JW, Johnson EJ. Intrinsic and Extrinsic Factors Impacting Absorption, Metabolism, and Health Effects of Dietary Carotenoids. Adv Nutr 2018; 9:465-492. [PMID: 30032230 PMCID: PMC6054194 DOI: 10.1093/advances/nmy025] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/06/2017] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
Carotenoids are orange, yellow, and red lipophilic pigments present in many fruit and vegetables, as well as other food groups. Some carotenoids contribute to vitamin A requirements. The consumption and blood concentrations of specific carotenoids have been associated with reduced risks of a number of chronic conditions. However, the interpretation of large, population-based observational and prospective clinical trials is often complicated by the many extrinsic and intrinsic factors that affect the physiologic response to carotenoids. Extrinsic factors affecting carotenoid bioavailability include food-based factors, such as co-consumed lipid, food processing, and molecular structure, as well as environmental factors, such as interactions with prescription drugs, smoking, or alcohol consumption. Intrinsic, physiologic factors associated with blood and tissue carotenoid concentrations include age, body composition, hormonal fluctuations, and variation in genes associated with carotenoid absorption and metabolism. To most effectively investigate carotenoid bioactivity and to utilize blood or tissue carotenoid concentrations as biomarkers of intake, investigators should either experimentally or statistically control for confounding variables affecting the bioavailability, tissue distribution, and metabolism of carotene and xanthophyll species. Although much remains to be investigated, recent advances have highlighted that lipid co-consumption, baseline vitamin A status, smoking, body mass and body fat distribution, and genetics are relevant covariates for interpreting blood serum or plasma carotenoid responses. These and other intrinsic and extrinsic factors are discussed, highlighting remaining gaps in knowledge and opportunities for future research. To provide context, we review the state of knowledge with regard to the prominent health effects of carotenoids.
Collapse
Affiliation(s)
- Nancy E Moran
- USDA–Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Emily S Mohn
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Noor Hason
- USDA–Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - John W Erdman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Elizabeth J Johnson
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| |
Collapse
|
30
|
Costa C, Tsatsakis A, Mamoulakis C, Teodoro M, Briguglio G, Caruso E, Tsoukalas D, Margina D, Dardiotis E, Kouretas D, Fenga C. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem Toxicol 2017; 110:286-299. [DOI: 10.1016/j.fct.2017.10.023] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
|
31
|
Karimabad MN, Falahati-Pour SK, Hassanshahi G, Koochakzadeh L. WITHDRAWN: The anti-cancer properties in parallel with toxic effects of indole-3-carbinol derivatives. Immunol Lett 2017:S0165-2478(17)30138-4. [PMID: 28851630 DOI: 10.1016/j.imlet.2017.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 10/19/2022]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
| | | | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Lili Koochakzadeh
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Wan W, Lu M, Wang D, Gao X, Hong J. High-fidelity de novo synthesis of pathways using microchip-synthesized oligonucleotides and general molecular biology equipment. Sci Rep 2017; 7:6119. [PMID: 28733633 PMCID: PMC5522410 DOI: 10.1038/s41598-017-06428-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/17/2017] [Indexed: 11/24/2022] Open
Abstract
Engineering and evaluation of synthetic routes for generating valuable compounds require accurate and cost-effective de novo synthesis of genetic pathways. Here, we present an economical and streamlined de novo DNA synthesis approach for engineering a synthetic pathway with microchip-synthesized oligonucleotides (oligo). The process integrates entire oligo pool amplification, error-removal, and assembly of long DNA molecules. We utilized this method to construct a functional lycopene biosynthetic pathway (11.9 kb encoding 10 genes) in Escherichia coli using a highly error-prone microchip-synthesized oligo pool (479 oligos) without pre-purification, and the error-frequency was reduced from 14.25/kb to 0.53/kb. This low-equipment-dependent and cost-effective method can be widely applied for rapid synthesis of biosynthetic pathways in general molecular biology laboratories.
Collapse
Affiliation(s)
- Wen Wan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Min Lu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaolian Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Department of Biology and Biochemistry, University of Houston, Houston, TX77004-5001, USA
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
33
|
Zhang HY, Cui J, Zhang Y, Wang ZL, Chong T, Wang ZM. Isoflavones and Prostate Cancer: A Review of Some Critical Issues. Chin Med J (Engl) 2017; 129:341-7. [PMID: 26831238 PMCID: PMC4799580 DOI: 10.4103/0366-6999.174488] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective: The purpose of this review is to discuss some critical issues of isoflavones protective against the development of prostate cancer (PCa). Data Sources: Data cited in this review were obtained primarily from PubMed and Embase from 1975 to 2015. Study Selection: Articles were selected with the search terms “isoflavone”, “Phytoestrogen”, “soy”, “genistin”, and “PCa”. Results: Isoflavones do not play an important role on prostate-specific antigen levels reduction in PCa patients or healthy men. The effect of isoflavones on sex hormone levels and PCa risk may be determined by equol converting bacteria in the intestine, specific polymorphic variation and concentrations of isoflavones. The intake of various types of phytoestrogens with lower concentrations in the daily diet may produce synergistic effects against PCa. Moreover, prostate tissue may concentrate isoflavones to potentially anti-carcinogenic levels. In addition, it is noteworthy that isoflavones may act as an agonist in PCa. Conclusions: Isoflavones play a protective role against the development of PCa. However, careful consideration should be given when isoflavones are used in the prevention and treatment of PCa.
Collapse
Affiliation(s)
| | | | | | | | | | - Zi-Ming Wang
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
34
|
Du W, Song Y, Liu M, Yang H, Zhang Y, Fan Y, Luo X, Li Z, Wang N, He H, Zhou H, Ma W, Zhang T. Gene expression pattern analysis of a recombinant Escherichia coli strain possessing high growth and lycopene production capability when using fructose as carbon source. Biotechnol Lett 2016; 38:1571-7. [PMID: 27379652 DOI: 10.1007/s10529-016-2133-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/25/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Escherichia coli K12f-pACLYC has a high capability for growth and lycopene production when using fructose as carbon source and the transcription of genes involved was compared in glucose-grown and fructose-grown cells. RESULTS Escherichia coli K12f-pACLYC was grown on 10 g fructose l(-1) and reached 4.6 g DCW l(-1) with lycopene at 192 mg g DCW(-1), values that are 3-fold and 7-fold higher than when growing on glucose. Gene transcription profiles of fructose-grown and glucose-grown cells were compared. 384 differentially expressed genes (DEGs) with fold changes ≥4 were identified, and the transcription of genes involved in fructose uptake and metabolism, pyruvate catabolism, tricarboxylic acid cycle and oxidative phosphorylation varied significantly. These changes enhanced the metabolic flux into the Embden-Meyerhof-Parnas pathway and the tricarboxylic acid cylcle and coupled to oxidative phosphorylation. These enhanced activities provide more precursors, cofactors and energy needed for growth lycopene production. CONCLUSION The high capability of E. coli K12f-pACLYC for growth and lycopene production when growing on fructose is due to transcriptional regulation, and the relevant genes were identified.
Collapse
Affiliation(s)
- Wen Du
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, China
| | - Yajian Song
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, China
| | - Mengya Liu
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, China
| | - Haixu Yang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, China
| | - Yao Zhang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, China
| | - Yanli Fan
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, China
| | - Xuegang Luo
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, China
| | - Zhongyuan Li
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, China
| | - Hongpeng He
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, China
| | - Hao Zhou
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, China
| | - Wenjian Ma
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, China.
| |
Collapse
|
35
|
Martí R, Roselló S, Cebolla-Cornejo J. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention. Cancers (Basel) 2016; 8:E58. [PMID: 27331820 PMCID: PMC4931623 DOI: 10.3390/cancers8060058] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
A diet rich in vegetables has been associated with a reduced risk of many diseases related to aging and modern lifestyle. Over the past several decades, many researches have pointed out the direct relation between the intake of bioactive compounds present in tomato and a reduced risk of suffering different types of cancer. These bioactive constituents comprise phytochemicals such as carotenoids and polyphenols. The direct intake of these chemoprotective molecules seems to show higher efficiencies when they are ingested in its natural biological matrix than when they are ingested isolated or in dietary supplements. Consequently, there is a growing trend for improvement of the contents of these bioactive compounds in foods. The control of growing environment and processing conditions can ensure the maximum potential accumulation or moderate the loss of bioactive compounds, but the best results are obtained developing new varieties via plant breeding. The modification of single steps of metabolic pathways or their regulation via conventional breeding or genetic engineering has offered excellent results in crops such as tomato. In this review, we analyse the potential of tomato as source of the bioactive constituents with cancer-preventive properties and the result of modern breeding programs as a strategy to increase the levels of these compounds in the diet.
Collapse
Affiliation(s)
- Raúl Martí
- Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castelló de la Plana, Spain.
| | - Salvador Roselló
- Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, Department de Ciències Agràries i del Medi Natural, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castelló de la Plana, Spain.
| | - Jaime Cebolla-Cornejo
- Unidad Mixta de Investigación Mejora de la Calidad Agroalimentaria UJI-UPV, COMAV, Universitat Politècnica de València, Cno., De Vera s/n, 46022 València, Spain.
| |
Collapse
|
36
|
van Die MD, Bone KM, Emery J, Williams SG, Pirotta MV, Paller CJ. Phytotherapeutic interventions in the management of biochemically recurrent prostate cancer: a systematic review of randomised trials. BJU Int 2016; 117 Suppl 4:17-34. [PMID: 26898239 PMCID: PMC8631186 DOI: 10.1111/bju.13361] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To evaluate the evidence from randomised trials for the efficacy and safety of phytotherapeutic interventions in the management of biochemically recurrent (BCR) prostate cancer, indicated by prostate-specific antigen (PSA) progression, numbers progressing to/time to initiation of androgen-deprivation therapy or salvage therapy. PATIENTS AND METHODS MEDLINE (Ovid), EMBASE (Ovid), AMED (Ovid), CINAHL (EBSCO) and the Cochrane Library databases were searched. Clinical trials investigating phytotherapeutic interventions as dietary supplements or dietary components, including multi-component herbal formulations, in men with BCR prostate cancer were located. Eight of nine authors contacted for further information responded. Methodological quality was assessed using the Cochrane Collaboration's risk of bias assessment tool. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement for reporting systematic reviews was followed. RESULTS Of 23 full-text articles assessed for eligibility, five met the criteria for inclusion. Two studies were placebo controlled; two were active control trials; and one a high-/low-dose trial. The interventions were administered as isolated phytochemicals (sulphoraphane), phytotherapeutic extracts [Pomi-T (pomegranate, turmeric, green tea and broccoli sprout extract), soy, lycopene, and POMx (pomegranate extract)], or plant-derived dietary items (soy and lycopene). All studies found serum PSA levels to stabilise, decrease or rise more slowly in a significant number of men, and three studies reported stabilising or lengthening of PSA-doubling time. Studies were generally of good quality, but sample sizes were predominantly small, and durations short. CONCLUSIONS High-quality studies in this area are lacking. Sulphoraphane, lycopene, soy isoflavones, POMx, and Pomi-T are safe and well tolerated. There is limited evidence that they can affect PSA dynamics. No recommendation can be made for the use of these agents in managing prostate cancer morbidity and mortality until high-quality, fully powered studies are available. Recommendations are made for improving reproducibility and translation of findings with regard to study population, study endpoints, design, and the reporting of phytotherapeutic interventions.
Collapse
Affiliation(s)
| | - Kerry M. Bone
- Integria (MediHerb), Warwick, Qld, Australia
- New York Chiropractic College, Seneca Falls, NY, USA
| | - Jon Emery
- Department of General Practice, University of Melbourne, Parkville, Vic., Australia
| | - Scott G. Williams
- Department of General Practice, University of Melbourne, Parkville, Vic., Australia
- Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia
| | - Marie V. Pirotta
- Department of General Practice, University of Melbourne, Parkville, Vic., Australia
| | - Channing J. Paller
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
37
|
Hackshaw-McGeagh LE, Perry RE, Leach VA, Qandil S, Jeffreys M, Martin RM, Lane JA. A systematic review of dietary, nutritional, and physical activity interventions for the prevention of prostate cancer progression and mortality. Cancer Causes Control 2015; 26:1521-50. [PMID: 26354897 PMCID: PMC4596907 DOI: 10.1007/s10552-015-0659-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/27/2015] [Indexed: 01/29/2023]
Abstract
PURPOSE Given the long-term, although potentially fatal, nature of prostate cancer, there is increasing observational evidence for the reduction in disease progression and mortality through changes in lifestyle factors. METHODS We systematically reviewed dietary, nutritional, and physical activity randomized interventions aimed at modifying prostate cancer progression and disease-specific mortality, including a detailed assessment of risk of bias and methodological quality. RESULTS Forty-four randomized controlled trials of lifestyle interventions, with prostate cancer progression or mortality outcomes, were identified. Substantial heterogeneity of the data prevented a meta-analysis. The included trials involved 3,418 prostate cancer patients, median 64 men per trial, from 13 countries. A trial of a nutritional supplement of pomegranate seed, green tea, broccoli, and turmeric; a trial comparing flaxseed, low-fat diet, flaxseed, and low-fat diet versus usual diet; and a trial supplementing soy, lycopene, selenium, and coenzyme Q10, all demonstrated beneficial effects. These trials were also assessed as having low risk of bias and high methodological quality (as were seven other trials with no evidence of benefit). The remaining trials were either underpowered, at high or unclear risk of bias, inadequately reported, of short duration or measured surrogate outcomes of unproven relationship to mortality or disease progression, which precluded any benefits reported being reliable. CONCLUSION Large, well-designed randomized trials with clinical endpoints are recommended for lifestyle modification interventions.
Collapse
Affiliation(s)
- Lucy E Hackshaw-McGeagh
- National Institute for Health Research (NIHR) Bristol Nutritional Biomedical Research Unit, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, BS2 8AE, UK.
- School of Social and Community Medicine, University of Bristol, Bristol, BS8 2PS, UK.
| | - Rachel E Perry
- National Institute for Health Research (NIHR) Bristol Nutritional Biomedical Research Unit, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, BS2 8AE, UK
| | - Verity A Leach
- School of Social and Community Medicine, University of Bristol, Bristol, BS8 2PS, UK
- Collaborative Leadership for Applied Health Research and Care (CLAHRC) West, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, BS1 3NU, UK
| | - Sara Qandil
- School of Social and Community Medicine, University of Bristol, Bristol, BS8 2PS, UK
| | - Mona Jeffreys
- School of Social and Community Medicine, University of Bristol, Bristol, BS8 2PS, UK
| | - Richard M Martin
- National Institute for Health Research (NIHR) Bristol Nutritional Biomedical Research Unit, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, BS2 8AE, UK
- School of Social and Community Medicine, University of Bristol, Bristol, BS8 2PS, UK
| | - J Athene Lane
- National Institute for Health Research (NIHR) Bristol Nutritional Biomedical Research Unit, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, BS2 8AE, UK
- School of Social and Community Medicine, University of Bristol, Bristol, BS8 2PS, UK
| |
Collapse
|
38
|
Chen QH, Yu K, Zhang X, Chen G, Hoover A, Leon F, Wang R, Subrahmanyam N, Addo Mekuria E, Harinantenaina Rakotondraibe L. A new class of hybrid anticancer agents inspired by the synergistic effects of curcumin and genistein: Design, synthesis, and anti-proliferative evaluation. Bioorg Med Chem Lett 2015; 25:4553-6. [PMID: 26341135 DOI: 10.1016/j.bmcl.2015.08.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022]
Abstract
Inspired by the synergistic effects of dietary natural products with different scaffolds on the inhibition of cancer cell proliferation, incorporation of central (1E,4E)-1,4-penta-dien-3-one linker (an optimal substitute for the central metabolically unstable diketone linker of curcumin), 1-alkyl-1H-imidazol-2-yl (a promising bioisostere of terminal aryl group in curcumin), and chromone (the common pharmacophore in genistein and quercetin) into one chemical entity resulted in ten new hybrid molecules, 3-((1E,4E)-5-(1-alkyl-1H-imidazol-2-yl)-3-oxopenta-1,4-dien-1-yl)-4H-chromen-4-ones. They were synthesized through a three-step transformation using acid-catalyzed aldol condensation as key step. The WST-1 cell proliferation assay showed that they have greater anti-proliferative potency than curcumin, quercetin, and genistein on both androgen-dependent and androgen-independent human prostate cancer cells.
Collapse
Affiliation(s)
- Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA.
| | - Kevin Yu
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Xiaojie Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Andrew Hoover
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Francisco Leon
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Rubing Wang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Nithya Subrahmanyam
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Ermias Addo Mekuria
- College of Pharmacy/Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, 434 Parks Hall, 500 W 12th Avenue, Columbus, OH 43210, USA
| | - Liva Harinantenaina Rakotondraibe
- College of Pharmacy/Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, 434 Parks Hall, 500 W 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
39
|
Antwi SO, Steck SE, Zhang H, Stumm L, Zhang J, Hurley TG, Hebert JR. Plasma carotenoids and tocopherols in relation to prostate-specific antigen (PSA) levels among men with biochemical recurrence of prostate cancer. Cancer Epidemiol 2015; 39:752-62. [PMID: 26165176 DOI: 10.1016/j.canep.2015.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 06/26/2015] [Accepted: 06/28/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although men presenting with clinically localized prostate cancer (PrCA) often are treated with radical prostatectomy or radiation therapy with curative intent, about 25-40% develop biochemically recurrent PrCA within 5 years of treatment, which has no known cure. Studies suggest that carotenoid and tocopherol intake may be associated with PrCA risk and progression. We examined plasma carotenoid and tocopherol levels in relation to prostate-specific antigen (PSA) levels among men with PSA-defined biochemical recurrence of PrCA. METHODS Data analyzed were from a 6-month diet, physical activity and stress-reduction intervention trial conducted in South Carolina among biochemically recurrent PrCA patients (n=39). Plasma carotenoids and tocopherol levels were measured using high-performance liquid chromatography (HPLC). Linear regression was used to estimate least-square means comparing PSA levels of men with high versus low carotenoid/tocopherol levels, adjusting for covariates. RESULTS After adjusting for baseline PSA level, plasma cis-lutein/zeaxanthin level at 3 months was related inversely to PSA level at 3 months (P=0.0008), while α-tocopherol (P=0.01), β-cryptoxanthin (P=0.01), and all-trans-lycopene (P=0.004) levels at 3 months were related inversely to PSA levels at 6-months. Percent increase in α-tocopherol and trans-β-carotene levels from baseline to month 3 were associated with lower PSA levels at 3 and 6 months. Percent increase in β-cryptoxanthin, cis-lutein/zeaxanthin and all-trans-lycopene were associated with lower PSA levels at 6 months only. CONCLUSIONS Certain plasma carotenoids and tocopherols were related inversely to PSA levels at various timepoints, suggesting that greater intake of foods containing these micronutrients might be beneficial to men with PSA-defined PrCA recurrence.
Collapse
Affiliation(s)
- Samuel O Antwi
- Division of Epidemiology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, United States
| | - Susan E Steck
- Epidemiology and Biostatistics Arnold School of Public Health, 915 Greene St, Columbia, SC 29208, United States; Cancer Prevention and Control Program, Arnold School of Public Health, 915 Greene St, Columbia, SC 29208, United States.
| | - Hongmei Zhang
- Epidemiology, Biostatistics, and Environmental Health, University of Memphis, 3825 Desoto Avenue, 224 Robison Hall, Memphis, TN 38152, United States
| | - Lareissa Stumm
- Epidemiology, James Madison University, 800 Madison Drive, Harrisonburg, VA 22807, United States
| | - Jiajia Zhang
- Epidemiology and Biostatistics Arnold School of Public Health, 915 Greene St, Columbia, SC 29208, United States
| | - Thomas G Hurley
- Epidemiology and Biostatistics Arnold School of Public Health, 915 Greene St, Columbia, SC 29208, United States; Cancer Prevention and Control Program, Arnold School of Public Health, 915 Greene St, Columbia, SC 29208, United States
| | - James R Hebert
- Epidemiology and Biostatistics Arnold School of Public Health, 915 Greene St, Columbia, SC 29208, United States; Cancer Prevention and Control Program, Arnold School of Public Health, 915 Greene St, Columbia, SC 29208, United States
| |
Collapse
|
40
|
Twardowski P, Kanaya N, Frankel P, Synold T, Ruel C, Pal SK, Junqueira M, Prajapati M, Moore T, Tryon P, Chen S. A phase I trial of mushroom powder in patients with biochemically recurrent prostate cancer: Roles of cytokines and myeloid-derived suppressor cells for Agaricus bisporus-induced prostate-specific antigen responses. Cancer 2015; 121:2942-50. [PMID: 25989179 DOI: 10.1002/cncr.29421] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Each year in the United States, nearly 50,000 prostate cancer patients exhibit a rise in prostate-specific antigen (PSA) levels, which can indicate disease recurrence. For patients with biochemically recurrent prostate cancer, we evaluated the effects of white button mushroom (WBM) powder on serum PSA levels and determined the tolerability and biological activity of WBM. METHODS Patients with continuously rising PSA levels were enrolled in the study. Dose escalation was conducted in cohorts of 6; this ensured that no more than 1 patient per cohort experienced dose-limiting toxicity (DLT). The primary objective was to evaluate treatment feasibility and associated toxicity. The secondary objectives were to determine WBM's effect on serum PSA/androgen levels; myeloid-derived suppressor cells (MDSCs); and cytokine levels. RESULTS Thirty-six patients were treated; no DLTs were encountered. The overall PSA response rate was 11%. Two patients receiving 8 and 14 g/d demonstrated complete response (CR): their PSA declined to undetectable levels that continued for 49 and 30 months. Two patients who received 8 and 12 g/d experienced partial response (PR). After 3 months of therapy, 13 (36%) patients experienced some PSA decrease below baseline. Patients with CR and PR demonstrated higher levels of baseline interleukin-15 than nonresponders; for this group, we observed therapy-associated declines in MDSCs. CONCLUSIONS Therapy with WBM appears to both impact PSA levels and modulate the biology of biochemically recurrent prostate cancer by decreasing immunosuppressive factors.
Collapse
Affiliation(s)
- Przemyslaw Twardowski
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, California
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Paul Frankel
- Department of Information Sciences, Beckman Research of the City of Hope, Duarte, California
| | - Timothy Synold
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Christopher Ruel
- Department of Information Sciences, Beckman Research of the City of Hope, Duarte, California
| | - Sumanta K Pal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, California
| | - Maribel Junqueira
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, California
| | - Manisha Prajapati
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, California
| | - Tina Moore
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, California
| | - Pamela Tryon
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, California
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| |
Collapse
|
41
|
DiMarco-Crook C, Xiao H. Diet-based strategies for cancer chemoprevention: the role of combination regimens using dietary bioactive components. Annu Rev Food Sci Technol 2015; 6:505-26. [PMID: 25884285 DOI: 10.1146/annurev-food-081114-110833] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemopreventive agents that the general population can consume for prolonged periods of time with minimal risk of any side effects are of great interest to all in search of a solution to the pervasive incidence of cancer. Dietary bioactive components have been found to modulate many deregulated molecular pathways associated with the initiation and progression of different types of cancer. Combination regimens with dietary bioactive components are a promising strategy for cancer chemoprevention because they may offer enhanced protective effects against cancer development but cause little or no adverse effects. This article provides an overview of studies examining the combination of dietary bioactive components for the chemoprevention of major types of cancer. A better understanding of existing research on the combination of dietary bioactive components will provide an important basis for the rational design of future combination studies and the successful development of cancer chemoprevention strategies.
Collapse
|
42
|
Xiong P, Wang R, Zhang X, DeLa Torre E, Leon F, Zhang Q, Zheng S, Wang G, Chen QH. Design, Synthesis, and Evaluation of Genistein Analogues as Anti-Cancer Agents. Anticancer Agents Med Chem 2015; 15:1197-203. [PMID: 25991428 PMCID: PMC4748842 DOI: 10.2174/1871520615666150520142437] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/04/2015] [Accepted: 05/19/2015] [Indexed: 11/22/2022]
Abstract
Genistein is a bioactive isoflavone derived from soybeans. The tie-in between the intake of genistein and the decreased incidence of some solid tumors (including prostate cancer) has been demonstrated by epidemiological studies. The potential of genistein in treating prostate cancer has also been displayed by in vitro cell-based and in vivo animal experiments. Genistein has entered clinical trials for both chemoprevention and potential treatment of prostate cancer. Even though the low oral bioavailability has presented the major challenges to genistein's further clinical development, chemical modulation of genistein holds the promise to generate potential anti-prostate cancer agents with enhanced potency and/or better pharmacokinetic profiles than genistein. As part of our ongoing project to develop natural products-based anti-prostate cancer agents, the current study was undertaken to synthesize eight genistein analogues for cytotoxic evaluation in three prostate cancer cell lines (PC-3, DU-145, LNCaP; both androgen-sensitive and androgen-refractory cell lines), as well as one aggressive cervical cancer cell line (HeLa). Eight genistein analogues have been successfully synthesized with Suzuki-Miyaura coupling reaction as a key step. Their in vitro anti-cancer potential was evaluated by trypan blue exclusion assay and WST-1 cell proliferation assay against a panel of four human cancer cell lines. The acquired data suggest i) that the C-5 and C-7 hydroxyl groups in genistein are very important for the cytotoxicity and anti-proliferative activity; and ii) that 1-alkyl-1H-pyrazol-4-yl and pyridine-3-yl might act as good bioisosteres for the 4'-hydroxyphenyl moiety in genistein.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qiao-Hong Chen
- Department of Chemistry, California State University Fresno, 2555 E. San Ramon Avenue M/S SB 70.
| |
Collapse
|
43
|
Ono M, Takeshima M, Nakano S. Mechanism of the Anticancer Effect of Lycopene (Tetraterpenoids). MECHANISM OF THE ANTICANCER EFFECT OF PHYTOCHEMICALS 2015; 37:139-66. [DOI: 10.1016/bs.enz.2015.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Merkle W. Prostatakarzinomprophylaxe durch Nahrungsergänzungsmittel. Urologe A 2014; 53:1610-9. [DOI: 10.1007/s00120-014-3614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Zeng YC, Mu GP, Huang SF, Zeng XH, Cheng H, Li ZX. Effects of lycopene on number and function of human peripheral blood endothelial progenitor cells cultivated with high glucose. Nutr Res Pract 2014; 8:368-76. [PMID: 25110555 PMCID: PMC4122707 DOI: 10.4162/nrp.2014.8.4.368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 02/16/2014] [Accepted: 02/25/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/OBJECTIVES The objectives of this study were to investigate the effects of lycopene on the migration, adhesion, tube formation capacity, and p38 mitogen-activated protein kinase (p38 MAPK) activity of endothelial progenitor cells (EPCs) cultivated with high glucose (HG) and as well as explore the mechanism behind the protective effects of lycopene on peripheral blood EPCs. MATERIALS/METHODS Mononuclear cells were isolated from human peripheral blood by Ficoll density gradient centrifugation. EPCs were identified after induction of cellular differentiation. Third generation EPCs were incubated with HG (33 mmol/L) or 10, 30, and 50 µg/mL of lycopene plus HG. MTT assay and flow cytometry were performed to assess proliferation and apoptosis of EPCs. EPC migration was assessed by MTT assay with a modified boyden chamber. Adhesion assay was performed by replating EPCs on fibronectin-coated dishes, after which adherent cells were counted. In vitro vasculogenesis activity was assayed by Madrigal network formation assay. Western blotting was performed to analyze protein expression of both phosphorylated and non-phosphorylated p38 MAPK. RESULTS The proliferation, migration, adhesion, and in vitro vasculogenesis capacity of EPCs treated with 10, 30, and 50 µg/mL of lycopene plus HG were all significantly higher comapred to the HG group (P < 0.05). Rates of apoptosis were also significantly lower than that of the HG group. Moreover, lycopene blocked phosphorylation of p38 MAPK in EPCs (P < 0.05). To confirm the causal relationship between MAPK inhibition and the protective effects of lycopene against HG-induced cellular injury, we treated cells with SB203580, a phosphorylation inhibitor. The inhibitor significantly inhibited HG-induced EPC injury. CONCLUSIONS Lycopene promotes proliferation, migration, adhesion, and in vitro vasculogenesis capacity as well as reduces apoptosis of EPCs. Further, the underlying molecular mechanism of the protective effects of lycopene against HG-induced EPC injury may involve the p38 MAPK signal transduction pathway. Specifically, lycopene was shown to inhibit HG-induced EPC injury by inhibiting p38 MAPKs.
Collapse
Affiliation(s)
- Yao-Chi Zeng
- Department of Clinical Nutrition, Shenzhen Traditional Chinese Medicine Hospital, China
| | - Gui-Ping Mu
- Department of Central Laboratory, Shenzhen Traditional Chinese Medicine Hospital, China
| | - Shu-Fen Huang
- Department of Health Education, Shenzhen Traditional Chinese Medicine Hospital, China
| | - Xue-Hui Zeng
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Hong Cheng
- Department of Cardiovascular Medicine, Shenzhen Traditional Chinese Medicine Hospital, China
| | - Zhong-Xin Li
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| |
Collapse
|
46
|
McCarty MF, Hejazi J, Rastmanesh R. Beyond androgen deprivation: ancillary integrative strategies for targeting the androgen receptor addiction of prostate cancer. Integr Cancer Ther 2014; 13:386-95. [PMID: 24867960 DOI: 10.1177/1534735414534728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The large majority of clinical prostate cancers remain dependent on androgen receptor (AR) activity for proliferation even as they lose their responsiveness to androgen deprivation or antagonism. AR activity can be maintained in these circumstances by increased AR synthesis--often reflecting increased NF-κB activation; upregulation of signaling pathways that promote AR activity in the absence of androgens; and by emergence of AR mutations or splice variants lacking the ligand-binding domain, which render the AR constitutively active. Drugs targeting the N-terminal transactivating domain of the AR, some of which are now in preclinical development, can be expected to inhibit the activity not only of unmutated ARs but also of the mutant forms and splice variants selected for by androgen deprivation. Concurrent measures that suppress AR synthesis or boost AR turnover could be expected to complement the efficacy of such drugs. A number of nutraceuticals that show efficacy in prostate cancer xenograft models--including polyphenols from pomegranate, grape seed, and green tea, the crucifera metabolite diindolylmethane, and the hormone melatonin--have the potential to suppress AR synthesis via downregulation of NF-κB activity; clinical doses of salicylate may have analogous efficacy. The proteasomal turnover of the AR is abetted by diets with a high ratio of long-chain omega-3 to omega-6 fatty acids, which are beneficial in prostate cancer xenograft models; berberine and sulforaphane, by inhibiting AR's interaction with its chaperone Hsp90, likewise promote AR proteasomal degradation and retard growth of human prostate cancer in nude mice. Hinge region acetylation of the AR is required for optimal transactivational activity, and low micromolar concentrations of the catechin epigallocatechin-3-gallate (EGCG) can inhibit such acetylation--possibly explaining the ability of EGCG administration to suppress androgenic activity and cell proliferation in prostate cancer xenografts. Hence, it is proposed that regimens featuring an N-terminal domain-targeting drug, various nutraceuticals/drugs that downregulate NF-κB activity, and/or supplemental intakes of fish oil, berberine, sulforaphane, and EGCG have potential for blocking proliferation of prostate cancer by targeting its characteristic addiction to androgen receptor activity.
Collapse
Affiliation(s)
| | - Jalal Hejazi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Rastmanesh
- National Nutrition and Food Sciences Technology Research Institute, Tehran, Iran
| |
Collapse
|
47
|
B. Kumar N, Dhurandhar M, Aggarwal B, Anant S, Daniel K, Deng G, Djeu J, Dou J, Hawk E, Jayaram B, Jia L, Joshi R, Kararala M, Karunagaran D, Kucuk O, Kumar L, Malafa M, Samathanam GJ, Sarkar F, Siddiqi M, Singh RP, Srivastava A, White JD. Proceedings of the Indo-U.S. bilateral workshop on accelerating botanicals/biologics agent development research for cancer chemoprevention, treatment, and survival. Cancer Med 2014; 2:108-15. [PMID: 24279005 PMCID: PMC3797562 DOI: 10.1002/cam4.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With the evolving evidence of the promise of botanicals/biologics for cancer chemoprevention and treatment, an Indo-U.S. collaborative Workshop focusing on “Accelerating Botanicals Agent Development Research for Cancer Chemoprevention and Treatment” was conducted at the Moffitt Cancer Center, 29–31 May 2012. Funded by the Indo-U.S. Science and Technology Forum, a joint initiative of Governments of India and the United States of America and the Moffitt Cancer Center, the overall goals of this workshop were to enhance the knowledge (agents, molecular targets, biomarkers, approaches, target populations, regulatory standards, priorities, resources) of a multinational, multidisciplinary team of researcher's to systematically accelerate the design, to conduct a successful clinical trials to evaluate botanicals/biologics for cancer chemoprevention and treatment, and to achieve efficient translation of these discoveries into the standards for clinical practice that will ultimately impact cancer morbidity and mortality. Expert panelists were drawn from a diverse group of stakeholders, representing the leadership from the National Cancer Institute's Office of Cancer Complementary and Alternative Medicine (OCCAM), NCI Experimental Therapeutics (NExT), Food and Drug Administration, national scientific leadership from India, and a distinguished group of population, basic and clinical scientists from the two countries, including leaders in bioinformatics, social sciences, and biostatisticians. At the end of the workshop, we established four Indo-U.S. working research collaborative teams focused on identifying and prioritizing agents targeting four cancers that are of priority to both countries. Presented are some of the key proceedings and future goals discussed in the proceedings of this workshop.
Collapse
Affiliation(s)
| | - Medha Dhurandhar
- Centre for Development of Advanced Computing, Pune UniversityPune, 411007, India
| | - Bharat Aggarwal
- The University of Texas, M.D. Anderson Cancer CenterHouston, Texas, 77054
| | - Shrikant Anant
- The University of Kansas Medical CenterKansas City, Kansas, 66160
| | | | - Gary Deng
- Memorial Sloan-Kettering Cancer CenterNew York, New York, 10021
| | - Julie Djeu
- Moffitt Cancer Center, Tampa, Florida, 33612-9497
| | - Jinhui Dou
- Food and Drug AdministrationSilver Springs, Maryland, 20993
| | - Ernest Hawk
- The University of Texas, M.D. Anderson Cancer CenterHouston, Texas, 77054
| | - B. Jayaram
- India Institute of Technology-DelhiNew Delhi, 110016, India
| | - Libin Jia
- National Cancer Institute, NIHBethesda, Maryland, 20892
| | - Rajendra Joshi
- Bioinformatics Scientific and Engineering Computing, Pune UniversityPune, 411007, India
| | | | - Devarajan Karunagaran
- Department of Biotechnology, India Institute of Technology – MadrasChennai, 600036, India
| | - Omer Kucuk
- Emory Healthcare, The Emory Clinic Winship Cancer InstituteNE Atlanta, Georgia, 30322
| | - Lalit Kumar
- Institute Rotary Cancer Hospital (IRCH), All India Institute of Medical SciencesNew Delhi, 110029, India
| | | | - G. J. Samathanam
- Department and Transfer DivisionDepartment of Science and Technology, Government of IndiaIndia
| | - Fazlul Sarkar
- Barbara Ann Karmanos Cancer InstituteDetroit, Michigan, 48201
| | | | - Rana P. Singh
- School of Life Sciences, Central University of GujaratGujarat, 382030, India
| | - Anil Srivastava
- Open Health Systems Laboratory at Johns Hopkins Montgomery County CampusRockville, Maryland, 20850
| | | |
Collapse
|
48
|
Takeshima M, Ono M, Higuchi T, Chen C, Hara T, Nakano S. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci 2014; 105:252-7. [PMID: 24397737 PMCID: PMC4317951 DOI: 10.1111/cas.12349] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/22/2013] [Accepted: 01/03/2014] [Indexed: 11/28/2022] Open
Abstract
Although lycopene, a major carotenoid component of tomatoes, has been suggested to attenuate the risk of breast cancer, the underlying preventive mechanism remains to be determined. Moreover, it is not known whether there are any differences in lycopene activity among different subtypes of human breast cancer cells. Using ER/PR positive MCF-7, HER2-positive SK-BR-3 and triple-negative MDA-MB-468 cell lines, we investigated the cellular and molecular mechanism of the anticancer activity of lycopene. Lycopene treatment for 168 consecutive hours exhibited a time-dependent and dose-dependent anti-proliferative activity against these cell lines by arresting the cell cycle at the G0/G1 phase at physiologically achievable concentrations found in human plasma. The greatest growth inhibition was observed in MDA-MB-468 where the sub-G0/G1 apoptotic population was significantly increased, with demonstrable cleavage of PARP. Lycopene induced strong and sustained activation of the ERK1/2, with concomitant cyclin D1 suppression and p21 upregulation in these three cell lines. In triple negative cells, lycopene inhibited the phosphorylation of Akt and its downstream molecule mTOR, followed by subsequent upregulation of proapoptotic Bax without affecting anti-apoptotic Bcl-xL. Taken together, these data indicate that the predominant anticancer activity of lycopene in MDA-MB-468 cells suggests a potential role of lycopene for the prevention of triple negative breast cancer.
Collapse
Affiliation(s)
- Mikako Takeshima
- Graduate School of Health and Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Holzapfel NP, Holzapfel BM, Champ S, Feldthusen J, Clements J, Hutmacher DW. The potential role of lycopene for the prevention and therapy of prostate cancer: from molecular mechanisms to clinical evidence. Int J Mol Sci 2013; 14:14620-46. [PMID: 23857058 PMCID: PMC3742263 DOI: 10.3390/ijms140714620] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 05/29/2013] [Accepted: 06/20/2013] [Indexed: 11/23/2022] Open
Abstract
Lycopene is a phytochemical that belongs to a group of pigments known as carotenoids. It is red, lipophilic and naturally occurring in many fruits and vegetables, with tomatoes and tomato-based products containing the highest concentrations of bioavailable lycopene. Several epidemiological studies have linked increased lycopene consumption with decreased prostate cancer risk. These findings are supported by in vitro and in vivo experiments showing that lycopene not only enhances the antioxidant response of prostate cells, but that it is even able to inhibit proliferation, induce apoptosis and decrease the metastatic capacity of prostate cancer cells. However, there is still no clearly proven clinical evidence supporting the use of lycopene in the prevention or treatment of prostate cancer, due to the only limited number of published randomized clinical trials and the varying quality of existing studies. The scope of this article is to discuss the potential impact of lycopene on prostate cancer by giving an overview about its molecular mechanisms and clinical effects.
Collapse
Affiliation(s)
- Nina Pauline Holzapfel
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; E-Mails: (N.P.H.); (B.M.H.)
| | - Boris Michael Holzapfel
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; E-Mails: (N.P.H.); (B.M.H.)
| | - Simon Champ
- Human Nutrition, BASF SE, G-ENH/MB, 68623 Lampertheim, Germany; E-Mails: (S.C.); (J.F.)
| | - Jesper Feldthusen
- Human Nutrition, BASF SE, G-ENH/MB, 68623 Lampertheim, Germany; E-Mails: (S.C.); (J.F.)
| | - Judith Clements
- Australian Prostate Cancer Research Centre, Translational Research Institute, 37 Kent Street, Woolongabba, QLD 4102, Brisbane, Australia; E-Mail:
| | - Dietmar Werner Hutmacher
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Brisbane, Australia; E-Mails: (N.P.H.); (B.M.H.)
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive Northwest, Atlanta, GA 30332, USA
- Institute of Advanced Study, Technical University of Munich, Lichtenbergstr. 2a, 85748 Garching, Munich, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-3138-6077; Fax: +61-7-3138-6030
| |
Collapse
|
50
|
Zuniga KE, Clinton SK, Erdman JW. The interactions of dietary tomato powder and soy germ on prostate carcinogenesis in the TRAMP model. Cancer Prev Res (Phila) 2013; 6:548-57. [PMID: 23592738 PMCID: PMC3681090 DOI: 10.1158/1940-6207.capr-12-0443] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interactions between bioactive-rich food components within a complex human diet for the inhibition of prostate carcinogenesis are largely unknown and difficult to quantify in humans. Tomato and soy products have each shown anti-prostate cancer (PCa) activity in laboratory studies. The objective of this study was to determine the efficacy of dietary tomato and soy germ, alone and in combination, for the inhibition of PCa in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. At 4 weeks of age, male C57BL/6 × FVB TRAMP mice (n = 119) were randomized to consume: AIN-93G control, 10% whole tomato powder (TP), 2% soy germ powder (SG), or 10% tomato powder with 2% soy germ powder (TP+SG) for 14 weeks. One hundred percent of mice fed the control diet had PCa, whereas PCa incidence was significantly lower in mice consuming TP (61%, P < 0.001), SG (66%, P < 0.001), and TP+SG (45%, P < 0.001). Although the protection offered by the combination of TP and SG was not synergistic, it was the most effective intervention. TP, SG, and TP+SG increased apoptotic index (AI) and modestly reduced the proliferative index (PI) in the prostate epithelium of TRAMP mice exhibiting primarily prostatic intraepithelial neoplasia. The dramatic reduction in the PI/AI ratio by the dietary interventions suggests that the control mice experience a stronger stimulus for malignant progression in the prostate microenvironment. Maximally effective and safe strategies for PCa prevention may result from optimizing combinations of nutrients and bioactives through an orchestration of dietary patterns.
Collapse
Affiliation(s)
- Krystle E. Zuniga
- Division of Nutritional Sciences and Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL
| | - Steven K Clinton
- Division of Medical Oncology and the James Cancer Hospital, The Ohio State University, Columbus, OH
| | - John W. Erdman
- Division of Nutritional Sciences and Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL
| |
Collapse
|