1
|
Ge L, Liu P, Tian L, Li Y, Chen L. Se-methylselenocysteine inhibits the progression of non-small cell lung cancer via ROS-mediated NF-κB signaling pathway. Exp Cell Res 2024; 440:114101. [PMID: 38815788 DOI: 10.1016/j.yexcr.2024.114101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Se-methylselenocysteine (MSC) is recognized for its potential in cancer prevention, yet the specific effects and underlying processes it initiates within non-small cell lung cancer (NSCLC) remain to be fully delineated. Employing a comprehensive array of assays, including CCK-8, colony formation, flow cytometry, MitoSOX Red staining, wound healing, transwell, and TUNEL staining, we evaluated MSC's effects on A549 and 95D cell lines. Our investigation extended to the ROS-mediated NF-κB signaling pathway, utilizing Western blot analysis, P65 overexpression, and the application of IκB-α inhibitor (BAY11-7082) or N-acetyl-cysteine (NAC) to elucidate MSC's mechanism of action. In vivo studies involving subcutaneous xenografts in mice further confirmed MSC's inhibitory effect on tumor growth. Our findings indicated that MSC inhibited the proliferation of A549 and 95D cells, arresting cell cycle G0/G1 phase and reducing migration and invasion, while also inducing apoptosis and increasing intracellular ROS levels. This was accompanied by modulation of key proteins, including the upregulation of p21, p53, E-cadherin, Bax, cleaved caspase-3, cleaved-PARP, and downregulation of CDK4, SOD2, GPX-1. MSC was found to inhibit the NF-κB pathway, as evidenced by decreased levels of P-P65 and P-IκBα. Notably, overexpression of P65 and modulation of ROS levels with NAC could attenuate MSC's effects on cellular proliferation and metastasis. Moreover, MSC significantly curtailed tumor growth in vivo and disrupted the NF-κB signaling pathway. In conclusion, our research demonstrates that MSC exhibits anticancer effects against NSCLC by modulating the ROS/NF-κB signaling pathway, suggesting its potential as a therapeutic agent in NSCLC treatment.
Collapse
Affiliation(s)
- Liang Ge
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Peijun Liu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Lan Tian
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yong Li
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Limin Chen
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Wilson JJ, Bennie L, Eguaogie O, Elkashif A, Conlon PF, Jena L, McErlean E, Buckley N, Englert K, Dunne NJ, Tucker JHR, Vyle JS, McCarthy HO. Synthesis and characterisation of a nucleotide based pro-drug formulated with a peptide into a nano-chemotherapy for colorectal cancer. J Control Release 2024; 369:63-74. [PMID: 38513729 DOI: 10.1016/j.jconrel.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Recent studies in colorectal cancer patients (CRC) have shown that increased resistance to thymidylate synthase (TS) inhibitors such as 5-fluorouracil (5-FU), reduce the efficacy of standard of care (SoC) treatment regimens. The nucleotide pool cleanser dUTPase is highly expressed in CRC and is an attractive target for potentiating anticancer activity of chemotherapy. The purpose of the current work was to investigate the activity of P1, P4-di(2',5'-dideoxy-5'-selenouridinyl)-tetraphosphate (P4-SedU2), a selenium-modified symmetrically capped dinucleoside with prodrug capabilities that is specifically activated by dUTPase. Using mechanochemistry, P4-SedU2 and the corresponding selenothymidine analogue P4-SeT2 were prepared with a yield of 19% and 30% respectively. The phosphate functionality facilitated complexation with the amphipathic cell-penetrating peptide RALA to produce nanoparticles (NPs). These NPs were designed to deliver P4-SedU2 intracellularly and thereby maximise in vivo activity. The NPs demonstrated effective anti-cancer activity and selectivity in the HCT116 CRC cell line, a cell line that overexpresses dUTPase; compared to HT29 CRC cells and NCTC-929 fibroblast cells which have reduced levels of dUTPase expression. In vivo studies in BALB/c SCID mice revealed no significant toxicity with respect to weight or organ histology. Pharmacokinetic analysis of blood serum showed that RALA facilitates effective delivery and rapid internalisation into surrounding tissues with NPs eliciting lower plasma Cmax than the equivalent injection of free P4-SedU2, translating the in vitro findings. Tumour growth delay studies have demonstrated significant inhibition of growth dynamics with the tumour doubling time extended by >2weeks. These studies demonstrate the functionality and action of a new pro-drug nucleotide for CRC.
Collapse
Affiliation(s)
- Jordan J Wilson
- School of Pharmacy, Queen's University Belfast, Medical Biological Centre, 97 Lisburn Road, Belfast BT9 7LB, UK; School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Lindsey Bennie
- School of Pharmacy, Queen's University Belfast, Medical Biological Centre, 97 Lisburn Road, Belfast BT9 7LB, UK
| | - Olga Eguaogie
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Ahmed Elkashif
- School of Pharmacy, Queen's University Belfast, Medical Biological Centre, 97 Lisburn Road, Belfast BT9 7LB, UK
| | - Patrick F Conlon
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Lynn Jena
- School of Pharmacy, Queen's University Belfast, Medical Biological Centre, 97 Lisburn Road, Belfast BT9 7LB, UK
| | - Emma McErlean
- School of Pharmacy, Queen's University Belfast, Medical Biological Centre, 97 Lisburn Road, Belfast BT9 7LB, UK
| | - Niamh Buckley
- School of Pharmacy, Queen's University Belfast, Medical Biological Centre, 97 Lisburn Road, Belfast BT9 7LB, UK
| | - Klaudia Englert
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Centre for Medical Engineering Research, Dublin City University, Ireland
| | - James H R Tucker
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joseph S Vyle
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biological Centre, 97 Lisburn Road, Belfast BT9 7LB, UK; School of Chemical Sciences, Dublin City University, Collins Avenue, Dublin 9, Ireland.
| |
Collapse
|
3
|
Nikulin MV, Drobot VV, Shurubor YI, Švedas VK, Krasnikov BF. Preparative Biocatalytic Synthesis of α-Ketomethylselenobutyrate-A Putative Agent for Cancer Therapy. Molecules 2023; 28:6178. [PMID: 37687007 PMCID: PMC10489025 DOI: 10.3390/molecules28176178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Biomedical studies of the role of organic selenium compounds indicate that the amino acid derivative of L-selenomethionine, α-ketomethylselenobutyrate (KMSB), can be considered a potential anticancer therapeutic agent. It was noted that, in addition to a direct effect on redox signaling molecules, α-ketoacid metabolites of organoselenium compounds are able to change the status of histone acetylation and suppress the activity of histone deacetylases in cancer cells. However, the wide use of KMSB in biomedical research is hindered not only by its commercial unavailability, but also by the fact that there is no detailed information in the literature on possible methods for the synthesis of this compound. This paper describes in detail the procedure for obtaining a high-purity KMSB preparation (purity ≥ 99.3%) with a yield of the target product of more than 67%. L-amino acid oxidase obtained from C. adamanteus was used as a catalyst for the conversion of L-selenomethionine to KMSB. If necessary, this method can be used as a basis both for scaling up the synthesis of KMSB and for developing cost-effective biocatalytic technologies for obtaining other highly purified drugs.
Collapse
Affiliation(s)
- Maksim V. Nikulin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Lenin Hills 1, Bldg. 40, Moscow 119991, Russia; (M.V.N.); (V.V.D.)
| | - Viktor V. Drobot
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Lenin Hills 1, Bldg. 40, Moscow 119991, Russia; (M.V.N.); (V.V.D.)
| | - Yevgeniya I. Shurubor
- Centre for Strategic Planning of FMBA of the Russian Federation, Pogodinskaya St., Bldg. 10, Moscow 119121, Russia;
| | - Vytas K. Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Lenin Hills 1, Bldg. 73, Moscow 119991, Russia
| | - Boris F. Krasnikov
- Centre for Strategic Planning of FMBA of the Russian Federation, Pogodinskaya St., Bldg. 10, Moscow 119121, Russia;
| |
Collapse
|
4
|
Dobrzyńska M, Drzymała-Czyż S, Woźniak D, Drzymała S, Przysławski J. Natural Sources of Selenium as Functional Food Products for Chemoprevention. Foods 2023; 12:1247. [PMID: 36981172 PMCID: PMC10048267 DOI: 10.3390/foods12061247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, the incidence of which is increasing annually. Interest has recently grown in the anti-cancer effect of functional foods rich in selenium (Se). Although clinical studies are inconclusive and anti-cancer mechanisms of Se are not fully understood, daily doses of 100-200 µg of Se may inhibit genetic damage and the development of cancer in humans. The anti-cancer effects of this trace element are associated with high doses of Se supplements. The beneficial anti-cancer properties of Se and the difficulty in meeting the daily requirements for this micronutrient in some populations make it worth considering the use of functional foods enriched in Se. This review evaluated studies on the anti-cancer activity of the most used functional products rich in Se on the European market.
Collapse
Affiliation(s)
| | - Sławomira Drzymała-Czyż
- Department of Bromatology, Poznan University of Medical Science, Rokietnicka 3 Street, 60-806 Poznan, Poland
| | | | | | | |
Collapse
|
5
|
Radomska D, Czarnomysy R, Radomski D, Bielawska A, Bielawski K. Selenium as a Bioactive Micronutrient in the Human Diet and Its Cancer Chemopreventive Activity. Nutrients 2021; 13:1649. [PMID: 34068374 PMCID: PMC8153312 DOI: 10.3390/nu13051649] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
This review answers the question of why selenium is such an important trace element in the human diet. Daily dietary intake of selenium and its content in various food products is discussed in this paper, as well as the effects of its deficiency and excess in the body. Moreover, the biological activity of selenium, which it performs mainly through selenoproteins, is discussed. These specific proteins are responsible for thyroid hormone management, fertility, the aging process, and immunity, but their key role is to maintain a redox balance in cells. Furthermore, taking into account world news and the current SARS-CoV-2 virus pandemic, the impact of selenium on the course of COVID-19 is also discussed. Another worldwide problem is the number of new cancer cases and cancer-related mortality. Thus, the last part of the article discusses the impact of selenium on cancer risk based on clinical trials (including NPC and SELECT), systematic reviews, and meta-analyses. Additionally, this review discusses the possible mechanisms of selenium action that prevent cancer development.
Collapse
Affiliation(s)
- Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| | - Dominik Radomski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| |
Collapse
|
6
|
Radomska D, Czarnomysy R, Radomski D, Bielawski K. Selenium Compounds as Novel Potential Anticancer Agents. Int J Mol Sci 2021; 22:ijms22031009. [PMID: 33498364 PMCID: PMC7864035 DOI: 10.3390/ijms22031009] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/21/2022] Open
Abstract
The high number of new cancer incidences and the associated mortality continue to be alarming, leading to the search for new therapies that would be more effective and less burdensome for patients. As there is evidence that Se compounds can have chemopreventive activity, studies have begun to establish whether these compounds can also affect already existing cancers. This review aims to discuss the different classes of Se-containing compounds, both organic and inorganic, natural and synthetic, and the mechanisms and molecular targets of their anticancer activity. The chemical classes discussed in this paper include inorganic (selenite, selenate) and organic compounds, such as diselenides, selenides, selenoesters, methylseleninic acid, 1,2-benzisoselenazole-3[2H]-one and selenophene-based derivatives, as well as selenoamino acids and Selol.
Collapse
|
7
|
Font M, Romano B, González-Peñas E, Sanmartín C, Plano D, Palop JA. Methylselenol release as a cytotoxic tool: a study of the mechanism of the activity achieved by two series of methylselenocarbamate derivatives. Metallomics 2019; 10:1128-1140. [PMID: 30062350 DOI: 10.1039/c8mt00140e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A molecular modeling study has been carried out on two previously reported series of methylselenocarbamate derivatives that show remarkable antiproliferative and cytotoxic in vitro activity, against a panel of human cancer cell lines. These derivatives can be considered as having been constructed by a selenomethyl fragment located over a carbon atom which is decorated with two carbamate moieties, both aliphatic and aromatic, one of them attached by a single bond to the central carbon atom, while the second is connected by a double bond. According to the data obtained, these derivatives can undergo a water-mediated nucleophilic attack on the carbons with marked electrophilic character, which leads to the rupture of C-Se and carbamate C-O bonds. The aliphatic derivatives, series 1, show an early release of methylselenol and a further release of hydroxyl derivatives (alcohols), whereas the aromatic carbamates, series 2, show an early release of phenols followed by the subsequent release of methylselenol. Thus, the activity of the compounds can be related to the progressive release of active fragments. The data that support this connection are related to the overall molecular topology, volume and surface area as well as to quantum parameters such as the relative electrophilic character of the target carbon atoms (measured in terms of positive charge values) or the bond order values, especially concerning the central C-SeCH3 bond and the carbamate ones. Moreover, the data obtained regarding the chromatographic behavior of some representative compounds confirm this proposal.
Collapse
Affiliation(s)
- María Font
- University of Navarra, School of Pharmacy and Nutrition, Dpto de Química Orgánica y Farmacéutica, Sección de Modelización Molecular, Irunlarrea 1, Pamplona, E-31008, Spain.
| | | | | | | | | | | |
Collapse
|
8
|
Collery P. Strategies for the development of selenium-based anticancer drugs. J Trace Elem Med Biol 2018; 50:498-507. [PMID: 29548612 DOI: 10.1016/j.jtemb.2018.02.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Many experimental models demonstrated that inorganic and organic selenium (Se) compounds may have an anticancer activity. However, large clinical studies failed to demonstrate that Se supplementations may prevent the outcome of cancers. Moreover, there are few randomized trials in cancer patients and there is not yet any Se compound recognized as anticancer drug. There is still a need to develop new Se compounds with new strategies. For that, it may be necessary to consider that Se compounds may have a dual role, either as anti-oxidant or as pro-oxidant. Experimental studies demonstrated that it is as pro-oxidant that Se compounds have anticancer effects, even though cancer cells have a pro-oxidant status. The oxidative status differs according to the type of cancer, the stage of the disease and to other parameters. We propose to adapt the doses of the Se compounds to markers of the oxidative stress, but also to markers of angiogenesis, which is strongly related with the oxidative status. A dual role of Se on angiogenesis has also been noted, either as pro-angiogenesis or as anti-angiogenesis. The objective for the development of new Se compounds, having a great selectivity on cancer cells, could be to try to normalize these oxidative and angiogenic markers in cancer patients, with an individual adaptation of doses.
Collapse
Affiliation(s)
- Philippe Collery
- Society for the Coordination of Therapeutic Researches, 20220 Algajola, France.
| |
Collapse
|
9
|
Kim JJ, Pham PH, Hamilton ME, Lee LEJ, Bols NC. Effect of selenomethionine on cell viability and heat shock protein 70 levels in rainbow trout intestinal epithelial cells at hypo-, normo-, and hyper-thermic temperatures. J Therm Biol 2018; 76:107-114. [PMID: 30143285 DOI: 10.1016/j.jtherbio.2018.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/07/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
As global warming and environmental pollution modify aquatic environments, the thermal biology of fish could be affected by interactions between temperature and pollutants, such as selenium (Se). Therefore, selenomethionine (SeMet) was studied for effects on cell viability and on heat shock protein 70 (HSP70) levels in the rainbow trout intestinal epithelial cell, RTgutGC, at hypothermic (4 °C), normothermic (14 and 18 °C) and hyperthermic (26 °C) temperatures. RTgutGC cultures remained viable for at least a week at all temperatures, although energy metabolism as measured with Alamar Blue (resazurin) was appreciably diminished at 4 °C. Over a 7-day incubation, HSP 70 levels in cultures remained steady at 4 °C, declined at 18 °C, and increased slightly at 26 °C. When 125 μM SeMet was present, cultures remained viable and HSP70 levels were neither increased nor decreased relative to control cultures, regardless of the temperature. With 500 and 1000 μM SeMet, cell viability was profoundly impaired after 7 days in cultures at 14, 18 and 26 °C but was unchanged at 4 °C. Overall the results suggest that only hypothermia modulated the response of rainbow trout cells to SeMet.
Collapse
Affiliation(s)
- John J Kim
- Department of Biology, University of Waterloo, Waterloo, Canada N2L 3G1
| | - Phuc H Pham
- Department of Biology, University of Waterloo, Waterloo, Canada N2L 3G1
| | - Mark E Hamilton
- Department of Biology, University of Waterloo, Waterloo, Canada N2L 3G1
| | - Lucy E J Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, Canada BC V2S 7M8
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, Canada N2L 3G1.
| |
Collapse
|
10
|
Sun X, Cui Y, Wang Q, Tang S, Cao X, Luo H, He Z, Hu X, Nie X, Yang Y, Wang T. Proteogenomic Analyses Revealed Favorable Metabolism Pattern Alterations in Rotifer Brachionus plicatilis Fed with Selenium-rich Chlorella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6699-6707. [PMID: 29874910 DOI: 10.1021/acs.jafc.8b00139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Organoselenium have garnered attention because of their potential to be used as ingredients in new anti-aging and antioxidation medicines and food. Rotifers are frequently used as a model organism for aging research. In this study, we used Se-enriched Chlorella (Se- Chlorella), a novel organoselenium compound, to feed Brachionus plicatilis to establish a rotifer model with a prolonged lifespan. The results showed that the antioxidative effect in Se-enriched rotifer was associated with an increase in guaiacol peroxidase (GPX) and catalase (CAT). The authors then performed the first proteogenomic analysis of rotifers to understand their possible metabolic mechanisms. With the de novo assembly of RNA-Seq reads as the reference, we mapped the proteomic output generated by iTRAQ-based mass spectrometry. We found that the differentially expressed proteins were primarily involved in antireactive oxygen species (ROS) and antilipid peroxidation (LPO), selenocompound metabolism, glycolysis, and amino acid metabolisms. Furthermore, the ROS level of rotifers was diminished after Se- Chlorella feeding, indicating that Se- Chlorella could help rotifers to enhance their amino acid metabolism and shift the energy generating metabolism from tricarboxylic acid cycle to glycolysis, which leads to reduced ROS production. This is the first report to demonstrate the anti-aging effect of Se- Chlorella on rotifers and to provide a possible mechanism for this activity. Thus, Se- Chlorella is a promising novel organoselenium compound with the potential to prolong human lifespans.
Collapse
Affiliation(s)
- Xian Sun
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Yizhi Cui
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| | - Qing Wang
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Shengquan Tang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| | - Xin Cao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| | - Hongtian Luo
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Zhili He
- School of Environmental Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Xiaonong Hu
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Xiangping Nie
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Yufeng Yang
- Institute of Hydrobiology and Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms , Guangdong Higher Education Institutes , Guangzhou 510006 , China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and Institute of Life and Health Engineering , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
11
|
Bloch SR, Kim JJ, Pham PH, Hodson PV, Lee LEJ, Bols NC. Responses of an American eel brain endothelial-like cell line to selenium deprivation and to selenite, selenate, and selenomethionine additions in different exposure media. In Vitro Cell Dev Biol Anim 2017; 53:940-953. [PMID: 28940125 DOI: 10.1007/s11626-017-0196-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/09/2017] [Indexed: 01/08/2023]
Abstract
The effect of selenium deprivation and addition on the American eel brain endothelial cell line (eelB) was studied in three exposure media: complete growth medium (L15/FBS), serum-free medium (L15), and minimal medium (L15/ex). L15/ex contains only galactose and pyruvate and allowed the deprivation of selenium on cells to be studied. In L15/ex, without any obvious source of selenium, eelB cells survived for at least 7 d, formed capillary-like structures (CLS) on Matrigel, and migrated to heal wounds. Three selenium compounds were added to cultures: selenite, selenate, and selenomethionine (SeMet). Adding selenite or selenate to eelB cell cultures for 24 h caused dose-dependent declines in cell viability, regardless of the exposure media. Although varying with exposure media and viability end point, selenite was approximately 70-fold more cytotoxic than selenate. By contrast, 24 h exposures to either DL- or L-SeMet in the three media caused little or no cytotoxicity. However for 7 d exposures in L15/ex, DL- and L-SeMet were very cytotoxic, even at the lowest tested concentration of 31 μM. By contrast in L15 and L15/FBS, cytotoxicity was only observed with 500 and 1000 μM L-SeMet. In L15/FBS, eelB continued to migrate and form CLS in the presence of SeMet but at 500 μM, cell migration appeared stimulated. As judged from a colony-forming assay over 14 d in L15/FBS, 500 and 1000 μM DL- and L-SeMet inhibited cell proliferation. Overall, the responses of eel cells to selenium depended on the selenium form, concentration, and exposure media, with responses to SeMet being most dependent on exposure media.
Collapse
Affiliation(s)
- Sophia R Bloch
- Department of Biology, University of Waterloo, Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - John J Kim
- Department of Biology, University of Waterloo, Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Phuc H Pham
- Department of Biology, University of Waterloo, Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Peter V Hodson
- Department of Biology and School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Lucy E J Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC, V2S 7M8, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
12
|
Assessment of the Antioxidant Activity of Extracts of Allium schoenoprasum L. with an Experimentally Elevated Selenium Content. Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1582-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Bartolini D, Sancineto L, Fabro de Bem A, Tew KD, Santi C, Radi R, Toquato P, Galli F. Selenocompounds in Cancer Therapy: An Overview. Adv Cancer Res 2017; 136:259-302. [PMID: 29054421 DOI: 10.1016/bs.acr.2017.07.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In vitro and in vivo experimental models clearly demonstrate the efficacy of Se compounds as anticancer agents, contingent upon chemical structures and concentrations of test molecules, as well as on the experimental model under investigation that together influence cellular availability of compounds, their molecular dynamics and mechanism of action. The latter includes direct and indirect redox effects on cellular targets by the activation and altered compartmentalization of molecular oxygen, and the interaction with protein thiols and Se proteins. As such, Se compounds interfere with the redox homeostasis and signaling of cancer cells to produce anticancer effects that include alterations in key regulatory elements of energy metabolism and cell cycle checkpoints that ultimately influence differentiation, proliferation, senescence, and death pathways. Cys-containing proteins and Se proteins involved in the response to Se compounds as sensors and transducers of anticancer signals, i.e., the pharmacoproteome of Se compounds, are described and include critical elements in the different phases of cancer onset and progression from initiation and escape of immune surveillance to tumor growth, angiogenesis, and metastasis. The efficacy and mode of action on these compounds vary depending on the inorganic and organic form of Se used as either supplement or pharmacological agent. In this regard, differences in experimental/clinical protocols provide options for either chemoprevention or therapy in different human cancers.
Collapse
Affiliation(s)
| | | | - Andreza Fabro de Bem
- Center of Biological Sciences (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Kenneth D Tew
- Medical University of South Carolina, Charleston, SC, United States
| | | | - Rafael Radi
- Center for Free Radical and Biomedical Research (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | | | | |
Collapse
|
14
|
Block E, Booker SJ, Flores-Penalba S, George GN, Gundala S, Landgraf BJ, Liu J, Lodge SN, Pushie MJ, Rozovsky S, Vattekkatte A, Yaghi R, Zeng H. Trifluoroselenomethionine: A New Unnatural Amino Acid. Chembiochem 2016; 17:1738-51. [PMID: 27383291 PMCID: PMC5373900 DOI: 10.1002/cbic.201600266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Indexed: 11/10/2022]
Abstract
Trifluoroselenomethionine (TFSeM), a new unnatural amino acid, was synthesized in seven steps from N-(tert-butoxycarbonyl)-l-aspartic acid tert-butyl ester. TFSeM shows enhanced methioninase-induced cytotoxicity, relative to selenomethionine (SeM), toward HCT-116 cells derived from human colon cancer. Mechanistic explanations for this enhanced activity are computationally and experimentally examined. Comparison of TFSeM and SeM by selenium EXAFS and DFT calculations showed them to be spectroscopically and structurally very similar. Nonetheless, when two different variants of the protein GB1 were expressed in an Escherichia coli methionine auxotroph cell line in the presence of TFSeM and methionine (Met) in a 9:1 molar ratio, it was found that, surprisingly, 85 % of the proteins contained SeM residues, even though no SeM had been added, thus implying loss of the trifluoromethyl group from TFSeM. The transformation of TFSeM into SeM is enzymatically catalyzed by E. coli extracts, but TFSeM is not a substrate of E. coli methionine adenosyltransferase.
Collapse
Affiliation(s)
- Eric Block
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 12222, USA.
| | - Squire J Booker
- Department of Chemistry, The Pennsylvania State University, 302 Chemistry Building, University Park, PA, 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sonia Flores-Penalba
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 12222, USA
| | - Graham N George
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - Sivaji Gundala
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 12222, USA
| | - Bradley J Landgraf
- Department of Chemistry, The Pennsylvania State University, 302 Chemistry Building, University Park, PA, 16802, USA
| | - Jun Liu
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA
| | - Stephene N Lodge
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 12222, USA
| | - M Jake Pushie
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
- College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, 163 The Green, Newark, DE, 19716, USA.
| | - Abith Vattekkatte
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 12222, USA
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans Knoll Strasse 8, 07745, Jena, Germany
| | - Rama Yaghi
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 12222, USA
- Atlanta Metropolitan State College, 1630 Metropolitan Parkway SW, Atlanta, GA, 30310, USA
| | - Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND, 58203, USA
| |
Collapse
|
15
|
Peng H, Li TWH, Yang H, Moyer MP, Mato JM, Lu SC. Methionine adenosyltransferase 2B-GIT1 complex serves as a scaffold to regulate Ras/Raf/MEK1/2 activity in human liver and colon cancer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1135-44. [PMID: 25794709 DOI: 10.1016/j.ajpath.2014.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/21/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Abstract
Methionine adenosyltransferase 2B (MAT2B) encodes for variant proteins V1 and V2 that interact with GIT1 to increase ERK activity and growth in human liver and colon cancer cells. MAT2B or GIT1 overexpression activates MEK. This study explores the mechanism for MEK activation. We examined protein-protein interactions by co-immunoprecipitation and verified by confocal microscopy and pull-down assay using recombinant or in vitro translated proteins. Results were confirmed in an orthotopic liver cancer model. We found that MAT2B and GIT1-mediated MEK1/2 activation was not mediated by PAK1 or Src in HepG2 or RKO cells. Instead, MAT2B and GIT1 interact with B-Raf and c-Raf and enhance recruitment of Raf proteins to MEK1/2. MAT2B-GIT1 activates c-Raf, which is the key mediator for MEK/12 activation, because this still occurred in RKO cells that express constitutively active B-Raf mutant. The mechanism lies with the ability of MAT2B-GIT1 to activate Ras and promote B-Raf/c-Raf heterodimerization. Interestingly, MAT2B but not GIT1 can directly interact with Ras, which increases protein stability. Finally, increased Ras-Raf-MEK signaling occurred in phenotypically more aggressive liver cancers overexpressing MAT2B variants and GIT1. In conclusion, interaction between MAT2B and GIT1 serves as a scaffold and facilitates signaling in multiple steps of the Ras/Raf/MEK/ERK pathway, further emphasizing the importance of MAT2B/GIT1 interaction in cancer growth.
Collapse
Affiliation(s)
- Hui Peng
- Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tony W H Li
- Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Heping Yang
- Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California; USC Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Jose M Mato
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (Ciberehd), Technology Park of Bizkaia, Bizkaia, Spain
| | - Shelly C Lu
- Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California; USC Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
16
|
Tahir SNA, Chettle DR, Byun SH, Prestwich WV. Feasibility of measuring selenium in humans usingin vivoneutron activation analysis. Physiol Meas 2015; 36:2217-30. [DOI: 10.1088/0967-3334/36/11/2217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Zeng H, Wu M. The Inhibitory Efficacy of Methylseleninic Acid Against Colon Cancer Xenografts in C57BL/6 Mice. Nutr Cancer 2015; 67:831-8. [DOI: 10.1080/01635581.2015.1042547] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Se-Methylselenocysteine Inhibits Apoptosis Induced by Clusterin Knockdown in Neuroblastoma N2a and SH-SY5Y Cell Lines. Int J Mol Sci 2014; 15:21331-47. [PMID: 25411798 PMCID: PMC4264228 DOI: 10.3390/ijms151121331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 11/19/2022] Open
Abstract
Apoptosis, as a programmed cell death process, is essential for the maintenance of tissue function in organisms. Alteration of this process is linked to many diseases. Over-expression of clusterin (Clu) can antagonize apoptosis in various cells. Selenium (Se) is an essential trace element for human health. Its biological function is also associated with cell apoptosis. To explore the function of Clu and the impact of Se in the process of apoptosis, several short-hairpin RNAs (shRNA) were designed for the construction of two sets of recombinant plasmids: one set for plasmid-transfection of mouse neuroblastoma N2a cells (N2a cells); and the other set for lentiviral infection of human neuroblastoma SH-SY5Y cells (SH-SY5Y cells). These shRNAs specifically and efficiently interfered with the intracellular expression of Clu at both the mRNA and protein levels. The Clu-knockdown cells showed apoptosis-related features, including down-regulation of antioxidative capacity and the Bcl-2/Bax ratio and up-regulation of caspase-8 activity. Se-methylselenocysteine (MSC) at an optimum concentration of 1 μM could reverse the alteration in antioxidative capacity, Bcl2/Bax ratio and caspase-8 activity caused by Clu-knockdown, thus inhibiting apoptosis and maintaining cell viability. The results hereby imply the potentiality of Clu and Se in neuroprotection.
Collapse
|
19
|
Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta Gen Subj 2014; 1850:1642-60. [PMID: 25459512 DOI: 10.1016/j.bbagen.2014.10.008] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND With cancer cells encompassing consistently higher production of reactive oxygen species (ROS) and with an induced antioxidant defense to counteract the increased basal ROS production, tumors have a limited reserve capacity resulting in an increased vulnerability of some cancer cells to ROS. Based on this, oxidative stress has been recognized as a tumor-specific target for the rational design of new anticancer agents. Among redox modulating compounds, selenium compounds have gained substantial attention due to their promising chemotherapeutic potential. SCOPE OF REVIEW This review aims in summarizing and providing the recent developments of our understanding of the molecular mechanisms that underlie the potential anticancer effects of selenium compounds. MAJOR CONCLUSIONS It is well established that selenium at higher doses readily can turn into a prooxidant and thereby exert its potential anticancer properties. However, the biological activity of selenium compounds and the mechanism behind these effects are highly dependent on its speciation and the specific metabolic pathways of cells and tissues. Conversely, the chemical properties and the main molecular mechanisms of the most relevant inorganic and organic selenium compounds as well as selenium-based nanoparticles must be taken into account and are discussed herein. GENERAL SIGNIFICANCE Elucidating and deepening our mechanistic knowledge of selenium compounds will help in designing and optimizing compounds with more specific antitumor properties for possible future application of selenium compounds in the treatment of cancer. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
20
|
L-methionase: a therapeutic enzyme to treat malignancies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:506287. [PMID: 25250324 PMCID: PMC4164312 DOI: 10.1155/2014/506287] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/16/2014] [Accepted: 08/12/2014] [Indexed: 12/25/2022]
Abstract
Cancer is an increasing cause of mortality and morbidity throughout the world. L-methionase has potential application against many types of cancers. L-Methionase is an intracellular enzyme in bacterial species, an extracellular enzyme in fungi, and absent in mammals. L-Methionase producing bacterial strain(s) can be isolated by 5,5′-dithio-bis-(2-nitrobenzoic acid) as a screening dye. L-Methionine plays an important role in tumour cells. These cells become methionine dependent and eventually follow apoptosis due to methionine limitation in cancer cells. L-Methionine also plays an indispensable role in gene activation and inactivation due to hypermethylation and/or hypomethylation. Membrane transporters such as GLUT1 and ion channels like Na2+, Ca2+, K+, and Cl− become overexpressed. Further, the α-subunit of ATP synthase plays a role in cancer cells growth and development by providing them enhanced nutritional requirements. Currently, selenomethionine is also used as a prodrug in cancer therapy along with enzyme methionase that converts prodrug into active toxic chemical(s) that causes death of cancerous cells/tissue. More recently, fusion protein (FP) consisting of L-methionase linked to annexin-V has been used in cancer therapy. The fusion proteins have advantage that they have specificity only for cancer cells and do not harm the normal cells.
Collapse
|
21
|
Domínguez-Álvarez E, Plano D, Font M, Calvo A, Prior C, Jacob C, Palop JA, Sanmartín C. Synthesis and antiproliferative activity of novel selenoester derivatives. Eur J Med Chem 2013; 73:153-66. [PMID: 24389510 DOI: 10.1016/j.ejmech.2013.11.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 11/08/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022]
Abstract
A series of 31 new selenoesters were synthesized and their cytotoxic activity was evaluated against a prostate cancer cell line (PC-3). The most active compounds were also tested against three tumoural cell lines (MCF-7, A-549 and HT-29) and one non-tumour prostate cell line (RWPE-1). Thirteen compounds showed significant activity towards all tumour cells investigated, and some of them were even more potent than etoposide and cisplatin, which were used as reference drugs. Because of their pronounced potency and/or selectivity, four analogues (5, 21, 28 and 30), were selected in order to assess their redox properties related to a possible redox modulating activity. The glutathione peroxidase (GPx) assay showed slight activity for compound 30 and the 2,2-diphenyl-1-picrylhydrazyl-(DPPH) assay showed a weak activity for compounds 5 and 28. The present results revealed that analogues 5, 21, 28 and 30 might serve as a useful starting point for the design of improved anti-tumour agents.
Collapse
Affiliation(s)
- Enrique Domínguez-Álvarez
- Synthesis Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus, 66123 Saarbruecken, Germany
| | - Daniel Plano
- Synthesis Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - María Font
- Molecular Modeling Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Alfonso Calvo
- Oncology Division, Center for Applied Medical Research, CIMA, University of Navarra, Pío XII 53, E-31008 Pamplona, Spain
| | - Celia Prior
- Oncology Division, Center for Applied Medical Research, CIMA, University of Navarra, Pío XII 53, E-31008 Pamplona, Spain
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus, 66123 Saarbruecken, Germany
| | - Juan Antonio Palop
- Synthesis Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.
| | - Carmen Sanmartín
- Synthesis Section, Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
22
|
Van Rite BD, Krais JJ, Cherry M, Sikavitsas VI, Kurkjian C, Harrison RG. Antitumor Activity of an Enzyme Prodrug Therapy Targeted to the Breast Tumor Vasculature. Cancer Invest 2013; 31:505-10. [DOI: 10.3109/07357907.2013.840383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Font M, Lizarraga E, Ibáñez E, Plano D, Sanmartín C, Palop JA. Structural variations on antitumour agents derived from bisacylimidoselenocarbamate. A proposal for structure–activity relationships based on the analysis of conformational behaviour. Eur J Med Chem 2013; 66:489-98. [DOI: 10.1016/j.ejmech.2013.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 01/18/2023]
|
24
|
Sun LH, Li JG, Zhao H, Shi J, Huang JQ, Wang KN, Xia XJ, Li L, Lei XG. Porcine serum can be biofortified with selenium to inhibit proliferation of three types of human cancer cells. J Nutr 2013; 143:1115-22. [PMID: 23677865 PMCID: PMC3681546 DOI: 10.3945/jn.113.177410] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Our objectives were to determine if porcine serum could be enriched with selenium (Se) by feeding pigs with high concentrations of dietary Se and if the Se-biofortified serum inhibited proliferation of 3 types of human cancer cells. In Expt. 1, growing pigs (8 wk old, n = 3) were fed 0.02 or 3.0 mg Se/kg (as sodium selenite) for 16 wk and produced serum with 0.5 and 5.4 μmol/L Se, respectively. In Expt. 2, growing pigs (5 wk old, n = 6) were fed 0.3 or 1.0 mg Se/kg (as Se-enriched yeast) for 6 wk and produced serum with 2.6 and 6.2 μmol/L Se, respectively. After the Se-biofortified porcine sera were added at 16% in RPMI 1640 to treat NCI-H446, DU145, and HTC116 cells for 144 h, they decreased (P < 0.05) the viability of the 3 types of human cancer cells by promoting apoptosis, compared with their controls. This effect was replicated only by adding the appropriate amount of methylseleninic acid to the control serum and was mediated by a downregulation of 8 cell cycle arrest genes and an upregulation of 7 apoptotic genes. Along with 6 previously reported selenoprotein genes, selenoprotein T (Selt), selenoprotein M (Selm), selenoprotein H (Selh), selenoprotein K (Selk), and selenoprotein N (Sepn1) were revealed to be strongly associated with the cell death-related signaling induced by the Se-enriched porcine serum. In conclusion, porcine serum could be biofortified with Se to effectively inhibit the proliferation of 3 types of human cancer cells and the action synchronized with a matrix of coordinated functional expression of multiple selenoprotein genes.
Collapse
Affiliation(s)
- Lv-Hui Sun
- International Research Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, China,Department of Animal Science, Cornell University, Ithaca, NY; and
| | - Jun-Gang Li
- International Research Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, China
| | - Hua Zhao
- International Research Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, China
| | - Jing Shi
- International Research Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, China
| | - Jia-Qiang Huang
- International Research Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, China
| | - Kang-Ning Wang
- International Research Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, China
| | - Xin-Jie Xia
- International Research Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, USDA, Ithaca, NY
| | - Xin Gen Lei
- International Research Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, China,Department of Animal Science, Cornell University, Ithaca, NY; and,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Selenium in bone health: roles in antioxidant protection and cell proliferation. Nutrients 2013; 5:97-110. [PMID: 23306191 PMCID: PMC3571640 DOI: 10.3390/nu5010097] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/17/2012] [Accepted: 01/03/2013] [Indexed: 12/25/2022] Open
Abstract
Selenium (Se) is an essential trace element for humans and animals, and several findings suggest that dietary Se intake may be necessary for bone health. Such findings may relate to roles of Se in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Elucidation of the mechanisms by which Se supports these cellular processes can lead to a better understanding of the role of this nutrient in normal bone metabolism. This article reviews the current knowledge concerning the molecular functions of Se relevant to bone health.
Collapse
|
26
|
Vinceti M, Crespi CM, Malagoli C, Del Giovane C, Krogh V. Friend or foe? The current epidemiologic evidence on selenium and human cancer risk. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2013; 31:305-41. [PMID: 24171437 PMCID: PMC3827666 DOI: 10.1080/10590501.2013.844757] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Scientific opinion on the relationship between selenium and the risk of cancer has undergone radical change over the years, with selenium first viewed as a possible carcinogen in the 1940s then as a possible cancer preventive agent in the 1960s-2000s. More recently, randomized controlled trials have found no effect on cancer risk but suggest possible low-dose dermatologic and endocrine toxicity, and animal studies indicate both carcinogenic and cancer-preventive effects. A growing body of evidence from human and laboratory studies indicates dramatically different biological effects of the various inorganic and organic chemical forms of selenium, which may explain apparent inconsistencies across studies. These chemical form-specific effects also have important implications for exposure and health risk assessment. Overall, available epidemiologic evidence suggests no cancer preventive effect of increased selenium intake in healthy individuals and possible increased risk of other diseases and disorders.
Collapse
Affiliation(s)
- Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia, Modena, Italy
- Department of Diagnostic, Clinical Medicine and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Catherine M. Crespi
- Department of Biostatistics, University of California Los Angeles Fielding School of Public Health, Los Angeles, California, USA
| | - Carlotta Malagoli
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia, Modena, Italy
- Department of Diagnostic, Clinical Medicine and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Cinzia Del Giovane
- Department of Diagnostic, Clinical Medicine and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Italian Cochrane Centre, University of Modena and Reggio Emilia, Modena, Modena, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
27
|
Sanmartín C, Plano D, Sharma AK, Palop JA. Selenium compounds, apoptosis and other types of cell death: an overview for cancer therapy. Int J Mol Sci 2012; 13:9649-9672. [PMID: 22949823 PMCID: PMC3431821 DOI: 10.3390/ijms13089649] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 02/07/2023] Open
Abstract
Selenium (Se) is an essential trace element involved in different physiological functions of the human body and plays a role in cancer prevention and treatment. Induction of apoptosis is considered an important cellular event that can account for the cancer preventive effects of Se. The mechanisms of Se-induced apoptosis are associated with the chemical forms of Se and their metabolism as well as the type of cancer studied. So, some selenocompounds, such as SeO2 involve the activation of caspase-3 while sodium selenite induces apoptosis in the absence of the activation of caspases. Modulation of mitochondrial functions has been reported to play a key role in the regulation of apoptosis and also to be one of the targets of Se compounds. Other mechanisms for apoptosis induction are the modulation of glutathione and reactive oxygen species levels, which may function as intracellular messengers to regulate signaling pathways, or the regulation of kinase, among others. Emerging evidence indicates the overlaps between the apoptosis and other types of cell death such as autophagy. In this review we report different processes of cell death induced by Se compounds in cancer treatment and prevention.
Collapse
Affiliation(s)
- Carmen Sanmartín
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-948-425-600; Fax: +34-948-425-649
| | - Daniel Plano
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State Hershey College of Medicine, CH72, 500 University Drive, Hershey, PA 17033, USA; E-Mail:
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State Hershey College of Medicine, CH72, 500 University Drive, Hershey, PA 17033, USA; E-Mail:
| | - Juan Antonio Palop
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
| |
Collapse
|
28
|
Zeng H, Cheng WH, Johnson LK. Methylselenol, a selenium metabolite, modulates p53 pathway and inhibits the growth of colon cancer xenografts in Balb/c mice. J Nutr Biochem 2012; 24:776-80. [PMID: 22841391 DOI: 10.1016/j.jnutbio.2012.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/06/2023]
Abstract
It is has been hypothesized that methylselenol is a critical selenium metabolite for anticancer activity in vivo. In this study, we used a protein array which contained 112 different antibodies known to be involved in the p53 pathway to investigate the molecular targets of methylselenol in human HCT116 colon cancer cells. The array analysis indicated that methylselenol exposure changed the expression of 11 protein targets related to the regulation of cell cycle and apoptosis. Subsequently, we confirmed these proteins with the Western blotting approach, and found that methylselenol increased the expression of GADD 153 and p21 but reduced the level of c-Myc, E2F1 and Phos p38 MAP kinase. Similar to our previous report on human HCT116 colon cancer cells, methylselenol also inhibited cell growth and led to an increase in G1 and G2 fractions with a concomitant drop in S-phase in mouse colon cancer MC26 cells. When the MC26 cells were transplanted to their immune-competent Balb/c mice, methylselenol-treated MC26 cells had significantly less tumor growth potential than that of untreated MC26 cells. Taken together, our data suggest that methylselenol modulates the expression of key genes related to cell cycle and apoptosis and inhibits colon cancer cell proliferation and tumor growth.
Collapse
Affiliation(s)
- Huawei Zeng
- US Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA.
| | | | | |
Collapse
|
29
|
Font M, Zuazo A, Ansó E, Plano D, Sanmartín C, Palop JA, Martínez-Irujo JJ. Novel structural insights for imidoselenocarbamates with antitumoral activity related to their ability to generate methylselenol. Bioorg Med Chem 2012; 20:5110-6. [PMID: 22863528 DOI: 10.1016/j.bmc.2012.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/27/2012] [Accepted: 07/06/2012] [Indexed: 12/26/2022]
Abstract
In the search for molecules with potential antiangiogenic activity we found that several imidoselenocarbamate derivatives, which have pro-apoptotic and antiproliferative activities, under hypoxic conditions release methylselenol, a volatile and highly reactive gas that was considered to be responsible for the observed biological activity. The kinetic for the liberation of methylselenol is highly dependent on the nature of the overall structure and correlate with their proven pro-apoptotic activity in lung cancer cell line H157. The preliminary structure-activity relationships allow us to select as the basic structural element a scaffold constructed with an imidoselenocarbamate fragment decorated with a methyl residue on the Se central atom and two heteroaromatic lateral rings. These imidoselenocarbamate derivatives may be of interest both for their antitumoral activities and because they have a structure that can be considered as a template for the design of new derivatives with apoptotic activity. This activity is related to the controlled delivery of methylselenol and makes this an interesting approach to develop new antitumoral agents.
Collapse
Affiliation(s)
- María Font
- Sección de Modelización Molecular, Departamento de Química Orgánica y Farmacéutica, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.
| | | | | | | | | | | | | |
Collapse
|