1
|
Aminzai MT, Yildirim M, Yabalak E. Metallic nanoparticles unveiled: Synthesis, characterization, and their environmental, medicinal, and agricultural applications. Talanta 2024; 280:126790. [PMID: 39217711 DOI: 10.1016/j.talanta.2024.126790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Metallic nanoparticles (MNPs) have attracted great interest among scientists and researchers for years due to their unique optical, physiochemical, biological, and magnetic properties. As a result, MNPs have been widely utilized across a variety of scientific fields, including biomedicine, agriculture, electronics, food, cosmetics, and the environment. In this regard, the current review article offers a comprehensive overview of recent studies on the synthesis of MNPs (metal and metal oxide nanoparticles), outlining the benefits and drawbacks of chemical, physical, and biological methods. However, the biological synthesis of MNPs is of great importance considering the biocompatibility and biological activity of certain MNPs. A variety of characterization techniques, including X-ray diffraction, transmission electron microscopy, UV-visible spectroscopy, scanning electron microscopy, dynamic light scattering, atomic force microscopy, Fourier transform infrared spectroscopy, and others, have been discussed in depth to gain deeper insights into the unique structural and spectroscopic properties of MNPs. Furthermore, their unique properties and applications in the fields of medicine, agriculture, and the environment are summarized and deeply discussed. Finally, the main challenges and limitations of MNPs synthesis and applications, as well as their future prospects have also been discussed.
Collapse
Affiliation(s)
- Mohammad Tahir Aminzai
- Department of Organic Chemistry, Faculty of Chemistry, Kabul University, Kabul, Afghanistan
| | - Metin Yildirim
- Harran University, Faculty of Pharmacy, Department of Biochemistry, Şanlıurfa, Turkey
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, 33343, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
2
|
Fahmy HM, Aboalasaad FA, Mohamed AS, Elhusseiny FA, Khadrawy YA, Elmekawy A. Evaluation of the Therapeutic Effect of Curcumin-Conjugated Zinc Oxide Nanoparticles on Reserpine-Induced Depression in Wistar Rats. Biol Trace Elem Res 2024; 202:2630-2644. [PMID: 37713054 PMCID: PMC11052778 DOI: 10.1007/s12011-023-03849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Depression, a devastating brain illness, necessitates the exploration of novel antidepressant treatments. We evaluated the antidepressant effects of free curcumin, zinc oxide nanoparticles (ZnO NPs), and curcumin-conjugated zinc oxide nanoparticles (Zn(cur)O NPs). The nanoformulations were extensively characterized using advanced techniques. An acute toxicity study ensured the safety of Zn(cur)O NPs. Rats were assigned to one of five groups: control, reserpine-induced depression model, treatment with ZnO NPs, free curcumin, or Zn(cur)O NPs. Behavioral assessments (forced swimming test [FST] and open-field test [OFT]) and neurochemical analyses were conducted. Zn(cur)O NPs exhibited superior efficacy in ameliorating reserpine-induced behavioral and neurochemical effects compared to free curcumin and ZnO NPs. The reserpine-induced model displayed reduced motor activity, swimming time, and increased immobility time in the FST and OFT. Treatment with Zn(cur)O NPs 45 mg/kg significantly improved motor activity and reduced immobility time. Furthermore, Zn(cur)O NPs decreased malondialdehyde (MDA) levels while increasing reduced glutathione (GSH) and catalase (CAT) levels. Additionally, concentrations of serotonin (5-HT) and norepinephrine (NE) increased. In conclusion, curcumin-conjugated zinc oxide nanoparticles demonstrate potent antidepressant effects, alleviating depressive-like behavior in rats. These findings support Zn(cur)O NPs as a promising therapeutic strategy for depression management, warranting further investigation and clinical validation.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Ayman S Mohamed
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Yasser A Khadrawy
- Medical Physiology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Ahmed Elmekawy
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
3
|
Nguyenova HY, Hubalek Kalbacova M, Dendisova M, Sikorova M, Jarolimkova J, Kolska Z, Ulrychova L, Weber J, Reznickova A. Stability and biological response of PEGylated gold nanoparticles. Heliyon 2024; 10:e30601. [PMID: 38742054 PMCID: PMC11089375 DOI: 10.1016/j.heliyon.2024.e30601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Stability and cytotoxicity of PEGylated Au NPs is crucial for biomedical application. In this study, we have focused on thermal stability of PEGylated Au NPs at 4 and 37 °C and after sterilization in autoclave. Gold nanoparticles were prepared by direct sputtering of gold into PEG and PEG-NH2. Transmission electron microscopy revealed that NPs exhibit a spherical shape with average dimensions 3.8 nm for both AuNP_PEG and AuNP_PEG-NH2. The single LSPR band at wavelength of 509 nm also confirmed presence of spherical Au NPs in both cases. Moreover, according to UV-Vis spectra, the Au NPs were overall stable during aging or thermal stressing and even after sterilization in autoclave. Based on gel electrophoresis results, the higher density of functionalizing ligands and the higher stability is assumed on AuNP_PEG-NH2. Changes in concentration of gold did not occur after thermal stress or with aging. pH values have to be adjusted to be suitable for bioapplications - original pH values are either too alkaline (AuNP_PEG-NH2, pH 10) or too acidic (AuNP_PEG, pH 5). Cytotoxicity was tested on human osteoblasts and fibroblasts. Overall, both Au NPs have shown good cytocompatibility either freshly prepared or even after Au NPs' sterilization in the autoclave. Prepared Au NP dispersions were also examined for their antiviral activity, however no significant effect was observed. We have synthesized highly stable, non-cytotoxic PEGylated Au NPs, which are ready for preclinical testing.
Collapse
Affiliation(s)
- Hoang Yen Nguyenova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Marie Hubalek Kalbacova
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, 128 53, Prague, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, Liberec, Czech Republic
| | - Marcela Dendisova
- Department of Physical Chemistry, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Miriama Sikorova
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, 128 53, Prague, Czech Republic
| | - Jaroslava Jarolimkova
- CENAB, Faculty of Science, J. E. Purkyne University, 400 96, Usti nad Labem, Czech Republic
| | - Zdenka Kolska
- CENAB, Faculty of Science, J. E. Purkyne University, 400 96, Usti nad Labem, Czech Republic
| | - Lucie Ulrychova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 166 10, Prague, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 166 10, Prague, Czech Republic
| | - Alena Reznickova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
- CENAB, Faculty of Science, J. E. Purkyne University, 400 96, Usti nad Labem, Czech Republic
| |
Collapse
|
4
|
Nascimento ALA, Guimarães AS, Rocha TDS, Goulart MOF, Xavier JDA, Santos JCC. Structural changes in hemoglobin and glycation. VITAMINS AND HORMONES 2024; 125:183-229. [PMID: 38997164 DOI: 10.1016/bs.vh.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Hemoglobin (Hb) is a hemeprotein found inside erythrocytes and is crucial in transporting oxygen and carbon dioxide in our bodies. In erythrocytes (Ery), the main energy source is glucose metabolized through glycolysis. However, a fraction of Hb can undergo glycation, in which a free amine group from the protein spontaneously binds to the carbonyl of glucose in the bloodstream, resulting in the formation of glycated hemoglobin (HbA1c), widely used as a marker for diabetes. Glycation leads to structural and conformational changes, compromising the function of proteins, and is intensified in the event of hyperglycemia. The main changes in Hb include structural alterations to the heme group, compromising its main function (oxygen transport). In addition, amyloid aggregates can form, which are strongly related to diabetic complications and neurodegenerative diseases. Therefore, this chapter discusses in vitro protocols for producing glycated Hb, as well as the main techniques and biophysical assays used to assess changes in the protein's structure before and after the glycation process. This more complete understanding of the effects of glycation on Hb is fundamental for understanding the complications associated with hyperglycemia and for developing more effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Amanda Luise Alves Nascimento
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Ari Souza Guimarães
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Tauane Dos Santos Rocha
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | | | - Jadriane de Almeida Xavier
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil.
| | | |
Collapse
|
5
|
Marques AC, Costa PC, Velho S, Amaral MH. Analytical Techniques for Characterizing Tumor-Targeted Antibody-Functionalized Nanoparticles. Life (Basel) 2024; 14:489. [PMID: 38672759 PMCID: PMC11051252 DOI: 10.3390/life14040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The specific interaction between cell surface receptors and corresponding antibodies has driven opportunities for developing targeted cancer therapies using nanoparticle systems. It is challenging to design and develop such targeted nanomedicines using antibody ligands, as the final nanoconjugate's specificity hinges on the cohesive functioning of its components. The multicomponent nature of antibody-conjugated nanoparticles also complicates the characterization process. Regardless of the type of nanoparticle, it is essential to perform physicochemical characterization to establish a solid foundation of knowledge and develop suitable preclinical studies. A meaningful physicochemical evaluation of antibody-conjugated nanoparticles should include determining the quantity and orientation of the antibodies, confirming the antibodies' integrity following attachment, and assessing the immunoreactivity of the obtained nanoconjugates. In this review, the authors describe the various techniques (electrophoresis, spectroscopy, colorimetric assays, immunoassays, etc.) used to analyze the physicochemical properties of nanoparticles functionalized with antibodies and discuss the main results.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Doveiko D, Martin ARG, Vyshemirsky V, Stebbing S, Kubiak-Ossowska K, Rolinski O, Birch DJS, Chen Y. Nanoparticle Metrology of Silicates Using Time-Resolved Multiplexed Dye Fluorescence Anisotropy, Small Angle X-ray Scattering, and Molecular Dynamics Simulations. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1686. [PMID: 38612200 PMCID: PMC11012945 DOI: 10.3390/ma17071686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
We investigate the nanometrology of sub-nanometre particle sizes in industrially manufactured sodium silicate liquors at high pH using time-resolved fluorescence anisotropy. Rather than the previous approach of using a single dye label, we investigate and quantify the advantages and limitations of multiplexing two fluorescent dye labels. Rotational times of the non-binding rhodamine B and adsorbing rhodamine 6G dyes are used to independently determine the medium microviscosity and the silicate particle radius, respectively. The anisotropy measurements were performed on the range of samples prepared by diluting the stock solution of silicate to concentrations ranging between 0.2 M and 2 M of NaOH and on the stock solution at different temperatures. Additionally, it was shown that the particle size can also be measured using a single excitation wavelength when both dyes are present in the sample. The recovered average particle size has an upper limit of 7.0 ± 1.2 Å. The obtained results were further verified using small-angle X-ray scattering, with the recovered particle size equal to 6.50 ± 0.08 Å. To disclose the impact of the dye label on the measured complex size, we further investigated the adsorption state of rhodamine 6G on silica nanoparticles using molecular dynamics simulations, which showed that the size contribution is strongly impacted by the size of the nanoparticle of interest. In the case of the higher radius of curvature (less curved) of larger particles, the size contribution of the dye label is below 10%, while in the case of smaller and more curved particles, the contribution increases significantly, which also suggests that the particles of interest might not be perfectly spherical.
Collapse
Affiliation(s)
- Daniel Doveiko
- Photophysics Group, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK (D.J.S.B.)
| | - Alan R. G. Martin
- EPSRC Future Continuous Manufacturing and Advanced Crystallisation National Facility, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK;
| | | | | | | | - Olaf Rolinski
- Photophysics Group, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK (D.J.S.B.)
| | - David J. S. Birch
- Photophysics Group, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK (D.J.S.B.)
| | - Yu Chen
- Photophysics Group, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK (D.J.S.B.)
| |
Collapse
|
7
|
Singh R, Yadav RK, Satyanath, Singh S, Shahin R, Umar A, Ibrahim AA, Singh O, Gupta NK, Singh C, Baeg JO, Baskoutas S. Nature-inspired polymer photocatalysts for green NADH regeneration and nitroarene transformation. CHEMOSPHERE 2024; 353:141491. [PMID: 38395365 DOI: 10.1016/j.chemosphere.2024.141491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/20/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Photocatalysis has emerged as a promising approach for generating solar chemical and organic transformations under the solar light spectrum, employing polymer photocatalysts. In this study, our aim is to achieve the regeneration of NADH and fixation of nitroarene compounds, which hold significant importance in various fields such as pharmaceuticals, biology, and chemistry. The development of an in-situ nature-inspired artificial photosynthetic pathway represents a challenging task, as it involves harnessing solar energy for efficient solar chemical production and organic transformation. In this work, we have successfully synthesized a novel artificial photosynthetic polymer, named TFc photocatalyst, through the Friedel-Crafts alkylation reaction between triptycene (T) and a ferrocene motif (Fc). The TFC photocatalyst is a promising material with excellent optical properties, an appropriate band gap, and the ability to facilitate the regeneration of NADH and the fixation of nitroarene compounds through photocatalysis. These characteristics are necessary for several applications, including organic synthesis and environmental remediation. Our research provides a significant step forward in establishing a reliable pathway for the regeneration and fixation of solar chemicals and organic compounds under the solar light spectrum.
Collapse
Affiliation(s)
- Ranjeet Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Rajesh K Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India.
| | - Satyanath
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Rehana Shahin
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Omvir Singh
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, Bengaluru, 560012, India
| | - Navneet K Gupta
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, Bengaluru, 560012, India
| | - Chandani Singh
- Artificial Photosynthesis Research group, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jin OoK Baeg
- Artificial Photosynthesis Research group, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | | |
Collapse
|
8
|
Doveiko D, Kubiak-Ossowska K, Chen Y. Impact of the Crystal Structure of Silica Nanoparticles on Rhodamine 6G Adsorption: A Molecular Dynamics Study. ACS OMEGA 2024; 9:4123-4136. [PMID: 38284092 PMCID: PMC10809255 DOI: 10.1021/acsomega.3c06657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
Understanding the mechanism of adsorption of Rhodamine 6G (R6G) to various crystal structures of silica nanoparticles (SNPs) is important to elucidate the impact of dye size when measuring the size of the dye-SNP complex via the time-resolved fluorescence anisotropy method. In this work, molecular dynamics (MD) simulations were used to get an insight into the R6G adsorption process, which cannot be observed using experimental methods. It was found that at low pH, α-Cristobalite structured SNPs have a strong affinity to R6G; however, at high pH, more surface silanol groups undergo ionization when compared with α-Quartz, preventing the adsorption. Therefore, α-Quartz structured SNPs are more suitable for R6G adsorption at high pH than the α-Cristobalite ones. Furthermore, it was found that stable adsorption can occur only when the R6G xanthene core is oriented flat with respect to the SNP surface, indicating that the dye size does not contribute significantly to the measured size of the dye-SNP complex. The requirement of correct dipole moment orientation indicates that only one R6G molecule can adsorb on any sized SNP, and the R6G layer formation on SNP is not possible. Moreover, the dimerization process of R6G and its competition with the adsorption has been explored. It has been shown that the highest stable R6G aggregate is a dimer, and in this form, R6G does not adsorb to SNPs. Finally, using steered molecular dynamics (SMD) with constant-velocity pulling, the binding energies of R6G dimers and R6G complexes with both α-Quartz and α-Cristobalite SNPs of 40 Å diameter were estimated. These confirm that R6G adsorption is most stable on 40 Å α-Quartz at pH 7, although dimerization is equally possible.
Collapse
Affiliation(s)
- Daniel Doveiko
- Photophysics
Group, Department of Physics, University of Strathclyde, Scottish Universities Physics Alliance, 107 Rottenrow, Glasgow G4 0NG, U.K.
| | - Karina Kubiak-Ossowska
- Chemical
Engineering, James Weir Building, University
of Strathclyde, Glasgow G1 1XJ, U.K.
| | - Yu Chen
- Photophysics
Group, Department of Physics, University of Strathclyde, Scottish Universities Physics Alliance, 107 Rottenrow, Glasgow G4 0NG, U.K.
| |
Collapse
|
9
|
Godek E, Maciołek U, Kosińska-Pezda M, Byczyński Ł, Nowicka A, Grządka E. Colloidal and Thermal Stability of Three-Component Hybrid Materials Containing Clay Mineral, Polysaccharide and Surfactant. Chemistry 2024; 30:e202303404. [PMID: 37924226 DOI: 10.1002/chem.202303404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/06/2023]
Abstract
The paper presents the colloidal and thermal stability of the three-component hybrid materials containing halloysite, polysaccharides (alginic acid, cationic cellulose and hydroxyethyl cellulose) and Tritons. TX-100, TX-165 and TX-405 were used as non-ionic surfactants. Stability and other properties of the hybrid materials were tested by the following methods: UV-Vis, TGA (thermogravimetric analysis) and DSC (differential scanning calorimetry), CHN (elemental analysis), SEM-EDX (scanning electron microscopy with energy dispersive X-ray spectroscopy) and tensiometry. According to the results with the increasing polymer concentration the colloidal stability of the tested systems also increases. Moreover, the addition of the surfactants causes the increase of polysaccharide adsorption but the colloidal stability of the tested systems decreases due to large weights of formed aggregates. As follows from the thermal analysis, the comparison of the TG/DTG-DSC curves obtained for the investigated polymers confirms that their thermal decomposition courses have some common features. The obtained results have the application potential in the formation of the materials for the pollutants removal from water and sewages.
Collapse
Affiliation(s)
- Ewelina Godek
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Skłodowskiej - Curie 3 Sq., 20-031, Lublin, Poland
| | - Urszula Maciołek
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Skłodowskiej - Curie 3 Sq., 20-031, Lublin, Poland
| | - Małgorzata Kosińska-Pezda
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 12 Sq., 35-959, Rzeszow, Poland
| | - Łukasz Byczyński
- Department of Polymers and Biopolymers, Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 12 Sq., 35-959, Rzeszów, Poland
| | - Aldona Nowicka
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Skłodowskiej - Curie 3 Sq., 20-031, Lublin, Poland
| | - Elżbieta Grządka
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Skłodowskiej - Curie 3 Sq., 20-031, Lublin, Poland
| |
Collapse
|
10
|
El-Sheekh MM, AlKafaas SS, Rady HA, Abdelmoaty BE, Bedair HM, Ahmed AA, El-Saadony MT, AbuQamar SF, El-Tarabily KA. How Synthesis of Algal Nanoparticles Affects Cancer Therapy? - A Complete Review of the Literature. Int J Nanomedicine 2023; 18:6601-6638. [PMID: 38026521 PMCID: PMC10644851 DOI: 10.2147/ijn.s423171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
The necessity to engineer sustainable nanomaterials for the environment and human health has recently increased. Due to their abundance, fast growth, easy cultivation, biocompatibility and richness of secondary metabolites, algae are valuable biological source for the green synthesis of nanoparticles (NPs). The aim of this review is to demonstrate the feasibility of using algal-based NPs for cancer treatment. Blue-green, brown, red and green micro- and macro-algae are the most commonly participating algae in the green synthesis of NPs. In this process, many algal bioactive compounds, such as proteins, carbohydrates, lipids, alkaloids, flavonoids and phenols, can catalyze the reduction of metal ions to NPs. In addition, many driving factors, including pH, temperature, duration, static conditions and substrate concentration, are involved to facilitate the green synthesis of algal-based NPs. Here, the biosynthesis, mechanisms and applications of algal-synthesized NPs in cancer therapy have been critically discussed. We also reviewed the effective role of algal synthesized NPs as anticancer treatment against human breast, colon and lung cancers and carcinoma.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hadeer A Rady
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Bassant E Abdelmoaty
- Molecular Cell Biology Unit, Division of Biochemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Heba M Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abdelhamid A Ahmed
- Plastic Surgery Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
11
|
Farcas A, Damoc M, Asandulesa M, Aubert PH, Ionut Tigoianu R, Laura Ursu E. The straightforward approach of tuning the photoluminescence and electrical properties of encapsulated PEDOT end-capped by pyrene. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
12
|
Experience of Using DLS to Study the Particle Sizes of Active Component in the Catalysts Based on the Oxide and Non-Oxide Supports. INORGANICS 2022. [DOI: 10.3390/inorganics10120248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The present study reports the use of the dynamic light scattering (DLS) method to analyze metal nanoparticle sizes in supported catalysts (as a model system for different metal-oxide nanocomposites, ceramics, etc.). The selective dissolution of matrices has been used to transform solids to sols for DLS analysis. DLS/STS (from solid to sol) technique was tested on a wide number of different sets of supported metal catalysts (Pt, Pd, Ru metals and Al2O3, SiO2, TiO2, C3N4, carbon and polymers as supports). The transmission electron microscopy and X-ray diffraction (TEM/XRD) results for the initial supported catalysts and the DLS results for the sols prepared from them showed good agreement with each other. Moreover, it has been shown that this approach can identify the minor contamination of catalysts by large particles or aggregates which are difficult to detect by TEM/XRD.
Collapse
|
13
|
Uskoković V, Wu VM. Altering Microbiomes with Hydroxyapatite Nanoparticles: A Metagenomic Analysis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5824. [PMID: 36079205 PMCID: PMC9456825 DOI: 10.3390/ma15175824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAp), the most abundant biological material among mammals, has been recently demonstrated to possess moderate antibacterial properties. Metagenomics provides a series of tools for analyzing the simultaneous interaction of materials with larger communities of microbes, which may aid in optimizing the antibacterial activity of a material such as HAp. Here, a microbiome intrinsic to the sample of sandy soil collected from the base of an African Natal plum (Carissa macrocarpa) shrub surrounding the children's sandbox at the Arrowhead Park in Irvine, California was challenged with HAp nanoparticles and analyzed with next-generation sequencing for hypervariable 16S ribosomal DNA base pair homologies. HAp nanoparticles overwhelmingly reduced the presence of Gram-negative phyla, classes, orders, families, genera and species, and consequently elevated the relative presence of their Gram-positive counterparts. Thermodynamic, electrostatic and chemical bonding arguments were combined in a model proposed to explain this selective affinity. The ability of amphiphilic surface protrusions of lipoteichoic acid in Gram-positive bacteria and mycolic acid in mycobacteria to increase the dispersibility of the bacterial cells and assist in their resistance to capture by the solid phase is highlighted. Within the Gram-negative group, the variability of the distal, O-antigen portion of the membrane lipopolysaccharide was shown to be excessive and the variability of its proximal, lipid A portion insufficient to explain the selectivity based on chemical sequence arguments. Instead, flagella-driven motility proves to be a factor favoring the evasion of binding to HAp. HAp displayed a preference toward binding to less pathogenic bacteria than those causative of disease in humans, while taxa having a positive agricultural effect were largely captured by HAp, indicating an evolutionary advantage this may have given it as a biological material. The capacity to selectively sequester Gram-negative microorganisms and correspondingly alter the composition of the microbiome may open up a new avenue in environmental and biomedical applications of HAp.
Collapse
Affiliation(s)
- Vuk Uskoković
- TardigradeNano LLC, Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | | |
Collapse
|
14
|
Metabolically Doping of 3D Diatomaceous Biosilica with Titanium. MATERIALS 2022; 15:ma15155210. [PMID: 35955145 PMCID: PMC9369532 DOI: 10.3390/ma15155210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022]
Abstract
Diatoms represent, in terms of species number, one of the largest groups of microalgae that have the ability to synthesize phenomenal mineral composites characterized by complex hierarchical structures. Their shells, called frustules, create intricately ornamented structures, reminiscent of the most sophisticated, natural mosaics. Ordinated pore systems perforate siliceous walls of the frustules with diameters ranging from nano to micro-scale, forming openwork three-dimensional silica structures. The use of these features is one of the main challenges in developing new technological solutions. In this study we assess the ability of selected diatom species (Pseudostaurosira trainorii) for metabolic insertion of soluble titanium from the culture medium into the structure of amorphous silica cell walls by its cultivation in laboratory conditions. The study is aimed at obtaining new and strengthening the already existing optical properties of diatomaceous biosilica. The physicochemical properties of the obtained materials have been studied using a series of instrumental methods.
Collapse
|
15
|
Lee BN, Hong SJ, Yu MH, Shin GH, Kim JT. Enhancement of Storage Stability and Masking Effect of Curcumin by Turmeric Extract-Loaded Nanoemulsion and Water-Soluble Chitosan Coating. Pharmaceutics 2022; 14:pharmaceutics14081547. [PMID: 35893803 PMCID: PMC9394373 DOI: 10.3390/pharmaceutics14081547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/24/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
This study focused on improving curcumin stability in various pHs and NaCl concentrations and reducing the strong scent of turmeric by the nanoemulsions system and further coating with water-soluble chitosan (WSC). Turmeric extract-loaded nanoemulsions (TE-NEs) were firstly prepared by mixing an oil phase containing turmeric extract, MCT oil, and lecithin, and an aqueous phase containing tween 80 using an ultrasonication method. TE-NEs were further coated with WSC in the ratio of TE-NEs and WSC (1:1 to 1:10). The optimum WSC-TE-NEs exhibited an average particle size of 182 nm, a PDI of 0.317, and a zeta potential of +30.42 mV when WSC-TE-NEs were prepared in the ratio of 1:1. The stability of the WSC-TE-NEs was also assessed by determining the remained curcumin content. The remained curcumin contents of the TE-NEs and the WSC-TE-NEs were higher than that of the turmeric extract (TE) at pH 2~7 and NaCl concentrations of 100~400 mM. Fourier transform infrared (FT-IR) spectra, transmission electron microscope (TEM), and confocal laser scanning microscope (CLSM) images confirmed that the TE-NEs were successfully encapsulated with a WSC coating. As a result of GC analysis, the content of aromatic-turmerone was significantly decreased in the TE-NEs and the WSC-TE-NEs compared to the pristine TE, but there was no significant difference between the TE-NEs and the WSC-TE-NEs. These results suggest that water-soluble chitosan-coated nanoemulsions may be suitable for improving the chemical stability and masking effect of curcumin to facilitate its application in food.
Collapse
Affiliation(s)
- Bom Nae Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Korea;
| | - Su Jung Hong
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Korea;
| | - Mi Hee Yu
- Research Institute of Biomedical Engineering, Department of Cell Biology, Catholic University of Daegu School of Medicine, Daegu 42472, Korea;
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Korea;
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Korea;
- Correspondence:
| |
Collapse
|
16
|
Zhang R, Han Y, Xie W, Liu F, Chen S. Advances in Protein-Based Nanocarriers of Bioactive Compounds: From Microscopic Molecular Principles to Macroscopical Structural and Functional Attributes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6354-6367. [PMID: 35603429 DOI: 10.1021/acs.jafc.2c01936] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many proteins can be used to fabricate nanocarriers for encapsulation, protection, and controlled release of nutraceuticals. This review examined the protein-based nanocarriers from microscopic molecular characteristics to the macroscopical structural and functional attributes. Structural, physical, and chemical properties of protein-based nanocarriers were introduced in detail. The spatial size, shape, water dispersibility, colloidal stability, etc. of protein-based nanocarriers were largely determined by the molecular physicochemical principles of protein. Different preparative techniques, including antisolvent precipitation, pH-driven, electrospray, and gelation methods, among others, can be used to fabricate different protein-based nanocarriers. Various modifications based on physical, chemical, and enzymatic approaches can be used to improve the functional performance of these nanocarriers. Protein is a natural resource with a wide range of sources, including plant, animal, and microbial, which are usually used to fabricate the nanocarriers. Protein-based nanocarriers have many advantages in aid of the application of bioactive ingredients to the medical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei 430071, People's Republic of China
| | - Yahong Han
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Weijie Xie
- Shanghai Mental Health Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shuai Chen
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei 430071, People's Republic of China
| |
Collapse
|
17
|
Chipakwe V, Karlkvist T, Rosenkranz J, Chelgani SC. Beneficial effects of a polysaccharide-based grinding aid on magnetite flotation: a green approach. Sci Rep 2022; 12:6502. [PMID: 35444247 PMCID: PMC9021246 DOI: 10.1038/s41598-022-10304-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
Grinding is the most energy-intensive step in mineral beneficiation processes. The use of grinding aids (GAs) could be an innovative solution to reduce the high energy consumption associated with size reduction. Surprisingly, little is known about the effects of GAs on downstream mineral beneficiation processes, such as flotation separation. The use of ecofriendly GAs such as polysaccharide-based materials would help multiply the reduction of environmental issues in mineral processing plants. As a practical approach, this work explored the effects of a novel polysaccharide-based grinding aid (PGA) on magnetite's grinding and its reverse flotation. Batch grinding tests indicated that PGA improved grinding performance by reducing energy consumption, narrowing particle size distribution of products, and increasing their surface area compared to grinding without PGA. Flotation tests on pure samples illustrated that PGA has beneficial effects on magnetite depression (with negligible effect on quartz floatability) through reverse flotation separation. Flotation of the artificial mixture ground sample in the presence of PGA confirmed the benefits, giving a maximum Fe recovery and grade of 84.4 and 62.5%, respectively. In the absence of starch (depressant), PGA resulted in a separation efficiency of 56.1% compared to 43.7% without PGA. The PGA adsorption mechanism was mainly via physical interaction based on UV-vis spectra, zeta potential tests, Fourier transform infrared spectroscopy (FT-IR), and stability analyses. In general, the feasibility of using PGA, a natural green polymer, was beneficial for both grinding and reverse flotation separation performance.
Collapse
Affiliation(s)
- Vitalis Chipakwe
- grid.6926.b0000 0001 1014 8699Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Tommy Karlkvist
- grid.6926.b0000 0001 1014 8699Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Jan Rosenkranz
- grid.6926.b0000 0001 1014 8699Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Saeed Chehreh Chelgani
- grid.6926.b0000 0001 1014 8699Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| |
Collapse
|
18
|
Zhang Y, Haque ANMA, Naebe M. Lignin-Cellulose Nanocrystals from Hemp Hurd as Light-Coloured Ultraviolet (UV) Functional Filler for Enhanced Performance of Polyvinyl Alcohol Nanocomposite Films. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3425. [PMID: 34947774 PMCID: PMC8708339 DOI: 10.3390/nano11123425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Lignin is a natural light-coloured ultraviolet (UV) absorber; however, conventional extraction processes usually darken its colour and could be detrimental to its UV-shielding ability. In this study, a sustainable way of fabricating lignin-cellulose nanocrystals (L-CNCs) from hemp hurd is proposed. A homogeneous morphology of the hemp particles was achieved by ball milling, and L-CNCs with high aspect ratio were obtained through mild acid hydrolysis on the ball-milled particles. The L-CNCs were used as filler in polyvinyl alcohol (PVA) film, which produced a light-coloured nanocomposite film with high UV-shielding ability and enhanced tensile properties: the absorption of UV at wavelength of 400 nm and transparency in the visible-light region at wavelength of 550 nm was 116 times and 70% higher than that of pure PVA, respectively. In addition to these advantages, the nanocomposite film showed a water vapour transmission property comparable with commercial food package film, indicating potential applications.
Collapse
Affiliation(s)
| | | | - Maryam Naebe
- Institute for Frontier Materials, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (Y.Z.); (A.N.M.A.H.)
| |
Collapse
|
19
|
Effect of the emulsifier type on the physicochemical stability and in vitro digestibility of a lutein/zeaxanthin-enriched emulsion. Food Sci Biotechnol 2021; 30:1509-1518. [PMID: 34868700 DOI: 10.1007/s10068-021-00987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022] Open
Abstract
Lutein (L) and zeaxanthin (Z), as macular pigments, are water-insoluble, chemically unstable, and have low bioaccessibilities; they are often emulsified to overcome these limitations. This study investigated the impact of various emulsifiers (ethyl lauroyl arginate (LAE); Tween 80; and sodium dodecyl sulfate (SDS)) on the physicochemical properties and in vitro digestibilities of L/Z-fortified oil-in-water emulsions. Droplet aggregation and creaming extents were dependent on the emulsifier type. The ζ-potentials of emulsions stabilized by LAE, Tween 80, and SDS were + 87, - 26, and - 95 mV, respectively. SDS-stabilized emulsion had the smallest particles, while the particle sizes for the LAE- and Tween 80-stabilized emulsions were larger and not significantly different. The rates of L/Z degradation were sensitive to the emulsifier type and to heat, not to light. The L/Z bioaccessibility was the highest for the Tween 80 emulsion. Surfactants should therefore be carefully selected to optimize L/Z physicochemical stability and bioaccessibility in emulsions.
Collapse
|
20
|
Biogenic Silver Nanoparticles Conjugated with Nisin: Improving the Antimicrobial and Antibiofilm Properties of Nanomaterials. CHEMISTRY 2021. [DOI: 10.3390/chemistry3040092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Microbial technology offers a green alternative for the synthesis of value-added nanomaterials. In particular, fungal compounds can improve silver nanoparticle production, stabilizing colloidal nanoparticles. Based on a previous study by our group, silver nanoparticles obtained using the extracellular cell-free extracts of Phanerochaete chrysosporium (PchNPs) have shown antimicrobial and antibiofilm activity against Gram-negative bacteria. Moreover, nisin—a bacteriocin widely used as a natural food preservative—has recently gained much attention due its antimicrobial action against Gram-positive bacteria in biomedical applications. Therefore, the aim of this work was to conjugate biogenic silver nanoparticles (PchNPs) with nisin to obtain nanoconjugates (PchNPs@nis) with enhanced antimicrobial properties. Characterization assays were conducted to determine physicochemical properties of PchNPs@nis, and also their antibacterial and antibiofilm activities were studied. The formation of PchNPs@nis was confirmed by UV-Vis, TEM, and Raman spectroscopy analysis. Different PchNPs@nis nanobioconjugates showed diameter values in the range of 60–130 nm by DLS and surface charge values between −20 and −13 mV. Nisin showed an excellent affinity to PchNPs, with binding efficiencies higher than 75%. Stable synthesized PchNPs@nis nanobioconjugates were not only able to inhibit biofilm formation by S. aureus, but also showed inhibition of the planktonic cell growth of Staphyloccocus aureus and Escherichia coli, broadening the spectrum of action of the unconjugated antimicrobials against Gram-positive and Gram-negative bacteria. In conclusion, these results show the promising application of PchNPs@nis, prepared via green technology, as potential antimicrobial nanomaterials.
Collapse
|
21
|
Polat S, Burak Eral H. Elucidating the role of hyaluronic acid in the structure and morphology of calcium oxalate crystals. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
22
|
Legawiec KJ, Kruszelnicki M, Bastrzyk A, Polowczyk I. Rhamnolipids as Effective Green Agents in the Destabilisation of Dolomite Suspension. Int J Mol Sci 2021; 22:10591. [PMID: 34638932 PMCID: PMC8508988 DOI: 10.3390/ijms221910591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, we describe an application of mono- and dirhamnolipid homologue mixtures of a biosurfactant as a green agent for destabilisation of a dolomite suspension. Properties of the biosurfactant solution were characterised using surface tension and aggregate measurements to prove aggregation of rhamnolipids at concentrations much lower than the critical micelle concentration. Based on this information, the adsorption process of biosurfactant molecules on the surface of the carbonate mineral dolomite was investigated, and the adsorption mechanism was proposed. The stability of the dolomite suspension after rhamnolipid adsorption was investigated by turbidimetry. The critical concentration of rhamnolipid at which destabilisation of the suspension occurred most effectively was found to be 50 mg·dm-3. By analysing backscattering profiles, solid-phase migration velocities were calculated. With different amounts of biomolecules, this parameter can be modified from 6.66 to 20.29 mm·h-1. Our study indicates that the dolomite suspension is destabilised by hydrophobic coagulation, which was proved by examining the wetting angle of the mineral surface using the captive bubble technique. The relatively low amount of biosurfactant used to destabilise the system indicates the potential application of this technology for water treatment or modification of the hydrophobicity of mineral surfaces in mineral engineering.
Collapse
Affiliation(s)
- Krzysztof Jan Legawiec
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego St. 27, 50-370 Wrocław, Poland; (M.K.); (A.B.); (I.P.)
| | | | | | | |
Collapse
|
23
|
Mehrazi S, Sarker M, Mojica F, Rolfe P, Chuang PYA. A rheological approach to studying process-induced structural evolution of the microporous layer in a proton exchange membrane fuel cell. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Karami A, Farivar F, de Prinse TJ, Rabiee H, Kidd S, Sumby CJ, Bi J. Facile Multistep Synthesis of ZnO-Coated β-NaYF 4:Yb/Tm Upconversion Nanoparticles as an Antimicrobial Photodynamic Therapy for Persistent Staphylococcus aureus Small Colony Variants. ACS APPLIED BIO MATERIALS 2021; 4:6125-6136. [PMID: 35006903 DOI: 10.1021/acsabm.1c00473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antibacterial treatment strategies using functional nanomaterials, such as photodynamic therapy, are urgently required to combat persistent Staphylococcus aureus small colony variant (SCV) bacteria. Using a stepwise approach involving thermolysis to form β-NaYF4:Yb/Tm upconversion nanoparticles (UCNPs) and surface ligand exchange with cetyltrimethylammonium bromide (CTAB), followed by zeolite imidazolate framework-8 (ZIF-8) coating and conversion to zinc oxide (ZnO), β-NaYF4:Yb/Tm@ZnO nanoparticles were synthesized. The direct synthesis of β-NaYF4:Yb/Tm@ZIF-8 UCNPs proved problematic due to the hydrophobic nature of the as-synthesized material, which was shown by zeta potential measurements using dynamic light scattering (DLS). To facilitate deposition of a ZnO coating, the zeta potentials of (i) as-synthesized UCNPs, (ii) calcined UCNPs, (iii) polyvinylpyrrolidone (PVP), and (iv) CTAB-coated UCNPs were measured, which revealed the CTAB-coated UCNPs to be the most hydrophilic and the better-dispersed form in water. β-NaYF4:Yb/Tm@ZIF-8 composites formed using the CTAB-coated UCNPs were then converted into β-NaYF4:Yb/Tm@ZnO nanoparticles by calcination under carefully controlled conditions. Photoluminescence analysis confirmed the upconversion process for the UCNP core, which allows the β-NaYF4:Yb/Tm@ZnO nanoparticles to photogenerate reactive oxygen species (ROS) when activated by near-infrared (NIR) radiation. The NIR-activated UCNPs@ZnO nanoparticles demonstrated potent efficacy against both Staphylococcus aureus (WCH-SK2) and its associated SCV form (0.67 and 0.76 log colony forming unit (CFU) reduction, respectively), which was attributed to ROS generated from the NIR activated β-NaYF4:Yb/Tm@ZnO nanoparticles.
Collapse
Affiliation(s)
- Afshin Karami
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Farzaneh Farivar
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Thomas J de Prinse
- Institute for Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Hesamoddin Rabiee
- Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Stephen Kidd
- Australian Centre for Antimicrobial Resistance Ecology, Research Centre for Infectious Disease, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Christopher J Sumby
- Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
25
|
Hydrodynamic diameter and zeta potential of nanostructured lipid carriers: Emphasizing some parameters for correct measurements. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Cardoso RFDM, Basting RT, França FMG, Amaral FLBD, Basting RT. Physicochemical characterization, water sorption and solubility of adhesive systems incorporated with titanium tetrafluoride, and its influence on dentin permeability. J Mech Behav Biomed Mater 2021; 119:104453. [PMID: 33780849 DOI: 10.1016/j.jmbbm.2021.104453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 01/02/2023]
Abstract
Titanium tetrafluoride (TiF4) in an aqueous solution can decrease dentin permeability, but some effects of its incorporation into adhesive systems are not yet known. Therefore, the aim of this study was to characterize the physicochemical, water sorption (WS) and solubility (SL) properties of two adhesive systems (Clearfil SE Bond/C and Scotchbond Universal/S) incorporated with 0.0% (T0), 2.5% (T2) and 4.0% (T4) titanium tetrafluoride (TiF4), and determine dentin permeability (L) after application of these adhesive systems both immediately afterwards (baseline) and after 6 months of storage. The physicochemical analyses of the incorporated solutions were performed based on evaluating particle size (PS), polydispersity index (PDI) by dynamic light scattering, and zeta potential (ZP) by electrophoresis. WS and SL tests followed ISO 4049 standards, and used a 7-day water storage period. The L test was performed by analyzing human dentin discs before and after adhesive system application, and after storage. PS and PDI were higher for CT0 and ST4 (p < 0.0001; ANOVA, Tukey). ZP was lower for CT4, ST2 and ST4 (p < 0.0001; ANOVA, Tukey). A 4.0% TiF4 incorporation showed higher WS (p < 0.05; Mann Whitney, Kruskal Wallis, Dunn). Higher SL was observed for CT0 and ST4 (p < 0.05; Mann Whitney, Kruskal Wallis, Dunn). The L value at baseline was lower for ST4, but was not different from the CT4 groups after storage (p < 0.05; Mann Whitney, Kruskal Wallis, Dunn). It can be concluded that TiF4 affected the colloidal stability of Scotchbond, but did not alter the other properties. The 2.5% TiF4 did not affect the PDI, WS or L of the Clearfil, and can be considered an alternative for reducing hybrid layer degradation.
Collapse
Affiliation(s)
| | - Rosanna Tarkany Basting
- Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| | | | | | - Roberta Tarkany Basting
- Faculdade São Leopoldo Mandic, Rua José Rocha Junqueira 13, Bairro Swift, Campinas, CEP: 13045-755, São Paulo, Brazil.
| |
Collapse
|
27
|
Brudzynski K, Sjaarda CP. Colloidal structure of honey and its influence on antibacterial activity. Compr Rev Food Sci Food Saf 2021; 20:2063-2080. [PMID: 33569893 DOI: 10.1111/1541-4337.12720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/23/2020] [Accepted: 01/13/2021] [Indexed: 01/17/2023]
Abstract
Honey colloidal structure emerges as a new trend in research on honey functions since it became recognized as a major factor altering bioactivity of honey compounds. In honey complex matrix, macromolecules self-associate to colloidal particles at the critical concentration, driven by honey viscosity. Sequestration of macromolecules into colloids changes their activities and affects honey antibacterial function. This review fills the 80-year-old gap in research on honey colloidal structure. It summarizes past and current status of the research on honey colloids and describes physicochemical properties and the mechanisms of colloid formation and their dissociation upon honey dilution. The experimental observations are explained in the context of theoretical background of colloidal science. The functional changes and bioactivity of honey macromolecules bound to colloidal particles are illustrated here by the production of H2 O2 by glucose oxidase and the effect they have on antibacterial activity of honey. The changes in the production of H2 O2 and antibacterial activity of honey were coordinated with the changes in the aggregation-dissociation states of honey colloidal particles upon dilution. In all cases, these changes were nonlinear, assuming an inverted U-shaped dose-response curve. At the curve maximum, the production of H2 O2 and antibacterial activity reached the peak. The curve maximum signaled the minimum honey concentration required for the phase separation. With phase transition from two-phase colloidal condense state to dilute state dispersion, the change to opposite effects of dilution on these honey's activities occurred. Thus, the colloidal structure strongly influences bioactivity of honey compounds and affects its antibacterial activity.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery, Bee-Bimedical Inc., St. Catharines, Ontario, Canada.,Department of Biological Sciences, Brock University and Department of Drug Discovery, Bee-Biomedicals Inc., St. Catharines, Ontario, Canada
| | - Calvin P Sjaarda
- Queen's Genomics Lab at Ongwanada (Q-GLO), Kingston, Ontario, Canada.,Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
28
|
Hewage SA, Kewalramani J, Meegoda JN. Stability of nanobubbles in different salts solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125669] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Polyphenol-enriched extract of Arrabidaea chica used as a dentin pretreatment or incorporated into a total-etching adhesive system: Effects on bonding stability and physical characterization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111235. [PMID: 32806286 DOI: 10.1016/j.msec.2020.111235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/15/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
The aim of this paper was to evaluate the physical properties and the long-term bond strength of a 2.5% polyphenol-enriched extract of Arrabidaea chica (AC) incorporated into both the phosphoric acid and the primer of a three-step total-etch adhesive, or into an aqueous solution as a dentin pretreatment. Fifty dentin surfaces received the treatments (n = 10): CON (control) - application of the three-step adhesive system (Adper Scotchbond Multipurpose, 3M ESPE); WAT - distilled water used as a pretreatment after dentin etching and before application of the adhesive system; ACPA - AC incorporated into the phosphoric acid; ACW - dentin pre-treatment with AC incorporated into an aqueous solution after etching; ACP - AC incorporated into the primer. Microtensile bond strength tests were performed after 24 h, 6 and 12 months of storage. Slices from the resin-dentin interface were obtained for scanning electron microscopy analysis of the hybrid layer. Degree of conversion of AC incorporated into the primer was evaluated. The particle size, polydispersity index and zeta potential of all the solutions prepared by incorporating AC (phosphoric acid, primer and distilled water) were measured by dynamic light scattering, which brought about changes after incorporation. Degree of conversion of the primer was not affected after incorporating AC. ACP showed lower microtensile bond strength values than the other groups. Bond strength decreased after 6 months of storage, stabilizing at the 12-month evaluation. Therefore, use of AC incorporated into the primer led to lower bond strength values, since AC modified the physical properties (particle size, polydispersity index and zeta potential) of the primer, but did not change the degree of conversion. Application of AC as a dentin pretreatment did not affect bond strength or the micromorphological characteristics of the hybrid layer.
Collapse
|
30
|
Zhang H, Guo Z, Zhang X. Surface enrichment of ions leads to the stability of bulk nanobubbles. SOFT MATTER 2020; 16:5470-5477. [PMID: 32484196 DOI: 10.1039/d0sm00116c] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Numerous experiments have shown that bulk nanobubble suspensions are often characterized by a high magnitude of zeta potential. However, the underlying physical mechanism of how the bulk nanobubbles can stably exist has remained unclear so far. In this paper, based on theoretical analysis, we report a stability mechanism for charged bulk nanobubbles. The strong affinity of negative charges for the nanobubble interface causes charge enrichment, and the resulting electric field energy gives rise to a local minimum for the free energy cost of bubble formation, leading to thermodynamic metastability of the charged nanobubbles. The excess surface charges mechanically generate a size-dependent force, which balances the Laplace pressure and acts as a restoring force when a nanobubble is thermodynamically perturbed away from its equilibrium state. With this negative feedback mechanism, we discuss the nanobubble stability as a function of surface charge and gas supersaturation. We also compare our theoretical prediction with recent experimental observations, and a good agreement is found. This mechanism provides new fundamental insights into the origin of the unexplained stability of bulk nanobubbles.
Collapse
Affiliation(s)
- Hongguang Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | |
Collapse
|
31
|
Fahmy HM, Aly EM, Mohamed FF, Noor NA, Elsayed AA. Neurotoxicity of green- synthesized magnetic iron oxide nanoparticles in different brain areas of wistar rats. Neurotoxicology 2019; 77:80-93. [PMID: 31899250 DOI: 10.1016/j.neuro.2019.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022]
Abstract
AIMS The aim of the present study was to evaluate the toxicity of magnetic iron oxide nanoparticles (MIONs) which were synthesized using carob leaf extract on various brain areas of Wistar rats. MAIN METHODS Carob leaf synthesized-MIONs were characterized using different techniques: Dynamic Light Scattering (DLS), Transmission Electron Microscope (TEM), UV-vis spectrophotometer, Fourier Transform infrared (FTIR), X-Ray Diffraction (XRD) and Atomic Force Microscope (AFM). The toxicity of MIONs in vivo was evaluated by: monitoring rat's body weight, measuring iron content in different brain areas, evaluating some oxidative stress parameters, estimating acetylcholinesterase (AChE) in addition to histopathological investigations. KEY FINDINGS The present study demonstrated no body weight changes of MIONs- treated rats. According to the conditions of the present study, the hippocampus and striatum were the most affected areas and demonstrated neuronal degeneration due to MIONs exposure. MIONs treatment of Wistar rats, also affected the iron homeostasis in both striatum and midbrain by decreasing iron content in these areas. The least affected areas were thalamus and cerebellum. The histopathological examination of brain areas demonstrated moderate neuronal degeneration in hippocampus and striatum, mild neuronal degeneration in cortex and slight degeneration in hypothalamus and pons-medulla areas were detected. SIGNIFICANCE The results suggested that MIONs have a toxic impact on different brain areas and the effect varies according to the brain area.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt.
| | - Esraa M Aly
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Faten F Mohamed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12613, Giza, Egypt
| | - Neveen A Noor
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Anwar A Elsayed
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
32
|
Prywer J, Torzewska A. Aggregation of poorly crystalline and amorphous components of infectious urinary stones is mediated by bacterial lipopolysaccharide. Sci Rep 2019; 9:17061. [PMID: 31745124 PMCID: PMC6863890 DOI: 10.1038/s41598-019-53359-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/23/2019] [Indexed: 11/23/2022] Open
Abstract
Poorly crystalline and amorphous precipitate (PCaAP) is one of the components of the so-called infectious urinary stones, which are the result of the activity of urease-producing microorganisms, mainly from the Proteus species, in particular Proteus mirabilis. The main component of this kind of stones is crystalline struvite (MgNH4PO4∙6H2O). Bacteria can build into the structure of the urinary stone and, in this way, they are one of the components of the urinary stone. From these three components - PCaAP, struvite and Proteus mirabilis - PCaAP exhibits the greatest ability to aggregate. The present study focuses on the aggregation of PCaAP. In particular, an influence of lipopolysaccharide (LPS) isolated from Proteus mirabilis on aggregation of PCaAP is presented. An aggregation of PCaAP is characterized by cross-sectional area of aggregates and zeta potential. The results demonstrate that, in artificial urine, the influence of freely suspended LPS on aggregation of PCaAP depends on the concentrations of LPS. Small concentrations of freely suspended LPS enhance the aggregation of PCaAP compared to the control test. For high concentrations of freely suspended LPS the formation of aggregates of PCaAP is inhibited. LPS, which is not freely suspended, but covers polystyrene latex beads, has no such properties. The investigations provide evidence for the importance of biological regulation in the PCaAP aggregation process.
Collapse
Affiliation(s)
- Jolanta Prywer
- Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 90-924, Łódź, Poland.
| | - Agnieszka Torzewska
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, ul. Banacha 12/16, 90-237, Łódź, Poland
| |
Collapse
|
33
|
Ghaffari SB, Sarrafzadeh MH, Fakhroueian Z, Khorramizadeh M. Flower-like curcumin-loaded folic acid-conjugated ZnO-MPA- βcyclodextrin nanostructures enhanced anticancer activity and cellular uptake of curcumin in breast cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109827. [DOI: 10.1016/j.msec.2019.109827] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/18/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
|
34
|
Meegoda JN, Hewage SA, Batagoda JH. Application of the Diffused Double Layer Theory to Nanobubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12100-12112. [PMID: 31433652 DOI: 10.1021/acs.langmuir.9b01443] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nanobubbles have electrically charged interfaces; hence, the diffused double layer theory can be applied to explain the behavior of nanobubbles in different electrolytic solutions. In this research, oxygen nanobubbles were generated in NaCl solutions of different concentrations, and bubble size and ζ potentials were measured just after the generation and after 1 week. The measured data and diffused double layer theory were used to compute the surface charge density, the potential due to the surface charge, and the interaction energy between bubbles. With the increased NaCl concentration, bubble size, surface charge density, and the number of negative charges increased, while the magnitude of ζ potential/surface potential, double layer thickness, internal pressure, and the electrostatic repulsion force decreased. The same trend was observed after 1 week. The net total energy calculation for the 0.001 M NaCl solution showed that the bubble repulsion for an intermediate separation distance had a 6.99 × 10-20 J energy barrier, which prevented bubble coalescence. Hence, the 0.001 M NaCl solution produced stable nanobubbles. The calculation of internal pressure inside nanobubbles showed a reduction in the interfacial pressure difference with the increased NaCl concentration. The test results, as well as diffuse double layer and net total energy calculations, showed that the most stable bubbles were obtained with 0.001 M NaCl concentration and the least stability was recorded with the highest amount (0.1 M) of NaCl concentration.
Collapse
Affiliation(s)
- Jay N Meegoda
- Department of Civil & Environmental Engineering , New Jersey Institute of Technology , 323 Dr M.L.K. Jr. Blvd. , Newark , New Jersey 07102 , United States
| | - Shaini Aluthgun Hewage
- Department of Civil & Environmental Engineering , New Jersey Institute of Technology , 323 Dr M.L.K. Jr. Blvd. , Newark , New Jersey 07102 , United States
| | - Janitha H Batagoda
- Department of Civil & Environmental Engineering , New Jersey Institute of Technology , 323 Dr M.L.K. Jr. Blvd. , Newark , New Jersey 07102 , United States
| |
Collapse
|
35
|
Silva J, Mesquita R, Pinho E, Caldas A, Oliveira MECDR, Lopes CM, Lúcio M, Soares G. Incorporation of lipid nanosystems containing omega-3 fatty acids and resveratrol in textile substrates for wound healing and anti-inflammatory applications. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1049-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
36
|
Uskoković V, Tang S, Wu VM. Targeted magnetic separation of biomolecules and cells using earthicle-based ferrofluids. NANOSCALE 2019; 11:11236-11253. [PMID: 31161186 DOI: 10.1039/c9nr01579e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Targeting specific molecular or cell populations within single tissues or multicomponent in vitro systems is a most sought goal in biomedicine. Here we report on targeted magnetic separation of cells and biomolecules using a ferrofluid comprising superparamagnetic iron-oxide/silicate/carbon core/shell/crust nanoparticles in combination with a handheld, 2.5 cm3 NdFeB magnet (≤180 mT) and one minute exposure time. Ferrofluids were highly effective at separating (i) biomolecules, (ii) bacteria and (iii) eukaryotic cells from solutions, and they also exhibited selectivity in the separation of all three families of entities. Specifically, they were more effective at separating the negatively charged protein, albumin in the presence of the external magnetic field, but were more effective at precipitating the positively charged protein, lysozyme without the application of the external field. Because of the more effective sorption of proteins than carbohydrates on carbon and the shielding of peptidoglycans by the transmembrane proteins and hydrophilic heads of the outer membrane amphiphiles in Gram-negative bacteria, they were separated more effectively than their Gram-positive counterparts. Ferrofluids were also more efficient at separating the clinical isolate, methicillin-resistant version of S. aureus (MRSA) than its regular, lab strain and the effect is thought to be due to structural changes to the cell envelope caused by the overexpression of efflux pumps or by the higher rate of conjugation conditioning horizontal gene transfer in MRSA than in the regular, nonresistant strain. Ferrofluids also displayed a greater affinity for the cancer cells than for the normal, primary cells and allowed for targeted separation of the former after the cells were allowed to uptake the nanoparticles for 24 h. This selectivity should allow for an effective separation of cancer cells interspersed within a healthy cell population. Interaction with bacterial and eukaryotic cells was driven neither by electrostatic attraction nor chemisorption, but by weaker, van der Waals and π-interactions. Adsorption was also endothermic, irreversible for the most part, and more favorable at high concentrations, as inferred by comparison with Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. These targeted effects are relevant for numerous fields of biomedicine and biotechnologies and require further insight for optimization and translation.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA. and Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Chapman University, Irvine, CA 92618-1908, USA
| | - Sean Tang
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Chapman University, Irvine, CA 92618-1908, USA
| | - Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Chapman University, Irvine, CA 92618-1908, USA
| |
Collapse
|
37
|
Wu VM, Huynh E, Tang S, Uskoković V. Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles). Acta Biomater 2019; 88:422-447. [PMID: 30711662 DOI: 10.1016/j.actbio.2019.01.064] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/11/2019] [Accepted: 01/30/2019] [Indexed: 01/02/2023]
Abstract
Despite the advances in molecularly targeted therapies, delivery across the blood-brain barrier (BBB) and the targeting of brain tumors remains a challenge. Like brain, bone is a common site of metastasis and requires therapies capable of discerning the tumor from its healthy cellular milieu. To tackle these challenges, we made a variation on the previously proposed concept of the earthicle and fabricated an aqueous, surfactant-free ferrofluid containing superparamagnetic iron oxide nanoparticles (SPIONs) coated with silicate mesolayers and carbon shells, having 13 nm in size on average. Nanoparticles were synthesized hydrothermally and characterized using a range of spectroscopic, diffractometric, hydrodynamic and electron microscopy techniques. The double coating on SPIONs affected a number of physicochemical and biological properties, including colloidal stability and cancer targeting efficacy. Nanoparticles decreased the viability of glioblastoma and osteosarcoma cells and tumors more than that of their primary and non-transformed analogues. They showed a greater preference for cancer cells because of a higher rate of uptake by these cells and a pronounced adherence to cancer cell membrane. Even in an ultralow alternate magnetic field, nanoparticles generated sufficient heat to cause tumor death. Nanoparticles in MDCK-MDR1 BBB model caused mislocalization of claudin-1 at the tight junctions, underexpression of ZO-1 and no effect on occludin-1 and transepithelial resistance. Nanoparticles were detected in the basolateral compartments and examination of LAMP1 demonstrated that nanoparticles escaped the lysosome, traversed the BBB transcellularly and localized to the optic lobes of the third instar larval brains of Drosophila melanogaster. The passage was noninvasive and caused no adverse systemic effects to the animals. In conclusion, these nanoparticulate ferrofluids preferentially bind to cancer cells and, hence, exhibit a greater toxicity in these cells compared to the primary cells. They are also effective against solid tumors in vitro, can cross the BBB in Drosophila, and are nontoxic based on the developmental studies of flies raised in ferrofluid-infused media. STATEMENT OF SIGNIFICANCE: We demonstrate that a novel, hydrothermally synthesized composite nanoparticle-based ferrofluid is effective in reducing the viability of osteosarcoma and glioblastoma cells in vitro, while having minimal effects on primary cell lines. In 3D tumor spheroids, nanoparticles greatly reduced the metastatic migration of cancer cells, while the tumor viability was reduced compared to the control group by applying magnetic hyperthermia to nanoparticle-treated spheroids. Both in vitro and in vivo models of the blood-brain barrier evidence the ability of nanoparticles to cross the barrier and localize to the brain tissue. These composite nanoparticles show great promise as an anticancer biomaterial for the treatment of different types of cancer and may serve as an alternative or addendum to traditional chemotherapies.
Collapse
Affiliation(s)
- Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
| | - Eric Huynh
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
| | - Sean Tang
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA; Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA.
| |
Collapse
|
38
|
Ignjatović NL, Janković R, Uskoković V, Uskoković DP. Effects of hydroxyapatite@poly-lactide- co-glycolide nanoparticles combined with Pb and Cd on liver and kidney parenchyma after the reconstruction of mandibular bone defects. Toxicol Res (Camb) 2019; 8:287-296. [PMID: 30997028 DOI: 10.1039/c9tx00007k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/04/2019] [Indexed: 12/28/2022] Open
Abstract
Reconstruction of bone defects with the use of biomaterials based on hydroxyapatite (HAp) has been a popular approach in medicine and dentistry. Most often the process of new bone formation is analyzed with the focus only on the region of the reconstructed defect. The effects of the therapy on distant organs have been rarely reported in the literature, especially not in synergy with the exposure to other bioactive chemicals. In this study, reconstruction of the mandibular bone in vivo using poly-lactide-co-glycolide-coated HAp (HAp/PLGA) nanoparticles was monitored with a simultaneous histopathological analysis of distant organs, specifically kidney and liver parenchyma. Heavy metals are among the most prominent environmental pollutants and have a high affinity for the crystal lattice of HAp, where they get incorporated by replacing calcium ions. Lead (Pb) and cadmium (Cd) are two such metals that can be found in food, water and air, but are most commonly present in cigarette smoke, the frequent contaminant of hospital settings in the developing world. The influence of their presence in the repaired bone on the content of calcium (Ca) in the reconstructed bone defect was analyzed, along with the histopathological changes in liver and kidneys. A study performed on 24 female Wistar rats demonstrated that the reconstruction of mandibular bone defects using HAp/PLGA particles induced an increase in the content of Ca in the newly created bone without causing any pathological changes to the liver and the kidneys. The presence of Pb and Cd in the defects reconstructed with HAp/PLGA nanoparticles impeded the regenerative process and led to a severe and irreversible damage to the liver and kidney parenchyma.
Collapse
Affiliation(s)
- Nenad L Ignjatović
- Institute of Technical Sciences , Serbian Academy of Science and Arts , Knez Mihailova 35/IV , P.O. Box 377 , 11000 Belgrade , Serbia . ;
| | - Radmila Janković
- University of Belgrade , School of Medicine , Institute of Pathology , Belgrade , Serbia
| | - Vuk Uskoković
- University of Illinois , Department of Bioengineering , Chicago , IL , USA
| | - Dragan P Uskoković
- Institute of Technical Sciences , Serbian Academy of Science and Arts , Knez Mihailova 35/IV , P.O. Box 377 , 11000 Belgrade , Serbia . ;
| |
Collapse
|
39
|
Martins AS, Carvalho FA, Faustino AF, Martins IC, Santos NC. West Nile Virus Capsid Protein Interacts With Biologically Relevant Host Lipid Systems. Front Cell Infect Microbiol 2019; 9:8. [PMID: 30788291 PMCID: PMC6372508 DOI: 10.3389/fcimb.2019.00008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/11/2019] [Indexed: 01/27/2023] Open
Abstract
West Nile and dengue viruses are closely related flaviviruses, originating mosquito-borne viral infections for which there are no effective and specific treatments. Their capsid proteins sequence and structure are particularly similar, forming highly superimposable α-helical homodimers. Measuring protein-ligand interactions at the single-molecule level yields detailed information of biological and biomedical relevance. In this work, such an approach was successfully applied on the characterization of the West Nile virus capsid protein interaction with host lipid systems, namely intracellular lipid droplets (an essential step for dengue virus replication) and blood plasma lipoproteins. Dynamic light scattering measurements show that West Nile virus capsid protein binds very low-density lipoproteins, but not low-density lipoproteins, and this interaction is dependent of potassium ions. Zeta potential experiments show that the interaction with lipid droplets is also dependent of potassium ions as well as surface proteins. The forces involved on the binding of the capsid protein with lipid droplets and lipoproteins were determined using atomic force microscopy-based force spectroscopy, proving that these interactions are K+-dependent rather than a general dependence of ionic strength. The capsid protein interaction with host lipid systems may be targeted in future therapeutic strategies against different flaviviruses. The biophysical and nanotechnology approaches employed in this study may be applied to characterize the interactions of other important proteins from different viruses, in order to understand their life cycles, as well as to find new strategies to inhibit them.
Collapse
Affiliation(s)
- Ana S Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - André F Faustino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
40
|
Sikder M, Wang J, Chandler GT, Berti D, Baalousha M. Synthesis, characterization, and environmental behaviors of monodispersed platinum nanoparticles. J Colloid Interface Sci 2019; 540:330-341. [PMID: 30660085 DOI: 10.1016/j.jcis.2019.01.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 11/26/2022]
Abstract
The release of platinum group elements, including platinum nanoparticles (PtNPs), has been increasing over recent decades. However, few studies have investigated the fate, behavior and effects of PtNPs in environmental media. Here, we report a protocol for the synthesis of five different sizes (8.5 ± 1.2, 10.3 ± 1.3, 20.0 ± 4.8, 40.5 ± 4.1, and 70.8 ± 4.2 nm) of monodispersed citrate- and polyvinylpyrrolidone (PVP)-coated PtNPs, together with a characterization of their behaviors using a multi method approach in relevant biological and toxicological media. In general, PtNPs sizes measured using dynamic light scattering, field flow fractionation, single-particle inductively-coupled plasma-mass spectroscopy, transmission electron microscopy and atomic force microscopy, were all in good agreement when PtNP sizes were larger than the size detection limits of each analytical technique. Slight differences in sizes measured were attributable to differences in analytical techniques, measuring principles, NP shape and NP permeability. The thickness of the PVP layer increased (from 4.4 to 11.35 nm) with increases in NP size. The critical coagulation concentration of cit-PtNPs was independent of NP size, possibly due to differences in PtNPs surface charges as a function of NP size. PtNPs did not undergo significant dissolution in any media tested. PtNPs did not aggregate significantly in Dulbecco's modified Eagle's medium; but they formed aggregates in moderately hard water and in 30 ppt synthetic seawater, and aggregate size increased with increases in PtNPs concentration. Overall, this study describes a general model NP system (i.e., PtNPs) of different controlled NP sizes and coatings that is predictable, stable and useful to investigate the fate, behavior, uptake, and eco-toxicity of NPs in the environment.
Collapse
Affiliation(s)
- Mithun Sikder
- South Carolina SmartState Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Jingjing Wang
- South Carolina SmartState Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - G Thomas Chandler
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Debora Berti
- National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth), Virginia Tech, 24061, USA
| | - Mohammed Baalousha
- South Carolina SmartState Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
41
|
Reznickova A, Slavikova N, Kolska Z, Kolarova K, Belinova T, Hubalek Kalbacova M, Cieslar M, Svorcik V. PEGylated gold nanoparticles: Stability, cytotoxicity and antibacterial activity. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.09.083] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Pyrrolidinium and morpholinium ionic liquids as a novel effective destabilising agent of mineral suspension. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Breider F, Salihu I, von Gunten U. Formation of N-nitrosamines by micelle-catalysed nitrosation of aliphatic secondary amines. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1479-1487. [PMID: 30252010 DOI: 10.1039/c8em00335a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
N-Nitrosamines are an important class of potent human carcinogens and mutagens that can be present in water and wastewater. For instance, N-nitrosamines can be formed by reaction of nitrosating agents such as NO+ or N2O3 formed from nitrite under acidic conditions with secondary amine precursors by an acid-catalysed nitrosation pathway. This study investigates the catalytic effect of cationic and anionic micelles on the nitrosation of secondary aliphatic amines in the presence of nitrite at different pH values. The results of this study demonstrate that the nitrosation of hydrophobic secondary amines (e.g., dipropylamine and dibutylamine) by nitrite was significantly enhanced in the presence of micelles of the cationic surfactant cetyltrimethylammonium chloride whereas anionic micelles formed by sodium dodecylsulfate did not significantly enhance the formation of N-nitrosamines. Rate enhancements of up to 100-fold were observed for the formation of N-nitrosodibutylamine in the presence of cetyltrimethylammonium chloride. The magnitude of the catalytic effect of cationic micelles on the nitrosation reaction depended mainly of the hydrophobicity of the amine precursors (i.e., alkyl chain length), the stability and the charge of the micelles and pH. One important enhancement factor is the lowering of the pKa of the precursor alkylammonium ion due to the electrical potential at the micelle-water interface by up to ∼2.5 pH units. These results suggest that cationic micelle-forming surfactants might play a role in the formation of N-nitrosamines in wastewater, consumer products and in industrial processes using high concentrations of cationic surfactants.
Collapse
Affiliation(s)
- Florian Breider
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | | | | |
Collapse
|
44
|
Ignjatović NL, Sakač M, Kuzminac I, Kojić V, Marković S, Vasiljević-Radović D, Wu VM, Uskoković V, Uskoković DP. Chitosan Oligosaccharide Lactate Coated Hydroxyapatite Nanoparticles as a Vehicle for the Delivery of Steroid Drugs and the Targeting of Breast Cancer Cells. J Mater Chem B 2018; 6:6957-6968. [PMID: 30931125 PMCID: PMC6436965 DOI: 10.1039/c8tb01995a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Low targeting efficiency and fast metabolism of antineoplastic drugs are hindrances to effective chemotherapies and there is an ongoing search for better drugs, but also better carriers. Steroid derivatives, 3β-hydroxy-16-hydroxymino-androst-5-en-17-one (A) and 3β,17β-dihydroxy-16-hydroxymino-androst-5-ene (B) as cancer growth inhibitors were chemically synthesized and captured in a carrier composed of hydroxyapatite (HAp) nanoparticles coated with chitosan oligosaccharide lactate (ChOLS). The only difference between the two derivatives is that A has a carbonyl group at the C17 position of the five-membered ring and B has a hydroxyl. This small difference in the structure resulted not only in different physicochemical properties of the A- and B-loaded HAp/ChOSL, but also in different biological activities. The morphology of drug-loaded HAp/ChOSL particles was spherical, but the size depended on the drug identity: d50=138 nm for A-loaded HAp/ChOSL and d50=223 nm for B-loaded HAp/ChOSL. Cell-selective toxicity was tested against human breast carcinoma (MCF7 and MDA-MB-231), human lung carcinoma (A549) and human lung fibroblasts (MRC-5). The small selectivity of pure derivatives A and B toward breast cancer cells became drastically increased when they were delivered using HAp/ChOSL particles. Whereas the ratio of the cytotoxicity imposed onto breast cancer cells and the cytotoxicity imposed onto healthy MRC-5 fibroblasts ranged from 1.5 to 1.7 for pure A and from 1.5 to 2.3 for pure derivative B depending on the concentration, it increased to 5.4 for A-loaded HAp/ChOSL and 5.1 for B-loaded HAp/ChOSL. FACS analysis demonstrated poor uptake of HAp/ChOSL particles by MCF7 cells, suggesting that the drug release occurs extracellularly. The augmented activity of the drugs was most likely due to sustained release, although the favorable positive charge of the carrier, allowing it to adhere to the negatively charged plasma membrane and release the drugs steadily and directly to the hydrophobic cell membrane milieu, was delineated as a possible complementary mechanism.
Collapse
Affiliation(s)
- Nenad L. Ignjatović
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia
| | - Marija Sakač
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Ivana Kuzminac
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Vesna Kojić
- Faculty of Medicine, Oncology Institute of Vojvodina, University of Novi Sad, Put Dr Goldmana 4, Sremska Kamenica 21204, Serbia
| | - Smilja Marković
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia
| | - Dana Vasiljević-Radović
- University of Belgrade, Institute for Chemistry, Technology and Metallurgy, Njegoševa 12, Belgrade, Serbia
| | - Victoria M. Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University, 9501 Jeronimo Road, Irvine, CA 92618, USA
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL, USA
| | - Dragan P. Uskoković
- Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/IV, P.O. Box 377, 11000 Belgrade, Serbia
| |
Collapse
|
45
|
Matusiak J, Grządka E, Bastrzyk A. Stability, adsorption and electrokinetic properties of the chitosan/silica system. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
Martins AS, Martins IC, Santos NC. Methods for Lipid Droplet Biophysical Characterization in Flaviviridae Infections. Front Microbiol 2018; 9:1951. [PMID: 30186265 PMCID: PMC6110928 DOI: 10.3389/fmicb.2018.01951] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/02/2018] [Indexed: 01/14/2023] Open
Abstract
Lipid droplets (LDs) are intracellular organelles for neutral lipid storage, originated from the endoplasmic reticulum. They play an essential role in lipid metabolism and cellular homeostasis. In fact, LDs are complex organelles, involved in many more cellular processes than those initially proposed. They have been extensively studied in the context of LD-associated pathologies. In particular, LDs have emerged as critical for virus replication and assembly. Viruses from the Flaviviridae family, namely dengue virus (DENV), hepatitis C virus (HCV), West Nile virus (WNV), and Zika virus (ZIKV), interact with LDs to usurp the host lipid metabolism for their own viral replication and pathogenesis. In general, during Flaviviridae infections it is observed an increasing number of host intracellular LDs. Several viral proteins interact with LDs during different steps of the viral life cycle. The HCV core protein and DENV capsid protein, extensively interact with LDs to regulate their replication and assembly. Detailed studies of LDs in viral infections may contribute for the development of possible inhibitors of key steps of viral replication. Here, we reviewed different techniques that can be used to characterize LDs isolated from infected or non-infected cells. Microscopy studies have been commonly used to observe LDs accumulation and localization in infected cell cultures. Fluorescent dyes, which may affect LDs directly, are widely used to probe LDs but there are also approaches that do not require the use of fluorescence, namely stimulated Raman scattering, electron and atomic force microscopy-based approaches. These three are powerful techniques to characterize LDs morphology. Raman scattering microscopy allows studying LDs in a single cell. Electron and atomic force microscopies enable a better characterization of LDs in terms of structure and interaction with other organelles. Other biophysical techniques, such as dynamic light scattering and zeta potential are also excellent to characterize LDs in terms of size in a simple and fast way and test possible LDs interaction with viral proteins. These methodologies are reviewed in detail, in the context of viral studies.
Collapse
Affiliation(s)
- Ana S Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
47
|
The effect of the androstane lung cancer inhibitor content on the cell-selective toxicity of hydroxyapatite-chitosan-PLGA nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:371-377. [DOI: 10.1016/j.msec.2018.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 01/23/2023]
|
48
|
Wacławek S, Gončuková Z, Adach K, Fijałkowski M, Černík M. Green synthesis of gold nanoparticles using Artemisia dracunculus extract: control of the shape and size by varying synthesis conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24210-24219. [PMID: 29948700 DOI: 10.1007/s11356-018-2510-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
In this study, selective green synthesis of gold nanoparticles (nAu) with the use of Tarragon extract (Artemisia dracunculus) was investigated. Characterization of the synthetized nAu was carried out using several techniques including: UV-Vis, SEM, zeta potential analysis, DLS, and ATR-FTIR. Based on measurements of Tarragon extract by HPLC-MS, significant chemical substances participating as reducing and stabilizing agents were identified. FTIR confirmed typical functional groups that could be found in these acids on the nAu surface, such as O-H, C=O and C-O. The effects of various parameters (concentration of Tarragon extract, Au precursor, and initial pH of the synthesis) on the shape and size of the nanoparticles have been investigated. UV-Vis and SEM confirmed the formation of nAu at various concentrations of the extract and Au precursor and showed correlation between the added extract concentration and shift in maximal absorbance towards higher frequencies, indicating the formation of smaller nanoplates. Zeta potential determined at various pH levels revealed that its value decreased with pH, but for all experiments in the pH range of 2.8 to 5.0, the value is below - 30 mV, an absolute value high enough for long-term nAu stability. In order to evaluate nAu catalytic activity, the reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride was used as a model system. The reaction takes place 1.5 times faster on Au-triangles than on Au-spherical NPs.
Collapse
Affiliation(s)
- Stanisław Wacławek
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic.
| | - Zuzanna Gončuková
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Kinga Adach
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Mateusz Fijałkowski
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Miroslav Černík
- Centre for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic.
| |
Collapse
|
49
|
Agi A, Junin R, Gbadamosi A. Mechanism governing nanoparticle flow behaviour in porous media: insight for enhanced oil recovery applications. INTERNATIONAL NANO LETTERS 2018. [DOI: 10.1007/s40089-018-0237-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Zimet P, Mombrú ÁW, Faccio R, Brugnini G, Miraballes I, Rufo C, Pardo H. Optimization and characterization of nisin-loaded alginate-chitosan nanoparticles with antimicrobial activity in lean beef. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|