1
|
Zhang D, Zhao H, Li P, Wu X, Liang Y. Research Progress on Liposome Pulmonary Delivery of Mycobacterium tuberculosis Nucleic Acid Vaccine and Its Mechanism of Action. J Aerosol Med Pulm Drug Deliv 2024; 37:284-298. [PMID: 38669118 PMCID: PMC11502632 DOI: 10.1089/jamp.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Traditional vaccines have played an important role in the prevention and treatment of infectious diseases, but they still have problems such as low immunogenicity, poor stability, and difficulty in inducing lasting immune responses. In recent years, the nucleic acid vaccine has emerged as a relatively cheap and safe new vaccine. Compared with traditional vaccines, nucleic acid vaccine has some unique advantages, such as easy production and storage, scalability, and consistency between batches. However, the direct administration of naked nucleic acid vaccine is not ideal, and safer and more effective vaccine delivery systems are needed. With the rapid development of nanocarrier technology, the combination of gene therapy and nanodelivery systems has broadened the therapeutic application of molecular biology and the medical application of biological nanomaterials. Nanoparticles can be used as potential drug-delivery vehicles for the treatment of hereditary and infectious diseases. In addition, due to the advantages of lung immunity, such as rapid onset of action, good efficacy, and reduced adverse reactions, pulmonary delivery of nucleic acid vaccine has become a hot spot in the field of research. In recent years, lipid nanocarriers have become safe, efficient, and ideal materials for vaccine delivery due to their unique physical and chemical properties, which can effectively reduce the toxic side effects of drugs and achieve the effect of slow release and controlled release, and there have been a large number of studies using lipid nanocarriers to efficiently deliver target components into the body. Based on the delivery of tuberculosis (TB) nucleic acid vaccine by lipid carrier, this article systematically reviews the advantages and mechanism of liposomes as a nucleic acid vaccine delivery carrier, so as to lay a solid foundation for the faster and more effective development of new anti-TB vaccine delivery systems in the future.
Collapse
Affiliation(s)
- Danyang Zhang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Haimei Zhao
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Ping Li
- Postgraduate Department of Heibei North University, Zhangjiakou, China
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Liang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Rahman A, Roy KJ, Deb GK, Ha T, Rahman S, Aktar MK, Ali MI, Kafi MA, Choi JW. Nano-Enabled Antivirals for Overcoming Antibody Escaped Mutations Based SARS-CoV-2 Waves. Int J Mol Sci 2023; 24:13130. [PMID: 37685938 PMCID: PMC10488153 DOI: 10.3390/ijms241713130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
This review discusses receptor-binding domain (RBD) mutations related to the emergence of various SARS-CoV-2 variants, which have been highlighted as a major cause of repetitive clinical waves of COVID-19. Our perusal of the literature reveals that most variants were able to escape neutralizing antibodies developed after immunization or natural exposure, pointing to the need for a sustainable technological solution to overcome this crisis. This review, therefore, focuses on nanotechnology and the development of antiviral nanomaterials with physical antagonistic features of viral replication checkpoints as such a solution. Our detailed discussion of SARS-CoV-2 replication and pathogenesis highlights four distinct checkpoints, the S protein (ACE2 receptor coupling), the RBD motif (ACE2 receptor coupling), ACE2 coupling, and the S protein cleavage site, as targets for the development of nano-enabled solutions that, for example, prevent viral attachment and fusion with the host cell by either blocking viral RBD/spike proteins or cellular ACE2 receptors. As proof of this concept, we highlight applications of several nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanoparticles, carbon nanotubes, fullerene, carbon dots, quantum dots, polymeric nanoparticles, lipid-based, polymer-based, lipid-polymer hybrid-based, surface-modified nanoparticles that have already been employed to control viral infections. These nanoparticles were developed to inhibit receptor-mediated host-virus attachments and cell fusion, the uncoating of the virus, viral gene expression, protein synthesis, the assembly of progeny viral particles, and the release of the virion. Moreover, nanomaterials have been used as antiviral drug carriers and vaccines, and nano-enabled sensors have already been shown to enable fast, sensitive, and label-free real-time diagnosis of viral infections. Nano-biosensors could, therefore, also be useful in the remote testing and tracking of patients, while nanocarriers probed with target tissue could facilitate the targeted delivery of antiviral drugs to infected cells, tissues, organs, or systems while avoiding unwanted exposure of non-target tissues. Antiviral nanoparticles can also be applied to sanitizers, clothing, facemasks, and other personal protective equipment to minimize horizontal spread. We believe that the nanotechnology-enabled solutions described in this review will enable us to control repeated SAR-CoV-2 waves caused by antibody escape mutations.
Collapse
Affiliation(s)
- Aminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Kumar Jyotirmoy Roy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Gautam Kumar Deb
- Department of Biotechnology, Bangladesh Livestock Research Institute, Dhaka 1341, Bangladesh;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| | - Saifur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Mst. Khudishta Aktar
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Isahak Ali
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| |
Collapse
|
3
|
Yadav K, Sahu KK, Sucheta, Gnanakani SPE, Sure P, Vijayalakshmi R, Sundar VD, Sharma V, Antil R, Jha M, Minz S, Bagchi A, Pradhan M. Biomedical applications of nanomaterials in the advancement of nucleic acid therapy: Mechanistic challenges, delivery strategies, and therapeutic applications. Int J Biol Macromol 2023; 241:124582. [PMID: 37116843 DOI: 10.1016/j.ijbiomac.2023.124582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
In the past few decades, substantial advancement has been made in nucleic acid (NA)-based therapies. Promising treatments include mRNA, siRNA, miRNA, and anti-sense DNA for treating various clinical disorders by modifying the expression of DNA or RNA. However, their effectiveness is limited due to their concentrated negative charge, instability, large size, and host barriers, which make widespread application difficult. The effective delivery of these medicines requires safe vectors that are efficient & selective while having non-pathogenic qualities; thus, nanomaterials have become an attractive option with promising possibilities despite some potential setbacks. Nanomaterials possess ideal characteristics, allowing them to be tuned into functional bio-entity capable of targeted delivery. In this review, current breakthroughs in the non-viral strategy of delivering NAs are discussed with the goal of overcoming challenges that would otherwise be experienced by therapeutics. It offers insight into a wide variety of existing NA-based therapeutic modalities and techniques. In addition to this, it provides a rationale for the use of non-viral vectors and a variety of nanomaterials to accomplish efficient gene therapy. Further, it discusses the potential for biomedical application of nanomaterials-based gene therapy in various conditions, such as cancer therapy, tissue engineering, neurological disorders, and infections.
Collapse
Affiliation(s)
- Krishna Yadav
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | | | - Pavani Sure
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Sciences, Hyderabad, Telangana, India
| | - R Vijayalakshmi
- Department of Pharmaceutical Analysis, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - V D Sundar
- Department of Pharmaceutical Technology, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - Versha Sharma
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Ruchita Antil
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, England, United Kingdom of Great Britain and Northern Ireland
| | - Megha Jha
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, M.P., 484887, India
| | - Anindya Bagchi
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road La Jolla, CA 92037, USA
| | | |
Collapse
|
4
|
Morzy D, Tekin C, Caroprese V, Rubio-Sánchez R, Di Michele L, Bastings MMC. Interplay of the mechanical and structural properties of DNA nanostructures determines their electrostatic interactions with lipid membranes. NANOSCALE 2023; 15:2849-2859. [PMID: 36688792 PMCID: PMC9909679 DOI: 10.1039/d2nr05368c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
Nucleic acids and lipids function in close proximity in biological processes, as well as in nanoengineered constructs for therapeutic applications. As both molecules carry a rich charge profile, and frequently coexist in complex ionic solutions, the electrostatics surely play a pivotal role in interactions between them. Here we discuss how each component of a DNA/ion/lipid system determines its electrostatic attachment. We examine membrane binding of a library of DNA molecules varying from nanoengineered DNA origami through plasmids to short DNA domains, demonstrating the interplay between the molecular structure of the nucleic acid and the phase of lipid bilayers. Furthermore, the magnitude of DNA/lipid interactions is tuned by varying the concentration of magnesium ions in the physiologically relevant range. Notably, we observe that the structural and mechanical properties of DNA are critical in determining its attachment to lipid bilayers and demonstrate that binding is correlated positively with the size, and negatively with the flexibility of the nucleic acid. The findings are utilized in a proof-of-concept comparison of membrane interactions of two DNA origami designs - potential nanotherapeutic platforms - showing how the results can have a direct impact on the choice of DNA geometry for biotechnological applications.
Collapse
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland.
| | - Cem Tekin
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland.
| | - Vincenzo Caroprese
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland.
| | - Roger Rubio-Sánchez
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Lorenzo Di Michele
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Maartje M C Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland.
- Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
5
|
Protopapa G, Bono N, Visone R, D'Alessandro F, Rasponi M, Candiani G. A new microfluidic platform for the highly reproducible preparation of non-viral gene delivery complexes. LAB ON A CHIP 2022; 23:136-145. [PMID: 36477137 DOI: 10.1039/d2lc00744d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transfection describes the delivery of exogenous nucleic acids (NAs) to cells utilizing non-viral means. In the last few decades, scientists have been doing their utmost to design ever more effective transfection reagents. These are eventually mixed with NAs to give rise to gene delivery complexes, which must undergo characterization, testing, and further refinement through the sequential reiteration of these steps. Unfortunately, although microfluidics offers distinct advantages over the canonical approaches to preparing particles, the systems available do not address the most frequent and practical quest for the simultaneous generation of multiple polymer-to-NA ratios (N/Ps). Herein, we developed a user-friendly microfluidic cartridge to repeatably prepare non-viral gene delivery particles and screen across a range of seven N/Ps at once or significant volumes of polyplexes at a given N/P. The microchip is equipped with a chaotic serial dilution generator for the automatic linear dilution of the polymer to the downstream area, which encompasses the NA divider to dispense equal amounts of DNA to the mixing area, enabling the formation of particles at seven N/Ps eventually collected in individual built-in tanks. This is the first example of a stand-alone microfluidic cartridge for the fast and repeatable preparation of non-viral gene delivery complexes at different N/Ps and their storage.
Collapse
Affiliation(s)
- Giovanni Protopapa
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.
| | - Nina Bono
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Fabio D'Alessandro
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.
| |
Collapse
|
6
|
Luo X, Zeng X, Gong L, Ye Y, Sun C, Chen T, Zhang Z, Tao Y, Zeng H, Zou Q, Yang Y, Li J, Sun H. Nanomaterials in tuberculosis DNA vaccine delivery: historical perspective and current landscape. Drug Deliv 2022; 29:2912-2924. [PMID: 36081335 PMCID: PMC9467597 DOI: 10.1080/10717544.2022.2120565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Vaccinations, especially DNA vaccines that promote host immunity, are the most effective interventions for tuberculosis (TB) control. However, the vaccine delivery system exhibits a significant impact on the protective effects of the vaccine. Recently, effective nanomaterial-based delivery systems (including nanoparticles, nanogold, nanoliposomes, virus-like particles, and virus carriers) have been developed for DNA vaccines to control TB. This review highlights the historical development of various nanomaterial-based delivery systems for TB DNA vaccines, along with the emerging technologies. Nanomaterial-based vaccine delivery systems could enhance the efficacy of TB vaccination; therefore, this summary could guide nanomaterial selection for optimal and safe vaccine delivery, facilitating the design and development of highly effective TB vaccines.
Collapse
Affiliation(s)
- Xing Luo
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaoqiang Zeng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Li Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Ye
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Cun Sun
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ting Chen
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zelong Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yikun Tao
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yun Yang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jieping Li
- Department of Hematology Oncology, Chongqing University Cancer Hospital, Chongqing, China.,Department of Hematology, Changsha Central Hospital, Changsha, China
| | - Hongwu Sun
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
7
|
Davodabadi F, Sarhadi M, Arabpour J, Sargazi S, Rahdar A, Díez-Pascual AM. Breast cancer vaccines: New insights into immunomodulatory and nano-therapeutic approaches. J Control Release 2022; 349:844-875. [PMID: 35908621 DOI: 10.1016/j.jconrel.2022.07.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Breast cancer (BC) is known to be a highly heterogeneous disease that is clinically subdivided into four primary molecular subtypes, each having distinct morphology and clinical implications. These subtypes are principally defined by hormone receptors and other proteins involved (or not involved) in BC development. BC therapeutic vaccines [including peptide-based vaccines, protein-based vaccines, nucleic acid-based vaccines (DNA/RNA vaccines), bacterial/viral-based vaccines, and different immune cell-based vaccines] have emerged as an appealing class of cancer immunotherapeutics when used alone or combined with other immunotherapies. Employing the immune system to eliminate BC cells is a novel therapeutic modality. The benefit of active immunotherapies is that they develop protection against neoplastic tissue and readjust the immune system to an anti-tumor monitoring state. Such immunovaccines have not yet shown effectiveness for BC treatment in clinical trials. In recent years, nanomedicines have opened new windows to increase the effectiveness of vaccinations to treat BC. In this context, some nanoplatforms have been designed to efficiently deliver molecular, cellular, or subcellular vaccines to BC cells, increasing the efficacy and persistence of anti-tumor immunity while minimizing undesirable side effects. Immunostimulatory nano-adjuvants, liposomal-based vaccines, polymeric vaccines, virus-like particles, lipid/calcium/phosphate nanoparticles, chitosan-derived nanostructures, porous silicon microparticles, and selenium nanoparticles are among the newly designed nanostructures that have been used to facilitate antigen internalization and presentation by antigen-presenting cells, increase antigen stability, enhance vaccine antigenicity and remedial effectivity, promote antigen escape from the endosome, improve cytotoxic T lymphocyte responses, and produce humoral immune responses in BC cells. Here, we summarized the existing subtypes of BC and shed light on immunomodulatory and nano-therapeutic strategies for BC vaccination. Finally, we reviewed ongoing clinical trials on BC vaccination and highlighted near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
8
|
Think like a Virus: Toward Improving Nanovaccine Development against SARS-CoV-2. Viruses 2022; 14:v14071553. [PMID: 35891532 PMCID: PMC9318803 DOI: 10.3390/v14071553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
There is no doubt that infectious diseases present global impact on the economy, society, health, mental state, and even political aspects, causing a long-lasting dent, and the situation will surely worsen if and when the viral spread becomes out of control, as seen during the still ongoing coronavirus disease 2019 (COVID-19) pandemic. Despite the considerable achievements made in viral prevention and treatment, there are still significant challenges that can be overcome through careful understanding of the viral mechanism of action to establish common ground for innovating new preventative and treatment strategies. Viruses can be regarded as devil nanomachines, and one innovative approach to face and stop the spread of viral infections is the development of nanoparticles that can act similar to them as drug/vaccine carriers. Moreover, we can use the properties that different viruses have in designing nanoparticles that reassemble the virus conformational structures but that do not present the detrimental threats to human health that native viruses possess. This review discusses the current preventative strategies (i.e., vaccination) used in facing viral infections and the associated limitations, highlighting the importance of innovating new approaches to face viral infectious diseases and discussing the current nanoapplications in vaccine development and the challenges that still face the nanovaccine field.
Collapse
|
9
|
Zhou L, Zou M, Xu Y, Lin P, Lei C, Xia X. Nano Drug Delivery System for Tumor Immunotherapy: Next-Generation Therapeutics. Front Oncol 2022; 12:864301. [PMID: 35664731 PMCID: PMC9160744 DOI: 10.3389/fonc.2022.864301] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor immunotherapy is an artificial stimulation of the immune system to enhance anti-cancer response. It has become a powerful clinical strategy for treating cancer. The number of immunotherapy drug approvals has been increasing in recent years, and many treatments are in clinical and preclinical stages. Despite this progress, the special tumor heterogeneity and immunosuppressive microenvironment of solid tumors made immunotherapy in the majority of cancer cases difficult. Therefore, understanding how to improve the intratumoral enrichment degree and the response rate of various immunotherapy drugs is key to improve efficacy and control adverse reactions. With the development of materials science and nanotechnology, advanced biomaterials such as nanoparticle and drug delivery systems like T-cell delivery therapy can improve effectiveness of immunotherapy while reducing the toxic side effects on non-target cells, which offers innovative ideas for improving immunity therapeutic effectiveness. In this review, we discuss the mechanism of tumor cell immune escape and focus on current immunotherapy (such as cytokine immunotherapy, therapeutic monoclonal antibody immunotherapy, PD-1/PD-L1 therapy, CAR-T therapy, tumor vaccine, oncolytic virus, and other new types of immunity) and its challenges as well as the latest nanotechnology (such as bionic nanoparticles, self-assembled nanoparticles, deformable nanoparticles, photothermal effect nanoparticles, stimuli-responsive nanoparticles, and other types) applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Lili Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Manshu Zou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yilin Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Peng Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chang Lei
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
10
|
Chu Y, Qian L, Ke Y, Feng X, Chen X, Liu F, Yu L, Zhang L, Tao Y, Xu R, Wei J, Liu B, Liu Q. Lymph node-targeted neoantigen nanovaccines potentiate anti-tumor immune responses of post-surgical melanoma. J Nanobiotechnology 2022; 20:190. [PMID: 35418151 PMCID: PMC9006542 DOI: 10.1186/s12951-022-01397-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/23/2022] [Indexed: 12/17/2022] Open
Abstract
Background Neoantigens are considered ideal targets for immunotherapy, especially tumor vaccine, because of their strong specificity and immunogenicity. Here, we developed a neoantigen nanovaccine used liposomes with lymph-node targeting characteristic. Methods Our nanovaccine was composed of neoantigens, an amphiphilic liposome and an adjuvant Montanide™ ISA 51. Small animal imaging system and immunofluorescence staining were used to identify the distribution of nanovaccines. A subcutaneous-tumor-resection mouse model of melanoma was established to evaluate the anti-tumor efficacy. Flow cytometry was performed to assay the immune responses initiated by nanovaccines. Results Nanovaccines could traffic to lymph nodes, be uptaken by CD11c+ DCs and promote DCs maturity. After the treatment of our neoantigen nanovaccines, the average recurrence time was extended from 11 to 16 days and the median survival time was even prolonged 7.5 days relative to the control group (NS group). Nanovaccines increased neoantigen-specific T cells to 10-fold of free vaccines, and upregulated Th1 cytokines, such as IFN-γ and TNF-α. The anti-tumor activity of spleen lymphocytes in the nanovaccine group was significantly stronger than that of other groups. However, some immune-inhibitory cells or molecules in tumor microenvironment have been detected upregulated under the immune pressure of neoantigen nanovaccines, such as Tregs and PD-L1. The efficacy of the neoantigen nanovaccine combined with anti-PD1 antibody or Treg inhibiting peptide P60 was better than that of the single treatment. Conclusions We developed a general vaccine strategy, triggering specific T cell responses, and provided feasible combination strategies for better anti-tumor efficacy. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01397-7.
Collapse
Affiliation(s)
- Yanhong Chu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Lingyu Qian
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.,Department of Oncology, Rudong Peoples' Hospital of Jiangsu Province, Nantong, China
| | - Yaohua Ke
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiaoyu Feng
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xinjie Chen
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Fangcen Liu
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Lianru Zhang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yaping Tao
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Rui Xu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Qin Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
11
|
Borgoyakova MB, Karpenko LI, Rudometov AP, Volosnikova EA, Merkuleva IA, Starostina EV, Zadorozhny AM, Isaeva AA, Nesmeyanova VS, Shanshin DV, Baranov KO, Volkova NV, Zaitsev BN, Orlova LA, Zaykovskaya AV, Pyankov OV, Danilenko ED, Bazhan SI, Shcherbakov DN, Taranin AV, Ilyichev AA. Self-Assembled Particles Combining SARS-CoV-2 RBD Protein and RBD DNA Vaccine Induce Synergistic Enhancement of the Humoral Response in Mice. Int J Mol Sci 2022; 23:2188. [PMID: 35216301 PMCID: PMC8876144 DOI: 10.3390/ijms23042188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 12/23/2022] Open
Abstract
Despite the fact that a range of vaccines against COVID-19 have already been created and are used for mass vaccination, the development of effective, safe, technological, and affordable vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine (pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD) that contain the DNA vaccine inside and RBD protein on the surface. CCV-RBD particles were characterized with gel filtration, electron microscopy, and biolayer interferometry. To investigate the immunogenicity of the combined vaccine and its components, mice were immunized with the DNA vaccine pVAXrbd or RBD protein as well as CCV-RBD particles. The highest antigen-specific IgG and neutralizing activity were induced by CCV-RBD, and the level of antibodies induced by DNA or RBD alone was significantly lower. The cellular immune response was detected only in the case of DNA or CCV-RBD vaccination. These results demonstrate that a combination of DNA vaccine and RBD protein in one construct synergistically increases the humoral response to RBD protein in mice.
Collapse
Affiliation(s)
- Mariya B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Andrey P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Iuliia A. Merkuleva
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Ekaterina V. Starostina
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Alexey M. Zadorozhny
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Anastasiya A. Isaeva
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Valentina S. Nesmeyanova
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Daniil V. Shanshin
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Konstantin O. Baranov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (K.O.B.); (A.V.T.)
| | - Natalya V. Volkova
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Boris N. Zaitsev
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Lyubov A. Orlova
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Elena D. Danilenko
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Sergei I. Bazhan
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Alexander V. Taranin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (K.O.B.); (A.V.T.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| |
Collapse
|
12
|
Tsakiri M, Naziris N, Demetzos C. Innovative vaccine platforms against infectious diseases: Under the scope of the COVID-19 pandemic. Int J Pharm 2021; 610:121212. [PMID: 34687816 PMCID: PMC8527590 DOI: 10.1016/j.ijpharm.2021.121212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/30/2022]
Abstract
While classic vaccines have proved greatly efficacious in eliminating serious infectious diseases, innovative vaccine platforms open a new pathway to overcome dangerous pandemics via the development of safe and effective formulations. Such platforms play a key role either as antigen delivery systems or as immune-stimulators that induce both innate and adaptive immune responses. Liposomes or lipid nanoparticles, virus-like particles, nanoemulsions, polymeric or inorganic nanoparticles, as well as viral vectors, all belong to the nanoscale and are the main categories of innovative vaccines that are currently on the market or in clinical and preclinical phases. In this paper, we review the above formulations used in vaccinology and we discuss their connection with the development of safe and effective prophylactic vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Maria Tsakiri
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
13
|
Zheng YY, Zhang C, Li Y, Zhang PQ, Chen G, Wang GX, Zhu B. Immersion immunization of common carp with bacterial ghost-based DNA vaccine inducing prophylactic protective immunity against spring viraemia of carp virus. JOURNAL OF FISH DISEASES 2021; 44:2021-2029. [PMID: 34431113 DOI: 10.1111/jfd.13516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 05/19/2023]
Abstract
The interactive applications of immunization route, vaccine type and delivery vectors are emerging as a key area of research within the field of mass immunization in fishery production. In an effort to improve DNA vaccine's immune efficiency in large-scale immunization, a promising bacterial ghost-loaded DNA vaccine was constructed based on Escherichia coli DH5α. In common carp was investigated the immune response to immersion immunization via related indicator analysis, and the challenge test of spring viraemia of carp virus (SVCV) was carried out. The result indicated that BG-loaded DNA vaccine induced higher serum antibody level than naked pEG-G. Simultaneously, the immunophysiological indicators and genes change at the more advanced levels in the BG/pEG-G immune group. At the treatment concentration of 20 mg/L of the BG/pEG-G group, IgM and IgZ expressions in vivo were markedly increased by 21.62 times and 6.91 times, respectively, and the relative percentage survival reached the peak of 59.57%. This study paves the way for future aquatic animal vaccine research, which aimed to develop the highly effective immersion vaccine system by delivery vectors, with the ultimate aim to prevent and restrict SVCV in actual production.
Collapse
Affiliation(s)
- Yu-Ying Zheng
- College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Chen Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Peng-Qi Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Guo Chen
- College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A & F University, Yangling, China
| |
Collapse
|
14
|
Initial Screening of Poly(ethylene glycol) Amino Ligands for Affinity Purification of Plasmid DNA in Aqueous Two-Phase Systems. Life (Basel) 2021; 11:life11111138. [PMID: 34833014 PMCID: PMC8619368 DOI: 10.3390/life11111138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Gene therapy and DNA vaccination are among the most expected biotechnological and medical advances for the coming years. However, the lack of cost-effective large-scale production and purification of pharmaceutical-grade plasmid DNA (pDNA) still hampers their wide application. Downstream processing, which is mainly chromatography-based, of pDNA remains the key manufacturing step. Despite its high resolution, the scaling-up of chromatography is usually difficult and presents low capacity, resulting in low yields. Alternative methods that are based on aqueous two-phase systems (ATPSs) have been studied. Although higher yields may be obtained, its selectivity is often low. In this work, modified polymers based on poly(ethylene glycol) (PEG) derivatisation with amino groups (PEG–amine) or conjugation with positively charged amino acids (PEG–lysine, PEG–arginine, and PEG–histidine) were studied to increase the selectivity of PEG–dextran systems towards the partition of a model plasmid. A two-step strategy was employed to obtain suitable pure formulations of pDNA. In the first step, a PEG–dextran system with the addition of the affinity ligand was used with the recovery of the pDNA in the PEG-rich phase. Then, the pDNA was re-extracted to an ammonium-sulphate-rich phase in the second step. After removing the salt, this method yielded a purified preparation of pDNA without RNA and protein contamination.
Collapse
|
15
|
Ponce M, Zuasti E, Reales E, Anguís V, Fernández-Díaz C. Evaluation of an oral DNA nanovaccine against photobacteriosis in Solea senegalensis. FISH & SHELLFISH IMMUNOLOGY 2021; 117:157-168. [PMID: 34358703 DOI: 10.1016/j.fsi.2021.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Infectious diseases are one of the main causes of social and economical losses in world aquaculture. Senegalese sole (Solea senegalensis) is an important species for aquaculture in southern Europe, whose production is affected by the appearance of bacterial diseases such as photobacteriosis, a septicemia caused by Photobacterium damselae subsp. piscicida (Phdp). The aim of this study was to obtain an oral DNA nanovaccine and to evaluate its efficacy against Phdp in S. senegalensis juveniles. For this purpose, the amplified product corresponding to the protein inosine-5'-monophophate dehydrogenase (IMPDH) from Phdp, was cloned into the expression vector pcDNA™6.2/C-EmGFP-GW obtaining the DNA vaccine named as pPDPimpdh. The correct transcription and protein expression was verified at 48 h post tansfection in HEK293 cells. Chitosan nanoparticles (CS-TPP NPs) were prepared by ionotropic gelation and their features were appropriate for use as oral delivery system. Therefore, pPDPimpdh was protected with chitosan CS-TPP NPs throughout complex coacervation method giving as a result a DNA nanovaccine referred as CS-TPP+pPDPimpdh NPs. Sole juveniles were vaccinated orally with CS-TPP NPs, pPDPimpdh and CS-TPP+pPDPimpdh NPs followed by a challenge with Phdp at 30 days post vaccination (dpv). The relative percentage survival (RPS) for pPDPimpdh vaccinated groups was 6.25%, probably due to its degradation in the digestive tract. RPS value obtained for CS-TPP NPs and CS-TPP+pPDPimpdh NPs was 40% and antibodies were observed in both cases. However, a delay in mortality was observed in sole juveniles vaccinated orally with CS-TPP+pPDPimpdh NPs. In fact, an upregulation of tf, mhcII, cd8a and igm in the posterior gut and c3, hamp1, tf and cd4 in spleen was observed in juveniles vaccinated with CS-TPP+pPDPimpdh NPs. After challenge, a modulation of cd8a and cd4 expression levels in the posterior gut and c3, tf, lyg, cd4, igm and igt expression levels in spleen was observed. Moreover, the concentration of lysozyme in skin mucus significantly increased in fish vaccinated orally with CS-TPP+pPDPimpdh NPs at 11 dpc. These data indicate that oral vaccination with CS-TPP+pPDPimpdh NPs could be acting through the non-specific immune responses as well as the specific humoral and cell mediated immunity and provide the first step toward a development of an oral DNA nanovaccine against Phdp in sole.
Collapse
Affiliation(s)
- Marian Ponce
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| | - Eugenia Zuasti
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Elena Reales
- Department of Organic Chemistry, School of Sciences, University of Cadiz, and Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
| | - Victoria Anguís
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Catalina Fernández-Díaz
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
16
|
Karch CP, Matyas GR. The current and future role of nanovaccines in HIV-1 vaccine development. Expert Rev Vaccines 2021; 20:935-944. [PMID: 34184607 DOI: 10.1080/14760584.2021.1945448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: An efficacious vaccine for HIV-1 has been sought for over 30 years to eliminate the virus from the human population. Many challenges have occurred in the attempt to produce a successful immunogen, mainly caused by the basic biology of the virus. Immunogens have been developed focusing on inducing one or more of the following types of immune responses; neutralizing antibodies, non-neutralizing antibodies, and T-cell mediated responses. One way to better present and develop an immunogen for HIV-1 is through the use of nanotechnology and nanoparticles.Areas covered: This article gives a basic overview of the HIV-1 vaccine field, as well as nanotechnology, specifically nanovaccines. It then covers the application of nanovaccines made from biological macromolecules to HIV-1 vaccine development for neutralizing antibodies, non-neutralizing antibodies, and T-cell-mediated responses.Expert opinion: Nanovaccines are an area that is ripe for further exploration in HIV-1 vaccine field. Not only are nanovaccines capable of carrying and presenting antigens in native-like conformations, but they have also repeatedly been shown to increase immunogenicity over recombinant antigens alone. Only through further research can the true role of nanovaccines in the development of an efficacious HIV-1 vaccine be established.
Collapse
Affiliation(s)
- Christopher P Karch
- Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Laboratory of Adjuvant and Antigen Research, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
17
|
Sadiq IZ, Abubakar FS, Dan-Iya BI. Role of nanoparticles in tackling COVID-19 pandemic: a bio-nanomedical approach. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.1944488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of life sciences, Ahmadu Bello University, Zaria, Nigeria
- African Center of Excellence in Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Fatima Sadiq Abubakar
- Department of Biochemistry, Faculty of life sciences, Ahmadu Bello University, Zaria, Nigeria
- African Center of Excellence in Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
- National Agricultural Extension and Liaison Services, Ahmadu Bello University, Zaria, Nigeria
| | - Bilal Ibrahim Dan-Iya
- Pharmacy Technician Departments, College of Health Sciences and Technology, Kano, Nigeria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Darul Ehsan, Malaysia
| |
Collapse
|
18
|
Reactive Deep Eutectic Solvents (RDESs): A New Tool for Phospholipase D-Catalyzed Preparation of Phospholipids. Catalysts 2021. [DOI: 10.3390/catal11060655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of Reactive Deep Eutectic Solvents (RDESs) in the preparation of polar head modified phospholipids (PLs) with phospholipase D (PLD)-catalyzed biotransformations has been investigated. Natural phosphatidylcholine (PC) has been submitted to PLD-catalyzed transphosphatidylations using a new reaction medium composed by a mixture of RDES/buffer. Instead of exploiting deep eutectic solvents conventionally, just as the reaction media, these solvents have been designed here in order to contribute actively to the synthetic processes by participating as reagents. RDESs were prepared using choline chloride or trimethyl glycine as hydrogen-bond acceptors and glycerol or ethylene glycol, as hydrogen-bond donors as well as nucleophiles for choline substitution. Specifically designed RDES/buffer reaction media allowed the obtainment of PLs with optimized yields in the perspective of a sustainable process implementation.
Collapse
|
19
|
Terry TL, Givens BE, Adamcakova-Dodd A, Thorne PS, Rodgers VGJ, Salem AK. Encapsulating Polyethyleneimine-DNA Nanoplexes into PEGylated Biodegradable Microparticles Increases Transgene Expression In Vitro and Reduces Inflammatory Responses In Vivo. AAPS PharmSciTech 2021; 22:69. [PMID: 33565009 PMCID: PMC7872112 DOI: 10.1208/s12249-021-01932-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022] Open
Abstract
Encapsulating genetic material into biocompatible polymeric microparticles is a means to improving gene transfection while simultaneously decreasing the tendency for inflammatory responses; and can be advantageous in terms of delivering material directly to the lungs via aerosolization for applications such as vaccinations. In this study, we investigated the advantages of using polymeric microparticles carrying the luciferase reporter gene in increasing transfection efficiency in the readily transfectable HEK293 cell line and the difficult to transfect RAW264.7 cell line. The results indicated that there was a limit to the ratio of nitrogen in polyethylenimine (PEI) to phosphate in DNA (N/P ratio) beyond which further increases in transgene expression no longer, or only marginally, occurred. Microparticles encapsulating PEI:DNA nanoplexes induced cellular toxicity in a dose-dependent manner. PEGylation increased transgene expression, likely related to enhanced degradation of particles. Furthermore, intra-tracheal instillation in rats allowed us to investigate the inflammatory response in the lung as a function of PEGylation, porosity, and size. Porosity did not influence cell counts in bronchoalveolar lavage fluid in the absence of PEG, but in particles containing PEG, non-porous particles recruited fewer inflammatory cells than their porous counterparts. Finally, both 1 μm and 10 μm porous PLA-PEG particles recruited more neutrophils than 4 μm particles. Thus, we have shown that PEGylation and lack of porosity are advantageous for faster release of genetic cargo from microparticles and a reduced inflammatory response, respectively.
Collapse
|
20
|
Kimura S, Khalil IA, Elewa YHA, Harashima H. Novel lipid combination for delivery of plasmid DNA to immune cells in the spleen. J Control Release 2021; 330:753-764. [PMID: 33422500 DOI: 10.1016/j.jconrel.2021.01.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/22/2022]
Abstract
This study reports on the development of a novel lipid combination that permits the efficient and highly selective delivery of plasmid DNA (pDNA) to immune cells in the spleen. Using DODAP, an ionizable lipid that was previously thought to be inefficient for gene delivery, we show for the first time, that this ignored lipid can be successfully used for efficient and targeted gene delivery in vivo, but only when combined with DOPE, a specific helper lipid. Using certain DODAP and DOPE ratios resulted in the formation of lipid nanoparticles (LNPs) with a ~ 1000-fold higher gene expression, and this expression was specific for the spleen, making it the most spleen-selective system for transfection using pDNA. The developed DODAP/DOPE-LNPs target immune cells in the spleen via receptors for complement C3 and this pathway is critical for efficient gene expression. We hypothesize that the high spleen transfection activity of DODAP/DOPE-LNPs is caused by the promotion of gene expression associated with B cell activation via complement receptors. LNPs encapsulating tumor-antigen encoding pDNA showed both prophylactic and therapeutic anti-tumor effects. The optimized LNPs resulted in the production of different cytokines and antigen-specific antibodies as well as exerting antigen-specific cytotoxic effects. This study revives the use of DODAP in gene delivery and highlights the importance of using appropriate lipid combinations for delivering genes to specific cells.
Collapse
Affiliation(s)
- Seigo Kimura
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Ikramy A Khalil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Molecular Design of Pharmaceuticsx, Department of Biomedical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
21
|
Zaheer T, Pal K, Zaheer I. Topical review on nano-vaccinology: Biochemical promises and key challenges. Process Biochem 2021; 100:237-244. [PMID: 33013180 PMCID: PMC7521878 DOI: 10.1016/j.procbio.2020.09.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
Nanomaterials have wide-ranging biomedical applications in prevention, treatment and control of diseases. Nanoparticle based vaccines have proven prodigious prophylaxis of various infectious and non-infectious diseases of human and animal concern. Nano-vaccines outnumber the conventional vaccines by virtue of plasticity in physio-chemical properties and ease of administration. The efficacy of nano-based vaccines may be attributed to the improved antigen stability, minimum immuno-toxicity, sustained release, enhanced immunogenicity and the flexibility of physical features of nanoparticles. Based on these, the nano-based vaccines have potential to evoke both cellular and humoral immune responses. Targeted and highly specific immunological pathways required for solid and long lasting immunity may be achieved with specially engineered nano-vaccines. This review presents an insight into the prevention of infectious diseases (of bacterial, viral and parasitic origin) and non-infectious diseases (cancer, auto-immune diseases) using nano-vaccinology. Additionally, key challenges to the effective utilization of nano-vaccines from bench to clinical settings have been highlighted as research domains for future.
Collapse
Key Words
- CAPN, calcium-phosphate nanoparticles
- CNT, carbon nanotube
- COVID-19, Corona virus disease-2019
- Chi-Alg, chitosan alginate
- HIV, human immune deficiency virus
- HPV, human papilloma virus
- ISCOMS, immune stimulating complexes
- IgA, immunoglobulin A
- Immunity
- MERS, Middle-East respiratory syndrome
- MRSA, methcillin resistant Staphylococcus aureus
- NMVs, nano multilamellar lipid vesicles
- Nanoparticles
- PLGA, poly(lactic-co-glycolic acid)
- PSNP, polystyrene nanoparticles
- Pathogens
- Prevention
- SAPN, Self-Assembling Protein Nanoparticle
- SARS-CoV-1, severe acute respiratory syndrome Coronavirus-1
- VLP, virus like particles
- Vaccine
Collapse
Affiliation(s)
- Tean Zaheer
- Department of Parasitology, University of Agriculture, Faisalabad, Faisalabad 38040, Pakistan
| | - Kaushik Pal
- Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro RJ, 21941-901, Brazil
- Wuhan University, 8 East Lake South Road, Wuchang 430072, Hubei Province, China
| | - Iqra Zaheer
- Department of Pathology, University of Agriculture, Faisalabad, Faisalabad 38040, Pakistan
| |
Collapse
|
22
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
23
|
Di Gioacchino M, Petrarca C, Gatta A, Scarano G, Farinelli A, Della Valle L, Lumaca A, Del Biondo P, Paganelli R, Di Giampaolo L. Nanoparticle-based immunotherapy: state of the art and future perspectives. Expert Rev Clin Immunol 2020; 16:513-525. [PMID: 32343153 DOI: 10.1080/1744666x.2020.1762572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION For several years now, medicine has been benefiting from the contribution of nanoparticles (NPs) technology for both diagnosis and therapy. They can be used as adjuvants, being capable per se of immune-modulating activity, or as carriers for molecules to be transported to a specific target, eventually loaded with specific ligands favoring specific uptake. AREAS COVERED The review focuses on experimental use of NPs as adjuvants/carriers for allergen immunotherapy (AIT). Human clinical trials conducted so far are discussed. EXPERT OPINION Results of experimental studies and recent clinical trials support the use of NPs as carrier/adjuvant in AIT. Comparisons between NP-based and classical AIT are needed, to show the usefulness of the NP-based approach. However, there are still unsolved problems: the persistence of non-degradable NPs with possible toxicological consequences, and the formation of the protein corona around the NPs, which could alter their activity and fate. Virus-like particles seem the most promising NPs for allergy treatment, as for other vaccines. Over the next decade, NP-based AIT will be largely used to treat allergic disorders.
Collapse
Affiliation(s)
- Mario Di Gioacchino
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Leonardo Da Vinci, University , Chieti, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Claudia Petrarca
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy
| | - Alessia Gatta
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy
| | - Gilda Scarano
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Anila Farinelli
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Loredana Della Valle
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Arianna Lumaca
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Pietro Del Biondo
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Roberto Paganelli
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Luca Di Giampaolo
- Department of Medical Oral and Biotechnological Sciences, G. d'Annunzio University , Chieti, Pescara, Italy
| |
Collapse
|
24
|
Lundstrom K. Plasmid DNA-based Alphavirus Vaccines. Vaccines (Basel) 2019; 7:vaccines7010029. [PMID: 30857255 PMCID: PMC6466081 DOI: 10.3390/vaccines7010029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/28/2022] Open
Abstract
Alphaviruses have been engineered as vectors for high-level transgene expression. Originally, alphavirus-based vectors were applied as recombinant replication-deficient particles, subjected to expression studies in mammalian and non-mammalian cell lines, primary cell cultures, and in vivo. However, vector engineering has expanded the application range to plasmid DNA-based delivery and expression. Immunization studies with DNA-based alphavirus vectors have demonstrated tumor regression and protection against challenges with infectious agents and tumor cells in animal tumor models. The presence of the RNA replicon genes responsible for extensive RNA replication in the RNA/DNA layered alphavirus vectors provides superior transgene expression in comparison to conventional plasmid DNA-based expression. Immunization with alphavirus DNA vectors revealed that 1000-fold less DNA was required to elicit similar immune responses compared to conventional plasmid DNA. In addition to DNA-based delivery, immunization with recombinant alphavirus particles and RNA replicons has demonstrated efficacy in providing protection against lethal challenges by infectious agents and tumor cells.
Collapse
|