1
|
Jafari AM, Golmakani A, Jafari AM. Physicochemical characterization and cytotoxicity assessment of sodium dodecyl sulfate (SDS) modified chitosan (SDSCS) before and after removal of aflatoxins (AFs) as a potential mycotoxin Binder. Toxicol Rep 2024; 13:101836. [PMID: 39691817 PMCID: PMC11650310 DOI: 10.1016/j.toxrep.2024.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/21/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
Aflatoxins in food and feed with prominent toxic effects have jeopardized public health for decades. This investigation intends to explore synthesized SDS-modified chitosan as new generation of binder for removal of aflatoxin using a straightforward ionic cross-linking approach. The primary objective of this technique was to enhance affinity and adsorption capability of SDSCS towards aflatoxins. In this context, physicochemical properties of SDSCS characterized with advanced analytical techniques such as scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR) before and after removal of aflatoxin. In this study, effect of the pH on the adsorption of aflatoxins (6ppb) indicated that the increase in SDSCS concentration from low (0.5) to high (2 %) resulted in an increase of about 80 %, 78 % and 81 % in the adsorption percentage of AFB1, AFG1, and AFB2 & AFG2, respectively. FT-IR analysis showed the intramolecular interactions of the amine groups of chitosan and sulfate group of SDS formed a stable complex in the removal of aflatoxin that verified with appearance of three new additional peaks at 1323.50, 984.34 and 603.42 cm-1. Notably, SEM images revealed that the porous SDSCS network was filled with aflatoxin molecules supported with EDS findings. Also, in vitro cytotoxicity assessments demonstrated that SDSCS protected HepG2 cells against cytotoxic effect caused by aflatoxin (5 µM) in a concentration-dependent manner compared to the control (p<0.01). Collectively, the adsorption mechanism may involve attraction of anionic aflatoxin molecule into the interconnected pores of SDSCS complex with numerous cationic active site via hydrogen bond and van der waals force.
Collapse
Affiliation(s)
| | - Asma Golmakani
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Amir Moghaddam Jafari
- Department of Basic Sciences, Faculty of Veterinary Medicine , Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Nogueira WV, Moyano FJ, Tesser MB, Garda-Buffon J. Mitigation of aflatoxin B 1 in fish feed by peroxidase from soybean meal. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:110-120. [PMID: 36395353 DOI: 10.1080/19440049.2022.2134932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Potential of the enzyme peroxidase (PO) from soybean meal to mitigate aflatoxin B1 (AFB1) in fish feed was evaluated. Reaction parameters studied in the wet stage of the feed production process were enzyme activity (0.01-0.1 U/g), temperature (20-36 °C), time (0-8 h) and humidity content (40-70%). Feed was produced in conformity with the National Research Council and spiked with AFB1 at 10 ng/g. Any residual concentration of AFB1 in the diet was extracted by the QuEChERS method and quantified by a liquid chromatograph with a fluorescence detector. AFB1 mitigation of 90% was reached when feed production conditions were 0.035 U/g, 32 °C, 6 h and 70% humidity. Therefore, application of PO to the feed industry may be considered a promising tool for mitigation of AFB1, considering its toxicity and frequent occurrence. In addition, it guarantees safe food for consumers of fish farming products, as AFB1 can bioaccumulate in the food chain. It also provides an alternative use for soybean meal that would previously be discarded.
Collapse
|
3
|
Wu Y, Ren A, Lv X, Ran T, Zhang G, Zhou C, Tan Z. Effects of Galactomannan Oligosaccharides on Growth Performance, Mycotoxin Detoxification, Serum Biochemistry, and Hematology of Goats Fed Mycotoxins-Contaminated Diets. Front Vet Sci 2022; 9:852251. [PMID: 35812860 PMCID: PMC9263622 DOI: 10.3389/fvets.2022.852251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to investigate the protective effects of mycotoxin adsorbent galactomannan oligosaccharides (GMOS) on growth performance, fermentation parameters, mycotoxins residues, serum biochemistry and oxidative stress parameters of the goats. The in vitro test indicated that 0.05% GMOS outperformed yeast cell wall (YCW) and montmorillonite (MMT) in aflatoxins absorption. Then 20 3-month-old Xiangdong black goats (15.0 ± 1.9 kg) were randomly divided into two dietary treatments for the animal test. The control group (CON group) was fed a multi-mycotoxins contaminated diet, whereas the experimental group (GMOS group) received multi-mycotoxins contaminated diet plus 0.05% GMOS. The trail lasted for 60 days, with 12 days of adaptation period and 48 days of formal experiment period. There were no treatment effects (P > 0.10) on growth performance, serum antioxidant capacity and activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). The concentrations of zearalenone in the rumen were lower (P < 0.05) in the GMOS group. GMOS significantly reduced (P < 0.05) propionate concentration in the cecum, resulting in a rise (P < 0.01) in acetate/propionate ratio in GMOS as compared to CON. Goats of GMOS exhibited considerably greater (P < 0.05) levels of creatine kinase but lower (P = 0.02) levels of creatinine than CON. Compared with CON, GMOS supplementation significantly increased (P < 0.05) platelet count (PLT), platelet volume distribution width (PDW), and platelet hematocrit (PCT), while decreased (P < 0.05) albumin content (ALB). The 0.05% GMOS protected goats in ruminal fermentation parameters, mycotoxins residues and serum biochemistry. Moreover, GMOS had no adverse effect on goat health. To our knowledge, this is the first report of GMOS in small ruminants. These findings suggested the feasibility of dietary GMOS as a health-maintaining addictive in goat diets.
Collapse
Affiliation(s)
- Yicheng Wu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ao Ren
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaokang Lv
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Ran
- College of Pastoral Science and Technology, University of Lanzhou, Lanzhou, China
- *Correspondence: Tao Ran
| | - Guijie Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Agriculture, Ningxia University, Yinchuan, China
- Hunan Co-innovation Center of Animal Production Safety, CICAPS, Changsha, China
- Chuanshe Zhou
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
- Hunan Co-innovation Center of Animal Production Safety, CICAPS, Changsha, China
| |
Collapse
|
4
|
Ahn JY, Kim J, Cheong DH, Hong H, Jeong JY, Kim BG. An In Vitro Study on the Efficacy of Mycotoxin Sequestering Agents for Aflatoxin B1, Deoxynivalenol, and Zearalenone. Animals (Basel) 2022; 12:ani12030333. [PMID: 35158659 PMCID: PMC8833486 DOI: 10.3390/ani12030333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Mycotoxins in feeds can cause detrimental effects on the growth performance and health of pigs. One of the methods used to overcome the negative effects of mycotoxins in animal feeds is to add toxin sequestering agents to feed. The present work was conducted to determine the efficacy of mycotoxin sequestering agents using an in vitro method. All mycotoxin sequestering agents effectively bound to aflatoxin B1; only activated charcoal effectively sequestered deoxynivalenol; and a bentonite product, an aluminosilicate product, and activated charcoal effectively sequestered zearalenone. Abstract The objective of this study was to determine the efficacy of mycotoxin sequestering agents for aflatoxin B1 (AFB1), deoxynivalenol (DON), and zearalenone (ZEA) using an in vitro method. The twelve toxin sequestering agents tested were seven bentonite products (bentonite A, B, C, D, E, F, and G), two aluminosilicate products (aluminosilicate A and B), a heulandite product, an activated charcoal product, and a yeast cell wall product. A two-step in vitro procedure was employed to mimic the conditions of temperature, pH, and digestive enzymes in the stomach and small intestine of pigs. All mycotoxin sequestering agents tested were able to bind to AFB1 with a high efficacy (>92%). The DON sequestering rate of activated charcoal (99.1%) was greater (p < 0.05) than that of other products. The ZEA sequestering rate of bentonite F (97.0%), aluminosilicate A (99.6%), and activated charcoal (100.0%) was the greatest (p < 0.05) among the tested mycotoxin sequestering agents. Overall, most mycotoxin sequestering agents had the ability to bind to AFB1, but most products, except activated charcoal, failed to sequester DON and ZEA.
Collapse
Affiliation(s)
- Jong Young Ahn
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.Y.A.); (J.K.); (D.H.C.); (H.H.)
| | - Jongkeon Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.Y.A.); (J.K.); (D.H.C.); (H.H.)
| | - Da Hyeon Cheong
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.Y.A.); (J.K.); (D.H.C.); (H.H.)
| | - Hyosun Hong
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.Y.A.); (J.K.); (D.H.C.); (H.H.)
| | - Jin Young Jeong
- Animal Nutritional Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea;
| | - Beob Gyun Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.Y.A.); (J.K.); (D.H.C.); (H.H.)
- Correspondence: ; Tel.: +82-220-496-255
| |
Collapse
|
5
|
Wang M, Rivenbark K, Gong J, Wright FA, Phillips TD. Application of Edible Montmorillonite Clays for the Adsorption and Detoxification of Microcystin. ACS APPLIED BIO MATERIALS 2021; 4:7254-7265. [PMID: 34746680 PMCID: PMC8570584 DOI: 10.1021/acsabm.1c00779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exposure to microcystins (MCs) in humans and animals commonly occurs through the consumption of drinking water and food contaminated with cyanobacteria. Although studies have focused on developing water filtration treatments for MCs using activated carbon, dietary sorbents to reduce the bioavailability of MCs from the stomach and intestines have not been reported. To address this need, edible calcium and sodium montmorillonite clays were characterized for their ability to bind MC containing leucine and arginine (MC-LR) under conditions simulating the gastrointestinal tract and compared with a medical-grade activated carbon. Results of in vitro adsorption isotherms and thermodynamics showed that binding plots for MC-LR on montmorillonites fit the Langmuir model with high binding capacity, affinity, Gibbs free energy, and enthalpy. The in silico results from molecular modeling predicted that the major binding mechanisms involved electrostatics and hydrogen bonds, and that interlayers were important binding sites. The safety and detoxification efficacy of the sorbents against MC-LR were validated in a battery of living organisms, including Hydra vulgaris, Lemna minor, and Caenorhabditis elegans. The inclusion of 0.05% and 0.1% montmorillonite clays in hydra media significantly reduced MC-LR toxicity and protected hydra by 60-80%, whereas only slight protection was shown with the heat-collapsed clay. In the Lemna minor assay, montmorillonites significantly enhanced the growth of lemna, as supported by the increase in frond number, surface area, chlorophyll content, and growth rate, as well as the decrease in inhibition rate. Similar results were shown in the C. elegans assay, where montmorillonite clays reduced MC-LR effects on body length and brood size. All 3 bioassays confirmed dose-dependent protection from MC-LR, validated the in vitro and in silico findings, and suggested that edible montmorillonites are safe and efficacious binders for MC-LR. Moreover, their inclusion in diets during algal blooming seasons could protect vulnerable populations of humans and animals.
Collapse
Affiliation(s)
- Meichen Wang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Kelly Rivenbark
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Joonho Gong
- Departments of Biological Sciences and Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Fred A. Wright
- Departments of Biological Sciences and Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Timothy D. Phillips
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Hojati M, Norouzian MA, Assadi Alamouti A, Afzalzadeh A. In vitro evaluation of binding capacity of different binders to adsorb aflatoxin. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:211-215. [PMID: 34345388 PMCID: PMC8328244 DOI: 10.30466/vrf.2019.99431.2369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/17/2019] [Indexed: 11/26/2022]
Abstract
This study was conducted to compare the efficacy of different feed additives as mycotoxin binders in vitro. Four prevalent aflatoxin-sequestering agents (SAs) including two bentonite clays (common and acid activated bentonite), a yeast cell wall product and an activated charcoal product were evaluated in vitro to verify their capacity for binding aflatoxin B1 (AFB1). The SAs were individually mixed at two different ratios with AFB1 (1:70,000, 1:120,000) and their binding capacity indices were determined. Experimental bentonites showed high adsorption abilities, binding more than 70.00% of the available AFB1. At the 1:70,000 and 1:120,000 aflatoxin binder (AF:B) ratios, acid activated bentonite were sequestered over 87.00 and 99.00% of the AFB1, respectively. Yeast cell wall showed moderate adsorption ability at the 1:120,000 AF:B ratio, adsorbing 47.00 of AFB1. The adsorption ability of activated carbon at two AF:B ratio and yeast cell wall at 1:70,000 AF:B ratio were significantly lower than other binders. The ratio of chemisorption and binding equivalency factor were higher for acid activated bentonite compared to other sequestering agents. Based on the result of this study, it seems that acid activated bentonite could be considered efficient at sequestering the available AFB1, resulting as promising agents for use in animals diet.
Collapse
Affiliation(s)
- Mohammad Hojati
- Department of Animal and Poultry Sciences, College of Abouraihan, University of Tehran, Iran
| | - Mohammad Ali Norouzian
- Department of Animal and Poultry Sciences, College of Abouraihan, University of Tehran, Iran
| | - Ali Assadi Alamouti
- Department of Animal and Poultry Sciences, College of Abouraihan, University of Tehran, Iran
| | - Ahmad Afzalzadeh
- Department of Animal and Poultry Sciences, College of Abouraihan, University of Tehran, Iran
| |
Collapse
|
7
|
Wang M, Chen Z, Rusyn I, Phillips TD. Testing the efficacy of broad-acting sorbents for environmental mixtures using isothermal analysis, mammalian cells, and H. vulgaris. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124425. [PMID: 33162237 PMCID: PMC7904642 DOI: 10.1016/j.jhazmat.2020.124425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 05/04/2023]
Abstract
The hazards associated with frequent exposure to polycyclic aromatic hydrocarbons (PAHs), pesticides, Aroclors, plasticizers, and mycotoxins are well established. Adsorption strategies have been proposed for the remediation of soil and water, although few have focused on the mitigation of mixtures. This study tested a hypothesis that broad-acting sorbents can be developed for diverse chemical mixtures. Adsorption of common and hazardous chemicals was characterized using isothermal analysis from Langmuir and Freundlich equations. The most effective sorbents included medical-grade activated carbon (AC), parent montmorillonite clay, acid-processed montmorillonite (APM), and nutrient-amended montmorillonite clays. Next, we tested the ability of broad-acting sorbents to prevent cytotoxicity of class-specific mixtures using 3 mammalian in vitro models (HLF, ESD3, and 3T3 cell lines) and the hydra assay. AC showed the highest efficacy for mitigating pesticides, plasticizers, PAHs, and mycotoxins. Clays, such as APM, were effective against pesticides, Aroclors, and mycotoxins, while amended clays were most effective against plasticizers. Finally, a sorbent mixture was shown to be broadly active. These results are supported by the high correlation coefficients for the Langmuir model with high capacity, affinity, and free energy, as well as the significant protection of cells and hydra (p < 0.05). The protection percentages in 3T3 cells and hydra showed the highest correlation as suggested by both Pearson and Spearman with r = 0.84 and rho = 0.73, respectively (p < 0.0001). Collectively, these studies showed that broad-acting sorbents may be effective in preventing toxic effects of chemical mixtures and provided information on the most effective sorbents based on adsorption isotherms, and in vitro and aquatic organism test methods.
Collapse
Affiliation(s)
- Meichen Wang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Zunwei Chen
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Timothy D Phillips
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
8
|
Anyango G, Kagera I, Mutua F, Kahenya P, Kyallo F, Andang’o P, Grace D, Lindahl JF. Effectiveness of Training and Use of Novasil Binder in Mitigating Aflatoxins in Cow Milk Produced in Smallholder Farms in Urban and Periurban Areas of Kenya. Toxins (Basel) 2021; 13:281. [PMID: 33920858 PMCID: PMC8071220 DOI: 10.3390/toxins13040281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Aflatoxins, which commonly contaminate animal feeds and human food, present a major public health challenge in sub-Saharan Africa. After ingestion by cows, aflatoxin B1 is metabolized to aflatoxin M1 (AFM1), some of which is excreted in milk. This study involved smallholder dairy farms in urban and periurban areas of Nairobi and Kisumu, Kenya. The objective was to determine the effectiveness of training and providing farmers with aflatoxin binder (NovaSil®) on AFM1 contamination in raw milk. A baseline survey was undertaken and 30 farmers whose milk had AFM1 levels above 20 ppt were randomly selected for inclusion in the study. Of these, 20 farmers were part of the intervention, and were given training on the usage of the NovaSil® binder, while 10 served as a control group. All farmers were visited biweekly for three months for interviews and milk samples were collected to measure the AFM1 levels. The AFM1 levels were quantified by enzyme linked immunosorbent assay. The NovaSil® binder significantly reduced AFM1 concentrations in the raw milk produced by the farmers in the intervention group over the duration of the study (p < 0.01). The control farms were more likely to have milk with AFM1 levels exceeding the regulatory limit of 50 ppt compared to the intervention farms (p < 0.001) (odds ratio = 6.5). The farmers in the intervention group perceived that there was an improvement in milk yield, and in cow health and appetite. These farmers also felt that the milk they sold, as well as the one they used at home, was safer. In conclusion, the use of binders by dairy farmers can be effective in reducing AFM1 in milk. Further research is needed to understand their effectiveness, especially when used in smallholder settings.
Collapse
Affiliation(s)
- Gladys Anyango
- Department of Animal and Human Health, International Livestock Research Institute, Nairobi 00100, Kenya; (G.A.); (I.K.); (F.M.); (D.G.)
- Department of Public Health, Maseno University, Kisumu 40100, Kenya;
| | - Irene Kagera
- Department of Animal and Human Health, International Livestock Research Institute, Nairobi 00100, Kenya; (G.A.); (I.K.); (F.M.); (D.G.)
- Department of Human Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya;
| | - Florence Mutua
- Department of Animal and Human Health, International Livestock Research Institute, Nairobi 00100, Kenya; (G.A.); (I.K.); (F.M.); (D.G.)
| | - Peter Kahenya
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya;
| | - Florence Kyallo
- Department of Human Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya;
| | - Pauline Andang’o
- Department of Public Health, Maseno University, Kisumu 40100, Kenya;
| | - Delia Grace
- Department of Animal and Human Health, International Livestock Research Institute, Nairobi 00100, Kenya; (G.A.); (I.K.); (F.M.); (D.G.)
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime ME4 4TB, UK
| | - Johanna F. Lindahl
- Department of Animal and Human Health, International Livestock Research Institute, Nairobi 00100, Kenya; (G.A.); (I.K.); (F.M.); (D.G.)
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Zoonosis Science Centre, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
9
|
Wang M, Bera G, Mitra K, Wade TL, Knap AH, Phillips TD. Tight sorption of arsenic, cadmium, mercury, and lead by edible activated carbon and acid-processed montmorillonite clay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6758-6770. [PMID: 33009611 PMCID: PMC7855320 DOI: 10.1007/s11356-020-10973-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/21/2020] [Indexed: 05/21/2023]
Abstract
Heavy metal exposure in humans and animals commonly occurs through the consumption of metal-contaminated drinking water and food. Although many studies have focused on the remediation of metals by purification of water using sorbents, limited therapeutic sorbent strategies have been developed to minimize human and animal exposures to contaminated water and food. To address this need, a medical grade activated carbon (MAC) and an acid processed montmorillonite clay (APM) were characterized for their ability to bind heavy metals and mixtures. Results of screening and adsorption/desorption isotherms showed that binding plots for arsenic, cadmium, and mercury sorption on surfaces of MAC (and lead on APM) fit the Langmuir model. The highest binding percentage, capacity, and affinity were shown in a simulated stomach model, and the lowest percentage desorption (< 18%) was shown in a simulated intestine model. The safety and protective ability of MAC and APM were confirmed in a living organism (Hydra vulgaris) where 0.1% MAC significantly protected the hydra against As, Cd, Hg, and a mixture of metals by 30-70%. In other studies, APM showed significant reduction (75%) of Pd toxicity, compared with MAC and heat-collapsed APM, suggesting that the interlayer of APM was important for Pb sorption. This is the first report showing that edible sorbents can bind mixtures of heavy metals in a simulated gastrointestinal tract and prevent their toxicity in a living organism. Graphical abstract.
Collapse
Affiliation(s)
- Meichen Wang
- Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gopal Bera
- Geochemical & Environmental Research Group, Texas A&M University, College Station, TX, 77845, USA
| | - Kusumica Mitra
- Geochemical & Environmental Research Group, Texas A&M University, College Station, TX, 77845, USA
| | - Terry L Wade
- Geochemical & Environmental Research Group, Texas A&M University, College Station, TX, 77845, USA
| | - Anthony H Knap
- Geochemical & Environmental Research Group, Texas A&M University, College Station, TX, 77845, USA
| | - Timothy D Phillips
- Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Wang M, Orr AA, Jakubowski JM, Bird KE, Casey CM, Hearon SE, Tamamis P, Phillips TD. Enhanced adsorption of per- and polyfluoroalkyl substances (PFAS) by edible, nutrient-amended montmorillonite clays. WATER RESEARCH 2021; 188:116534. [PMID: 33125992 PMCID: PMC7725962 DOI: 10.1016/j.watres.2020.116534] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 05/21/2023]
Abstract
Humans and animals are frequently exposed to PFAS (per- and polyfluoroalkyl substances) through drinking water and food; however, no therapeutic sorbent strategies have been developed to mitigate this problem. Montmorillonites amended with the common nutrients, carnitine and choline, were characterized for their ability to bind 4 representative PFAS (PFOA, PFOS, GenX, and PFBS). Adsorption/desorption isothermal analysis showed that PFOA, PFOS (and a mixture of the two) fit the Langmuir model with high binding capacity, affinity and enthalpy at conditions simulating the stomach. A low percentage of desorption occurred at conditions simulating the intestine. The results suggested that hydrophobic and electrostatic interactions, and hydrogen bonding were responsible for sequestering PFAS into clay interlayers. Molecular dynamics (MD) simulations suggested the key mode of interaction of PFAS was through fluorinated carbon chains, and confirmed that PFOA and PFOS had enhanced binding to amended clays compared to GenX and PFBS. The safety and efficacy of amended montmorillonite clays were confirmed in Hydra vulgaris, where a mixture of amended sorbents delivered the highest protection against a PFAS mixture. These important results suggest that the inclusion of edible, nutrient-amended clays with optimal affinity, capacity, and enthalpy can be used to decrease the bioavailability of PFAS from contaminated drinking water and diets.
Collapse
Affiliation(s)
- Meichen Wang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Asuka A Orr
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Joseph M Jakubowski
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kelsea E Bird
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Colleen M Casey
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Sara E Hearon
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy D Phillips
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
11
|
Zhang Q, Zhang Y, Liu S, Wu Y, Zhou Q, Zhang Y, Zheng X, Han Y, Xie C, Liu N. Adsorption of deoxynivalenol by pillared montmorillonite. Food Chem 2020; 343:128391. [PMID: 33268181 DOI: 10.1016/j.foodchem.2020.128391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
Deoxynivalenol (DON) is found widely in foods and feeds that are contaminated with mildew and is one of the most harmful mycotoxins, threating not only human health but also impacting animal husbandry. Various physical, chemical and biological detoxification strategies have been applied in the past to reduce mycotoxin contamination. As a practical and economic method, addition of montmorillonite (Mt) offers the potential to eliminate mycotoxins, especially aflatoxin B1 (AFB1) and zearalenone (ZEA). Our study aimed to control DON, for the first time, using environmentally friendly Mt, modified with aluminum, iron and titanium via a pillaring effect to enlarge interlayer spacing. The materials were characterized using XRD, FTIR, SEM, EDS and BET. Spacing of the pillared Mt layers was shown to exceed that of raw Mt and could be tuned using the pillaring reagents (Al, Fe and Ti, 0.01 to 2.00 eq. relative to the cation exchange capacity of Mt). Adsorption of DON by pillared Mt was investigated using UPLC-MSMS (at pH 2.0 and 6.8). The results demonstrated that the adsorption ratios of 1.00-Al-Mt, 0.50-Fe-Mt and 1.00-Ti-Mt were 23.6%, 14.7% and 23.4%, respectively at pH 2.0 and 27.1%, 21.8%, and 27.4% correspondingly at pH 6.8 when added at 1.0 mg, which is 3-4 times higher than raw Mt (6.3-6.8% at pH 2.0 and 7.3-8.1% at pH 6.8). It was also found that with increased addition of pillared Mt (2.5 mg), the adsorption ratio approached 35%. The time for reaching equilibrium was approximately 120 min. These results demonstrated that Mt after pillaring modifications with Al, Fe and Ti can have potential for the control of DON in foods and feeds.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Department of Applied Chemistry, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Yingli Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Department of Applied Chemistry, Xi'an University of Technology, Xi'an 710048, PR China
| | - Shasha Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Department of Applied Chemistry, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yuzhen Wu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Department of Applied Chemistry, Xi'an University of Technology, Xi'an 710048, PR China
| | - Qian Zhou
- Shandong Xinhemei Biotechnology Co., Ltd., Qingzhou, Shandong 262500, PR China.
| | - Yaozhong Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Department of Applied Chemistry, Xi'an University of Technology, Xi'an 710048, PR China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Department of Applied Chemistry, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Ying Han
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China.
| | - Chao Xie
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China.
| | - Nailiang Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Department of Applied Chemistry, Xi'an University of Technology, Xi'an 710048, PR China
| |
Collapse
|
12
|
Kavitake D, Singh SP, Kandasamy S, Devi PB, Shetty PH. Report on aflatoxin-binding activity of galactan exopolysaccharide produced by Weissella confusa KR780676. 3 Biotech 2020; 10:181. [PMID: 32257737 DOI: 10.1007/s13205-020-02173-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Galactan exopolysaccharide (EPS) produced by Weissella confusa KR780676 isolated from an Indian traditional fermented food has been reported earlier. In this manuscript, we have studied aflatoxin-binding ability of this galactan EPS. Aflatoxin B1 (AFB1) binding ability of galactan EPS was observed in an increasing trend with increasing EPS concentration (20-100 mg/mL). At lower concentrations (< 20 mg/mL) of EPS, the binding activity was undetectable, while notable binding was seen from 30 mg/mL. Enhanced AFB1 binding (32.40%) was recorded at 50 mg/mL of EPS and it increased gradually up to 34.79% at 100 mg/mL concentrations of EPS. The intensity of bands in high-performance thin-layer chromatography (HPTLC) analysis confirms the AFB1 binding efficiency of galactan EPS, which shows its potential application for removal of toxins in food and feed industry. Galactan EPS binding activity to AFB1 is further studied with particle size analysis (PSA). This is the first study reporting the aflatoxin-binding activity of any kind of EPS from lactic acid bacteria.
Collapse
|
13
|
Čolović R, Puvača N, Cheli F, Avantaggiato G, Greco D, Đuragić O, Kos J, Pinotti L. Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed. Toxins (Basel) 2019; 11:E617. [PMID: 31731462 PMCID: PMC6891401 DOI: 10.3390/toxins11110617] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 01/15/2023] Open
Abstract
Mycotoxins are known worldwide as fungus-produced toxins that adulterate a wide heterogeneity of raw feed ingredients and final products. Consumption of mycotoxins-contaminated feed causes a plethora of harmful responses from acute toxicity to many persistent health disorders with lethal outcomes; such as mycotoxicosis when ingested by animals. Therefore, the main task for feed producers is to minimize the concentration of mycotoxin by applying different strategies aimed at minimizing the risk of mycotoxin effects on animals and human health. Once mycotoxins enter the production chain it is hard to eliminate or inactivate them. This paper examines the most recent findings on different processes and strategies for the reduction of toxicity of mycotoxins in animals. The review gives detailed information about the decontamination approaches to mitigate mycotoxin contamination of feedstuffs and compound feed, which could be implemented in practice.
Collapse
Affiliation(s)
- Radmilo Čolović
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara, 21000 Novi Sad, Serbia; (O.Đ.); (J.K.)
| | - Nikola Puvača
- Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska, 21000 Novi Sad, Serbia
| | - Federica Cheli
- Department of Health, Animal Science and Food Safety, University of Milan, Via Trentacoste, 20134 Milan, Italy;
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola, 70126 Bari, Italy; (G.A.); (D.G.)
| | - Donato Greco
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Amendola, 70126 Bari, Italy; (G.A.); (D.G.)
| | - Olivera Đuragić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara, 21000 Novi Sad, Serbia; (O.Đ.); (J.K.)
| | - Jovana Kos
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara, 21000 Novi Sad, Serbia; (O.Đ.); (J.K.)
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, University of Milan, Via Trentacoste, 20134 Milan, Italy;
| |
Collapse
|
14
|
Enzyme Degradation Reagents Effectively Remove Mycotoxins Deoxynivalenol and Zearalenone from Pig and Poultry Artificial Digestive Juices. Toxins (Basel) 2019; 11:toxins11100599. [PMID: 31618978 PMCID: PMC6832875 DOI: 10.3390/toxins11100599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 12/14/2022] Open
Abstract
Mycotoxin removers include enzymes and adsorbents that may be used in animal feeds to eliminate the toxic effects of mycotoxins. This study aimed to determine the removability of two different types of mycotoxin removers, adsorbents and enzyme degradation reagents (EDRs), in the simulated gastrointestinal conditions of pigs and poultry. Seven commercial mycotoxin removers, including five EDRs and two adsorbents, were tested in vitro. In this study, the supplemented dosages of mycotoxin removers used in pig and poultry feeds were the commercial recommendation ranging from 0.05% to 0.2%. For pigs, the in vitro gastric and small intestinal simulations were performed by immersing the mycotoxin-tainted feed in artificial gastric juice (AGJ) at pH 2.5 for 5 h or in artificial intestinal juice (AIJ) at pH 6.5 for 2 h to mimick in vivo conditions. For poultry, mycotoxin-tainted feeds were immersed in AGJ for 2 h at pH 4.5 and 0.5 h at pH of 2.5, respectively, to simulate crop/glandular stomach and gizzard conditions; the small intestinal simulation was in AIJ for 2 h at pH 6.5. For the pig, EDRs and adsorbents had deoxynivalenol (DON) removability (1 mg/kg) of 56% to 100% and 15% to 19%, respectively. Under the concentration of 0.5 mg/kg, the zearalenone (ZEN) removability by EDRs and adsorbents was 65% to 100% and 0% to 36%, respectively. For the simulation in poultry, the removability of DON by EDRs and adsorbents (5 mg/kg) was 56% to 79% and 1% to 36%, respectively; for the concentration of 0.5 mg/kg, the removability of ZEN by EDRs and adsorbents was 38% to 69% and 7% to 9%, respectively. These results suggest that EDRs are more effective in reducing DON and ZEN contamination compared to the adsorbent methods in the simulated gastrointestinal tracts of pig and poultry. The recoveries of DON and ZEN of pig in vitro gastrointestinal simulations were higher than 86.4% and 84.7%, respectively, with 88.8% and 85.9%, respectively, in poultry. These results demonstrated the stability and accuracy of our mycotoxin extraction process and in vitro simulation efficiency.
Collapse
|
15
|
Mutua F, Lindahl J, Grace D. Availability and use of mycotoxin binders in selected urban and Peri-urban areas of Kenya. Food Secur 2019. [DOI: 10.1007/s12571-019-00911-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Greco D, D'Ascanio V, Santovito E, Logrieco AF, Avantaggiato G. Comparative efficacy of agricultural by-products in sequestering mycotoxins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1623-1634. [PMID: 30187492 DOI: 10.1002/jsfa.9343] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Biosorption using agricultural by-products has been proven as a low-cost and safe way to sequester mycotoxins. Few agricultural by-products have been studied for their efficacy in adsorbing simultaneously a large range of mycotoxins. The present work compared the ability of 51 agricultural by-products to adsorb mycotoxins from liquid mediums simulating physiological pH values, and it studied the mechanism for mycotoxin adsorption by isotherm adsorption experiments. RESULTS Grape pomaces, artichoke wastes, and almond hulls were selected as promising biosorbents for mycotoxins, being quite effective towards aflatoxin B1 (AFB1 ), zearalenone (ZEA), and ochratoxin A (OTA). Their adsorption was not affected by medium pH, and the adsorbed fraction was not released when pH rose from acid to neutral values. Fumonisin B1 (FB1 ) was adsorbed to a lesser extent, and deoxynivalenol adsorption was not recorded. For the selected biosorbents, maximum adsorption capacity calculated by the best fitting model (Freundlich, Langmuir, or Sips equation) ranged from 1.2 to 2.9 µg mg-1 for AFB1 , 1.3 to 2.7 µg mg-1 for ZEA, 0.03 from 2.9 µg mg-1 for OTA, and 0.01-1.1 µg mg-1 for FB1 . CONCLUSION This study confirms that some agricultural by-products can find technological applications as feed/food additives for mycotoxin reduction. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Donato Greco
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| | - Vito D'Ascanio
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| | - Elisa Santovito
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| | - Antonio F Logrieco
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| |
Collapse
|
17
|
Phillips TD, Wang M, Elmore SE, Hearon S, Wang JS. NovaSil clay for the protection of humans and animals from aflatoxins and other contaminants. CLAYS AND CLAY MINERALS 2019; 67:99-110. [PMID: 32943795 PMCID: PMC7494129 DOI: 10.1007/s42860-019-0008-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aflatoxin contamination of diets results in disease and death in humans and animals. The objective of the present paper was to review the development of innovative enterosorption strategies for the detoxification of aflatoxins. NovaSil clay (NS) has been shown to decrease exposures to aflatoxins and prevent aflatoxicosis in a variety of animals when included in their diets. Results have shown that NS clay binds aflatoxins with high affinity and high capacity in the gastrointestinal tract, resulting in a notable reduction in the bioavailability of these toxins without interfering with the utilization of vitamins and other micronutrients. This strategy is already being utilized as a potential remedy for acute aflatoxicosis in animals, and as a sustainable intervention via diet. Animal and human studies have confirmed the apparent safety of NS and refined NS clay (with uniform particle size). Studies in Ghanaians at high risk of aflatoxicosis have indicated that NS (at a dose level of 0.25% w/w) is effective at decreasing biomarkers of aflatoxin exposure and does not interfere with levels of serum vitamins A and E, or iron or zinc. A new spinoff of this strategy is the development and use of broad-acting sorbents for the mitigation of environmental chemicals and microbes during natural disasters and emergencies. In summary, enterosorption strategies/therapies based on NS clay are promising for the management of aflatoxins and as sustainable public health interventions. The NS clay remedy is novel, inexpensive, and easily disseminated.
Collapse
Affiliation(s)
- Timothy D. Phillips
- Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Meichen Wang
- Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Sarah E. Elmore
- Environmental Toxicology Department, University of California, Davis, California 95616, USA
| | - Sara Hearon
- Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
18
|
Aazami MH, Nasri MHF, Mojtahedi M, Mohammadi SR. In Vitro Aflatoxin B 1 Binding by the Cell Wall and (1→3)-β-d-Glucan of Baker's Yeast. J Food Prot 2018; 81:670-676. [PMID: 29543529 DOI: 10.4315/0362-028x.jfp-17-412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to evaluate the ability of heat-killed baker's yeast (HKBY), the cell wall of baker's yeast (CWBY), and cell wall (1→3)-β-d-glucan of baker's yeast (BGBY) to bind aflatoxin B1 (AFB1) in phosphate-buffered saline (PBS) spiked with 0.5 μg/mL AFB1. Baker's yeast ( Saccharomyces cerevisiae) was heat killed by autoclaving at 121°C for 10 min. The cell wall was physically extracted, and (1→3)-β-d-glucan was extracted by a modified method. The concentration of AFB1 was determined by high-performance liquid chromatography after exposure to binders for three contact times, 30 min, 5 h, and 24 h, at room temperature. AFB1 binding by HKBY, CWBY, and BGBY was 6.30 to 46.34%. The lowest binding capacity was found for HKBY with a contact time of 30 min, and the highest binding capacity was found for BGBY with a contact time of 24 h. Among binders, CWBY had the highest binder-AFB1 complex stability during washing with PBS, and the lowest stability was found for HKBY complexes. Results of this study indicated that BGBY was the most effective binder, and more exposure to BGBY removes more AFB1 from PBS.
Collapse
Affiliation(s)
- Mohammad Hadi Aazami
- 1 Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand 9719113944, Iran (ORCID: http://orcid.org/0000-0002-0159-7836 [M.H.A.])
| | - Mohammad Hasan Fathi Nasri
- 1 Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand 9719113944, Iran (ORCID: http://orcid.org/0000-0002-0159-7836 [M.H.A.])
| | - Mohsen Mojtahedi
- 1 Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand 9719113944, Iran (ORCID: http://orcid.org/0000-0002-0159-7836 [M.H.A.])
| | - Shahla Roudbar Mohammadi
- 2 Department of Medical Mycology, Faculty of Medical Science, Tarbiat Modares University, Tehran 14115116, Iran
| |
Collapse
|
19
|
Sprynskyy M, Krzemień-Konieczka I, Gadzała-Kopciuch R, Buszewski B. Separation of aflatoxin B1 from synthetic physiological fluids using talc and diatomite: Kinetic and isotherm aspects. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1072:1-8. [DOI: 10.1016/j.jchromb.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 10/25/2017] [Accepted: 11/02/2017] [Indexed: 11/29/2022]
|
20
|
Traversetti L, Del Grosso F, Malafoglia V, Colasanti M, Ceschin S, Larsen S, Scalici M. The Hydra regeneration assay reveals ecological risks in running waters: a new proposal to detect environmental teratogenic threats. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:184-195. [PMID: 27995409 DOI: 10.1007/s10646-016-1753-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
The regenerative ability of Hydra vulgaris was tested as potential biomarker for the development of a new eco-toxicological index. The test is based on the regeneration rate and the aberration frequency of the columna (body and adhesive foot) after separation from head and tentacles by a bistoury. Particularly, 45 columnae were submerged in the rearing solution (that is Hydra medium) to have control, and 285 in potential contaminated waters to have treatments, collected from 19 sites along 10 rivers in central Italy. ANCOVA and chi-square tests were used to compare values from each site to a laboratory control. Subsequently the values on regeneration rate and aberration frequency were inserted in a double entry matrix, where the match of the two entries in the matrix provides the score of the proposed Teratogenic Risk Index (TRI). Each score corresponded to one of the 5 teratogenic risk classes, to which a risk level was associated: from 1 (no risk) to 5 (very high risk). On the whole, 32% of the studied sites were classified as no teratogenic risk while the remaining showed a variable risk level from low to very high. This study proposed for the first time an early warning system to detect the presence of teratogens in running waters, providing a rapid and cost-effective evaluation method. Therefore, TRI may contribute to initiate adequate measures to manage riverine habitats, and to monitor the running water teratogenic status. Specifically, this index may provide the opportunity to identify the disturbance sources and then to drive the decisions, together with competent authorities, on the catchment and landscape management and on the possible use of waters for urban, agricultural, and industrial activities, since they may show significant effects on the human health.
Collapse
Affiliation(s)
- Lorenzo Traversetti
- Department of Sciences, University Rome Tre, V.le G. Marconi 446, Rome, 00146, Italy
| | - Floriano Del Grosso
- Department of Sciences, University Rome Tre, V.le G. Marconi 446, Rome, 00146, Italy
| | - Valentina Malafoglia
- Department of Sciences, University Rome Tre, V.le G. Marconi 446, Rome, 00146, Italy
- Institute for Research on Pain, ISAL-Foundation, Via San Salvador 204, Rimini, 47922, TP, Italy
| | - Marco Colasanti
- Department of Sciences, University Rome Tre, V.le G. Marconi 446, Rome, 00146, Italy
| | - Simona Ceschin
- Department of Sciences, University Rome Tre, V.le G. Marconi 446, Rome, 00146, Italy
| | - Stefano Larsen
- German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Massimiliano Scalici
- Department of Sciences, University Rome Tre, V.le G. Marconi 446, Rome, 00146, Italy.
| |
Collapse
|
21
|
Zhu Y, Hassan YI, Watts C, Zhou T. Innovative technologies for the mitigation of mycotoxins in animal feed and ingredients—A review of recent patents. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.03.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Iram W, Anjum T, Iqbal M, Ghaffar A, Abbas M. Structural Elucidation and Toxicity Assessment of Degraded Products of Aflatoxin B1 and B2 by Aqueous Extracts of Trachyspermum ammi. Front Microbiol 2016; 7:346. [PMID: 27064492 PMCID: PMC4811950 DOI: 10.3389/fmicb.2016.00346] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/04/2016] [Indexed: 11/13/2022] Open
Abstract
In this study aqueous extract of seeds and leaves of Trachyspermum ammi were evaluated for their ability to detoxify aflatoxin B1 and B2 (AFB1; 100 μg L(-1) and AFB2; 50 μg L(-1)) by in vitro and in vivo assays. Results indicated that T. ammi seeds extract was found to be significant (P < 0.05) in degrading AFB1 and AFB2 i.e., 92.8 and 91.9% respectively. However, T. ammi leaves extract proved to be less efficient in degrading these aflatoxins, under optimized conditions i.e., pH 8, temperature 30°C and incubation period of 72 h. The structural elucidation of degraded toxin products by LCMS/MS analysis showed that eight degraded products of AFB1 and AFB2 were formed. MS/MS spectra showed that most of the products were formed by the removal of double bond in the terminal furan ring and modification of lactone group indicating less toxicity as compared to parent compounds. Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that T. ammi seeds extract can be used as an effective tool for the detoxification of aflatoxins.
Collapse
Affiliation(s)
- Wajiha Iram
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| | - Tehmina Anjum
- Institute of Agricultural Sciences, University of the PunjabLahore, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Abdul Ghaffar
- Department of Chemistry, University of Engineering and TechnologyLahore, Pakistan
| | - Mateen Abbas
- Department of Toxicology, Quality Operating Laboratory, University of Veterinary and Animal SciencesLahore, Pakistan
| |
Collapse
|
23
|
Subramaniam MD, Kim IH. Clays as dietary supplements for swine: A review. J Anim Sci Biotechnol 2015; 6:38. [PMID: 26301092 PMCID: PMC4546348 DOI: 10.1186/s40104-015-0037-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/30/2015] [Indexed: 11/30/2022] Open
Abstract
Clays are crystalline, hydrated aluminosilicate molecules composed of alkali and alkaline earth cations along with small amounts of various other elements. The best-known are montmorillonite, smectite, illite, kaolinite, biotite and clinoptilolite. The molecules in these clays are arranged in three-dimensional structures creating internal voids and channels capable of trapping a wide variety of molecules. As a result of this structure, clay minerals are regarded as a simple and effective tool for the prevention of the negative effects of many toxic compounds. Dietary supplementation with clays has been shown to improve weight gain and feed conversion in pigs. Where improvements in performance have been noted, one of the most likely explanations for the improvement is the fact clays increase nutrient digestibility. Clays reduce the speed of passage of feed along the digestive tract which allows more time for digestion. Feeding clays also causes morphological changes in the intestinal mucosa such as an increase in villus height and an increase in the villus height to crypt depth ratio. These changes increase the surface area of the gastrointestinal tract thus increasing nutrient digestibility. Several studies have indicated that feeding clay reduces the incidence, severity and duration of diarrhea in pigs. The mechanism for the reduction in diarrhea is likely due to increases in the numbers of Bifidobacteria and Lactobacillus and decreases in Clostridia and E. coli in the small intestine of pigs fed clays. In addition, the numbers of pigs born alive and weaned, birth weight and weaning weight have been shown to be higher for sows fed clays. Several studies have indicated that clays can help mitigate the effects of mycotoxins. The aim of the present review is to focus on the various clays which have been given attention in recent research and to discuss their potential to improve pig performance.
Collapse
Affiliation(s)
- Mohana Devi Subramaniam
- Department of Animal Resource and Science, Dankook University, No. 29 Anseodong, Cheonan, Chungnam 330-714 South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, No. 29 Anseodong, Cheonan, Chungnam 330-714 South Korea
| |
Collapse
|
24
|
Murugesan GR, Ledoux DR, Naehrer K, Berthiller F, Applegate TJ, Grenier B, Phillips TD, Schatzmayr G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult Sci 2015; 94:1298-315. [PMID: 25840963 PMCID: PMC4988553 DOI: 10.3382/ps/pev075] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/31/2014] [Accepted: 02/01/2015] [Indexed: 11/20/2022] Open
Abstract
Extensive research over the last couple of decades has made it obvious that mycotoxins are commonly prevalent in majority of feed ingredients. A worldwide mycotoxin survey in 2013 revealed 81% of around 3,000 grain and feed samples analyzed had at least 1 mycotoxin, which was higher than the 10-year average (from 2004 to 2013) of 76% in a total of 25,944 samples. The considerable increase in the number of positive samples in 2013 may be due to the improvements in detection methods and their sensitivity. The recently developed liquid chromatography coupled to (tandem) mass spectrometry allows the inclusion of a high number of analytes and is the most selective, sensitive, and accurate of all the mycotoxin analytical methods. Mycotoxins can affect the animals either individually or additively in the presence of more than 1 mycotoxin, and may affect various organs such as gastrointestinal tract, liver, and immune system, essentially resulting in reduced productivity of the birds and mortality in extreme cases. While the use of mycotoxin binding agents has been a commonly used counteracting strategy, considering the great diversity in the chemical structures of mycotoxins, it is very obvious that there is no single method that can be used to deactivate mycotoxins in feed. Therefore, different strategies have to be combined in order to specifically target individual mycotoxins without impacting the quality of feed. Enzymatic or microbial detoxification, referred to as "biotransformation" or "biodetoxification," utilizes microorganisms or purified enzymes thereof to catabolize the entire mycotoxin or transform or cleave it to less or non-toxic compounds. However, the awareness on the prevalence of mycotoxins, available modern techniques to analyze them, the effects of mycotoxicoses, and the recent developments in the ways to safely eliminate the mycotoxins from the feed are very minimal among the producers. This symposium review paper comprehensively discusses the above mentioned aspects.
Collapse
Affiliation(s)
| | - D R Ledoux
- Department of Animal Sciences, University of Missouri-Columbia, MO, USA
| | - K Naehrer
- BIOMIN Research Center, Tulln, Austria
| | - F Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - T J Applegate
- Department of Animal Sciences, Purdue University West Lafayette, IN, USA
| | - B Grenier
- Department of Animal Sciences, Purdue University West Lafayette, IN, USA
| | | | | |
Collapse
|
25
|
Hahn I, Kunz-Vekiru E, Twarużek M, Grajewski J, Krska R, Berthiller F. Aerobic and anaerobicin vitrotesting of feed additives claiming to detoxify deoxynivalenol and zearalenone. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:922-33. [DOI: 10.1080/19440049.2015.1023741] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
De Mil T, Devreese M, De Baere S, Van Ranst E, Eeckhout M, De Backer P, Croubels S. Characterization of 27 mycotoxin binders and the relation with in vitro zearalenone adsorption at a single concentration. Toxins (Basel) 2015; 7:21-33. [PMID: 25568976 PMCID: PMC4303810 DOI: 10.3390/toxins7010021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/23/2014] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to characterize 27 feed additives marketed as mycotoxin binders and to screen them for their in vitro zearalenone (ZEN) adsorption. Firstly, 27 mycotoxin binders, commercially available in Belgium and The Netherlands, were selected and characterized. Characterization was comprised of X-ray diffraction (XRD) profiling of the mineral content and d-spacing, determination of the cation exchange capacity (CEC) and the exchangeable base cations, acidity, mineral fraction, relative humidity (RH) and swelling volume. Secondly, an in vitro screening experiment was performed to evaluate the adsorption of a single concentration of ZEN in a ZEN:binder ratio of 1:20,000. The free concentration of ZEN was measured after 4 h of incubation with each of the 27 mycotoxin binders at a pH of 2.5, 6.5 and 8.0. A significant correlation between the free concentration of ZEN and both the d-spacing and mineral fraction of the mycotoxin binders was seen at the three pH levels. A low free concentration of ZEN was demonstrated using binders containing mixed-layered smectites and binders containing humic acids.
Collapse
Affiliation(s)
- Thomas De Mil
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Eric Van Ranst
- Department of Geology and Soil Science, Faculty of Science, Ghent University, Krijgslaan 281, S8, 9000 Ghent, Belgium.
| | - Mia Eeckhout
- Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium.
| | - Patrick De Backer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| |
Collapse
|
27
|
Measurement of sterigmatocystin concentrations in urine for monitoring the contamination of cattle feed. Toxins (Basel) 2014; 6:3117-28. [PMID: 25375815 PMCID: PMC4247257 DOI: 10.3390/toxins6113117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/22/2014] [Accepted: 10/29/2014] [Indexed: 12/04/2022] Open
Abstract
This study aimed (1) at determining the levels of the fungal toxin sterigmatocystin (STC) in the feed and urine of cattle and (2) at evaluating the effects of supplementing the feed with a mycotoxin adsorbent (MA) on STC concentrations in urine. Two herds of female Japanese Black cattle were used in this study. The cattle in each herd were fed a standard ration containing rice straw from different sources and a standard concentrate; two groups of cattle from each herd (n = six per group) received the commercial MA, mixed with the concentrate or given as top-dressing, whereas a third group received no supplement and served as control. Urine and feed samples were collected at various time points throughout the experiment. STC concentrations were measured using liquid chromatography-tandem mass spectrometry (LC-TMS). STC concentrations in straw were higher in Herd 1 (range 0.15–0.24 mg/kg DM) than in Herd 2 (range <0.01–0.06 mg/kg DM). In Herd 1, STC concentrations in urine significantly declined 2 weeks after replacing the contaminated feed, whereas MA supplementation had no effect. In conclusion, mycotoxins in urine samples are useful biological markers for monitoring the systemic exposure of cattle to multiple mycotoxins, as well as evaluating the effectiveness of interventions.
Collapse
|
28
|
Duan QW, Li JT, Gong LM, Wu H, Zhang LY. Effects of graded levels of montmorillonite on performance, hematological parameters and bone mineralization in weaned pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014. [PMID: 25049749 DOI: 10.5713/ajas.2012.12698.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate the effects of graded levels of montmorillonite, a constituent of clay, on performance, hematological parameters and bone mineralization in weaned pigs. One hundred and twenty, 35-d-old crossbred pigs (Duroc×Large White×Landrace, 10.50±1.20 kg) were used in a 28-d experiment and fed either an unsupplemented corn-soybean meal basal diet or similar diets supplemented with 0.5, 1.0, 2.5 or 5.0% montmorillonite added at the expense of wheat bran. Each treatment was replicated six times with four pigs (two barrows and two gilts) per replicate. Feed intake declined (linear and quadratic effect, p< 0.01) with increasing level of montmorillonite while feed conversion was improved (linear and quadratic effect, p<0.01). Daily gain was unaffected by dietary treatment. Plasma myeloperoxidase declined linearly (p = 0.03) with increasing dietary level of montmorillonite. Plasma malondialdehyde and nitric oxide levels were quadratically affected (p<0.01) by montmorillonite with increases observed for pigs fed the 0.5 and 1.0% levels which then declined for pigs fed the 2.5 and 5.0% treatments. In bone, the content of potassium, sodium, copper, iron, manganese and magnesium were decreased (linear and quadratic effect, p<0.01) in response to an increase of dietary montmorillonite. These results suggest that dietary inclusion of montmorillonite at levels as high as 5.0% does not result in overt toxicity but could induce potential oxidative damage and reduce bone mineralization in pigs.
Collapse
Affiliation(s)
- Q W Duan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - J T Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - L M Gong
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - H Wu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - L Y Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| |
Collapse
|
29
|
Duan QW, Li JT, Gong LM, Wu H, Zhang LY. Effects of graded levels of montmorillonite on performance, hematological parameters and bone mineralization in weaned pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1614-21. [PMID: 25049749 PMCID: PMC4093821 DOI: 10.5713/ajas.2012.12698] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 06/03/2013] [Accepted: 04/03/2013] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate the effects of graded levels of montmorillonite, a constituent of clay, on performance, hematological parameters and bone mineralization in weaned pigs. One hundred and twenty, 35-d-old crossbred pigs (Duroc×Large White×Landrace, 10.50±1.20 kg) were used in a 28-d experiment and fed either an unsupplemented corn-soybean meal basal diet or similar diets supplemented with 0.5, 1.0, 2.5 or 5.0% montmorillonite added at the expense of wheat bran. Each treatment was replicated six times with four pigs (two barrows and two gilts) per replicate. Feed intake declined (linear and quadratic effect, p< 0.01) with increasing level of montmorillonite while feed conversion was improved (linear and quadratic effect, p<0.01). Daily gain was unaffected by dietary treatment. Plasma myeloperoxidase declined linearly (p = 0.03) with increasing dietary level of montmorillonite. Plasma malondialdehyde and nitric oxide levels were quadratically affected (p<0.01) by montmorillonite with increases observed for pigs fed the 0.5 and 1.0% levels which then declined for pigs fed the 2.5 and 5.0% treatments. In bone, the content of potassium, sodium, copper, iron, manganese and magnesium were decreased (linear and quadratic effect, p<0.01) in response to an increase of dietary montmorillonite. These results suggest that dietary inclusion of montmorillonite at levels as high as 5.0% does not result in overt toxicity but could induce potential oxidative damage and reduce bone mineralization in pigs.
Collapse
Affiliation(s)
- Q W Duan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - J T Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - L M Gong
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - H Wu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - L Y Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| |
Collapse
|
30
|
Kong C, Shin SY, Kim BG. Evaluation of mycotoxin sequestering agents for aflatoxin and deoxynivalenol: an in vitro approach. SPRINGERPLUS 2014; 3:346. [PMID: 25045616 PMCID: PMC4101124 DOI: 10.1186/2193-1801-3-346] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/26/2014] [Indexed: 11/25/2022]
Abstract
An experiment was conducted to determine the efficacy of mycotoxin sequestering agents for binding or degrading aflatoxin B1 (AFB1) and deoxynivalenol (DON) by an in vitro method. Ten toxin binder products including 5 bentonite clays (bentonite A, B, C, D, and E), 2 cellulose products (cellulose A and B), a yeast cell wall, an activated charcoal, and a mixture product containing minerals, microorganisms, and phytogenic substances were used in this experiment. An in vitro procedure was used to mimic the digestive process in pigs. The binding ability for AFB1 of the cellulose products was less compared with the values of other sequestering products (p < 0.05). The percent adsorption of AFB1 by bentonite clays, cellulose products, yeast cell wall product, activated charcoal product, and the mixture product were 92.5 (average of 5 bentonite products), −13.5 (average of 2 cellulose products), 92.7, 100.2, and 96.6, respectively. The respective values for DON were 3.24, 11.6, 22.9, 14.4, and 4.3. In conclusion, most toxin sequestering agents used in the present study had potential to bind AFB1 rather than DON based on the in vitro study which simulated the pH condition of the gastrointestinal tract of pigs.
Collapse
Affiliation(s)
- Changsu Kong
- Department of Animal Science and Technology, Konkuk University, Seoul, 143-701 Republic of Korea
| | - Seung Youp Shin
- Department of Animal Science and Technology, Konkuk University, Seoul, 143-701 Republic of Korea
| | - Beob Gyun Kim
- Department of Animal Science and Technology, Konkuk University, Seoul, 143-701 Republic of Korea
| |
Collapse
|
31
|
Di Gregorio MC, Neeff DVD, Jager AV, Corassin CH, Carão ÁCDP, Albuquerque RD, Azevedo ACD, Oliveira CAF. Mineral adsorbents for prevention of mycotoxins in animal feeds. TOXIN REV 2014. [DOI: 10.3109/15569543.2014.905604] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Fushimi Y, Takagi M, Hasunuma H, Uno S, Kokushi E, Watanabe U, Liu J, Marey M, Miyamoto A, Otoi T, Deguchi E, Fink-Gremmels J. Application of mycotoxin adsorbent to cattle feed contaminated with zearalenone: urinary zearalenone excretion and association with anti-Müllerian hormone. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study investigated (1) protective effects of a commercially available mycotoxin adsorbent (MA) and (2) endocrine effects of in vivo exposure to zearalenone (ZEA) in cattle. The sample included a Japanese Black female cattle herd (MYT herd) that displayed persistently high urinary ZEA concentrations. A second herd (NM herd) was used as a control. Three groups from each herd were assessed: MX (n=6; MA mixed with concentrate), TD (n=6; MA applied as topdressing with the concentrate), and a positive control (n=6; no MA application). Urine and blood samples were collected at the start of MA supplementation (day 0), on the final day of supplementation (day 16), and on the final day of the sampling period (day 58 for MYT herd and day 50 for NM herd). Urinary ZEA concentrations (pg/mg of creatinine) were measured by ELISA and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Haematological and serum biochemical analyses were performed to monitor hepatic, renal, nutritional, and mineral intake statuses. Ovulation status was assessed by progesterone (P4) and antral follicle population by anti-Müllerian hormone (AMH) levels. The urinary concentrations of ZEA and its metabolites in the MX and TD groups were significantly lower (P<0.05) at day 16 compared with the control group, as measured by LC-MS/MS. The valid ratio of AMH-positive (≯0.08 ng/ml) cattle was significantly higher in the NM herd than in the MYT herd without affecting the P4-positive (≯3 ng/ml) ratio, suggesting different populations of antral follicles. Significant differences were also observed between the MX and the control in aspartate aminotransferase and γ-glutamyltransferase at day 58, suggesting preventive effects of MA supplementation. Our field trial indicated that MA supplementation of a ZEA-contaminated diet has beneficial effects in reducing ZEA absorption from the intestine of cattle, maintaining endocrine homeostasis and reversing hepatic effects.
Collapse
Affiliation(s)
- Y. Fushimi
- Laboratory of Farm Animal Production Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0064, Japan
- Shepherd Central Livestock Clinic, Kagoshima 899-1611, Japan
| | - M. Takagi
- Laboratory of Farm Animal Production Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0064, Japan
| | - H. Hasunuma
- Laboratory of Farm Animal Production Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0064, Japan
- Shepherd Central Livestock Clinic, Kagoshima 899-1611, Japan
| | - S. Uno
- The Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - E. Kokushi
- The Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - U. Watanabe
- Soo Veterinary Clinical Center, Soo Agriculture Mutual Aid Association, Kagoshima 899-8212, Japan
| | - J. Liu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - M.A. Marey
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - A. Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - T. Otoi
- Laboratory of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - E. Deguchi
- Laboratory of Farm Animal Production Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0064, Japan
| | - J. Fink-Gremmels
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3508 TD Utrecht, the Netherlands
| |
Collapse
|
33
|
Mitchell NJ, Kumi J, Johnson NM, Dotse E, Marroquin-Cardona A, Wang JS, Jolly PE, Ankrah NA, Phillips TD. Reduction in the urinary aflatoxin M1 biomarker as an early indicator of the efficacy of dietary interventions to reduce exposure to aflatoxins. Biomarkers 2013; 18:391-8. [PMID: 23697800 DOI: 10.3109/1354750x.2013.798031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aflatoxin B1 is a persistent public health issue in Ghana. Assessment of AFB1 intervention efficacy is currently dependent on long-term biomarkers. This study was designed to determine whether daily AFM1 biomarker levels could be utilized as an early detection method for intervention efficacy. Participants were treated with a refined calcium montmorillonite clay (UPSN) or a placebo (calcium carbonate) in a crossover study. Urine samples were assessed for AFM1 levels daily. UPSN treatment reduced AFM1 biomarkers by 55% compared to the placebo. This is the first study to show that daily urinary AFM1 levels can be used as a biomarker of internal aflatoxin B1 exposure in short-term intervention trials to determine efficacy.
Collapse
Affiliation(s)
- Nicole J Mitchell
- College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4458, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Baglieri A, Reyneri A, Gennari M, Nègre M. Organically modified clays as binders of fumonisins in feedstocks. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2013; 48:776-783. [PMID: 23688228 DOI: 10.1080/03601234.2013.780941] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study reports an investigation on the ability of organically modified clays to bind mycotoxins, fumonisins B1 (FB1) and B2 (FB2). Organically modified clays are commercia materials prepared from natural clays, generally montmorillonite, by exchanging the inorganic cation with an ammonium organic cation. A screening experiment conducted on 13 organically modified clays and 3 nonmodified clays, used as controls, has confirmed that the presence of an organic cation in the clay interlayer promoted the adsorption of both fumonisins. On the basis of the results of the screening test, four modified clays and a Na-montmorillonite were selected for the determination of the adsorption kinetics and isotherms. On all the tested materials adsorption took place within one hour of contact with fumonisins solutions. Adsorption isotherms have pointed out that the modified clays exhibited a higher adsorptive capacity than the unmodified clay. It was also demonstrated that, notwithstanding the reduced structural difference between FB1 and FB2, they were differently adsorbed on the modified clays. Addition of 2% modified clays to contaminated maize allowed a reduction of more than 70% and 60% of the amount of FB1and FB2 released in solution. Although in vivo experiments are required to confirm the effectiveness of the organically modified clays, these preliminary results suggest that these materials are promising as fumonisins binders.
Collapse
Affiliation(s)
- Andrea Baglieri
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, Università di Catania, Catania, Italy
| | | | | | | |
Collapse
|
35
|
Osselaere A, Devreese M, Watteyn A, Vandenbroucke V, Goossens J, Hautekiet V, Eeckhout M, De Saeger S, De Baere S, De Backer P, Croubels S. Efficacy and safety testing of mycotoxin-detoxifying agents in broilers following the European Food Safety Authority guidelines. Poult Sci 2012; 91:2046-54. [PMID: 22802203 DOI: 10.3382/ps.2012-02245] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Contamination of feeds with mycotoxins is a worldwide problem and mycotoxin-detoxifying agents are used to decrease their negative effect. The European Food Safety Authority recently stated guidelines and end-points for the efficacy testing of detoxifiers. Our study revealed that plasma concentrations of deoxynivalenol and deepoxy-deoxynivalenol were too low to assess efficacy of 2 commercially available mycotoxin-detoxifying agents against deoxynivalenol after 3 wk of continuous feeding of this mycotoxin at concentrations of 2.44±0.70 mg/kg of feed and 7.54±2.20 mg/kg of feed in broilers. This correlates with the poor absorption of deoxynivalenol in poultry. A safety study with 2 commercially available detoxifying agents and veterinary drugs showed innovative results with regard to the pharmacokinetics of 2 antibiotics after oral dosing in the drinking water. The plasma and kidney tissue concentrations of oxytetracycline were significantly higher in broilers receiving a biotransforming agent in the feed compared with control birds. For amoxicillin, the plasma concentrations were significantly higher for broilers receiving an adsorbing agent in comparison to birds receiving the biotransforming agent, but not to the control group. Mycotoxin-detoxifying agents can thus interact with the oral bioavailability of antibiotics depending on the antibiotic and detoxifying agent, with possible adverse effects on the health of animals and humans.
Collapse
Affiliation(s)
- A Osselaere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Meca G, Meneghelli G, Ritieni A, Mañes J, Font G. Influence of different soluble dietary fibers on the bioaccessibility of the minor Fusarium mycotoxin beauvericin. Food Chem Toxicol 2012; 50:1362-8. [DOI: 10.1016/j.fct.2012.02.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/30/2012] [Accepted: 02/19/2012] [Indexed: 11/17/2022]
|
37
|
Fruhauf S, Schwartz H, Ottner F, Krska R, Vekiru E. Yeast cell based feed additives: studies on aflatoxin B₁ and zearalenone. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 29:217-31. [PMID: 22145855 DOI: 10.1080/19440049.2011.630679] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Thirty commercially available yeast cell wall products and two reference bentonites were tested for their ability to bind aflatoxin B(1) (AFB1) and zearalenone (ZON) in buffer solutions at pH 3 and pH 6.5 as well as in real gastric juice. For most products, the binding efficacy of AFB1 correlated with the ash content, which was between 2.6 and 89%, and constituted the inorganic non-volatile components, such as mineral clays, of the samples. Samples with smectite as the main ash component showed the highest binding efficacy; yet, a correlation with the content of mannanooligosaccharides (MOS) and β-glucans from yeast cell walls was not observed. Products containing >30% ash showed AFB1 adsorption values >90% at least in one of the investigated media whereas most products with <10% ash did not exceed adsorption rates of 20%. In the case of ZON, adsorption efficiency ranged between 10 and 60%. It tended to be lowest for products with MOS and β-glucan contents <10% and greatest for products with MOS and β-glucan contents >50%. However, there was no general correlation between the adsorption of ZON and the concentration of MOS and β-glucans. Different products of one brand sold in different countries were observed to bind AFB1 to different degrees, which was explained by the difference in ash contents and mineral composition. In the case of ZON, differences in adsorption between products of the same brand were less pronounced.
Collapse
Affiliation(s)
- Sebastian Fruhauf
- Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Straße 20, 3430 Tulln, Austria
| | | | | | | | | |
Collapse
|
38
|
Marroquín-Cardona A, Deng Y, Garcia-Mazcorro J, Johnson N, Mitchell N, Tang L, Robinson A, Taylor J, Wang JS, Phillips T. Characterization and Safety of Uniform Particle Size NovaSil Clay as a Potential Aflatoxin Enterosorbent. APPLIED CLAY SCIENCE 2011; 54:248-257. [PMID: 22249378 PMCID: PMC3253772 DOI: 10.1016/j.clay.2011.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
NovaSil (NS) clay, a common anti-caking agent in animal feeds, has been shown to adsorb aflatoxins and diminish their bioavailability in multiple animal models. The safety of long-term dietary exposure to NS has also been demonstrated in a 6-month sub-chronic study in rats and in a 3-month intervention in humans highly exposed to aflatoxins. Uniform particle size NovaSil (UPSN) is a refined material derived from parent NS; it contains lower levels of dioxins/furans, and has been selected for a more consistent uniform particle size. Nevertheless, the efficacy and potential safety/toxicity of UPSN for long term-use has not yet been determined. In this research, 4-week-old male and female Sprague Dawley rats were fed rations free of clay (control) and containing UPSN at low dose (0.25%) and high dose (2%) for 13 weeks. AFB(1) sorption characteristics remained the same for both clays. When compared to the control, total body weight gain was unaffected in either sex at the doses tested. No UPSN-dependent differences in relative organ weights or gross appearance were observed. Isolated differences between UPSN groups and the control were observed for some biochemical parameters and selected vitamins and minerals. None of these differences were dose-dependent, and all parameters fell between ranges reported as normal for rats less than 6 month old. The Na/K ratio, Na and vitamin E concentrations were the only parameters that were increased in both males and females in the low dose and high dose UPSN groups. Serum Zn levels in males from the 2% UPSN treatment were lower compared to the control. Serum K levels were lower in the males of UPSN groups than in the control. However, neither Na/K ratio, K, nor Zn values were dose dependent and fell outside ranges reported as normal. These results suggest that dietary inclusion of UPSN at levels as high as 2% (w/w) does not result in overt toxicity. Nevertheless, further research on the effects of clays on Na, Zn, K and vitamin E is warranted.
Collapse
Affiliation(s)
- A. Marroquín-Cardona
- Interdisciplinary Faculty of Toxicology, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University 77843-4458 TAMU, College Station, TX, USA
| | - Y. Deng
- Soil and Crop Sciences Department, College of Agriculture, Texas A&M University 77843-2474 TAMU, College Station, Texas, USA
| | - J. Garcia-Mazcorro
- Gastrointestinal Laboratory, College of Veterinary Medicine, Texas A&M University 77843-4474 TAMU, College Station, TX, USA
| | - N.M. Johnson
- Interdisciplinary Faculty of Toxicology, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University 77843-4458 TAMU, College Station, TX, USA
| | - N. Mitchell
- Interdisciplinary Faculty of Toxicology, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University 77843-4458 TAMU, College Station, TX, USA
| | | | - A. Robinson
- Interdisciplinary Faculty of Toxicology, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University 77843-4458 TAMU, College Station, TX, USA
| | - J. Taylor
- Interdisciplinary Faculty of Toxicology, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University 77843-4458 TAMU, College Station, TX, USA
| | | | - T.D. Phillips
- Interdisciplinary Faculty of Toxicology, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University 77843-4458 TAMU, College Station, TX, USA
| |
Collapse
|
39
|
Kolosova A, Stroka J. Substances for reduction of the contamination of feed by mycotoxins: a review. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2011.1288] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The global occurrence of mycotoxins is considered to be a major risk factor for human and animal health. Contamination of different agricultural commodities with mycotoxins still occurs despite the most strenuous prevention efforts. As a result, mycotoxin contaminated feed can cause serious disorders and diseases in farm animals. A number of approaches, such as physical and chemical detoxification procedures, have been used to counteract mycotoxins. However, only a few of them have practical application. A recent and promising approach to protect animals against the harmful effects of mycotoxin contaminated feed is the use of substances for reduction of the contamination of feed by mycotoxins. These substances, so-called mycotoxin binders (MB), are added to the diet in order to reduce the absorption of mycotoxins from the gastrointestinal tract and their distribution to blood and target organs, thus preventing or reducing mycotoxicosis in livestock. Recently, the use of such substances as technological feed additives has been officially allowed in the European Union. The efficacy of MB appears to depend on the properties of both the binder and the mycotoxin. Depending on their mode of action, these feed additives may act either by binding mycotoxins to their surface (adsorption), or by degrading or transforming them into less toxic metabolites (biotransformation). Biotransformation can be achieved by mycotoxin-degrading enzymes or by microorganisms producing such enzymes. Various inorganic adsorbents, such as hydrated sodium calcium aluminosilicate, zeolites, bentonites, clays, and activated carbons, have been tested and used as MB. An interesting alternative to inorganic adsorbents for the detoxification of mycotoxins is the use of organic binders, such as yeast cell wall components, synthetic polymers (cholestyramine, polyvinylpyrrolidone), humic substances and dietary fibres. This paper gives an overview of the current knowledge and situation in the field of MB. The most important types of MB, mechanism of their action, and their application as a part of general strategy to counteract mycotoxins are described in this review. Recent advances in the use and study of MB, as well as data of their in vitro and in vivo effectiveness are given. Problems, potential, current trends and perspectives associated with the use of MB are discussed as well in the review.
Collapse
Affiliation(s)
- A. Kolosova
- Institute for Reference Materials and Measurements, European Commission, Joint Research Center, Retieseweg 111, 2440 Geel, Belgium
| | - J. Stroka
- Institute for Reference Materials and Measurements, European Commission, Joint Research Center, Retieseweg 111, 2440 Geel, Belgium
| |
Collapse
|
40
|
Takagi M, Uno S, Kokushi E, Shiga S, Mukai S, Kuriyagawa T, Takagaki K, Hasunuma H, Matsumoto D, Okamoto K, Shahada F, Chenga T, Deguchi E, Fink-Gremmels J. Measurement of urinary zearalenone concentrations for monitoring natural feed contamination in cattle herds: On-farm trials1. J Anim Sci 2011; 89:287-96. [DOI: 10.2527/jas.2010-3306] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
BOUDERGUE C, BUREL C, DRAGACCI S, FAVROT M, FREMY J, MASSIMI C, PRIGENT P, DEBONGNIE P, PUSSEMIER L, BOUDRA H, MORGAVI D, OSWALD I, PEREZ A, AVANTAGGIATO G. Review of mycotoxin‐detoxifying agents used as feed additives: mode of action, efficacy and feed/food safety. ACTA ACUST UNITED AC 2009. [DOI: 10.2903/sp.efsa.2009.en-22] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|