1
|
Chen Y, Zhang M, Li Z, Zheng J, Zhang Y, Guo Q, Liu S, Chen Y, Wei W, Jiang X, Tang J. Multifunctional Nanoplatform Based on Gelatin Nanoparticles with Immunomodulatory Capabilities for Combined Immunotherapy and Chemotherapy of Melanoma. Biomacromolecules 2025. [PMID: 40207885 DOI: 10.1021/acs.biomac.5c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Tumor immunotherapy has shown considerable therapeutic potential, especially when combined with chemotherapy. In this study, we developed a multifunctional nanoplatform GNPs-DOX/R848 that combined immunotherapy and chemotherapy for the treatment of melanoma, in which gelatin nanoparticles (GNPs) were loaded with the immunomodulatory agent resiquimod (R848) and the chemotherapy drug doxorubicin (DOX). GNPs possessed inherent immunomodulatory properties; when combined with R848, they induced a more pronounced polarization of M1-like macrophages by activating the NF-κB signaling pathway, thereby reversing the immunosuppressive tumor microenvironment. Meanwhile, GNPs effectively delivered R848 and DOX to tumor cells, promoting stronger therapeutic effects of the drugs, which strongly induced the immunogenic cell death triggered by DOX, leading to the infiltration of T cells into the tumor tissue. The treatment of melanoma demonstrated that GNPs-DOX/R848 significantly reduced tumor volume, enhanced the therapeutic effects of chemotherapy, providing a new approach for the combined treatment of cancer with immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Miaomiao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Jinyao Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Yuanhao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Qianyu Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Suzhen Liu
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Yu Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Wei Wei
- Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
2
|
Myles E, D'Sa RA, Aveyard J. Antimicrobial nitric oxide releasing gelatin nanoparticles to combat drug resistant bacterial and fungal infections. NANOSCALE ADVANCES 2025:d4na01042f. [PMID: 40207089 PMCID: PMC11976662 DOI: 10.1039/d4na01042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Antimicrobial resistance (AMR) represents a significant global health challenge, contributing to increased mortality rates and substantial economic burdens. The development of new antimicrobial agents with dual antimicrobial and antibiofilm capabilities is crucial to mitigate AMR. Nitric oxide (NO) is a broad-spectrum antimicrobial agent which has shown promise in treating infections due to its multiple antimicrobial mechanisms. However, the high reactivity of NO poses a challenge for effective delivery to infection sites. We investigated the antimicrobial and antibiofilm capabilities, and the shelf life, of NO-releasing gelatin nanoparticles (GNP/NO) against three common hospital-acquired pathogens: Staphylococcus aureus, Escherichia coli, and Candida albicans. The synthesised GNP/NO were found to be cytocompatible and exhibited significant antimicrobial and antibiofilm efficacies against the tested pathogens in both nutrient-rich and nutrient-poor conditions. Furthermore, we found that the antimicrobial capabilities of GNP/NO were maintained for up to 6 months post synthesis, against Staphylococcus aureus (2.4 log), Escherichia coli (1.2 log) and Candida albicans (3 log) under nutrient-poor conditions. Our study demonstrates the use of a novel broad-spectrum antimicrobial with a prolonged shelf life for the treatment of infections. These findings offer an effective alternative to traditional antibiotics which would contribute to mitigating the current global AMR threat resulting from antibiotic overuse.
Collapse
Affiliation(s)
- Erin Myles
- School of Engineering, University of Liverpool The Quadrangle, Brownlow Hill L69 3GH UK
| | - Raechelle A D'Sa
- School of Engineering, University of Liverpool The Quadrangle, Brownlow Hill L69 3GH UK
| | - Jenny Aveyard
- School of Engineering, University of Liverpool The Quadrangle, Brownlow Hill L69 3GH UK
| |
Collapse
|
3
|
Chan SM, Tseng CL, Huang WH, Lin CT. Therapeutic Assessment of Diverse Doxycycline-Based Formulations in Promoting Deep Corneal Wound Healing: Evidence from a Rat Model. Vet Sci 2025; 12:143. [PMID: 40005905 PMCID: PMC11860526 DOI: 10.3390/vetsci12020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Doxycycline (Dxy), a broad-spectrum antibiotic with anti-inflammatory effects, is commonly used in ophthalmology but is unstable as a topical eyedrop, degrading quickly into inactive forms and requiring frequent application. To address this, gelatin nanoparticles (GNPs) loaded with Dxy (DNPs) were developed as a stable ophthalmic nanomedicine for enhancing corneal wound healing by inhibiting matrix metalloproteinases (MMPs). In this study, female Sprague-Dawley rats underwent lamellar keratectomy, and various Dxy formulations-oral, conventional eyedrops, and DNP-containing eyedrops-were evaluated for corneal wound repair. Clinical assessments included fluorescein staining, slit-lamp biomicroscopy, spectral-domain optical coherence tomography (SD-OCT) imaging, histopathology, and immunohistochemistry for MMP-2, MMP-9, and α-SMA. The DNP group (0.01% Dxy in DNPs, applied twice daily) demonstrated faster corneal thickness recovery and epithelial healing on days 7 and 14 compared to 0.1% Dxy eyedrop treatments applied twice or four times daily. DNP-treated eyes also showed reduced angiogenesis intensity and lower MMP-2 and MMP-9 immunoreactive scores, with enhanced stromal recovery and reduced neovascularization. These results highlight DNPs' potential as a superior treatment for corneal wounds, providing effective healing with less frequent dosing and lower drug concentrations. This study supports DNPs' potential for clinical application as a stable and efficient therapeutic agent in ophthalmology.
Collapse
Affiliation(s)
- Sze-Min Chan
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106, Taiwan;
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Hsiang Huang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106, Taiwan
| | - Chung-Tien Lin
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106, Taiwan
- Department of Ophthalmology, National Taiwan University Veterinary Hospital, College of Bio-Resources and Agriculture, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
4
|
Li N, Sun Y, Cheng L, Feng C, Sun Y, Yang S, Shao Y, Zhao XZ, Zhang Y. Non-Invasive Prenatal Diagnosis of Chromosomal and Monogenic Disease by a Novel Bioinspired Micro-Nanochip for Isolating Fetal Nucleated Red Blood Cells. Int J Nanomedicine 2024; 19:13445-13460. [PMID: 39713222 PMCID: PMC11662655 DOI: 10.2147/ijn.s479297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Purpose Fetal nucleated red blood cells (fNRBCs) in the peripheral blood of pregnant women contain comprehensive fetal genetic information, making them an ideal target for non-invasive prenatal diagnosis (NIPD). However, challenges in identifying, enriching, and detecting fNRBCs limit their diagnostic potential. Methods To overcome these obstacles, we developed a novel biomimetic chip, replicating the micro-nano structure of red rose petals on polydimethylsiloxane (PDMS). The surface was modified with gelatin nanoparticles (GNPs) and affinity antibodies to enhance cell adhesion and facilitate specific cell identification. We subsequently investigated the chip's characteristics, along with its in vitro capture and release system, and conducted further experiments using peripheral blood samples from pregnant women. Results In the cell line capture and release assay, the chip achieved a cell capture efficiency of 90.4%. Following metalloproteinase-9 (MMP-9) enzymatic degradation, the release efficiency was 84.08%, with cell viability at 85.97%. Notably, fNRBCs can be captured from the peripheral blood of pregnant women as early as 7 weeks of gestation. We used these fNRBCs to diagnose a case of single-gene disease and instances of chromosomal aneuploidies, yielding results consistent with those obtained from amniotic fluid punctures. Conclusion This novel chip not only enables efficient enrichment of fNRBCs for NIPD but also extends the diagnostic window for genetic and developmental disorders to as early as 7 weeks of gestation, potentially allowing for earlier interventions. By improving the accuracy and reliability of NIPD, this technology could reduce reliance on invasive diagnostic techniques, offering a new pathway for diagnosing fetal genetic conditions in clinical practice.
Collapse
Affiliation(s)
- Naiqi Li
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Genetics and Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People’s Republic of China
| | - Yue Sun
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, People’s Republic of China
- School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, People’s Republic of China
| | - Lin Cheng
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, People’s Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, People’s Republic of China
| | - Chun Feng
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430072, People’s Republic of China
| | - Yifan Sun
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, People’s Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, People’s Republic of China
| | - Saisai Yang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, People’s Republic of China
| | - Yuqi Shao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, People’s Republic of China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, People’s Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, 430071, People’s Republic of China
| |
Collapse
|
5
|
Parvaei M, Habibi M, Shahbazi S, Babaluei M, Farokhi M, Asadi Karam MR. Immunostimulatory chimeric protein encapsulated in gelatin nanoparticles elicits protective immunity against Pseudomonas aeruginosa respiratory tract infection. Int J Biol Macromol 2024; 277:133964. [PMID: 39029853 DOI: 10.1016/j.ijbiomac.2024.133964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
This study presents the design and fabrication of an innovative vaccine candidate targeting Pseudomonas aeruginosa (P. aeruginosa). The vaccine consists of gelatin nanoparticles (GNPs) encapsulating a chimeric protein (CP) derived from the ExoS and OprI proteins from P. aeruginosa. The physicochemical properties of the GNPs were assessed using dynamic light scattering (DLS) and electron microscopy. The toxicity, encapsulation efficacy, release profile, and effectiveness of CP-encapsulated GNPs (CP-GNPs) in an animal model were investigated. The resulting nanovaccine demonstrated uniform spherical particles with an average size of 135 nm and an encapsulation efficiency of 85 %. The release assay revealed that 23 % of the antigen was released from the CP-GNPs after 20 days. The GNPs did not exhibit any toxic effects on L929 cells in vitro. The formulation induced both systemic and mucosal antibody responses. Additionally, CP-GNPs stimulated cytokine responses, including IFN-γ, IL-4, and IL-17, indicating the induction of both humoral (Th2) and cellular (Th1) responses. The CP-encapsulated GNPs formulation effectively protected the mice lungs against experimental respiratory tract infection, reducing colony count and inflammation. These findings suggest that CP-GNPs hold promise as a potential strategy for preventing respiratory tract infections caused by P. aeruginosa. Further research is needed to explore its clinical application.
Collapse
Affiliation(s)
- Maryam Parvaei
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Shahla Shahbazi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
6
|
Park S, Safdar M, Kim W, Seol J, Kim D, Lee KH, Son HI, Kim J. Gelatin Nanoparticles can Improve Pesticide Delivery Performance to Plants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402899. [PMID: 38949406 DOI: 10.1002/smll.202402899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Nanomaterials associated with plant growth and crop cultivation revolutionize traditional concepts of agriculture. However, the poor reiterability of these materials in agricultural applications necessitates the development of environmentally-friendly approaches. To address this, biocompatible gelatin nanoparticles (GNPs) as nanofertilizers with a small size (≈150 nm) and a positively charged surface (≈30 mV) that serve as a versatile tool in agricultural practices is designed. GNPs load agrochemical agents to improve maintenance and delivery. The biocompatible nature and small size of GNPs ensure unrestricted nutrient absorption on root surfaces. Furthermore, when combined with pesticides, GNPs demonstrate remarkable enhancements in insecticidal (≈15%) and weed-killing effects (≈20%) while preserving the efficacy of the pesticide. That GNPs have great potential for use in sustainable agriculture, particularly in inducing plant growth, specifically plant root growth, without fertilization and in enhancing the functions of agrochemical agents is proposed. It is suggested conceptual applications of GNPs in real-world agricultural practices.
Collapse
Affiliation(s)
- Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang, 50463, Republic of Korea
| | - Mahpara Safdar
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jaehwi Seol
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dream Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyeong-Hwan Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoung Il Son
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
7
|
Rojekar S, Gholap AD, Togre N, Bhoj P, Haeck C, Hatvate N, Singh N, Vitore J, Dhoble S, Kashid S, Patravale V. Current status of mannose receptor-targeted drug delivery for improved anti-HIV therapy. J Control Release 2024; 372:494-521. [PMID: 38849091 DOI: 10.1016/j.jconrel.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
In the pursuit of achieving better therapeutic outcomes in the treatment of HIV, innovative drug delivery strategies have been extensively explored. Mannose receptors, which are primarily found on macrophages and dendritic cells, offer promising targets for drug delivery due to their involvement in HIV pathogenesis. This review article comprehensively evaluates recent drug delivery system advancements targeting the mannose receptor. We have systematically described recent developments in creating and utilizing drug delivery platforms, including nanoparticles, liposomes, micelles, noisomes, dendrimers, and other nanocarrier systems targeted at the mannose receptor. These strategies aim to enhance drug delivery specificity, bioavailability, and therapeutic efficacy while decreasing off-target effects and systemic toxicity. Furthermore, the article delves into how mannose receptors and HIV interact, highlighting the potential for exploiting this interaction to enhance drug delivery to infected cells. The review covers essential topics, such as the rational design of nanocarriers for mannose receptor recognition, the impact of physicochemical properties on drug delivery performance, and how targeted delivery affects the pharmacokinetics and pharmacodynamics of anti-HIV agents. The challenges of these novel strategies, including immunogenicity, stability, and scalability, and future research directions in this rapidly growing area are discussed. The knowledge synthesis presented in this review underscores the potential of mannose receptor-based targeted drug delivery as a promising avenue for advancing HIV treatment. By leveraging the unique properties of mannose receptors, researchers can design drug delivery systems that cater to individual needs, overcome existing limitations, and create more effective and patient-friendly treatments in the ongoing fight against HIV/AIDS.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Namdev Togre
- Department of Pathology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Priyanka Bhoj
- Department of Pathology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Clement Haeck
- Population Council, , Center for Biomedical Research, 1230 York Avenue, New York, NY 10065, USA
| | - Navnath Hatvate
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India
| | - Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Jyotsna Vitore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat 382355, India
| | - Sagar Dhoble
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Snehal Kashid
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat 382355, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
8
|
Khakpour S, Hosano N, Moosavi-Nejad Z, Farajian AA, Hosano H. Advancing Tumor Therapy: Development and Utilization of Protein-Based Nanoparticles. Pharmaceutics 2024; 16:887. [PMID: 39065584 PMCID: PMC11279530 DOI: 10.3390/pharmaceutics16070887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Protein-based nanoparticles (PNPs) in tumor therapy hold immense potential, combining targeted delivery, minimal toxicity, and customizable properties, thus paving the way for innovative approaches to cancer treatment. Understanding the various methods available for their production is crucial for researchers and scientists aiming to harness these nanoparticles for diverse applications, including tumor therapy, drug delivery, imaging, and tissue engineering. This review delves into the existing techniques for producing PNPs and PNP/drug complexes, while also exploring alternative novel approaches. The methods outlined in this study were divided into three key categories based on their shared procedural steps: solubility change, solvent substitution, and thin flow methods. This classification simplifies the understanding of the underlying mechanisms by offering a clear framework, providing several advantages over other categorizations. The review discusses the principles underlying each method, highlighting the factors influencing the nanoparticle size, morphology, stability, and functionality. It also addresses the challenges and considerations associated with each method, including the scalability, reproducibility, and biocompatibility. Future perspectives and emerging trends in PNPs' production are discussed, emphasizing the potential for innovative strategies to overcome current limitations, which will propel the field forward for biomedical and therapeutic applications.
Collapse
Affiliation(s)
- Shirin Khakpour
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Nushin Hosano
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran 1993893973, Iran
| | - Amir A. Farajian
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA;
| | - Hamid Hosano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| |
Collapse
|
9
|
Ali DS, Gad HA, Hathout RM. Enhancing Effector Jurkat Cell Activity and Increasing Cytotoxicity against A549 Cells Using Nivolumab as an Anti-PD-1 Agent Loaded on Gelatin Nanoparticles. Gels 2024; 10:352. [PMID: 38920901 PMCID: PMC11202840 DOI: 10.3390/gels10060352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
The current research investigated the use of gelatin nanoparticles (GNPs) for enhancing the cytotoxic effects of nivolumab, an immune checkpoint inhibitor. The unique feature of GNPs is their biocompatibility and functionalization potential, improving the delivery and the efficacy of immunotherapeutic drugs with fewer side effects compared to traditional treatments. This exploration of GNPs represents an innovative direction in the advancement of nanomedicine in oncology. Nivolumab-loaded GNPs were prepared and characterized. The optimum formulation had a particle size of 191.9 ± 0.67 nm, a polydispersity index of 0.027 ± 0.02, and drug entrapment of 54.67 ± 3.51%. A co-culture experiment involving A549 target cells and effector Jurkat cells treated with free nivolumab solution, and nivolumab-loaded GNPs, demonstrated that the latter had significant improvements in inhibition rate by scoring 87.88 ± 2.47% for drug-loaded GNPs against 60.53 ± 3.96% for the free nivolumab solution. The nivolumab-loaded GNPs had a lower IC50 value, of 0.41 ± 0.01 µM, compared to free nivolumab solution (1.22 ± 0.37 µM) at 72 h. The results indicate that administering nivolumab-loaded GNPs augmented the cytotoxicity against A549 cells by enhancing effector Jurkat cell activity compared to nivolumab solution treatment.
Collapse
Affiliation(s)
- Dalia S. Ali
- Department of Biotechnology, Central Administration of Biological, Innovative Products and Clinical Studies, Egyptian Drug Authority, Giza 11566, Egypt
| | - Heba A. Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
10
|
Sadeh P, Zeinali S, Rastegari B, Najafipour I. Functionalization of β-cyclodextrin metal-organic frameworks with gelatin and glutamine for drug delivery of curcumin to cancerous cells. Heliyon 2024; 10:e30349. [PMID: 38726172 PMCID: PMC11079092 DOI: 10.1016/j.heliyon.2024.e30349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Beta-cyclodextrin Metal-Organic Framework (β-CD-MOF) is a unique class of porous materials that merges the inherent properties of cyclodextrins with the structural advantages of metal-organic frameworks (MOFs). When combined with the concept of MOFs, which are crystalline structures composed of metal ions or clusters linked by organic ligands, the resulting β-CD-MOF holds immense potential for various applications, especially in the field of drug delivery. In this study, biocompatible metal-organic frameworks (MOFs) synthesized using β-Cyclodextrin (β-CD) and potassium enabled drug delivery of curcumin (CCM) to cancerous cells. Functionalizing β-CD-MOF with l-glutamine (glutamine-β-CD-MOF) enhanced cancer cell-specific targeting due to glutamine's essential role in cancer cell proliferation and energy pathways. Amino group functionalization provided further functionalization opportunities. Gelatin coating (gelatin@β-CD-MOF) facilitated controlled drug release in an acidic medium. High drug loading capacities (52.38-55.63 %) were achieved for β-CD-MOF@CCM and glutamine-β-CD-MOF@CCM, leveraging the high porosity and affinity of amine and phenol groups of curcumin. The MTT assay highlighted the specificity and differentiation of glutamine-β-CD-MOF in targeting cancerous over normal cells. These functionalized β-CD MOFs efficiently encapsulate curcumin, ensuring controlled drug release and enhanced therapeutic efficacy, particularly in cancer therapy.
Collapse
Affiliation(s)
- Pegah Sadeh
- Department of Nanochemical Engineering, School of Advanced Technologies, Shiraz University, Iran
| | - Sedigheh Zeinali
- Department of Nanochemical Engineering, School of Advanced Technologies, Shiraz University, Iran
| | - Banafsheh Rastegari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Science, Shiraz, Iran
| | - Iman Najafipour
- Department of Nanochemical Engineering, School of Advanced Technologies, Shiraz University, Iran
| |
Collapse
|
11
|
Wickramasinghe ASD, Attanayake AP, Kalansuriya P. Gelatine nanoparticles encapsulating three edible plant extracts as potential nanonutraceutical agents against type 2 diabetes mellitus. J Microencapsul 2024; 41:94-111. [PMID: 38410890 DOI: 10.1080/02652048.2024.2313230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
AIM To optimise, and characterise gelatine nanoparticles (GNPs) encapsulating plant extracts and evaluate the glucose-lowering potential. METHODS GNPs encapsulating plant extracts were prepared by desolvation method followed by adsorption. The GNPs were characterised by loading efficiency, loading capacity, particle size, zeta potential, SEM and FTIR. The glucose-lowering activity of GNPs was determined using oral glucose tolerance test in high-fat diet fed streptozotocin-induced Wistar rats. RESULTS Loading efficiency and capacity, particle mean diameter, and zeta potential of optimised GNPs 72.45 ± 13.03% w/w, 53.05 ± 26.16% w/w, 517 ± 48 nm and (-)23.43 ± 9.96 mV respectively. GNPs encapsulating aqueous extracts of C. grandis, S. auriculata, and ethanol 70% v/v extracts of M. koenigii showed glucose-lowering activity by 17.62%, 11.96% and 13.73% (p < 0.05) compared to the non-encapsulated extracts. FTIR analysis confirmed the encapsulation of phytoconstituents into GNPs. SEM imaging showed spherical GNPs (174 ± 46 nm). CONCLUSION GNPs encapsulating plant extracts show promising potential to be developed as nanonutraceuticals against diabetes.
Collapse
Affiliation(s)
| | | | - Pabasara Kalansuriya
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| |
Collapse
|
12
|
Khunmanee S, Choi A, Ahn IY, Kim WJ, Bae TH, Kang SH, Park H. Effective wound healing on diabetic mice by adhesive antibacterial GNPs-lysine composited hydrogel. iScience 2024; 27:108860. [PMID: 38318359 PMCID: PMC10838728 DOI: 10.1016/j.isci.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Current trends in wound care research focus on creating dressings for diverse wound types, aiming to effectively control the wound healing process. We proposed a wound dressing composed of oxidized hyaluronic acid and amine gelatin with embedded lysine-modified gelatin nanoparticles (HGel-GNPs-lysine). This dressing improves mechanical properties and reduces degradation rates. The storage modulus for HGel-GNPs-lysine was 3,800 Pa, exceeding that of HGel (1,750 Pa). The positively charged surface of GNPs-lysine effectively eliminated Escherichia coli and Staphylococcus aureus. In a diabetic mice model (C57BL/6), HGel-GNPs-lysine immobilized with basic-fibroblast growth factor promoted granulation tissue thickness and collagen density. Gene expression analysis indicated that HGel-GNPs-lysine reduced inflammation and enhanced angiogenesis. This study highlights that HGel-GNPs-lysine could offer alternative treatment strategies for regulating the inflammatory response at the injury site in wound dressing applications.
Collapse
Affiliation(s)
- Sureerat Khunmanee
- Department of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Anseo Choi
- Department of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Il Young Ahn
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu 06973, South Korea
| | - Woo Ju Kim
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Gwangmyeong Hospital, Deokan-ro, Gwangmyeong-si, Gyeonggi-do 14353, South Korea
| | - Tae Hui Bae
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Gwangmyeong Hospital, Deokan-ro, Gwangmyeong-si, Gyeonggi-do 14353, South Korea
| | - Shin Hyuk Kang
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu 06973, South Korea
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| |
Collapse
|
13
|
Jia X, Fan X, Chen C, Lu Q, Zhou H, Zhao Y, Wang X, Han S, Ouyang L, Yan H, Dai H, Geng H. Chemical and Structural Engineering of Gelatin-Based Delivery Systems for Therapeutic Applications: A Review. Biomacromolecules 2024; 25:564-589. [PMID: 38174643 DOI: 10.1021/acs.biomac.3c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As a biodegradable and biocompatible protein derived from collagen, gelatin has been extensively exploited as a fundamental component of biological scaffolds and drug delivery systems for precise medicine. The easily engineered gelatin holds great promise in formulating various delivery systems to protect and enhance the efficacy of drugs for improving the safety and effectiveness of numerous pharmaceuticals. The remarkable biocompatibility and adjustable mechanical properties of gelatin permit the construction of active 3D scaffolds to accelerate the regeneration of injured tissues and organs. In this Review, we delve into diverse strategies for fabricating and functionalizing gelatin-based structures, which are applicable to gene and drug delivery as well as tissue engineering. We emphasized the advantages of various gelatin derivatives, including methacryloyl gelatin, polyethylene glycol-modified gelatin, thiolated gelatin, and alendronate-modified gelatin. These derivatives exhibit excellent physicochemical and biological properties, allowing the fabrication of tailor-made structures for biomedical applications. Additionally, we explored the latest developments in the modulation of their physicochemical properties by combining additive materials and manufacturing platforms, outlining the design of multifunctional gelatin-based micro-, nano-, and macrostructures. While discussing the current limitations, we also addressed the challenges that need to be overcome for clinical translation, including high manufacturing costs, limited application scenarios, and potential immunogenicity. This Review provides insight into how the structural and chemical engineering of gelatin can be leveraged to pave the way for significant advancements in biomedical applications and the improvement of patient outcomes.
Collapse
Affiliation(s)
- Xiaoyu Jia
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Xin Fan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Cheng Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Qianyun Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hongfeng Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Yanming Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Sanyang Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Liliang Ouyang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongji Yan
- Department of Medical Cell Biology (MCB), Uppsala University (UU), 751 05 Uppsala, Sweden
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| |
Collapse
|
14
|
Ozhava D, Winkler P, Mao Y. Enhancing antimicrobial activity and reducing cytotoxicity of silver nanoparticles through gelatin nanoparticles. Nanomedicine (Lond) 2024; 19:199-211. [PMID: 38271055 DOI: 10.2217/nnm-2023-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Aim: To develop a novel stabilizing agent for silver nanoparticles (AgNPs) with the aim of enhancing its antibacterial efficacy against wound associated pathogens while mitigating their cytotoxic effect on human cells. Materials & methods: In this study, monodispersed gelatin nanoparticles were synthesized to stabilize AgNPs. The stability, antibacterial activity and biocompatibility of the gelatin-stabilized AgNPs (Gel-AgNPs) were compared with citrate-stabilized AgNPs (citrate-AgNPs) or silver ions. Results & conclusion: Gelatin-stabilized AgNPs showed significantly better antibacterial activities compared with citrate-stabilized AgNPs against both Gram-positive and Gram-negative bacteria. These Gel-AgNPs showed significantly lower cytotoxicity to human dermal fibroblasts compared with Ag+. These findings provided the first evidence substantiating a novel functionality of gelatin nanoparticles in both stabilizing and enhancing the activity of AgNPs.
Collapse
Affiliation(s)
- Derya Ozhava
- Department of Chemistry & Chemical Biology, Laboratory for Biomaterials Research, Rutgers University, 145 Bevier Rd, Piscataway, NJ 08854, USA
- Department of Chemistry & Chemical Processing Technologies, Cumra Vocational School, Selcuk University, Konya, 42130, Türkiye
| | - Petras Winkler
- Department of Chemistry & Chemical Biology, Laboratory for Biomaterials Research, Rutgers University, 145 Bevier Rd, Piscataway, NJ 08854, USA
| | - Yong Mao
- Department of Chemistry & Chemical Biology, Laboratory for Biomaterials Research, Rutgers University, 145 Bevier Rd, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Madkhali OA. Drug Delivery of Gelatin Nanoparticles as a Biodegradable Polymer for the Treatment of Infectious Diseases: Perspectives and Challenges. Polymers (Basel) 2023; 15:4327. [PMID: 37960007 PMCID: PMC10648051 DOI: 10.3390/polym15214327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, there has been a growing interest in the use of gelatin nanoparticles (GNPs) for the treatment of infectious diseases. The inherent properties of these nanoparticles make them attractive options for drug delivery. Their biocompatibility ensures that they can interact with biological systems without causing adverse reactions, while their biodegradability ensures that they can break down harmlessly in the body once their function is performed. Furthermore, their capacity for controlled drug release ensures that therapeutic agents can be delivered over a sustained period, thereby enhancing treatment efficacy. This review examines the current landscape of GNP-based drug delivery, with a specific focus on its potential applications and challenges in the context of infectious diseases. Key challenges include controlling drug release rates, ensuring nanoparticle stability under physiological conditions, scaling up production while maintaining quality, mitigating potential immunogenic reactions, optimizing drug loading efficiency, and tracking the biodistribution and clearance of GNPs in the body. Despite these hurdles, GNPs hold promising potential in the realm of infectious disease treatment. Ongoing research and innovation are essential to overcome these obstacles and completely harness the potential of GNPs in clinical applications.
Collapse
Affiliation(s)
- Osama A Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45124, Saudi Arabia
| |
Collapse
|
16
|
Tincu (Iurciuc) CE, Andrițoiu CV, Popa M, Ochiuz L. Recent Advancements and Strategies for Overcoming the Blood-Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers (Basel) 2023; 15:3969. [PMID: 37836018 PMCID: PMC10575401 DOI: 10.3390/polym15193969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant tumor, and the most prevalent primary malignant tumor affecting the brain and central nervous system. Recent research indicates that the genetic profile of GBM makes it resistant to drugs and radiation. However, the main obstacle in treating GBM is transporting drugs through the blood-brain barrier (BBB). Albumin is a versatile biomaterial for the synthesis of nanoparticles. The efficiency of albumin-based delivery systems is determined by their ability to improve tumor targeting and accumulation. In this review, we will discuss the prevalence of human glioblastoma and the currently adopted treatment, as well as the structure and some essential functions of the BBB, to transport drugs through this barrier. We will also mention some aspects related to the blood-tumor brain barrier (BTBB) that lead to poor treatment efficacy. The properties and structure of serum albumin were highlighted, such as its role in targeting brain tumors, as well as the progress made until now regarding the techniques for obtaining albumin nanoparticles and their functionalization, in order to overcome the BBB and treat cancer, especially human glioblastoma. The albumin drug delivery nanosystems mentioned in this paper have improved properties and can overcome the BBB to target brain tumors.
Collapse
Affiliation(s)
- Camelia-Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Apitherapy Medical Center, Balanesti, Nr. 336-337, 217036 Gorj, Romania;
- Specialization of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad, Liviu Rebreanu Street, 86, 310045 Arad, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| |
Collapse
|
17
|
Milano F, Masi A, Madaghiele M, Sannino A, Salvatore L, Gallo N. Current Trends in Gelatin-Based Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051499. [PMID: 37242741 DOI: 10.3390/pharmaceutics15051499] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Gelatin is a highly versatile natural polymer, which is widely used in healthcare-related sectors due to its advantageous properties, such as biocompatibility, biodegradability, low-cost, and the availability of exposed chemical groups. In the biomedical field, gelatin is used also as a biomaterial for the development of drug delivery systems (DDSs) due to its applicability to several synthesis techniques. In this review, after a brief overview of its chemical and physical properties, the focus is placed on the commonly used techniques for the development of gelatin-based micro- or nano-sized DDSs. We highlight the potential of gelatin as a carrier of many types of bioactive compounds and its ability to tune and control select drugs' release kinetics. The desolvation, nanoprecipitation, coacervation, emulsion, electrospray, and spray drying techniques are described from a methodological and mechanistic point of view, with a careful analysis of the effects of the main variable parameters on the DDSs' properties. Lastly, the outcomes of preclinical and clinical studies involving gelatin-based DDSs are thoroughly discussed.
Collapse
Affiliation(s)
- Francesca Milano
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Typeone Biomaterials Srl, Via Europa 113, 73021 Calimera, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
18
|
de Liyis BG, Sutedja JC, Kesuma PMI, Liyis S, Widyadharma IPE. A review of literature on Compound 21-loaded gelatin nanoparticle: a promising nose-to-brain therapy for multi-infarct dementia. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-023-00621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AbstractMulti-infarct dementia (MID) is described as a chronic progressive decline in cortical cognitive function due to the occurrence of multiple infarcts in the cerebral vascularization throughout the gray and white matter. Current therapies of MID mostly focus only on slowing down MID progression and symptomatic medications. A novel therapy which is able to provide both preventive and curative properties for MID is of high interest. The purpose of this review is to identify the potential of Compound 21 (C21) gelatin nanoparticle through the nose-to-brain route as therapy for MID. C21, an angiotensin II type 2 receptor (AT2R) agonist, has shown to reduce the size of cerebral infarct in rodent models, resulting in the preservation and improvement of overall cognitive function and prevention of secondary neurodegenerative effects. It is also shown that C21 decreases neuronal apoptosis, improves damaged axons, and encourage synapse development. The challenge remains in preventing systemic AT2R activation and increasing its low oral bioavailability which can be overcome through nose-to-brain administration of C21. Nose-to-brain drug delivery of C21 significantly increases drug efficiency and limits C21 exposure in order to specifically target the multiple infarcts located in the cerebral cortex. Adhering C21 onto gelatin nanoparticles may enable longer contact time with the olfactory and the trigeminal nerve endings, increasing the potency of C21. In summary, treatment of C21 gelatin nanoparticle through nose-to-brain delivery shows high potential as therapy for vascular dementia. However, clinical trials must be further studied in order to test the safety and efficacy of C21.
Collapse
|
19
|
The Effect of Elasticity of Gelatin Nanoparticles on the Interaction with Macrophages. Pharmaceutics 2023; 15:pharmaceutics15010199. [PMID: 36678828 PMCID: PMC9861130 DOI: 10.3390/pharmaceutics15010199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Gelatin is a biocompatible, biodegradable, cheap, and nontoxic material, which is already used for pharmaceutical applications. Nanoparticles from gelatin (GNPs) are considered a promising delivery system for hydrophilic and macromolecular drugs. Mechanical properties of particles are recognized as an important parameter affecting drug carrier interaction with biological systems. GNPs offer the preparation of particles with different stiffness. GNPs were loaded with Fluorescein isothiocyanate-labeled 150 kDa dextran (FITC-dextran) yielding also different elastic properties. GNPs were visualized using atomic force microscopy (AFM), and force-distance curves from the center of the particles were evaluated for Young's modulus calculation. The prepared GNPs have Young's moduli from 4.12 MPa for soft to 9.8 MPa for stiff particles. Furthermore, cytokine release (IL-6 and TNF-α), cell viability, and cell uptake were determined on macrophage cell lines from mouse (RAW 264.7) and human (dTHP-1 cells, differentiated human monocytic THP-1 cells) origin for soft and stiff GNPs. Both particle types showed good cell compatibility and did not induce IL-6 and TNF-α release from RAW 264.7 and dTHP-1 cells. Stiffer GNPs were internalized into cells faster and to a larger extent.
Collapse
|
20
|
Cuevas-Corona MC, Lopez-Romero JM, Manzano-Ramírez A, Esparza R, Zavala-Arce RE, Gimenez AJ, Luna-Bárcenas G. Gelatin-Coated Magnetic Nanowires for High-Sensitivity Optical Labels. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:15. [PMID: 36615923 PMCID: PMC9824333 DOI: 10.3390/nano13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The encapsulation of magnetic nickel nanowires (NiNWs) with gelatin is proposed as an alternative for optical label detection. Magnetic nanowires can be detected at very low concentrations using light-scattering methods. This detection capacity could be helpful in applications such as transducers for molecular and biomolecular sensors; however, potential applications require the attachment of specific binding molecules to the nanowire structure. In the present study, a method is presented which is helpful in coating magnetic nanowires with gelatin, a material with the potential to handle specific decoration and functionalization of the nanowires; in the first case, silver nanoparticles (AgNPs) are efficiently used to decorate the nanowires. Furthermore, it is shown that the synthesized gelatin-coated particles have excellent detectability to the level of 140 pg/mL; this level of detection outperforms more complex techniques such as ICP-OES (~3 ng/mL for Ni) and magnetoresistance sensing (~10 ng/mL for magnetic nanoparticles).
Collapse
Affiliation(s)
- M. Charbel Cuevas-Corona
- Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav Querétaro, Querétaro 76230, Mexico
| | - J. Mauricio Lopez-Romero
- Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav Querétaro, Querétaro 76230, Mexico
| | - Alejandro Manzano-Ramírez
- Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav Querétaro, Querétaro 76230, Mexico
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada, UNAM, Querétaro 76230, Mexico
| | - Rosa E. Zavala-Arce
- National Technological Institute of Mexico, Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Metepec 52149, Mexico
| | - Alejandro J. Gimenez
- Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav Querétaro, Querétaro 76230, Mexico
| | - Gabriel Luna-Bárcenas
- Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav Querétaro, Querétaro 76230, Mexico
| |
Collapse
|
21
|
Davoudi S, Marahel F. Determination of Sulfacetamide in Blood and Urine Using PBS Quantum Dots Sensor and Artificial Neural Networks. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822110041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Recent Trends in Drug Delivery and Emerging Biomedical Applications of Gelatin for Ophthalmic Indications. Macromol Res 2022. [DOI: 10.1007/s13233-022-0078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Wang C, Wu J, Wang C, Mu C, Ngai T, Lin W. Advances in Pickering emulsions stabilized by protein particles: Toward particle fabrication, interaction and arrangement. Food Res Int 2022; 157:111380. [DOI: 10.1016/j.foodres.2022.111380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
|
24
|
Danışman-Kalındemirtaş F, Kariper İA, Erdemir G, Sert E, Erdem-Kuruca S. Evaluation of anticancer effects of carboplatin-gelatin nanoparticles in different sizes synthesized with newly self-assembly method by exposure to IR light. Sci Rep 2022; 12:10686. [PMID: 35739313 PMCID: PMC9226150 DOI: 10.1038/s41598-022-15051-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Carboplatin (CP), a platinum analog, is one of the most widely used chemotherapeutic agents in the treatment of colorectal cancer. Although platinum-based drugs are quite effective in anticancer treatments, their use in a wide spectrum and effective treatment possibilities are limited due to their systemic side effects and drug resistance development. In recent years, studies have focused on increasing the therapeutic efficacy of platinum-based drugs with drug delivery systems. Gelatin, a protein, obtained by the hydrolysis of collagen, is a biocompatible and biodegradable material that can be used in nano drug delivery systems. In this study, CP-loaded gelatin-based NPs (CP-NPs) were exposed to IR light in different temperatures at 30, 35, 40, 45, and 50 °C and characterized by FESEM-EDX, FTIR, UV–Vis, DLS. Accordingly, we synthesized gelatin-based CP-NPs of different sizes between 10–290 nm by exposure to IR. We found that CP-NPs-50, 16 nm nano-sized, obtained at 50 °C had the most cytotoxicity and was 2.2 times more effective than the free drug in HCT 116 colon cancer cells. Moreover, we showed that the cytotoxicity of CP-NPs-50 in normal HUVEC cells was lower. Additionally, we demonstrated that CP-NPs enhanced apoptotic activity while not developing MDR1-related resistance in colon cancer cells. In this study, for the first time drug loaded gelatin-based nanoparticles were synthesized in different sizes with a newly self-assembly method by exposing them to infrared light at different temperatures and their anticancer effects were evaluated subsequently.
Collapse
Affiliation(s)
| | - İshak Afşin Kariper
- Department of Science Education, Education Faculty, Erciyes University, 38039, Kayseri, Turkey.
| | - Gökçe Erdemir
- Aziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, 34390, Istanbul, Turkey.,Molecular Cancer Research Center (ISUMKAM), Istinye University, 34010, Istanbul, Turkey
| | - Esra Sert
- Department of Hematology, Istanbul Faculty of Medicine, Istanbul University, 34390, Istanbul, Turkey
| | - Serap Erdem-Kuruca
- Department of Hematology, Istanbul Faculty of Medicine, Istanbul University, 34390, Istanbul, Turkey
| |
Collapse
|
25
|
Schrade S, Ritschl L, Süss R, Schilling P, Seidenstuecker M. Gelatin Nanoparticles for Targeted Dual Drug Release out of Alginate-di-Aldehyde-Gelatin Gels. Gels 2022; 8:365. [PMID: 35735709 PMCID: PMC9222291 DOI: 10.3390/gels8060365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
The aim of the present work was to develop a dual staged drug release of an antibiotic (clindamycin) and a growth factor: bone morphogenetic protein-2 (BMP-2) from a biodegradable system consisting of hydrogel and gelatin nanoparticles (GNP). Two-step de-solvation allowed us to prepare GNPs (~100 nm) as drug carriers. Fluorescein isothiocyanate (FITC)-conjugated protein A was used as a model substance for BMP-2. A 28-day release experiment was performed to determine the release kinetics from GNP for both FITC-protein A and BMP-2, and for clindamycin (CLI) from the hydrogel. The size, structure, and overall morphology of GNP samples (empty, loaded with FITC-protein A and BMP-2) were examined using an environmental scanning electron microscope (ESEM). Cell culture assays (Live/dead; cell proliferation; cytotoxicity) were performed with MG-63 cells and BMP-2-loaded GNPs. Drug release experiments using clindamycin-loaded alginate-di-aldehyde (ADA) gelatin gels containing the drug-loaded GNPs were performed for 28 days. The resulting GNPs showed an empty size of 117 ± 29 nm, 176 ± 15 nm and 216 ± 36 nm when containing 2% FITC-protein A and 1% BMP-2, respectively. No negative effects of BMP-2-loaded GNPs on MG-63 cells were observed in live/dead staining. In the proliferation assay, an increase in cell proliferation was observed for both GNPs (GNP + BMP-2 and controls). The cytotoxicity assay continuously showed very low cytotoxicity for GNPs (empty; loaded). Clindamycin release showed a concentration of 25-fold higher than the minimum inhibitory concentration (MIC) against Staphylococcus aureus throughout the 28 day period. BMP-2 showed a reduced burst release and a steady release (~2 µg/mL) over a 28 day period.
Collapse
Affiliation(s)
- Sophie Schrade
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center—Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (S.S.); (L.R.); (P.S.)
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany;
| | - Lucas Ritschl
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center—Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (S.S.); (L.R.); (P.S.)
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany;
| | - Pia Schilling
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center—Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (S.S.); (L.R.); (P.S.)
| | - Michael Seidenstuecker
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center—Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (S.S.); (L.R.); (P.S.)
| |
Collapse
|
26
|
Multifunctional Gelatin-Nanoparticle-Modified Chip for Enhanced Capture and Non-Destructive Release of Circulating Tumor Cells. MICROMACHINES 2022; 13:mi13030395. [PMID: 35334686 PMCID: PMC8955365 DOI: 10.3390/mi13030395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023]
Abstract
Circulating tumor cells (CTCs) in cancer patients’ peripheral blood have been demonstrated to be a significant biomarker for metastasis detection, disease prognosis, and therapy response. Due to their extremely low concentrations, efficient enrichment and non-destructive release are needed. Herein, an FTO chip modified with multifunctional gelatin nanoparticles (GNPs) was designed for the specific capture and non-destructive release of CTCs. These nanoparticles share a similar dimension with the microvilli and pseudopodium of the cellular surface; thus, they can enhance adhesion to CTCs, and then GNPs can be degraded by the enzyme matrix metalloproteinase (MMP-9), gently releasing the captured cells. In addition, the transparency of the chip makes it possible for fluorescence immunoassay identification in situ under a microscope. Our chip attained a high capture efficiency of 89.27%, a release efficiency of 91.98%, and an excellent cellular viability of 96.91% when the concentration of MMP-9 was 0.2 mg/mL. Moreover, we successfully identified CTCs from cancer patients’ blood samples. This simple-to-operate, low-cost chip exhibits great potential for clinical application.
Collapse
|
27
|
Wang JH, Tseng CL, Lin FL, Chen J, Hsieh EH, Lama S, Chuang YF, Kumar S, Zhu L, McGuinness MB, Hernandez J, Tu L, Wang PY, Liu GS. Topical application of TAK1 inhibitor encapsulated by gelatin particle alleviates corneal neovascularization. Theranostics 2022; 12:657-674. [PMID: 34976206 PMCID: PMC8692906 DOI: 10.7150/thno.65098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022] Open
Abstract
Rationale: Corneal neovascularization (CoNV) is a severe complication of various types of corneal diseases, that leads to permanent visual impairment. Current treatments for CoNV, such as steroids or anti-vascular endothelial growth factor agents, are argued over their therapeutic efficacy and adverse effects. Here, we demonstrate that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) plays an important role in the pathogenesis of CoNV. Methods: Angiogenic activities were assessed in ex vivo and in vitro models subjected to TAK1 inhibition by 5Z-7-oxozeaenol, a selective inhibitor of TAK1. RNA-Seq was used to examine pathways that could be potentially affected by TAK1 inhibition. A gelatin-nanoparticles-encapsulated 5Z-7-oxozeaenol was developed as the eyedrop to treat CoNV in a rodent model. Results: We showed that 5Z-7-oxozeaenol reduced angiogenic processes through impeding cell proliferation. Transcriptome analysis suggested 5Z-7-oxozeaenol principally suppresses cell cycle and DNA replication, thereby restraining cell proliferation. In addition, inhibition of TAK1 by 5Z-7-oxozeaenol blocked TNFα-mediated NFκB signalling, and its downstream genes related to angiogenesis and inflammation. 5Z-7-oxozeaenol also ameliorated pro-angiogenic activity, including endothelial migration and tube formation. Furthermore, topical administration of the gelatin-nanoparticles-encapsulated 5Z-7-oxozeaenol led to significantly greater suppression of CoNV in a mouse model compared to the free form of 5Z-7-oxozeaenol, likely due to extended retention of 5Z-7-oxozeaenol in the cornea. Conclusion: Our study shows the potential of TAK1 as a therapeutic target for pathological angiogenesis, and the gelatin nanoparticle coupled with 5Z-7-oxozeaenol as a promising new eyedrop administration model in treatment of CoNV.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Fan-Li Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinying Chen
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Erh-Hsuan Hsieh
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Suraj Lama
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yu-Fan Chuang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Satheesh Kumar
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Linxin Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Myra B. McGuinness
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Jessika Hernandez
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Leilei Tu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
- Aier Eye Institute, Changsha, Hunan, China
| |
Collapse
|
28
|
Zhuang P, Greenberg Z, He M. Biologically enhanced starch bio-ink for promoting 3D cell growth. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2100551. [PMID: 34926789 PMCID: PMC8680409 DOI: 10.1002/admt.202100551] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 06/14/2023]
Abstract
The excellent rheological property has legitimated the suitability of starch hydrogel for extrusion-based 3D printing. However, the inability to promote cell attachment and migration has precluded the non-modified starch hydrogel from direct applications in the biomedical field. Herein, we develop a novel 3D printable nanocomposite starch hydrogel with highly enhanced biocompatibility for promoting 3D cell growth, by formulating with gelatin nanoparticles and collagen. The rheological evaluation reveals the shear-thinning and thixotropic properties of the starch-based hydrogel, as well as the combinatorial effect of collagen and gelatin nanoparticles on maintaining the printability and 3D shape fidelity. The homogeneous microporous structure with abundant collagen fibers and gelatin nanoparticles interlaced and supplies rich attachment sites for cell growth. Corroborated by the cell metabolic activity study, the multiplied proliferation rate of cells on the 3D printed nanocomposite starch hydrogel scaffold confirms the remarkable enhancement of biological function of developed starch hydrogel. Hence, the developed nanocomposite starch hydrogel serves as a highly desirable bio-ink for advancing 3D tissue engineering.
Collapse
Affiliation(s)
- Pei Zhuang
- Department of Pharmaceutics, University of Florida, 2033 Mowry Rd, Gainesville, Florida, 32608, USA
| | - Zachary Greenberg
- Department of Pharmaceutics, University of Florida, 2033 Mowry Rd, Gainesville, Florida, 32608, USA
| | - Mei He
- Department of Pharmaceutics, University of Florida, 2033 Mowry Rd, Gainesville, Florida, 32608, USA
| |
Collapse
|
29
|
Hornok V. Serum Albumin Nanoparticles: Problems and Prospects. Polymers (Basel) 2021; 13:3759. [PMID: 34771316 PMCID: PMC8586933 DOI: 10.3390/polym13213759] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
The present paper aims to summarize the results regarding serum albumin-based nanoparticles (NPs) for drug delivery purposes. In particular, it focuses on the relationship between their preparation techniques and synthesis parameters, as well as their successful clinical application. In spite of the huge amount of consumed material and immaterial sources and promising possibilities, products made from different types of albumin NPs, with the exception of a few, still have not been invented. In the present paper, promising applications of serum albumin nanoparticles (SANPs) for different biomedical purposes, such as carriers, delivery systems and contrast agents, are also discussed. The most frequent utilization of the NPs for certain diseases, i.e., cancer therapy, and future prospects are also detailed in this study.
Collapse
Affiliation(s)
- Viktória Hornok
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Square 1, H-6720 Szeged, Hungary; ; Tel.: +36-62-544211
- MTA Premium Post Doctoral Research Program, Rerrich B. Square 1, H-6720 Szeged, Hungary
| |
Collapse
|
30
|
A Freezing and Thawing Method for Fabrication of Small Gelatin Nanoparticles with Stable Size Distributions for Biomedical Applications. Tissue Eng Regen Med 2021; 19:301-307. [PMID: 34564836 DOI: 10.1007/s13770-021-00380-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Gelatin, a natural polymer, has a number of advantages as a material for fabricating nanoparticles, such as its hydrophilicity, biodegradability, nontoxicity, and biocompatibility, as well as low cost. Despite these various advantages, gelatin-based nanoparticles still have critical limitation for biomedical applications due to their relatively larger size than those of other materials. METHODS In this study, a new strategy to design and fabricate small gelatin nanoparticles (GNPs) was proposed. The technique was based on the natural phenomenon where with decreasing temperature, the compression between the molecules of substances increases and the volume shrinks. RESULTS The average size of the fabricated small GNPs was less than 100 nm and their gelatin properties (including non-cytotoxicity) were well maintained. The drug release profiles of the GNPs were confirmed, for which a simple mathematical model based on the conventional diffusion equation was proposed. There was a burst of drug release in the first 3 days, with different release profiles according to the concentration of model drugs loaded onto the GNPs. It was also demonstrated that the drug release profiles of the proposed mathematical model were consistent with the experimental results. CONCLUSION Our work proposes that these small GNPs could be used as efficient drug and gene delivery and tissue engineering platforms for various biomedical applications.
Collapse
|
31
|
Khramtsov P, Burdina O, Lazarev S, Novokshonova A, Bochkova M, Timganova V, Kiselkov D, Minin A, Zamorina S, Rayev M. Modified Desolvation Method Enables Simple One-Step Synthesis of Gelatin Nanoparticles from Different Gelatin Types with Any Bloom Values. Pharmaceutics 2021; 13:1537. [PMID: 34683829 PMCID: PMC8541285 DOI: 10.3390/pharmaceutics13101537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Abstract
Gelatin nanoparticles found numerous applications in drug delivery, bioimaging, immunotherapy, and vaccine development as well as in biotechnology and food science. Synthesis of gelatin nanoparticles is usually made by a two-step desolvation method, which, despite providing stable and homogeneous nanoparticles, has many limitations, namely complex procedure, low yields, and poor reproducibility of the first desolvation step. Herein, we present a modified one-step desolvation method, which enables the quick, simple, and reproducible synthesis of gelatin nanoparticles. Using the proposed method one can prepare gelatin nanoparticles from any type of gelatin with any bloom number, even with the lowest ones, which remains unattainable for the traditional two-step technique. The method relies on quick one-time addition of poor solvent (preferably isopropyl alcohol) to gelatin solution in the absence of stirring. We applied the modified desolvation method to synthesize nanoparticles from porcine, bovine, and fish gelatin with bloom values from 62 to 225 on the hundreds-of-milligram scale. Synthesized nanoparticles had average diameters between 130 and 190 nm and narrow size distribution. Yields of synthesis were 62-82% and can be further increased. Gelatin nanoparticles have good colloidal stability and withstand autoclaving. Moreover, they were non-toxic to human immune cells.
Collapse
Affiliation(s)
- Pavel Khramtsov
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Oksana Burdina
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Sergey Lazarev
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Anastasia Novokshonova
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Maria Bochkova
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Valeria Timganova
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
| | - Dmitriy Kiselkov
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Institute of Technical Chemistry, 614013 Perm, Russia;
| | - Artem Minin
- Lab of Applied Magnetism, M.N. Mikheev Institute of Metal Physics of the UB RAS, 620108 Yekaterinburg, Russia;
- Faculty of Biology and Fundamental Medicine, Ural Federal University Named after The First President of Russia B.N. Yeltsin, 620002 Yekaterinburg, Russia
| | - Svetlana Zamorina
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| | - Mikhail Rayev
- Perm Federal Research Center of the Ural Branch of The Russian Academy of Sciences, Lab of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms, 614081 Perm, Russia; (M.B.); (V.T.); (S.Z.); (M.R.)
- Department of Biology, Perm State University, 614068 Perm, Russia; (O.B.); (S.L.); (A.N.)
| |
Collapse
|
32
|
Marahel F, Niknam L. Enhanced fluorescent sensing probe via PbS quantum dots functionalized with gelatin for sensitive determination of toxic bentazon in water samples. Drug Chem Toxicol 2021; 45:2545-2553. [PMID: 34384317 DOI: 10.1080/01480545.2021.1963761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fluorescent chemical sensors to detect materials, by increasing fluorescence emission and absorption or by shutting down, because they are nondestructive, the ability to show decomposed concentrations, fast response, high accuracy have been considered and used. In this research, a chemical sensor was synthesized PbS functionalized with gelatin quantum dots for the determination of toxic bentazon (BTZN) one of the most problematic pesticides polluting in water samples, and extremely harmful to humans and animals even at low concentrations. The calibration curve was linear in the range of (0.05 to 200.0 ng mL-1). The current response was linearly proportional to the BTZN concentration with a R2∼ 0.999. The standard deviation of less than (3%), and detection limits (3S/m) of the method (0.5 ng mL-1, in time 50 s, 325 nm) were obtained for sensor level response PbS Quantum Dot-Gelatin nanocomposites sensor with (99%) which is below the U.S. Health Advisory level. The observed outcomes confirmed the suitability recovery and a very low detection limit for measuring the BTZN. The method fluorometric introduced to measure BTZN in water samples was used and can be used for in different intricate matrices, the chemical PbS Quantum Dot-Gelatin nanocomposites sensor made it possible as an excellent sensor with good reproducibility.
Collapse
Affiliation(s)
- Farzaneh Marahel
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | - Leila Niknam
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| |
Collapse
|
33
|
Vinjamuri BP, Papachrisanthou K, Haware RV, Chougule MB. Gelatin solution pH and incubation time influences the size of the nanoparticles engineered by desolvation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Lan H, Li P, Wang H, Wang M, Jiang C, Hou Y, Li P, Jason Niu Q. Construction of a gelatin scaffold with water channels for preparing a high performance nanofiltration membrane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Teijeiro-Valiño C, González Gómez MA, Yáñez S, García Acevedo P, Arnosa Prieto A, Belderbos S, Gsell W, Himmelreich U, Piñeiro Y, Rivas J. Biocompatible magnetic gelatin nanoparticles with enhanced MRI contrast performance prepared by single-step desolvation method. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abf58e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
Magnetic nanoparticles are versatile materials that have boosted the development of different biomedical applications, being superparamagnetic magnetite nanoparticles a milestone in the field, after achieving clinical approval as contrast agents in magnetic resonance imaging (Feridex®), magnetic hyperthermia agents for oncological treatments (NanoTherm®), or iron deficiency supplement (Feraheme®). However, its potential as theragnostic agent could be further expanded by its encapsulation within a biodegradable hydrogel, capable of enhancing the biocompatibility and loading abilities, to simultaneously carry drugs, radiotracers, or biomolecules. Gelatin, is a natural biopolymer with optimal in vivo feature and gelling capacity that has been extensively used for decades in pharmaceuticals. In this work, we have addressed the preparation of gelatin nanoparticles, bare and loaded with magnetite nanoparticles, with controlled size to be used as contrast agents in magnetic resonance imaging. The main formulation parameters influencing the preparation of gelatin nanoparticles with controlled size by single-step desolvation method, were studied and optimized, to produce small gelatin nanoparticles (97nm) and highly loaded (38% w/w) Fe3O4@citrate gelatin nanoparticles (150 nm) with high magnetic response (65emus/g). The viability assays of the magnetic gelatin nanoparticles, tested with mesenchymal stem cells, showed negligible toxicity and in vitro magnetic resonance imaging tests, performed in agar phantoms, revealed a good contrast for T2 weighting MRI, r2 = 265.5(mM−1 s−1), superior to commercial products, such as Resovist or Endorem.
Collapse
|
36
|
Khramtsov P, Kalashnikova T, Bochkova M, Kropaneva M, Timganova V, Zamorina S, Rayev M. Measuring the concentration of protein nanoparticles synthesized by desolvation method: Comparison of Bradford assay, BCA assay, hydrolysis/UV spectroscopy and gravimetric analysis. Int J Pharm 2021; 599:120422. [PMID: 33647407 DOI: 10.1016/j.ijpharm.2021.120422] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/04/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Abstract
The desolvation technique is one of the most popular methods for preparing protein nanoparticles for medicine, biotechnology, and food applications. We fabricated 11 batches of BSA nanoparticles and 2 batches of gelatin nanoparticles by desolvation method. BSA nanoparticles from 2 batches were cross-linked by heating at +70 °C for 2 h; other nanoparticles were stabilized by glutaraldehyde. We compared several analytical approaches to measuring their concentration: gravimetric analysis, bicinchoninic acid assay, Bradford assay, and alkaline hydrolysis combined with UV spectroscopy. We revealed that the cross-linking degree and method of cross-linking affect both Bradford and BCA assay. Direct measurement of protein concentration in the suspension of purified nanoparticles by dye-binding assays can lead to significant (up to 50-60%) underestimation of nanoparticle concentration. Quantification of non-desolvated protein (indirect method) is affected by the presence of small nanoparticles in supernatants and can be inaccurate when the yield of desolvation is low. The reaction of cross-linker with protein changes UV absorbance of the latter. Therefore pure protein solution is an inappropriate calibrator when applying UV spectroscopy for the determination of nanoparticle concentration. Our recommendation is to determine the concentration of protein nanoparticles by at least two different methods, including gravimetric analysis.
Collapse
Affiliation(s)
- Pavel Khramtsov
- Department of Biology, Perm State University, 614068, 15 Bukirev str., Perm, Russia; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia.
| | - Tatyana Kalashnikova
- Department of Biology, Perm State University, 614068, 15 Bukirev str., Perm, Russia; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| | - Maria Bochkova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| | - Maria Kropaneva
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| | - Valeria Timganova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| | - Svetlana Zamorina
- Department of Biology, Perm State University, 614068, 15 Bukirev str., Perm, Russia; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| | - Mikhail Rayev
- Department of Biology, Perm State University, 614068, 15 Bukirev str., Perm, Russia; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, 614081, 13 Golev str., Perm, Russia
| |
Collapse
|
37
|
El-Sayed N, Korotchenko E, Scheiblhofer S, Weiss R, Schneider M. Functionalized multifunctional nanovaccine for targeting dendritic cells and modulation of immune response. Int J Pharm 2021; 593:120123. [DOI: 10.1016/j.ijpharm.2020.120123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
|
38
|
Shen J, Chen J, Ma J, Fan L, Zhang X, Yue T, Yan Y, Zhang Y. Enhanced lysosome escape mediated by 1,2-dicarboxylic-cyclohexene anhydride-modified poly-l-lysine dendrimer as a gene delivery system. Asian J Pharm Sci 2020; 15:759-776. [PMID: 33363631 PMCID: PMC7750821 DOI: 10.1016/j.ajps.2019.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 12/10/2019] [Indexed: 12/23/2022] Open
Abstract
Antisense oligodeoxynucleotide (ASODN) can directly interfere a series of biological events of the target RNA derived from tumor cells through Watson-Crick base pairing, in turn, plays antitumor therapeutic roles. In the study, a novel HIF-1α ASODN-loaded nanocomposite was formulated to efficiently deliver gene to the target RNA. The physicochemical properties of nanocomposite were characterized using TEM, FTIR, DLS and zeta potentials. The mean diameter of resulting GEL-DGL-FA-ASODN-DCA nanocomposite was about 170-192 nm, and according to the agarose gel retardation assay, the loading amount of ASODN accounted for 166.7 mg/g. The results of cellular uptake showed that the nanocomposite could specifically target to HepG2 and Hela cells. The cytotoxicity assay demonstrated that the toxicity of vectors was greatly reduced by using DCA to reversibly block the cationic DGL. The subcellular distribution images clearly displayed the lysosomal escape ability of the DCA-modified nanocomposite. In vitro exploration of molecular mechanism indicated that the nanocomposite could inhibit mRNA expression and HIF-1α protein translation at different levels. In vivo optical images and quantitative assay testified that the formulation accumulated preferentially in the tumor tissue. In vivo antitumor efficacy research confirmed that this nanocomposite had significant antitumor activity and the tumor inhibitory rate was 77.99%. These results manifested that the GEL-DGL-FA-ASODN-DCA nanocomposite was promising in gene therapeutics for antitumor by interacting directly with target RNA.
Collapse
Affiliation(s)
- Jianmin Shen
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.,Shenzhen Following Precision Medical Research Institute, Shenzhen 518001, China
| | - Jing Chen
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.,Shenzhen Following Precision Medical Research Institute, Shenzhen 518001, China
| | - Jingbo Ma
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.,Shenzhen Following Precision Medical Research Institute, Shenzhen 518001, China
| | - Linlan Fan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoli Zhang
- Shenzhen Following Precision Medical Research Institute, Shenzhen 518001, China
| | - Ting Yue
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.,Shenzhen Following Precision Medical Research Institute, Shenzhen 518001, China
| | - Yaping Yan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuhang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
39
|
In-vitro and ex-vivo characterization of novel mannosylated gelatin nanoparticles of linezolid by quality-by-design approach. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Wang C, Yang L, He Y, Xiao H, Lin W. Microsphere-structured hydrogel crosslinked by polymerizable protein-based nanospheres. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Hickey R, Palmer AF. Synthesis of Hemoglobin-Based Oxygen Carrier Nanoparticles By Desolvation Precipitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14166-14172. [PMID: 33205655 DOI: 10.1021/acs.langmuir.0c01698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hemoglobin (Hb)-based oxygen carriers (HBOCs) present an alternative to red blood cells (RBCs) when blood is not available. However, the most widely used synthesis techniques have fundamental flaws, which may have contributed toward disappointing clinical application. Polymerized Hb contains a heterogeneous distribution of particle size and shape, while Hb encapsulation inside liposomes results in high lipid burden and low Hb content. Meanwhile, there are a variety of other nanoparticle synthetic techniques which, having found success as drug delivery vehicles, may be well suited to function as an HBOC. We synthesized desolvated Hb nanoparticles (Hb-dNPs) with diameters of approximately 250 nm by the controlled precipitation of Hb with ethanol. Oxidized dextran was found to be an effective surface stabilizing agent that maintained particle integrity. In vitro biophysical characterization showed a high-affinity oxygen delivery profile (P50 = 7.72 mm Hg), suggesting a potential for therapeutic use and opening a new avenue for HBOC research.
Collapse
Affiliation(s)
- Richard Hickey
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
42
|
Feng X, Dai H, Ma L, Fu Y, Yu Y, Zhou H, Guo T, Zhu H, Wang H, Zhang Y. Properties of Pickering emulsion stabilized by food-grade gelatin nanoparticles: influence of the nanoparticles concentration. Colloids Surf B Biointerfaces 2020; 196:111294. [DOI: 10.1016/j.colsurfb.2020.111294] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/25/2023]
|
43
|
Girotti A, Escalera-Anzola S, Alonso-Sampedro I, González-Valdivieso J, Arias FJ. Aptamer-Functionalized Natural Protein-Based Polymers as Innovative Biomaterials. Pharmaceutics 2020; 12:E1115. [PMID: 33228250 PMCID: PMC7699523 DOI: 10.3390/pharmaceutics12111115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Biomaterials science is one of the most rapidly evolving fields in biomedicine. However, although novel biomaterials have achieved well-defined goals, such as the production of devices with improved biocompatibility and mechanical properties, their development could be more ambitious. Indeed, the integration of active targeting strategies has been shown to allow spatiotemporal control of cell-material interactions, thus leading to more specific and better-performing devices. This manuscript reviews recent advances that have led to enhanced biomaterials resulting from the use of natural structural macromolecules. In this regard, several structural macromolecules have been adapted or modified using biohybrid approaches for use in both regenerative medicine and therapeutic delivery. The integration of structural and functional features and aptamer targeting, although still incipient, has already shown its ability and wide-reaching potential. In this review, we discuss aptamer-functionalized hybrid protein-based or polymeric biomaterials derived from structural macromolecules, with a focus on bioresponsive/bioactive systems.
Collapse
Affiliation(s)
- Alessandra Girotti
- BIOFORGE Research Group (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain
| | - Sara Escalera-Anzola
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| | - Irene Alonso-Sampedro
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| | - Juan González-Valdivieso
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| | - Francisco. Javier Arias
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| |
Collapse
|
44
|
Gelatin Microsphere for Cartilage Tissue Engineering: Current and Future Strategies. Polymers (Basel) 2020; 12:polym12102404. [PMID: 33086577 PMCID: PMC7603179 DOI: 10.3390/polym12102404] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
The gelatin microsphere (GM) provides an attractive option for tissue engineering due to its versatility, as reported by various studies. This review presents the history, characteristics of, and the multiple approaches to, the production of GM, and in particular, the water in oil emulsification technique. Thereafter, the application of GM as a drug delivery system for cartilage diseases is introduced. The review then focusses on the emerging application of GM as a carrier for cells and biologics, and biologics delivery within a cartilage construct. The influence of GM on chondrocytes in terms of promoting chondrocyte proliferation and chondrogenic differentiation is highlighted. Furthermore, GM seeded with cells has been shown to have a high tendency to form aggregates; hence the concept of using GM seeded with cells as the building block for the formation of a complex tissue construct. Despite the advancement in GM research, some issues must still be addressed, particularly the improvement of GM’s ability to home to defect sites. As such, the strategy of intraarticular injection of GM seeded with antibody-coated cells is proposed. By addressing this in future studies, a better-targeted delivery system, that would result in more effective intervention, can be achieved.
Collapse
|
45
|
Pineda-Álvarez RA, Bernad-Bernad MJ, Rodríguez-Cruz IM, Escobar-Chávez JJ. Development and Characterization of Starch/Gelatin Microneedle Arrays Loaded with Lecithin–Gelatin Nanoparticles of Losartan for Transdermal Delivery. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09494-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
de Souza C, Carvalho JA, Abreu AS, de Paiva LP, Ambrósio JAR, Junior MB, de Oliveira MA, Mittmann J, Simioni AR. Polyelectrolytic gelatin nanoparticles as a drug delivery system for the promastigote form of Leishmania amazonensis treatment. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:1-21. [PMID: 32847485 DOI: 10.1080/09205063.2020.1815495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, phthalocianato[bis(dimethylaminoethanoxy)] silicon (NzPC) was loaded onto gelatin nanoparticles functionalized with polyelectrolytes (polystyrene sulfonate/polyallylamine hydrochloride) by layer-by-layer (LbL) assembly for photodynamic therapy (PDT) application in promastigote form of Leishmania amazonensis treatment. The process yield, and encapsulation efficiency were 80.0% ± 1.8 and EE = 87.0% ± 1.1, respectively. The polyelectrolytic gelatin nanoparticles (PGN) had a mean diameter of 437.4 ± 72.85 nm, narrow distribution size with a polydispersity index of 0.086. The obvious switching of zeta potential indicates successful alternating deposition of the polyanion PSS and polycation PAH directly on the gelatin nanoparticles. Photosensitizer photophysical properties were shown to be preserved after gelatin nanoparticle encapsulation. The impact of the PDT in the viability and morphology of Leishmania amazonensis promastigote in culture medium was evaluated. The PGN-NzPc presented low toxicity at the dark and the PDT was capable of decreasing the viability in more than 80% in 0.1 µmol.L-1 concentration tested. The PDT also triggered significant morphological alterations in the Leishmania promastigotes. These results reinforce the idea that the use of PGN as photosensitizers carriers is useful for PDT of Leishmania promastigotes.
Collapse
Affiliation(s)
- Catarina de Souza
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, SP, Brazil
| | - Janicy A Carvalho
- Departament of Chemistry, Center of Nanotechnology and Tissue Engineering- Photobiology and Photomedicine (CNET), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alexandro S Abreu
- Departament of Chemistry, Center of Nanotechnology and Tissue Engineering- Photobiology and Photomedicine (CNET), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas P de Paiva
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, SP, Brazil
| | - Jéssica A R Ambrósio
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, SP, Brazil
| | - Milton Beltrame Junior
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, SP, Brazil
| | - Marco A de Oliveira
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, SP, Brazil
| | - Josane Mittmann
- Distance Education Coordination, Vila Velha University, Vila Velha, ES, Brazil
| | - Andreza R Simioni
- Organic Synthesis Laboratory, Research and Development Institute - IPD, Vale do Paraíba University, São José dos Campos, SP, Brazil
| |
Collapse
|
47
|
Yang XJ, Wang FQ, Lu CB, Zou JW, Hu JB, Yang Z, Sang HX, Zhang Y. Modulation of bone formation and resorption using a novel zoledronic acid loaded gelatin nanoparticles integrated porous titanium scaffold: an in vitro and in vivo study. ACTA ACUST UNITED AC 2020; 15:055013. [PMID: 32252046 DOI: 10.1088/1748-605x/ab8720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Osteoporotic bone defects are a major challenge in clinics for bone regeneration. With the condition of osteoporosis, excessive bone absorption and impaired osteogenesis result in unexpectedly long healing procedures for defects. In order to simultaneously enhance bone formation and reduce bone resorption, a polydopamine-coated porous titanium scaffold was designed, to be integrated with anti-catabolic drug zoledronic acid nanoparticles (ZOL loaded gelatin NPs), which was able to achieve a local sustained release of ZOL as expected. The in vitro study demonstrated that extracts of the composite scaffolds would stimulate osteoblast differentiation; they also inhibited osteoclastogenesis at a ZOL loading concentration of 50 μmol l-1. In the subsequent in vivo study, the composite scaffolds were implanted into ovariectomy-induced osteoporotic rabbits suffering from femoral condyles defects. The results indicated that the composite scaffolds without ZOL loaded gelatin NPs only induced callus formation, mainly at the interface margin between the implant and bone, whereas the composite scaffolds with ZOL loaded gelatin NPs were capable of further enhancing osteogenesis and bone growth into the scaffolds. Moreover, the research proved that the promoting effect was optimal at a ZOL loading concentration of 50 μmol l-1. In summary, the present research indicated that a new type of porous titanium scaffold integrated with ZOL loaded gelatin NPs inherited a superior biocompatibility and bone regeneration capability. It would be an optimal alternative for the reconstruction of osteoporosis-related defects compared to a traditional porous titanium implant; in other words, the new type of scaffold offers a new effective and practical procedure option for patients suffering from osteoporotic bone defects.
Collapse
Affiliation(s)
- Xiao-Jiang Yang
- Department of Orthopaedic Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China. These four authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ahmed MA, Al-Kahtani HA, Jaswir I, AbuTarboush H, Ismail EA. Extraction and characterization of gelatin from camel skin (potential halal gelatin) and production of gelatin nanoparticles. Saudi J Biol Sci 2020; 27:1596-1601. [PMID: 32489300 PMCID: PMC7254032 DOI: 10.1016/j.sjbs.2020.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 11/15/2022] Open
Abstract
Gelatin is used as an ingredient in both food and non-food industries as a gelling agent, stabilizer, thickener, emulsifier, and film former. Porcine skins, bovine hides, and cattle bones are the most common sources of gelatin. However, mammalian gelatins are rejected by some consumers due to social, cultural, religious, or health-related concerns. In the present study, gelatin was obtained from camel skin as an alternative source using a combination of processing steps. Central composite design combined with response surface methodology was used to achieve high gelatin yields under different extraction conditions: temperatures of 40, 60, and 80 °C; pH values of 1, 4, and 7; and extraction times of 0.5, 2.0, and 3.5 min. Maximum gelatin yield from camel skin (29.1%) was achieved at 71.87 °C and pH 5.26 after 2.58 min. The extracted gelatin samples were characterized for amino acid profile, foaming capacity, film formation, foam stability, and gel strength (Bloom value). Gelatin nanoparticles were produced, and their morphology and zeta potential were determined. Bloom value of the camel skin gelatin was 340 g. Amino acid analysis revealed that the extracted gelatin showed high glycine and proline contents. Analysis of camel skin gelatin nanoparticle and functional properties revealed high suitability for food and non-food applications, with potential use in the growing global halal food market.
Collapse
Affiliation(s)
- Mohammed Asif Ahmed
- Food Science & Nutrition Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Hassan A. Al-Kahtani
- Food Science & Nutrition Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Irwandi Jaswir
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), P.O. Box 10, Kuala Lumpur, Malaysia
| | - Hamza AbuTarboush
- Food Science & Nutrition Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Elsayed A. Ismail
- Department of Food Science, Faculty of Agriculture, Benha University, Benha 13518, Egypt
| |
Collapse
|
49
|
Kasekar NM, Singh S, Jadhav KR, Kadam VJ. BCS class II drug loaded protein nanoparticles with enhanced oral bioavailability:in vitroevaluation andin vivopharmacokinetic study in rats. Drug Dev Ind Pharm 2020; 46:955-962. [DOI: 10.1080/03639045.2020.1764021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Kisan R. Jadhav
- Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, India
| | | |
Collapse
|
50
|
Martínez-López AL, Pangua C, Reboredo C, Campión R, Morales-Gracia J, Irache JM. Protein-based nanoparticles for drug delivery purposes. Int J Pharm 2020; 581:119289. [PMID: 32243968 DOI: 10.1016/j.ijpharm.2020.119289] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|