1
|
Vahrmeijer N, Kriel J, Harrington BM, van Staden ADP, Vlok AJ, Engelbrecht L, Du Toit A, Loos B. Antisecretory Factor 16 (AF16): A Promising Avenue for the Treatment of Traumatic Brain Injury-An In Vitro Model Approach. J Mol Neurosci 2024; 74:106. [PMID: 39505761 PMCID: PMC11541381 DOI: 10.1007/s12031-024-02268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/16/2024] [Indexed: 11/08/2024]
Abstract
Traumatic brain injury (TBI) is caused by an external mechanical force to the head, resulting in abnormal brain functioning and clinical manifestations. Antisecretory factor (AF16) is a potential therapeutic agent for TBI treatment due to its ability to inhibit fluid secretion and decrease inflammation, intracranial pressure, and interstitial fluid build-up, key hallmarks presented in TBI. Here, we investigated the effect of AF16 in an in vitro model of neuronal injury, as well as its impact on key components of the autophagy pathway and mitochondrial dynamics. N2Awt cells were treated with AF16, injured using a scratch assay, and analysed using confocal microscopy, correlative light and electron microscopy (CLEM), flow cytometry, and western blotting. Our results reveal that AF16 enhances autophagy activity, regulates mitochondrial dynamics, and provides protection as early as 6 h post-injury. Fluorescently labelled AF16 was observed to localise to lysosomes and the autophagy compartment, suggesting a role for autophagy and mitochondrial quality control in conferring AF16-associated neuronal protection. This study concludes that AF16 has potential as a therapeutic agent for TBI treatment through is regulation of autophagy and mitochondrial dynamics.
Collapse
Affiliation(s)
- Nicola Vahrmeijer
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa
| | - Jurgen Kriel
- Central Analytical Facilities, Stellenbosch University, Tygerberg Medical Campus, Clinical Building, 7Th Floor, Room 7063, Stellenbosch, South Africa
| | - Bradley M Harrington
- Department of Neurosurgery, Tygerberg University Hospital, Tygerberg, Cape Town, South Africa
| | - Anton Du Preez van Staden
- Division Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Adriaan Johannes Vlok
- Department of Neurosurgery, Tygerberg University Hospital, Tygerberg, Cape Town, South Africa
| | - Lize Engelbrecht
- Central Analytical Facilities, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa
| | - Andre Du Toit
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa.
| |
Collapse
|
2
|
Schlotterose L, Beldjilali-Labro M, Hagel M, Yadid M, Flaxer C, Flaxer E, Barnea AR, Hattermann K, Shohami E, Leichtmann-Bardoogo Y, Maoz BM. Inducing Mechanical Stimuli to Tissues Grown on a Magnetic Gel Allows Deconvoluting the Forces Leading to Traumatic Brain Injury. Neurotrauma Rep 2023; 4:560-572. [PMID: 37636339 PMCID: PMC10457614 DOI: 10.1089/neur.2023.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Traumatic brain injury (TBI), which is characterized by damage to the brain resulting from a sudden traumatic event, is a major cause of death and disability worldwide. It has short- and long-term effects, including neuroinflammation, cognitive deficits, and depression. TBI consists of multiple steps that may sometimes have opposing effects or mechanisms, making it challenging to investigate and translate new knowledge into effective therapies. In order to better understand and address the underlying mechanisms of TBI, we have developed an in vitro platform that allows dynamic simulation of TBI conditions by applying external magnetic forces to induce acceleration and deceleration injury, which is often observed in human TBI. Endothelial and neuron-like cells were successfully grown on magnetic gels and applied to the platform. Both cell types showed an instant response to the TBI model, but the endothelial cells were able to recover quickly-in contrast to the neuron-like cells. In conclusion, the presented in vitro model mimics the mechanical processes of acceleration/deceleration injury involved in TBI and will be a valuable resource for further research on brain injury.
Collapse
Affiliation(s)
- Luise Schlotterose
- Institute of Anatomy, Kiel University, Kiel, Germany
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Mario Hagel
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Moran Yadid
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Carina Flaxer
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Eli Flaxer
- AFEKA–Tel-Aviv Academic College of Engineering, Tel-Aviv, Israel
| | - A. Ronny Barnea
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Esther Shohami
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Ben M. Maoz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Sagol Center for Regenerative Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Weisz HA, Boone DR, Coggins WS, Edwards GA, Willey HE, Widen SG, Siegel D, Nelson AT, Prough DS, Hellmich HL. Mechanistic insights gained from cell and molecular analysis of the neuroprotective potential of bioactive natural compounds in an immortalized hippocampal cell line. PLoS One 2022; 17:e0267682. [PMID: 35657963 PMCID: PMC9165808 DOI: 10.1371/journal.pone.0267682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022] Open
Abstract
Evaluating novel compounds for neuroprotective effects in animal models of traumatic brain injury (TBI) is a protracted, labor-intensive and costly effort. However, the present lack of effective treatment options for TBI, despite decades of research, shows the critical need for alternative methods for screening new drug candidates with neuroprotective properties. Because natural products have been a leading source of new therapeutic agents for human diseases, we used an in vitro model of stretch injury to rapidly assess pro-survival effects of three bioactive compounds, two isolated from natural products (clovanemagnolol [CM], vinaxanthone [VX]) and the third, a dietary compound (pterostilbene [PT]) found in blueberries. The stretch injury experiments were not used to validate drug efficacy in a comprehensive manner but used primarily, as proof-of-principle, to demonstrate that the neuroprotective potential of each bioactive agent can be quickly assessed in an immortalized hippocampal cell line in lieu of comprehensive testing in animal models of TBI. To gain mechanistic insights into potential molecular mechanisms of neuroprotective effects, we performed a pathway-specific PCR array analysis of the effects of CM on the rat hippocampus and microRNA sequencing analysis of the effects of VX and PT on cultured hippocampal progenitor neurons. We show that the neuroprotective properties of these natural compounds are associated with altered expression of several genes or microRNAs that have functional roles in neurodegeneration or cell survival. Our approach could help in quickly assessing multiple natural products for neuroprotective properties and expedite the process of new drug discovery for TBI therapeutics.
Collapse
Affiliation(s)
- Harris A. Weisz
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Deborah R. Boone
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - William S. Coggins
- Department of Neurosurgery, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Gabrielle A. Edwards
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Hannah E. Willey
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Steven G. Widen
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, San Diego, California, United States of America
| | - Andrew T. Nelson
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
4
|
Meyer LJ, Lotze FP, Riess ML. Simulated traumatic brain injury in in-vitro mouse neuronal and brain endothelial cell culture models. J Pharmacol Toxicol Methods 2022; 114:107159. [PMID: 35149185 PMCID: PMC11151826 DOI: 10.1016/j.vascn.2022.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/02/2022] [Accepted: 02/04/2022] [Indexed: 11/18/2022]
Abstract
Traumatic brain injury can lead to fatal outcomes such as disability and death. Every year, it affects many patients all over the world. Not only the primary ischemic event, but also the subsequent reperfusion can cause severe brain injury. This so-called ischemia/reperfusion injury combined with mechanical forces lead to cellular disruption. Hence, this paper describes a special in-vitro model, mimicking traumatic brain injury by combining both hypoxia/reoxygenation and compression to simulate ischemia/reperfusion injury as well as the mechanical effects that occur concurrently when suffering traumatic brain injury. Through this approach, stroke, concussion, and traumatic brain injury can be studied on different cell lines in a simplified way. We used two primary mouse brain cell cultures, namely neurons and endothelial cells. Our results show that for the different cell types, different timelines of hypoxia and compression need to be explored to achieve the optimal amount of cellular damage in order to effectively mimic traumatic brain injury. Thus, this model will be useful to test potential treatments of brain injury in future in-vitro studies.
Collapse
Affiliation(s)
- Luise J Meyer
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21(st) Avenue South, Nashville, TN 37232, USA; Department of Anesthesiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Felicia P Lotze
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21(st) Avenue South, Nashville, TN 37232, USA; Department of Anesthesiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Matthias L Riess
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21(st) Avenue South, Nashville, TN 37232, USA; Anesthesiology, TVHS VA Medical Center, 1310 24(th) Ave South, Nashville, TN 37212, USA; Department of Pharmacology, Vanderbilt University, 465 21(st) Avenue South, Nashville, TN 37232, USA.
| |
Collapse
|
5
|
Potential roles of vagus nerve stimulation on traumatic brain injury: Evidence from in vivo and clinical studies. Exp Neurol 2021; 347:113887. [PMID: 34624329 DOI: 10.1016/j.expneurol.2021.113887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 01/08/2023]
Abstract
Traumatic Brain Injury (TBI) is a one of the leading causes of death and disability worldwide. The consequences of TBI can be divided into two stages: 1) the immediate neuronal destruction during the initial trauma, resulting in the primary brain injury and pathophysiologic sequelae, and 2) the secondary brain injury, encompassing mitochondrial dysfunction, inflammation, cellular excitotoxicity, oxidative stress, and cortical edema, resulting in increased intracranial pressure (ICP) with exacerbated brain damage. Although the pathophysiology in TBI has been thoroughly investigated, the effectivity of therapeutic approaches for TBI is still lacking. Vagus nerve stimulation (VNS) has been used for treating medical refractory epilepsy and chronic drug-resistant depression. Several previous studies also demonstrated that VNS has beneficial effects for TBI in animal models and patients. The neuroprotective effects of VNS on TBI are possibly explained through several mechanisms, including a noradrenergic mechanism, anti-inflammatory effects, regulation of neurotransmitters, and attenuation of blood brain barrier breakdown, and brain edema. The aims of this review are to summarize and discuss the current evidence pertinent to the effect of VNS on both primary and secondary brain injury following TBI from both in vivo and clinical studies.
Collapse
|
6
|
Parittotokkaporn S, Dravid A, Raos BJ, Rosset S, Svirskis D, O'Carroll SJ. Stretchable microchannel-on-a-chip: A simple model for evaluating the effects of uniaxial strain on neuronal injury. J Neurosci Methods 2021; 362:109302. [PMID: 34343573 DOI: 10.1016/j.jneumeth.2021.109302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Axonal injury is a major component of traumatic spinal cord injury (SCI), associated with rapid deformation of spinal tissue and axonal projections. In vitro models enable us to examine these effects and screen potential therapies in a controlled, reproducible manner. NEW METHOD A customized, stretchable microchannel system was developed using polydimethylsiloxane microchannels. Cortical and spinal embryonic rat neurons were cultured within the microchannel structures, allowing a uniaxial strain to be applied to isolated axonal processes. Global strains of up to 52% were applied to the stretchable microchannel-on-a-chip platform leading to local strains of up to 12% being experienced by axons isolated in the microchannels. RESULTS Individual axons exposed to local strains between 3.2% and 8.7% developed beading within 30-minutes of injury. At higher local strains of 9.8% and 12% individual axons ruptured within 30-minutes of injury. Axon bundles, or fascicles, were more resistant to rupture at each strain level, compared to individual axons. At lower local strain of 3.2%, axon bundles inside microchannels and neuronal cells near entrances of them progressively swelled and degenerated over a period of 7 days after injury. COMPARISON WITH EXISTING METHOD(S) This method is simple, reliable and reproducible with good control and measurement of injury tolerance and morphological deformations using standard laboratory equipment. By measuring local strains, we observed that axonal injuries occur at a lower strain magnitude and a lower strain rate than previous methods reporting global strains, which may not accurately reflect the true axonal strain. CONCLUSIONS We describe a novel stretchable microchannel-on-a-chip platform to study the effect of varying local strain on morphological characteristics of neuronal injury.
Collapse
Affiliation(s)
- Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand
| | - Anusha Dravid
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Brad J Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Samuel Rosset
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences and The Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
7
|
Meyer LJ, Riess ML. Evaluation of In Vitro Neuronal Protection by Postconditioning with Poloxamer 188 Following Simulated Traumatic Brain Injury. Life (Basel) 2021; 11:316. [PMID: 33917288 PMCID: PMC8067401 DOI: 10.3390/life11040316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) leads to morbidity and mortality worldwide. Reperfusion after ischemia adds detrimental injury to cells. Ischemia/reperfusion (I/R) injures cells in a variety of ways including cell membrane disruption. Hence, methods to improve endogenous membrane resealing capacity are crucial. Poloxamer (P) 188, an amphiphilic triblock copolymer, was found to be effective against I/R and mechanical injury in various experimental settings. The aim of this study was to establish an in vitro mouse neuronal TBI model and, further, to investigate if postconditioning with P188 directly interacts with neurons after compression and simulated I/R injury, when administered at the start of reoxygenation. Cellular function was assessed by cell number/viability, mitochondrial viability, membrane damage by lactated dehydrogenase (LDH) release and FM1-43 incorporation as well as apoptosis-activation by Caspase 3. Five hours hypoxia ± compression with 2 h reoxygenation proved to be a suitable model for TBI. Compared to normoxic cells not exposed to compression, cell number and mitochondrial viability decreased, whereas membrane injury by LDH release/FM1-43 dye incorporation and Caspase 3 activity increased in cells exposed to hypoxic conditions with compression followed by reoxygenation. P188 did not protect neurons from simulated I/R and/or compression injury. Future research is indicated.
Collapse
Affiliation(s)
- Luise J. Meyer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Anesthesiology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Matthias L. Riess
- Anesthesiology, TVHS VA Medical Center, Nashville, TN 37212, USA; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Jgamadze D, Johnson VE, Wolf JA, Cullen DK, Song H, Ming GL, Smith DH, Chen HI. Modeling traumatic brain injury with human brain organoids. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 14:52-58. [PMID: 35434439 PMCID: PMC9009274 DOI: 10.1016/j.cobme.2020.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) remains a prominent public health concern despite several decades of attempts to develop therapies for the associated neurological and cognitive deficits. Effective models of this condition are imperative for better defining its pathophysiology and testing therapeutics. Human brain organoids are stem cell-derived neural tissues that recapitulate many of the steps of normal neurodevelopment, resulting in the reproduction of a substantial degree of brain architecture. Organoids are highly relevant to clinical conditions because of their human nature and three-dimensional tissue structure, yet they are easier to manipulate and interrogate experimentally than animals. Thus, they have the potential to serve as a novel platform for studying TBI. In this article, we discuss available in vitro models of TBI, active areas of inquiry on brain organoids, and how these two concepts could be merged.
Collapse
Affiliation(s)
- Dennis Jgamadze
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria E Johnson
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Ahmed ME, Selvakumar GP, Kempuraj D, Raikwar SP, Thangavel R, Bazley K, Wu K, Khan O, Kukulka K, Bussinger B, Dubova I, Zaheer S, Govindarajan R, Iyer S, Burton C, James D, Zaheer A. Neuroinflammation Mediated by Glia Maturation Factor Exacerbates Neuronal Injury in an in vitro Model of Traumatic Brain Injury. J Neurotrauma 2020; 37:1645-1655. [PMID: 32200671 DOI: 10.1089/neu.2019.6932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) is the primary cause of death and disability affecting over 10 million people in the industrialized world. TBI causes a wide spectrum of secondary molecular and cellular complications in the brain. However, the pathological events are still not yet fully understood. Previously, we have shown that the glia maturation factor (GMF) is a mediator of neuroinflammation in neurodegenerative diseases. To identify the potential molecular pathways accompanying TBI, we used an in vitro cell culture model of TBI. A standardized injury was induced by scalpel cut through a mixed primary cell culture of astrocytes, microglia and neurons obtained from both wild type (WT) and GMF-deficient (GMF-KO) mice. Cell culture medium and whole-cell lysates were collected at 24, 48, and 72 h after the scalpel cuts injury and probed for oxidative stress using immunofluorescence analysis. Results showed that oxidative stress markers such as glutathione and glutathione peroxidase were significantly reduced, while release of cytosolic enzyme lactate dehydrogenase along with nitric oxide and prostaglandin E2 were significantly increased in injured WT cells compared with injured GMF-KO cells. In addition, injured WT cells showed increased levels of oxidation product 4-hydroxynonenal and 8-oxo-2'-deoxyguanosine compared with injured GMF-KO cells. Further, we found that injured WT cells showed a significantly increased expression of glial fibrillary acidic protein, ionized calcium binding adaptor molecule 1, and phosphorylated ezrin/radixin/moesin proteins, and reduced microtubule associated protein expression compared with injured GMF-KO cells after injury. Collectively, our results demonstrate that GMF exacerbates the oxidative stress-mediated neuroinflammation that could be brought about by TBI-induced astroglial activation.
Collapse
Affiliation(s)
- Mohammad Ejaz Ahmed
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Duraisamy Kempuraj
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Sudhanshu P Raikwar
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Ramasamy Thangavel
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Kieran Bazley
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kristopher Wu
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Osaid Khan
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Klaudia Kukulka
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Bret Bussinger
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Iuliia Dubova
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | - Smita Zaheer
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Raghav Govindarajan
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Shankar Iyer
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| | | | | | - Asgar Zaheer
- Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.,Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Harry S Truman Memorial Veterans Hospital, Columbia, Missouri, USA
| |
Collapse
|
10
|
Zakarya R, Sapkota A, Chan YL, Shah J, Saad S, Bottle SE, Oliver BG, Gorrie CA, Chen H. Nitroxides affect neurological deficits and lesion size induced by a rat model of traumatic brain injury. Nitric Oxide 2020; 97:57-65. [PMID: 32061903 DOI: 10.1016/j.niox.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 02/12/2020] [Indexed: 01/21/2023]
Abstract
Research has attributed tissue damage post-traumatic brain injury (TBI) to two-pronged effects, increased reactive oxygen species (ROS) and impairment of endogenous antioxidant defence systems, underpinned by manganese superoxide dismutase (MnSOD). Novel antioxidant nitroxides have been shown to mimic MnSOD to ameliorate oxidative stress related disorders. This study aimed to investigate the effects of two nitroxides, CTMIO and DCTEIO, on the neurological outcomes following moderate TBI in rats induced by a weight drop device. The rats were immediately treated with CTMIO and DCTEIO (40 mM in drinking water) post-injury for up to 2 weeks. The brains were histologically examined at 24 h and 6 weeks post injury. DCTEIO reduced the lesion size at both 24h and 6 weeks, with normalised performance in sensory, motor and cognitive tests at 24h post-injury. Astrogliosis was heightened by DCTEIO at 24h and still elevated at 6 weeks in this group. In TBI brains, cellular damage was evident as reflected by changes in markers of mitophagy and autophagy (increased fission marker dynamin-related protein (Drp)-1, and autophagy marker light chain 3 (LC3)A/B and reduced fusion marker optic atrophy (Opa)-1). These were normalised by DCTEIO treatment. CTMIO, on the other hand, seems to be toxic to the injured brains, by increasing injury size at 6 weeks. In conclusion, DCTEIO significantly improved tissue repair and preserved neurological function in rats with TBI possibly via a mitophagy mechanism. This study provides evidence for DCTEIO as a promising new option to alleviate lesion severity after moderate TBI, which is not actively treated.
Collapse
Affiliation(s)
- Razia Zakarya
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia; RCMB, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
| | - Arjun Sapkota
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Jadvi Shah
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, NSW, Australia
| | - Steven E Bottle
- Science and Engineering Faculty, Queensland University of Technology, QLD, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia; RCMB, Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
| | - Catherine A Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Alves JL, Rato J, Silva V. Why Does Brain Trauma Research Fail? World Neurosurg 2019; 130:115-121. [PMID: 31284053 DOI: 10.1016/j.wneu.2019.06.212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) represents a major health care problem and a significant social and economic issue worldwide. Considering the generalized failure in introducing effective drugs and clinical protocols, there is an urgent need for efficient treatment modalities, able to improve devastating posttraumatic morbidity and mortality. In this work, the status of brain trauma research is analyzed in all its aspects, including basic and translational science and clinical trials. Implicit and explicit challenges to different lines of research are discussed and clinical trial structures and outcomes are scrutinized, along with possible explanations for systematic therapeutic failures and their implications for future development of drug and clinical trials. Despite significant advances in basic and clinical research in recent years, no specific therapeutic protocols for TBI have been shown to be effective. New potential therapeutic targets have been identified, following a better understanding of pathophysiologic mechanisms underlying TBI, although with disappointing results. Several reasons can be pinpointed at different levels, from inaccurate animal models of disease to faulty preclinical and clinical trials, with poor design and subjective outcome measures. Distinct strategies can be delineated to overcome specific shortcomings of research studies. Identifying and contextualizing the failures that have dominated TBI research is mandatory. This review analyzes current approaches and discusses possible strategies for improving outcomes.
Collapse
Affiliation(s)
- José Luís Alves
- Department of Neurosurgery, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.
| | - Joana Rato
- Department of Neurosurgery, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Vitor Silva
- Department of Neurosurgery, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Llufriu-Dabén G, Meffre D, Massaad C, Jafarian-Tehrani M. A novel model of trauma-induced cerebellar injury and myelin loss in mouse organotypic cerebellar slice cultures using live imaging. J Neurosci Methods 2019; 311:385-393. [DOI: 10.1016/j.jneumeth.2018.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022]
|
13
|
Estrada-Rojo F, Martínez-Tapia RJ, Estrada-Bernal F, Martínez-Vargas M, Perez-Arredondo A, Flores-Avalos L, Navarro L. Models used in the study of traumatic brain injury. Rev Neurosci 2018; 29:139-149. [PMID: 28888093 DOI: 10.1515/revneuro-2017-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/14/2017] [Indexed: 01/02/2023]
Abstract
Traumatic brain injury (TBI) is a contemporary health problem and a leading cause of mortality and morbidity worldwide. Survivors of TBI frequently experience disabling long-term changes in cognition, sensorimotor function, and personality. A crucial step in understanding TBI and providing better treatment has been the use of models to mimic the event under controlled conditions. Here, we describe the known head injury models, which can be classified as whole animal (in vivo), in vitro, and mathematical models. We will also review the ways in which these models have advanced the knowledge of TBI.
Collapse
Affiliation(s)
- Francisco Estrada-Rojo
- Departamento Fisiologia Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-250, 04510 Ciudad de México, México
| | - Ricardo Jesús Martínez-Tapia
- Departamento Fisiologia Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-250, 04510 Ciudad de México, México
| | - Francisco Estrada-Bernal
- Departamento Fisiologia Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-250, 04510 Ciudad de México, México
| | - Marina Martínez-Vargas
- Departamento Fisiologia Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-250, 04510 Ciudad de México, México
| | - Adán Perez-Arredondo
- Departamento Fisiologia Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-250, 04510 Ciudad de México, México
| | - Luis Flores-Avalos
- Departamento Fisiologia Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-250, 04510 Ciudad de México, México
| | - Luz Navarro
- Departamento Fisiologia Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-250, 04510 Ciudad de México, México
| |
Collapse
|
14
|
Somayaji MR, Przekwas AJ, Gupta RK. Combination Therapy for Multi-Target Manipulation of Secondary Brain Injury Mechanisms. Curr Neuropharmacol 2018; 16:484-504. [PMID: 28847295 PMCID: PMC6018188 DOI: 10.2174/1570159x15666170828165711] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/10/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a major healthcare problem that affects millions of people worldwide. Despite advances in understanding and developing preventative and treatment strategies using preclinical animal models, clinical trials to date have failed, and a 'magic bullet' for effectively treating TBI-induced damage does not exist. Thus, novel pharmacological strategies to effectively manipulate the complex and heterogeneous pathophysiology of secondary injury mechanisms are needed. Given that goal, this paper discusses the relevance and advantages of combination therapies (COMTs) for 'multi-target manipulation' of the secondary injury cascade by administering multiple drugs to achieve an optimal therapeutic window of opportunity (e.g., temporally broad window) and compares these regimens to monotherapies that manipulate a single target with a single drug at a given time. Furthermore, we posit that integrated mechanistic multiscale models that combine primary injury biomechanics, secondary injury mechanobiology/neurobiology, physiology, pharmacology and mathematical programming techniques could account for vast differences in the biological space and time scales and help to accelerate drug development, to optimize pharmacological COMT protocols and to improve treatment outcomes.
Collapse
Affiliation(s)
| | | | - Raj K. Gupta
- Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA
| |
Collapse
|
15
|
Zhang H, Barralet JE. Mimicking oxygen delivery and waste removal functions of blood. Adv Drug Deliv Rev 2017; 122:84-104. [PMID: 28214553 DOI: 10.1016/j.addr.2017.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
In addition to immunological and wound healing cell and platelet delivery, ion stasis and nutrient supply, blood delivers oxygen to cells and tissues and removes metabolic wastes. For decades researchers have been trying to develop approaches that mimic these two immediately vital functions of blood. Oxygen is crucial for the long-term survival of tissues and cells in vertebrates. Hypoxia (oxygen deficiency) and even at times anoxia (absence of oxygen) can occur during organ preservation, organ and cell transplantation, wound healing, in tumors and engineering of tissues. Different approaches have been developed to deliver oxygen to tissues and cells, including hyperbaric oxygen therapy (HBOT), normobaric hyperoxia therapy (NBOT), using biochemical reactions and electrolysis, employing liquids with high oxygen solubility, administering hemoglobin, myoglobin and red blood cells (RBCs), introducing oxygen-generating agents, using oxygen-carrying microparticles, persufflation, and peritoneal oxygenation. Metabolic waste accumulation is another issue in biological systems when blood flow is insufficient. Metabolic wastes change the microenvironment of cells and tissues, influence the metabolic activities of cells, and ultimately cause cell death. This review examines advances in blood mimicking systems in the field of biomedical engineering in terms of oxygen delivery and metabolic waste removal.
Collapse
|
16
|
Angiotensin II Causes Neuronal Damage in Stretch-Injured Neurons: Protective Effects of Losartan, an Angiotensin T 1 Receptor Blocker. Mol Neurobiol 2017; 55:5901-5912. [PMID: 29119534 DOI: 10.1007/s12035-017-0812-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 12/19/2022]
Abstract
Angiotensin II (Ang II) is a mediator of oxidative stress via activation/induction of reactive oxygen and nitrogen species-generating enzymes, NADPH oxidase (NOX) and inducible nitric oxide synthase (iNOS). We investigated the hypothesis that overproduction of Ang II during traumatic brain injury (TBI) induces the activation of the oxidative stress, which triggers neuroinflammation and cell apoptosis in a cell culture model of neuronal stretch injury. We first established that stretch injury causes a rapid increase in the level of Ang II, which causes the release of pro-inflammatory cytokines, IL-1β and TNF-α, via the induction of oxidative stress. Since angiotensin-converting enzyme (ACE) mediates the production of Ang II via the conversion of Ang I into Ang II, we analyzed the expression of ACE by western blotting. Further, we analyzed caspase-3-mediated apoptosis by TUNEL staining and annexin V western blotting. Angiotensin type I (AT1) receptor antagonist losartan attenuated Ang II-induced oxidative stress and associated neuroinflammation and cell death in cultured neurons. Remarkably, we noticed that the expression of Ang II type 1 receptor (AngT1R) upregulated in neuronal stretch injury; losartan mitigates this upregulation. Findings from this study significantly extend our understanding of the pathophysiology of TBI and may have significant implications for developing therapeutic strategies for TBI-associated brain dysfunctions.
Collapse
|
17
|
Abstract
Traumatic Brain Injury (TBI) remains a significant cause of mortality and morbidity, affecting individuals of all age groups. Much remains to be learned about its complex pathophysiology, with a view to designing effective neuroprotective strategies to protect sublethally injured brain tissue that would otherwise die in secondary injury processes. Experimental in vivo models offer the potential to study TBI in the laboratory, however, treatments that were neuroprotective in animals have, thus far, largely failed to translate in human clinical studies. In vitro models of neurotrauma can be used to study specific pathophysiological cascades — individually and without confounding factors — and to test potential neuroprotective strategies. These in vitro models include transection, compression, barotrauma, acceleration, hydrodynamic, chemical injury and cell-stretch methodologies. Various cell culture systems can also be utilised, including brain-on-a-chip, immortalised cell lines, primary cultures, acute preparations and organotypic cultures. Potential positive outcomes of the increased use of in vitro platforms to study TBI would be the refinement of in vivo experiments, as well as enhanced translation of the results into clinically meaningful neuroprotective strategies for the future. In addition, the replacement of in vivo experiments by suitable in vitro studies would lead to a welcome reduction in the numbers of animal procedures in this ethically-challenging field.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
18
|
Vagus Nerve Stimulation and Other Neuromodulation Methods for Treatment of Traumatic Brain Injury. Neurocrit Care 2017; 24:308-19. [PMID: 26399249 DOI: 10.1007/s12028-015-0203-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The objective of this paper is to review the current literature regarding the use of vagus nerve stimulation (VNS) in preclinical models of traumatic brain injury (TBI) as well as discuss the potential role of VNS along with alternative neuromodulation approaches in the treatment of human TBI. Data from previous studies have demonstrated VNS-mediated improvement following TBI in animal models. In these cases, VNS was observed to enhance motor and cognitive recovery, attenuate cerebral edema and inflammation, reduce blood brain barrier breakdown, and confer neuroprotective effects. Yet, the underlying mechanisms by which VNS enhances recovery following TBI remain to be fully elucidated. Several hypotheses have been offered including: a noradrenergic mechanism, reduction in post-TBI seizures and hyper-excitability, anti-inflammatory effects, attenuation of blood-brain barrier breakdown, and cerebral edema. We present other potential mechanisms by which VNS acts including enhancement of synaptic plasticity and recruitment of endogenous neural stem cells, stabilization of intracranial pressure, and interaction with the ghrelin system. In addition, alternative methods for the treatment of TBI including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, and focused ultrasound stimulation are discussed. Although the primary source data show that VNS improves TBI outcomes, it remains to be determined if these findings can be translated to clinical settings.
Collapse
|
19
|
Shai AN, Fedulova MV, Kvacheva YE, Shigeev SV, Kovalev AV. [The importance of marker proteins of the nervous tissue for morphological diagnostics of the craniocerebral injury]. Sud Med Ekspert 2017; 60:40-45. [PMID: 28766528 DOI: 10.17116/sudmed201760440-45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The present review of the literature involves 50 publications concerning various substrates of importance as the biological markers of axonal damages with special reference to the secondary molecular and cellular mechanisms on which to base in vitro and in vivo modeling of the craniocerebral injury. The results of the investigations with the application of mass-spectrometry for the identification of the proteins specifically synthesized in response to the injury are presented; their biological functions are described. The use of the sequential microscopic imaging technique and the immunohistochemical methods made it possible to determine that the majority of the marker proteins are involved in the specific intracellular processes that are triggered in response to the traumatic impact including apoptosis, proliferation, formation of lamellipodia, axon regeneration, actin remodeling, cell migration and inflammation. In addition, a rise in the amount of intracellular actin-associated proteins has been observed. It is concluded that the investigations into the properties and the physiological role of beta-amyloid precursor protein (beta-APP) are of special value for the characteristic of nervous tissue damages and morphological diagnostics of the craniocerebral injury.
Collapse
Affiliation(s)
- A N Shai
- Russian Federal Centre of Forensic Medical Expertise, Ministry of Health of the Russia, Moscow, Russia, 125284
| | - M V Fedulova
- Russian Federal Centre of Forensic Medical Expertise, Ministry of Health of the Russia, Moscow, Russia, 125284
| | - Yu E Kvacheva
- Russian Federal Centre of Forensic Medical Expertise, Ministry of Health of the Russia, Moscow, Russia, 125284
| | - S V Shigeev
- Russian Federal Centre of Forensic Medical Expertise, Ministry of Health of the Russia, Moscow, Russia, 125284
| | - A V Kovalev
- Russian Federal Centre of Forensic Medical Expertise, Ministry of Health of the Russia, Moscow, Russia, 125284
| |
Collapse
|
20
|
McCutcheon V, Park E, Liu E, Sobhebidari P, Tavakkoli J, Wen XY, Baker AJ. A Novel Model of Traumatic Brain Injury in Adult Zebrafish Demonstrates Response to Injury and Treatment Comparable with Mammalian Models. J Neurotrauma 2016; 34:1382-1393. [PMID: 27650063 DOI: 10.1089/neu.2016.4497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and morbidity in industrialized countries with considerable associated health care costs. The cost and time associated with pre-clinical development of TBI therapeutics is lengthy and expensive with a poor track record of successful translation to the clinic. The zebrafish is an emerging model organism in research with unique technical and genomic strengths in the study of disease and development. Its high degree of genetic homology and cell signaling pathways relative to mammalian species and amenability to high and medium throughput assays has potential to accelerate the rate of therapeutic drug identification. Accordingly, we developed a novel closed-head model of TBI in adult zebrafish using a targeted, pulsed, high-intensity focused ultrasound (pHIFU) to induce mechanical injury of the brain. Western blot results indicated altered microtubule and neurofilament expression as well as increased expression of cleaved caspase-3 and beta APP (β-APP; p < 0.05). We used automated behavioral tracking software to evaluate locomotor deficits 24 and 48 h post-injury. Significant behavioral impairment included decreased swim distance and velocity (p < 0.05), as well as heightened anxiety and altered group social dynamics. Responses to injury were pHIFU dose-dependent and modifiable with MK-801, MDL-28170, or temperature modulation. Together, results indicate that the zebrafish exhibits responses to injury and intervention similar to mammalian TBI pathophysiology and suggest the potential for use to rapidly evaluate therapeutic compounds with high efficiency.
Collapse
Affiliation(s)
| | - Eugene Park
- 2 Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital , Toronto, Ontario, Canada
| | - Elaine Liu
- 2 Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital , Toronto, Ontario, Canada
| | - Pooya Sobhebidari
- 3 Department of Physics, Ryerson University , Toronto, Ontario, Canada
| | - Jahan Tavakkoli
- 2 Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital , Toronto, Ontario, Canada .,3 Department of Physics, Ryerson University , Toronto, Ontario, Canada
| | - Xiao-Yan Wen
- 2 Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital , Toronto, Ontario, Canada .,4 Departments of Medicine and Physiology, University of Toronto , Ontario, Canada
| | - Andrew J Baker
- 1 Institute of Medical Sciences, University of Toronto , Ontario, Canada .,2 Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital , Toronto, Ontario, Canada .,5 Departments of Anesthesia and Surgery, University of Toronto , Ontario, Canada
| |
Collapse
|
21
|
Teixeira FG, Vasconcelos NL, Gomes ED, Marques F, Sousa JC, Sousa N, Silva NA, Assunção-Silva R, Lima R, Salgado AJ. Bioengineered cell culture systems of central nervous system injury and disease. Drug Discov Today 2016; 21:1456-1463. [DOI: 10.1016/j.drudis.2016.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/02/2016] [Accepted: 04/21/2016] [Indexed: 01/10/2023]
|
22
|
Cao Y, Risling M, Malm E, Sondén A, Bolling MF, Sköld MK. Cellular High-Energy Cavitation Trauma - Description of a Novel In Vitro Trauma Model in Three Different Cell Types. Front Neurol 2016; 7:10. [PMID: 26869990 PMCID: PMC4734234 DOI: 10.3389/fneur.2016.00010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/19/2016] [Indexed: 12/25/2022] Open
Abstract
The mechanisms involved in traumatic brain injury have yet to be fully characterized. One mechanism that, especially in high-energy trauma, could be of importance is cavitation. Cavitation can be described as a process of vaporization, bubble generation, and bubble implosion as a result of a decrease and subsequent increase in pressure. Cavitation as an injury mechanism is difficult to visualize and model due to its short duration and limited spatial distribution. One strategy to analyze the cellular response of cavitation is to employ suitable in vitro models. The flyer-plate model is an in vitro high-energy trauma model that includes cavitation as a trauma mechanism. A copper fragment is accelerated by means of a laser, hits the bottom of a cell culture well causing cavitation, and shock waves inside the well and cell medium. We have found the flyer-plate model to be efficient, reproducible, and easy to control. In this study, we have used the model to analyze the cellular response to microcavitation in SH-SY5Y neuroblastoma, Caco-2, and C6 glioma cell lines. Mitotic activity in neuroblastoma and glioma was investigated with BrdU staining, and cell numbers were calculated using automated time-lapse imaging. We found variations between cell types and between different zones surrounding the lesion with these methods. It was also shown that the injured cell cultures released S-100B in a dose-dependent manner. Using gene expression microarray, a number of gene families of potential interest were found to be strongly, but differently regulated in neuroblastoma and glioma at 24 h post trauma. The data from the gene expression arrays may be used to identify new candidates for biomarkers in cavitation trauma. We conclude that our model is useful for studies of trauma in vitro and that it could be applied in future treatment studies.
Collapse
Affiliation(s)
- Yuli Cao
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Elisabeth Malm
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Anders Sondén
- Section of Surgery, Department of Clinical Science and Education, Karolinska Institutet at Södersjukhuset , Stockholm , Sweden
| | - Magnus Frödin Bolling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias K Sköld
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
23
|
Salvador E, Burek M, Förster CY. Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade. Front Cell Neurosci 2015; 9:323. [PMID: 26347611 PMCID: PMC4543908 DOI: 10.3389/fncel.2015.00323] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/03/2015] [Indexed: 11/13/2022] Open
Abstract
The blood-brain barrier (BBB), made up of endothelial cells of capillaries in the brain, maintains the microenvironment of the central nervous system. During ischemia and traumatic brain injury (TBI), cellular disruption leading to mechanical insult results to the BBB being compromised. Oxygen glucose deprivation (OGD) is the most commonly used in vitro model for ischemia. On the other hand, stretch injury is currently being used to model TBI in vitro. In this paper, the two methods are used alone or in combination, to assess their effects on cerebrovascular endothelial cells cEND in the presence or absence of astrocytic factors. Applying severe stretch and/or OGD to cEND cells in our experiments resulted to cell swelling and distortion. Damage to the cells induced release of lactate dehydrogenase enzyme (LDH) and nitric oxide (NO) into the cell culture medium. In addition, mRNA expression of inflammatory markers interleukin (I L)-6, IL-1α, chemokine (C-C motif) ligand 2 (CCL2) and tumor necrosis factor (TNF)-α also increased. These events could lead to the opening of calcium ion channels resulting to excitotoxicity. This could be demonstrated by increased calcium level in OGD-subjected cEND cells incubated with astrocyte-conditioned medium. Furthermore, reduction of cell membrane integrity decreased tight junction proteins claudin-5 and occludin expression. In addition, permeability of the endothelial cell monolayer increased. Also, since cell damage requires an increased uptake of glucose, expression of glucose transporter glut1 was found to increase at the mRNA level after OGD. Overall, the effects of OGD on cEND cells appear to be more prominent than that of stretch with regards to TJ proteins, NO, glut1 expression, and calcium level. Astrocytes potentiate these effects on calcium level in cEND cells. Combining both methods to model TBI in vitro shows a promising improvement to currently available models.
Collapse
Affiliation(s)
- Ellaine Salvador
- Klinik und Poliklinik für Anästhesiologie, Zentrum für Operative Medizin der Universität Würzburg Würzburg, Germany
| | - Malgorzata Burek
- Klinik und Poliklinik für Anästhesiologie, Zentrum für Operative Medizin der Universität Würzburg Würzburg, Germany
| | - Carola Y Förster
- Klinik und Poliklinik für Anästhesiologie, Zentrum für Operative Medizin der Universität Würzburg Würzburg, Germany
| |
Collapse
|
24
|
Jiang L, Zhong J, Dou X, Cheng C, Huang Z, Sun X. Effects of ApoE on intracellular calcium levels and apoptosis of neurons after mechanical injury. Neuroscience 2015; 301:375-83. [PMID: 26073697 DOI: 10.1016/j.neuroscience.2015.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/31/2015] [Accepted: 06/03/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The current study aimed to explore the effects of apolipoprotein e (ApoE) on intracellular calcium ([Ca(2+)]i) and apoptosis of neurons after mechanical injury in vitro. METHODS A neuron mechanical injury model was established after primary neurons obtained from APOE knockout and wild-type (WT) mice, and four experimental groups were generated: Group-ApoE4, Group-ApoE3, Group-ApoE(-) and Group-WT. Recombinant ApoE4 and ApoE3 were added to Group-ApoE4 and Group-ApoE3 respectively, and Group-ApoE(-) and Group-WT were control groups. Intracellular calcium was labeled by fluo-3/AM and examined using laser scanning confocal microscope and flow cytometry, and the apoptosis of neurons was also evaluated. RESULTS The intracellular calcium levels and apoptosis rates of mice neurons were significantly higher in Group-ApoE4 than in Group-ApoE3 and Group-WT after mechanical injury. However, without mechanical injury on neurons, no significant differences in intracellular calcium levels and apoptosis rates were found among all four experimental groups. The effects of ApoE4 on intracellular calcium levels and apoptosis rates of injured neurons were partly decreased by EGTA treatment. CONCLUSION Compared with ApoE3-treatment and WT neurons, ApoE4 caused higher intracellular calcium levels and apoptosis rates of neurons after mechanical injury. This suggested APOE polymorphisms may affect neuron apoptosis after mechanical injury through different influences on intracellular calcium levels.
Collapse
Affiliation(s)
- L Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - J Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - X Dou
- Chongqing Medical University, PR China
| | - C Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - Z Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, PR China
| | - X Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, PR China.
| |
Collapse
|
25
|
Rovegno M, Soto PA, Sáez PJ, Naus CC, Sáez JC, von Bernhardi R. Connexin43 hemichannels mediate secondary cellular damage spread from the trauma zone to distal zones in astrocyte monolayers. Glia 2015; 63:1185-99. [PMID: 25731866 DOI: 10.1002/glia.22808] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 02/05/2015] [Indexed: 11/11/2022]
Abstract
The mechanism of secondary damage spread after brain trauma remains unsolved. In this work, we redirected the attention to astrocytic communication pathways. Using an in vitro trauma model that consists of a scratch injury applied to an astrocyte monolayer, we found a significant and transient induction of connexin43 (Cx43) hemichannel activity in regions distal from the injury, which was maximal ∼1 h after scratch. Two connexin hemichannel blockers, La(3+) and the peptide Gap26, abolished the increased activity, which was also absent in Cx43 KO astrocytes. In addition, the scratch-induced increase of hemichannel activity was prevented by inhibition of P2 purinergic receptors. Changes in hemichannel activity took place with a particular spatial distribution, with cells located at ∼17 mm away from the scratch presenting the highest activity (dye uptake). In contrast, the functional state of gap junction channels (dye coupling) was not significantly affected. Cx43 hemichannel activity was also enhanced by the acute extracellular application of 60 mM K(+) . The increase in hemichannel activity was associated with an increment in apoptotic cells at 24 h after scratch that was totally prevented by Gap26 peptide. These findings suggest that Cx43 hemichannels could be a new approach to prevent or reduce the secondary cell damage of brain trauma.
Collapse
Affiliation(s)
- Maximiliano Rovegno
- Laboratorio de Neurociencias, Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
26
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|
27
|
Tong Z, Segura-Feliu M, Seira O, Homs-Corbera A, Del Río JA, Samitier J. A microfluidic neuronal platform for neuron axotomy and controlled regenerative studies. RSC Adv 2015. [DOI: 10.1039/c5ra11522a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have presented here a simple microfluidic approach to model mechanical and synchronized axotomy of a large number of axons to study axonal regeneration, and to facilitate rapid screening and discovery of novel pharmaceutical compounds.
Collapse
Affiliation(s)
- Ziqiu Tong
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
| | - Miriam Segura-Feliu
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- Department of Cell Biology
- University of Barcelona
| | - Oscar Seira
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
| | - Antoni Homs-Corbera
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- Centro de Investigación Biomédica en Red de Bioingeniería
- Biomateriales y Nanomedicina (CIBERBBN)
| | - José Antonio Del Río
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- Department of Cell Biology
- University of Barcelona
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC)
- 08028 Barcelona
- Spain
- Centro de Investigación Biomédica en Red de Bioingeniería
- Biomateriales y Nanomedicina (CIBERBBN)
| |
Collapse
|
28
|
Abstract
With a growing interest in how the brain responds and remodels itself following a traumatic injury, this chapter outlines the major organizing principles of how to study these injuries in the laboratory and extend these findings back into the clinic. A new repertoire of models is available to examine the response of isolated circuits of the brain in vitro, and to study precisely how mechanical forces applied to even small regions of these circuits can disrupt the entire circuit dysfunction. We review the existing knowledge garnered from these models and our current understanding of mechanically sensitive receptors and channels activated immediately following trauma. In turn, we point to the emergence of in silico models of network function that will lead to an improved understanding of the principles for the remodeling of circuit structure after traumatic, possibly pointing out new biological rules for circuit reassembly that would help guide new therapies for reconstructing brain circuits after trauma.
Collapse
Affiliation(s)
- David F Meaney
- Departments of Bioengineering and Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
| | - Douglas H Smith
- Departments of Bioengineering and Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Shock wave trauma leads to inflammatory response and morphological activation in macrophage cell lines, but does not induce iNOS or NO synthesis. Acta Neurochir (Wien) 2014; 156:2365-78. [PMID: 25305089 DOI: 10.1007/s00701-014-2243-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Experimental CNS trauma results in post-traumatic inflammation for which microglia and macrophages are vital. Experimental brain contusion entails iNOS synthesis and formation of free radicals, NO and peroxynitrite. Shock wave trauma can be used as a model of high-energy trauma in cell culture. It is known that shock wave trauma causes sub-lytic injury and inflammatory activation in endothelial cells. Mechanical disruption of red blood cells can induce iNOS synthesis in experimental systems. However, it is not known whether trauma can induce activation and iNOS synthesis in inflammatory cell lines with microglial or macrophage lineage. We studied the response and activation in two macrophage cell lines and the consequence for iNOS and NO formation after shock wave trauma. METHODS Two macrophage cell lines from rat (NR8383) and mouse (RAW264.7) were exposed to shock wave trauma by the Flyer Plate method. The cellular response was investigated by Affymetrix gene arrays. Cell survival and morphological activation was monitored for 24 h in a Cell-IQ live cell imaging system. iNOS induction and NO synthesis were analyzed by Western blot, in cell Western IR-immunofluorescence, and Griess nitrite assay. RESULTS Morphological signs of activation were detected in both macrophage cell lines. The activation of RAW264.7 was statistically significant (p < 0.05), but activation of NR8383 did not pass the threshold of statistical significance alpha (p > 0.05). The growth rate of idle cells was unaffected and growth arrest was not seen. Trauma did not result in iNOS synthesis or NO induction. Gene array analyses showed high enrichment for inflammatory response, G-protein coupled signaling, detection of stimulus and chemotaxis. Shock wave trauma combined with low LPS stimulation instead led to high enrichment in apoptosis, IL-8 signaling, mitosis and DNA-related activities. LPS/IFN-ɣ stimulation caused iNOS and NO induction and morphological activation in both cell lines. CONCLUSIONS Shock wave trauma by the Flyer Plate method caused an inflammatory response and morphological signs of activation in two macrophage cell lines, while iNOS induction appeared to require humoral signaling by LPS/IFN-ɣ. Our findings indicated that direct energy transfer by trauma can activate macrophages directly without humoral mediators, which comprises a novel activation mechanism of macrophages.
Collapse
|
30
|
Zhou L, Lin J, Lin J, Kui G, Zhang J, Yu Y. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury. Neural Regen Res 2014; 9:1585-91. [PMID: 25368644 PMCID: PMC4211199 DOI: 10.4103/1673-5374.141783] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2014] [Indexed: 11/15/2022] Open
Abstract
Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue.
Collapse
Affiliation(s)
- Long Zhou
- Affiliated Dongnan Hospital of Xiamen University, the 175 Hospital of Chinese PLA, Trauma Neurosurgery Center of Nanjing Military Region, Xiamen, Fujian Province, China
| | - Jinhuang Lin
- Affiliated Dongnan Hospital of Xiamen University, the 175 Hospital of Chinese PLA, Trauma Neurosurgery Center of Nanjing Military Region, Xiamen, Fujian Province, China
| | - Junming Lin
- Affiliated Dongnan Hospital of Xiamen University, the 175 Hospital of Chinese PLA, Trauma Neurosurgery Center of Nanjing Military Region, Xiamen, Fujian Province, China
| | - Guoju Kui
- Affiliated Dongnan Hospital of Xiamen University, the 175 Hospital of Chinese PLA, Trauma Neurosurgery Center of Nanjing Military Region, Xiamen, Fujian Province, China
| | - Jianhua Zhang
- The 73131 Corps of Chinese PLA, Xiamen, Fujian Province, China
| | - Yigang Yu
- Affiliated Dongnan Hospital of Xiamen University, the 175 Hospital of Chinese PLA, Trauma Neurosurgery Center of Nanjing Military Region, Xiamen, Fujian Province, China
| |
Collapse
|
31
|
Zhang S, Yu R, Zhang Y, Chen K. Cytoprotective effects of urinary trypsin inhibitor on astrocytes injured by sustained compression. Mol Biol Rep 2014; 41:1311-6. [PMID: 24385305 PMCID: PMC3933746 DOI: 10.1007/s11033-013-2976-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/24/2013] [Indexed: 01/27/2023]
Abstract
Decreased cell membrane integrity is a primary pathological change observed in traumatic brain injury (TBI) that activates a number of complex intercellular and intracellular pathological events, leading to further neural injury. In this paper, we assessed the effects of urinary trypsin inhibitor (UTI) on astrocyte membrane integrity by determining the percentage of lactate dehydrogenase (LDH) released after sustained compression injury using a hydrostatic pressure model of mechanical-like TBI. Astrocytes isolated from SD rat pups were injured by sustained compression. At a pressure of 0.3 MPa for 5 min, a significant increase in LDH release was observed compared with control samples. Astrocytes displayed extensive structural disruption of mitochondrial cristae reflected in their swelling. Based on our initial results, injured astrocytes were treated with UTI at a final concentration of 500, 1,000, 3,000 or 5,000 U/ml for 24 h. The percentage of LDH released from injured astrocytes was significantly decreased when 1,000 and 3,000 U/ml of UTI were used. In a separate experiment, astrocytes were treated with UTI at a final concentration of 1,000 U/ml immediately, or at 30 min, 2, 6, or 24 h after sustained compression. The percentage of LDH release was significantly reduced (P < 0.05) when astrocytes were treated with UTI immediately or 30 min later. Together, our results suggest that UTI may have protective effects on astrocytes injured by sustained compression injury. Furthermore, the early administration (<2 h after injury) of UTI may result in a better outcome compared with delayed administration.
Collapse
Affiliation(s)
- Shuang Zhang
- SICU, Fujian Provincial Hospital, Fujian Medical University Affiliated Provincial Teaching Hospital, Fuzhou, 350001 China
| | - Rongguo Yu
- SICU, Fujian Provincial Hospital, Fujian Medical University Affiliated Provincial Teaching Hospital, Fuzhou, 350001 China
| | - Yingrui Zhang
- SICU, Fujian Provincial Hospital, Fujian Medical University Affiliated Provincial Teaching Hospital, Fuzhou, 350001 China
| | - Kai Chen
- SICU, Fujian Provincial Hospital, Fujian Medical University Affiliated Provincial Teaching Hospital, Fuzhou, 350001 China
| |
Collapse
|
32
|
NAKADATE H, FUKUMURA Y, KANEKO Y, KAKUTA A, FURUKAWA H, AOMURA S. In vitro uniaxial stretch model for evaluating the effect of strain along axon on damage to neurons. ACTA ACUST UNITED AC 2014. [DOI: 10.1299/jbse.14-00136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Yohei FUKUMURA
- Graduate School of System Design, Tokyo Metropolitan University
| | - Yuma KANEKO
- Graduate School of System Design, Tokyo Metropolitan University
| | - Akira KAKUTA
- Advanced Course of Mechanical and Computer Systems Engineering, Tokyo National College of Technology
| | - Hidenori FURUKAWA
- Advanced Course of Mechanical and Computer Systems Engineering, Tokyo National College of Technology
| | - Shigeru AOMURA
- Graduate School of System Design, Tokyo Metropolitan University
| |
Collapse
|
33
|
Gupta RK, Przekwas A. Mathematical Models of Blast-Induced TBI: Current Status, Challenges, and Prospects. Front Neurol 2013; 4:59. [PMID: 23755039 PMCID: PMC3667273 DOI: 10.3389/fneur.2013.00059] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 05/09/2013] [Indexed: 01/13/2023] Open
Abstract
Blast-induced traumatic brain injury (TBI) has become a signature wound of recent military activities and is the leading cause of death and long-term disability among U.S. soldiers. The current limited understanding of brain injury mechanisms impedes the development of protection, diagnostic, and treatment strategies. We believe mathematical models of blast wave brain injury biomechanics and neurobiology, complemented with in vitro and in vivo experimental studies, will enable a better understanding of injury mechanisms and accelerate the development of both protective and treatment strategies. The goal of this paper is to review the current state of the art in mathematical and computational modeling of blast-induced TBI, identify research gaps, and recommend future developments. A brief overview of blast wave physics, injury biomechanics, and the neurobiology of brain injury is used as a foundation for a more detailed discussion of multiscale mathematical models of primary biomechanics and secondary injury and repair mechanisms. The paper also presents a discussion of model development strategies, experimental approaches to generate benchmark data for model validation, and potential applications of the model for prevention and protection against blast wave TBI.
Collapse
Affiliation(s)
- Raj K Gupta
- Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Materiel Command , Fort Detrick, MD , USA
| | | |
Collapse
|
34
|
Yaka C, Björk P, Schönberg T, Erlandsson A. A Novel In Vitro Injury Model Based on Microcontact Printing Demonstrates Negative Effects of Hydrogen Peroxide on Axonal Regeneration both in Absence and Presence of Glia. J Neurotrauma 2013; 30:392-402. [DOI: 10.1089/neu.2012.2562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Cane Yaka
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Anna Erlandsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Lööv C, Shevchenko G, Geeyarpuram Nadadhur A, Clausen F, Hillered L, Wetterhall M, Erlandsson A. Identification of injury specific proteins in a cell culture model of traumatic brain injury. PLoS One 2013; 8:e55983. [PMID: 23409102 PMCID: PMC3567017 DOI: 10.1371/journal.pone.0055983] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/03/2013] [Indexed: 11/22/2022] Open
Abstract
The complicated secondary molecular and cellular mechanisms following traumatic brain injury (TBI) are still not fully understood. In the present study, we have used mass spectrometry to identify injury specific proteins in an in vitro model of TBI. A standardized injury was induced by scalpel cuts through a mixed cell culture of astrocytes, oligodendrocytes and neurons. Twenty-four hours after the injury, cell culture medium and whole-cell fractions were collected for analysis. We found 53 medium proteins and 46 cell fraction proteins that were specifically expressed after injury and the known function of these proteins was elucidated by an extensive literature survey. By using time-lapse microscopy and immunostainings we could link a large proportion of the proteins to specific cellular processes that occur in response to trauma; including cell death, proliferation, lamellipodia formation, axonal regeneration, actin remodeling, migration and inflammation. A high percentage of the proteins uniquely expressed in the medium after injury were actin-related proteins, which normally are situated intracellularly. We show that two of these, ezrin and moesin, are expressed by astrocytes both in the cell culture model and in mouse brain subjected to experimental TBI. Interestingly, we found many inflammation-related proteins, despite the fact that cells were present in the culture. This study contributes with important knowledge about the cellular responses after trauma and identifies several potential cell-specific biomarkers.
Collapse
Affiliation(s)
- Camilla Lööv
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Ganna Shevchenko
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | | | - Fredrik Clausen
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Magnus Wetterhall
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Anna Erlandsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
36
|
Abstract
In vitro models of traumatic brain injury (TBI) are helping elucidate the pathobiological mechanisms responsible for dysfunction and delayed cell death after mechanical stimulation of the brain. Researchers have identified compounds that have the potential to break the chain of molecular events set in motion by traumatic injury. Ultimately, the utility of in vitro models in identifying novel therapeutics will be determined by how closely the in vitro cascades recapitulate the sequence of cellular events that play out in vivo after TBI. Herein, the major in vitro models are reviewed, and a discussion of the physical injury mechanisms and culture preparations is employed. A comparison between the efficacy of compounds tested in vitro and in vivo is presented as a critical evaluation of the fidelity of in vitro models to the complex pathobiology that is TBI. We conclude that in vitro models were greater than 88% predictive of in vivo results.
Collapse
Affiliation(s)
- Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | | | | |
Collapse
|
37
|
Kumaria A, Tolias CM. Is there a role for vagus nerve stimulation therapy as a treatment of traumatic brain injury? Br J Neurosurg 2012; 26:316-20. [PMID: 22404761 DOI: 10.3109/02688697.2012.663517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This paper aims to review the current literature on vagus nerve stimulation (VNS) use in animal models of traumatic brain injury (TBI) and explore its potential role in treatment of human TBI. A MEDLINE search yielded four primary papers from the same group that demonstrated VNS mediated improvement following fluid percussion models of TBI in rats, seen as motor and cognitive improvements, reduction of cortical oedema and neuroprotective effects. The underlying mechanisms are elusive and authors attribute these to attenuation of post traumatic seizures, a noradrenergic mechanism and as yet undetermined mechanisms. Reviewing and elaborating on these ideas, we speculate other potential mechanisms including attenuation of peri-infarct depolarisations, attenuation of glutamate mediated excitotoxicity, stabilisation of intracranial pressure, enhancement of synaptic plasticity, upregulation of endogenous neurogenesis and anti-inflammatory effects may have a role. Although this data unequivocally shows that VNS improves outcome from TBI in animal models, it remains to be determined if these findings translate clinically. Further studies are warranted.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Wessex Neurological Centre, Southampton, UK.
| | | |
Collapse
|
38
|
Su T, Paradiso B, Long YS, Liao WP, Simonato M. Evaluation of cell damage in organotypic hippocampal slice culture from adult mouse: a potential model system to study neuroprotection. Brain Res 2012; 1385:68-76. [PMID: 21303673 DOI: 10.1016/j.brainres.2011.01.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/04/2010] [Accepted: 01/31/2011] [Indexed: 12/20/2022]
Abstract
The use of organotypic hippocampal slice culture (OHSC) has become a powerful tool for studying cell damage in different neuropathological states, since it reproduces the basic morphological and functional properties of hippocampal neuronal network. However, the conventional OHSCs are established from postnatal animals rather than adult. Here we reevaluated the features of cell death in adult OHSC in detail and found potential utility for the study of neuroprotection. Organotypic culture of hippocampal slices from adult mice under conventional conditions led to a time-dependent and reproducible cell death. Around 6days in vitro (DIV), slices lost 50% of the cells, based on LDH release assessment. The cell death was greater than 90% after DIV 15. The cell loss was linearly correlated (r=0.944, P<0.01) with the time in culture. The electrophysiological responses to the stimulus in the cultured adult slices were accordingly reduced. The cell degeneration during adult OHSC might be utilized as a tool for studying neuroprotective effects in drug development. To illustrate this potential use, adult OHSCs were challenged with brain-derived neurotrophic factor (BDNF). We found that the continuous supplementation of 300ng/ml BDNF promoted cell survival of adult OHSC. Using immunohistochemistry and Western blot analyses of neuronal markers, we also demonstrated the pro-survival effects of BDNF on neurons in the adult OHSC system. It is suggested that OHSCs from adult mice might provide an alternative model system for neuronal degeneration, suitable for studying physiological factors and pharmacological compounds contributing to neuronal survival.
Collapse
Affiliation(s)
- Tao Su
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | | | | | | | | |
Collapse
|
39
|
LaPlaca MC, Meaney DF. Perspectives on the Role of Bioengineering in Neurotrauma Research. J Neurotrauma 2011; 28:2201-2. [DOI: 10.1089/neu.2011.9944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Michelle C. LaPlaca
- Department of Biomedical Engineering, Georgia Tech/Emory University, Atlanta, Georgia
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Ralay Ranaivo H, Zunich SM, Choi N, Hodge JN, Wainwright MS. Mild stretch-induced injury increases susceptibility to interleukin-1β-induced release of matrix metalloproteinase-9 from astrocytes. J Neurotrauma 2011; 28:1757-66. [PMID: 21732764 DOI: 10.1089/neu.2011.1799] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) results in the activation of glia and the release of proinflammatory cytokines, including interleukin (IL)-1β. The response of astrocytes to mild TBI has not been well studied. We used an in vitro model of cell stretch to investigate the effects of mild mechanical insult on astrocyte injury (lactate dehydrogenase and propidium iodide), and on mediators of inflammation including IL-1β, the chemokine CX3CL1, and nitrite. Here, we tested the hypothesis that a mild mechanical insult would increase susceptibility of astrocytes to delayed exposure to IL-1β, including enhanced release of the matrix metalloproteinease-9 (MMP-9). We investigated the role of the mitogen protein-activated kinase (MAPK) pathway in these responses. Cells subjected to a mild stretch show an increase in activation of the ERK1/2 and JNK pathways, and an increase in lactate dehydrogenase (LDH), but no change in the levels of inflammatory mediators. An early increase in LDH was dependent on ERK activation. Exposure to IL-1β, or to stretch alone, did not increase MMP-9. In contrast, the combination of mild stretch followed by IL-1β resulted in greater activation of the ERK pathway compared to either stimulus alone, and also resulted in an increase in the production of MMP-9 by astrocytes. Inhibition of the ERK pathway suppressed the increase in MMP-9 induced by the combination of stretch and IL-1β treatment. These results suggest that a primary mild mechanical injury renders astrocytes more susceptible to a secondary exposure to a proinflammatory cytokine such as IL-1β via the activation of the ERK pathway, and suggest a mechanism by which a mild head injury may confer increased susceptibility to neurologic injury caused by a subsequent insult.
Collapse
Affiliation(s)
- Hantamalala Ralay Ranaivo
- Department of Pediatrics, Division of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
41
|
Morrison B, Cullen DK, LaPlaca M. In Vitro Models for Biomechanical Studies of Neural Tissues. NEURAL TISSUE BIOMECHANICS 2011. [DOI: 10.1007/8415_2011_79] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
42
|
Di Pietro V, Amin D, Pernagallo S, Lazzarino G, Tavazzi B, Vagnozzi R, Pringle A, Belli A. Transcriptomics of traumatic brain injury: gene expression and molecular pathways of different grades of insult in a rat organotypic hippocampal culture model. J Neurotrauma 2010; 27:349-59. [PMID: 19903084 DOI: 10.1089/neu.2009.1095] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is the one of the most common forms of head trauma, and it remains a leading cause of death and disability. It is known that the initial mechanical axonal injury triggers a complex cascade of neuroinflammatory and metabolic events, the understanding of which is essential for clinical, translational, and pharmacological research. These can occur even in mild TBI, and are associated with several post-concussion manifestations, including transiently heightened vulnerability to a second insult. Recent studies have challenged the tenet that ischemia is the ultimate modality of tissue damage following TBI, as metabolic dysfunction can develop in the presence of normal perfusion and before intracranial hypertension. In order to elucidate the cellular and molecular changes occurring in TBI as a direct result of neuronal injury and in the absence of ischemic damage, we performed a microarray analysis of expressed genes and molecular interaction pathways for different levels of severity of trauma using an in-vitro model. A stretch injury, equivalent to human diffuse axonal injury, was delivered to rat organotypic hippocampal slice cultures, and mRNA levels following a 10% (mild) and 50% (severe) stretch were compared with controls at 24 h. More genes were differentially expressed following 10% stretch than 50% stretch, indicating the early activation of complex cellular mechanisms. The data revealed remarkable differential gene expression following mTBI, even in the absence of cell damage. Pathway analysis revealed that molecular interactions in both levels of injury were similar, with IL-1beta playing a central role. Additional pathways of neurodegeneration involving RhoA (ras homolog gene family, member A) were found in 50% stretch.
Collapse
Affiliation(s)
- Valentina Di Pietro
- Division of Clinical Neurosciences, University of Southampton School of Medicine, Southampton, SO16 6YD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kumaria A, Tolias CM. Normobaric hyperoxia therapy for traumatic brain injury and stroke: a review. Br J Neurosurg 2010; 23:576-84. [PMID: 19922270 DOI: 10.3109/02688690903050352] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Traumatic brain injury (TBI) and acute ischaemic stroke are major causes of mortality and morbidity and there is an urgent demand for new neuroprotective strategies following the translational failure of neuroprotective drug trials. Oxygen therapy--especially normobaric, may offer a simple and effective therapeutic strategy which we review in this paper. Firstly we review mechanisms underlying the therapeutic effects of hyperoxia (both normobaric and hyperbaric) including mitochondrial rescue, stabilisation of intracranial pressure, attenuation of cortical spreading depression and inducing favourable endothelial-leukocyte interactions, all effects of which are postulated to decrease secondary injury. Next we survey studies using hyperbaric oxygen therapy for TBI and stroke, which formed the basis for early studies on normobaric hyperoxia. Thirdly, we present clinical studies of the efficacy of normobaric hyperoxia on TBI and stroke, emphasising their safety, efficacy and practicality. Finally we consider safety concerns and side effects, particularly pulmonary pathology, respiratory failure and theoretical risks in paediatric patients. A neuroprotective role of normobaric hyperoxia is extremely promising and further studies are warranted.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, King's College Hospital, London, UK.
| | | |
Collapse
|
44
|
LaPlaca MC, Prado GR. Neural mechanobiology and neuronal vulnerability to traumatic loading. J Biomech 2010; 43:71-8. [DOI: 10.1016/j.jbiomech.2009.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2009] [Indexed: 10/20/2022]
|
45
|
Samantaray S, Das A, Thakore NP, Matzelle DD, Reiter RJ, Ray SK, Banik NL. Therapeutic potential of melatonin in traumatic central nervous system injury. J Pineal Res 2009; 47:134-142. [PMID: 19627458 DOI: 10.1111/j.1600-079x.2009.00703.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A vast literature extolling the benefits of melatonin has accumulated during the past four decades. Melatonin was previously considered of importance to seasonal reproduction and circadian rhythmicity. Currently, it appears to be a versatile anti-oxidative and anti-nitrosative agent, a molecule with immunomodulatory actions and profound oncostatic activity, and also to play a role as a potent neuroprotectant. Nowadays, melatonin is sold as a dietary supplement with differential availability as an over-the-counter aid in different countries. There is a widespread agreement that melatonin is nontoxic and safe considering its frequent, long-term usage by humans at both physiological and pharmacological doses with no reported side effects. Endeavors toward a designated drug status for melatonin may be enormously rewarding in clinics for treatment of several forms of neurotrauma where effective pharmacological intervention has not yet been attained. This mini review consolidates the data regarding the efficacy of melatonin as an unique neuroprotective agent in traumatic central nervous system (CNS) injuries. Well-documented actions of melatonin in combating traumatic CNS damage are compiled from various clinical and experimental studies. Research on traumatic brain injury and ischemia/reperfusion are briefly outlined here as they have been recently reviewed elsewhere, whereas the studies on different animal models of the experimental spinal cord injury have been extensively covered in this mini review for the first time.
Collapse
Affiliation(s)
- Supriti Samantaray
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Arabinda Das
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Nakul P Thakore
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Denise D Matzelle
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas, San Antonio, TX
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Naren L Banik
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
46
|
Potts MB, Adwanikar H, Noble-Haeusslein LJ. Models of traumatic cerebellar injury. THE CEREBELLUM 2009; 8:211-21. [PMID: 19495901 PMCID: PMC2734258 DOI: 10.1007/s12311-009-0114-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/07/2009] [Indexed: 01/16/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Studies of human TBI demonstrate that the cerebellum is sometimes affected even when the initial mechanical insult is directed to the cerebral cortex. Some of the components of TBI, including ataxia, postural instability, tremor, impairments in balance and fine motor skills, and even cognitive deficits, may be attributed in part to cerebellar damage. Animal models of TBI have begun to explore the vulnerability of the cerebellum. In this paper, we review the clinical presentation, pathogenesis, and putative mechanisms underlying cerebellar damage with an emphasis on experimental models that have been used to further elucidate this poorly understood but important aspect of TBI. Animal models of indirect (supratentorial) trauma to the cerebellum, including fluid percussion, controlled cortical impact, weight drop impact acceleration, and rotational acceleration injuries, are considered. In addition, we describe models that produce direct trauma to the cerebellum as well as those that reproduce specific components of TBI including axotomy, stab injury, in vitro stretch injury, and excitotoxicity. Overall, these models reveal robust characteristics of cerebellar damage including regionally specific Purkinje cell injury or loss, activation of glia in a distinct spatial pattern, and traumatic axonal injury. Further research is needed to better understand the mechanisms underlying the pathogenesis of cerebellar trauma, and the experimental models discussed here offer an important first step toward achieving that objective.
Collapse
Affiliation(s)
- Matthew B Potts
- Department of Neurological Surgery, University of California, Brain and Spinal Injury Center, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
47
|
Proceedings of the British Neurosurgical Research Group, hosted by Newcastle Spring neurosurgical unit, 2009. Br J Neurosurg 2009. [DOI: 10.1080/02688690903032491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|