1
|
Gölz L, Pannetier P, Fagundes T, Knörr S, Behnstedt L, Coordes S, Matthiessen P, Morthorst J, Vergauwen L, Knapen D, Holbech H, Braunbeck T, Baumann L. Development of the integrated fish endocrine disruptor test-Part B: Implementation of thyroid-related endpoints. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:830-845. [PMID: 37578010 DOI: 10.1002/ieam.4828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Given the vital role of thyroid hormones (THs) in vertebrate development, it is essential to identify chemicals that interfere with the TH system. Whereas, among nonmammalian laboratory animals, fish are the most frequently utilized test species in endocrine disruptor research, for example, in guidelines for the detection of effects on the sex hormone system, there is no test guideline (TG) using fish as models for thyroid-related effects; rather, amphibians are used. Therefore, the objective of the present project was to integrate thyroid-related endpoints for fish into a test protocol combining OECD TGs 229 (Fish Short-Term Reproduction Assay) and 234 (Fish Sexual Development Test). The resulting integrated Fish Endocrine Disruption Test (iFEDT) was designed as a comprehensive approach to covering sexual differentiation, early development, and reproduction and to identifying disruption not only of the sexual and/or reproductive system but also the TH system. Two 85-day exposure tests were performed using different well-studied endocrine disruptors: 6-propyl-2-thiouracil (PTU) and 17α-ethinylestradiol (EE2). Whereas the companion Part A of this study presents the findings on effects by PTU and EE2 on endpoints established in existing TGs, the present Part B discusses effects on novel thyroid-related endpoints such as TH levels, thyroid follicle histopathology, and eye development. 6-Propyl-2-thiouracil induced a massive proliferation of thyroid follicles in any life stage, and histopathological changes in the eyes proved to be highly sensitive for TH system disruption especially in younger life stages. For measurement of THs, further methodological development is required. 17-α-Ethinylestradiol demonstrated not only the well-known disruption of the hypothalamic-pituitary-gonadal axis, but also induced effects on thyroid follicles in adult zebrafish (Danio rerio) exposed to higher EE2 concentrations, suggesting crosstalk between endocrine axes. The novel iFEDT has thus proven capable of simultaneously capturing endocrine disruption of both the steroid and thyroid endocrine systems. Integr Environ Assess Manag 2024;20:830-845. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Lisa Gölz
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Pauline Pannetier
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Laboratoire de Ploufragan-Plouzané-Niort, Site de Plouzané, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Plouzané, France
| | - Teresa Fagundes
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Susanne Knörr
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Laura Behnstedt
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | | - Jane Morthorst
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Lucia Vergauwen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Dries Knapen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Wilrijk, Belgium
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section Environmental Health & Toxicology, Vrije Universiteit Amsterdam, HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Suriyampola PS, Huang AJ, Lopez M, Conroy-Ben O, Martins EP. Exposure to environmentally relevant concentrations of Bisphenol-A linked to loss of visual lateralization in adult zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106862. [PMID: 38359500 DOI: 10.1016/j.aquatox.2024.106862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Weak, but environmentally relevant concentrations of contaminants can have subtle, yet important, impacts on organisms, which are often overlooked due to the lack of acute impacts and the timing of exposure. Thus, recognizing simple, non-invasive markers of contamination events is essential for early detection and addressing the effects of exposure to weak environmental contaminants. Here, we tested whether exposure to an environmentally relevant concentration of Bisphenol-A (BPA), a common and persistent contaminant in aquatic systems, affects the lateralization of adult zebrafish (Danio rerio), a widely used model organism in ecotoxicology. We found that 73.5% of adult zebrafish displayed a left-side bias when they approached a visual cue, but that those exposed to weak BPA (0.02 mg/L) for 7 days did not exhibit laterality. Only 47.1% displayed a left-side bias. We found no differences in activity level and visual sensitivity, motor and sensory mechanisms, that regulate lateralized responses and that were unaffected by weak BPA exposure. These findings indicate the reliability of laterality as a simple measure of contaminant exposure and for future studies of the detailed mechanisms underlying subtle and complex behavioral effects to pollutants.
Collapse
Affiliation(s)
| | | | - Melissa Lopez
- School of Life Sciences, Arizona State University, AZ, USA
| | - Otakuye Conroy-Ben
- School of Sustainable Engineering and the Built Environment, Arizona State University, AZ, USA
| | | |
Collapse
|
3
|
Franz-Odendaal TA, Bezuhly M. Clomiphene Citrate and Enclomiphene Hydrochloride Exposure Is Associated With Interfrontal Suture Fusion in Zebrafish. Plast Surg (Oakv) 2023; 31:383-389. [PMID: 37915340 PMCID: PMC10617459 DOI: 10.1177/22925503211057526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/03/2023] Open
Abstract
Background: The last several decades have witnessed an increase in metopic craniosynostosis incidence. Population-based studies suggest that pharmacological exposure in utero may be responsible. This study examined effects of the fertility drug clomiphene citrate (CC) on calvarial development in an established model for craniofacial development, the zebrafish Danio rerio. Results: Zebrafish larvae were exposed to clomiphene citrate or its isomer enclomiphene for five days at key points during calvarial development. Larvae were then raised to adulthood in normal rearing water. Zebrafish were analyzed using whole-mount skeletal staining. We observed differential effects on survivability, growth and suture formation depending on the treatment. Treatments with CC or enclomiphene at 5.5 mm SL led to increased fusion of the interfrontal suture (p < .01) compared to controls. Conclusions: Exposure to fertility drugs appears to affect development of the cranial vault, specifically the interfrontal suture, in zebrafish. Further research is required to identify the signaling mechanisms at play. This work suggests that fertility drug treatment may contribute to the increased incidence of metopic craniosynostosis observed globally.
Collapse
Affiliation(s)
- Tamara A. Franz-Odendaal
- Department of Biology, Mount Saint Vincent University, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Michael Bezuhly
- Division of Plastic Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
4
|
Shaw K, Therrien M, Lu C, Liu X, Trudeau VL. Mutation of brain aromatase disrupts spawning behavior and reproductive health in female zebrafish. Front Endocrinol (Lausanne) 2023; 14:1225199. [PMID: 37435485 PMCID: PMC10332311 DOI: 10.3389/fendo.2023.1225199] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Aromatase (Cyp19a1) is the steroidogenic enzyme that converts androgens into bioactive estrogens, and hence is in a pivotal position to mediate reproduction and sexual behavior. In teleosts, there are two aromatase paralogs: cyp19a1a that is highly expressed in granulosa and Leydig cells in the gonads with critical function in sexual differentiation of the ovary, and cyp19a1b that is highly expressed in radial glial cells in the brain with unknown roles in reproduction. Cyp19a1 -/- mutant zebrafish lines were used to investigate the importance of the cyp19a1 paralogs for spawning behavior and offspring survival and early development. Mutation of cyp19a1b was found to increase the latency to the first oviposition in females. Mutation of cyp19a1b in females also increased the number of eggs spawned; however, significantly more progeny died during early development resulting in no net increase in female fecundity. This finding suggests a higher metabolic cost of reproduction in cyp19a1b -/- mutant females. In males, the combined mutation of both cyp19a1 paralogs resulted in significantly lower progeny survival rates, indicating a critical function of cyp19a1 during early larval development. These data establish the specific importance of cyp19a1b for female spawning behavior and the importance of the cyp19a1 paralogs for early larval survival.
Collapse
Affiliation(s)
- Katherine Shaw
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Mylène Therrien
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Chunyu Lu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | |
Collapse
|
5
|
Gölz L, Baumann L, Pannetier P, Braunbeck T, Knapen D, Vergauwen L. AOP Report: Thyroperoxidase Inhibition Leading to Altered Visual Function in Fish Via Altered Retinal Layer Structure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2632-2648. [PMID: 35942927 DOI: 10.1002/etc.5452] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Thyroid hormones (THs) are involved in the regulation of many important physiological and developmental processes, including vertebrate eye development. Thyroid hormone system-disrupting chemicals (THSDCs) may have severe consequences, because proper functioning of the visual system is a key factor for survival in wildlife. However, the sequence of events leading from TH system disruption (THSD) to altered eye development in fish has not yet been fully described. The development of this adverse outcome pathway (AOP) was based on an intensive literature review of studies that focused on THSD and impacts on eye development, mainly in fish. In total, approximately 120 studies (up to the end of 2021) were used in the development of this AOP linking inhibition of the key enzyme for TH synthesis, thyroperoxidase (TPO), to effects on retinal layer structure and visual function in fish (AOP-Wiki, AOP 363). In a weight-of-evidence evaluation, the confidence levels were overall moderate, with ample studies showing the link between reduced TH levels and altered retinal layer structure. However, some uncertainties about the underlying mechanism(s) remain. Although the current weight-of-evidence evaluation is based on fish, the AOP is plausibly applicable to other vertebrate classes. Through the re-use of several building blocks, this AOP is connected to the AOPs leading from TPO and deiodinase inhibition to impaired swim bladder inflation in fish (AOPs 155-159), together forming an AOP network describing THSD in fish. This AOP network addresses the lack of thyroid-related endpoints in existing fish test guidelines for the evaluation of THSDCs. Environ Toxicol Chem 2022;41:2632-2648. © 2022 SETAC.
Collapse
Affiliation(s)
- Lisa Gölz
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Pauline Pannetier
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
6
|
Amrousy Y, Haffez H, Abdou D, Atya H. Role of single nucleotide polymorphisms of the HSD3B1 gene (rs6203 and rs33937873) in the prediction of prostate cancer risk. Mol Med Rep 2022; 26:271. [PMID: 35795973 PMCID: PMC9309536 DOI: 10.3892/mmr.2022.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/15/2022] [Indexed: 11/07/2022] Open
Abstract
3-β-hydroxysteroid dehydrogenase 1 (HSD3B1) is shown to affect dihydrotestosterone level in prostatic tissue which is a risk factor for prostate cancer (PC). The present study aimed to determine whether rs33937873 (G313A) and rs6203 (C338T) single nucleotide polymorphisms (SNP) in HSD3B1 gene was a potential risk factor for PC susceptibility and can predict the recurrence of PC in Egyptian patients. A total of 186 Egyptian patients were selected with incident primary PC and compared with 180 age healthy controls. The frequencies and the main effect of rs33937873 and rs6203 in HSD3B1 were compared and investigated between the patients and control using genotyping technique and statistical analysis. The mutant GA genotype of G313A in rs33937873 SNP was considered as an independent risk for PC in the multivariate regression analysis [odds ratio (OR)=2.7, 95% confidence intervals (CI): 1.2-5.5, P=0.01] together with positive history of hypertension (HTN) (OR=6.2, 95% CI: 3.2-12.1, P=0.0001) and begin prostatic hyperplasia (BPH; OR=8.9, 95% CI: 4.5-17.5, P=0.0001). Conversely, in rs6203 (C338T), C allele is considered as major risk allele in the development of PC (OR=1.8, 95% CI: 1.3-2.4, P=0.0003). The univariate logistic regression analyses indicated that CC genotype of rs6203 was a PC risk factor (OR=1.9, 95% CI: 1.3-2.9, P=0.002). In addition, the frequency of the A-C haplotype established by rs33937873-rs6203 was also significantly higher for PC (P=0.013). The predication of PC recurrence was associated only with positive family history (OR=7.7, 95% CI: 2.3-25.9, P=0.001) and not for The G313A and C338T SNPs. These results suggested that the two HSD3B1 polymorphisms rs33937873 and rs6203 may modify the risk of PC, particularly among patients with HTN and history of BPH, suggesting them as prominent future markers for prediction of PC risk.
Collapse
Affiliation(s)
- Yasmine Amrousy
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| | - Hesham Haffez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Doaa Abdou
- Department of Clinical and Chemical Pathology, Kasr Al Ainy, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Hanaa Atya
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
7
|
Cohen A, Popowitz J, Delbridge-Perry M, Rowe CJ, Connaughton VP. The Role of Estrogen and Thyroid Hormones in Zebrafish Visual System Function. Front Pharmacol 2022; 13:837687. [PMID: 35295340 PMCID: PMC8918846 DOI: 10.3389/fphar.2022.837687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Visual system development is a highly complex process involving coordination of environmental cues, cell pathways, and integration of functional circuits. Consequently, a change to any step, due to a mutation or chemical exposure, can lead to deleterious consequences. One class of chemicals known to have both overt and subtle effects on the visual system is endocrine disrupting compounds (EDCs). EDCs are environmental contaminants which alter hormonal signaling by either preventing compound synthesis or binding to postsynaptic receptors. Interestingly, recent work has identified neuronal and sensory systems, particularly vision, as targets for EDCs. In particular, estrogenic and thyroidogenic signaling have been identified as critical modulators of proper visual system development and function. Here, we summarize and review this work, from our lab and others, focusing on behavioral, physiological, and molecular data collected in zebrafish. We also discuss different exposure regimes used, including long-lasting effects of developmental exposure. Overall, zebrafish are a model of choice to examine the impact of EDCs and other compounds targeting estrogen and thyroid signaling and the consequences of exposure in visual system development and function.
Collapse
Affiliation(s)
- Annastelle Cohen
- Department of Biology, American University, Washington, DC, WA, United States
| | - Jeremy Popowitz
- Department of Biology, American University, Washington, DC, WA, United States
| | | | - Cassie J. Rowe
- Department of Biology, American University, Washington, DC, WA, United States,Center for Neuroscience and Behavior, American University, Washington, DC, WA, United States
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC, WA, United States,Center for Neuroscience and Behavior, American University, Washington, DC, WA, United States,*Correspondence: Victoria P. Connaughton,
| |
Collapse
|
8
|
Bernardo RC, Connaughton VP. Transient developmental exposure to tributyltin reduces optomotor responses in larval zebrafish (Danio rerio). Neurotoxicol Teratol 2022; 89:107055. [PMID: 34896240 PMCID: PMC8755603 DOI: 10.1016/j.ntt.2021.107055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023]
Abstract
This study determined the effects of transient developmental exposure to tributyltin (TBT), a well-known anti-estrogenic environmental endocrine disrupting compound, on visual system development of larval zebrafish (Danio rerio). Zebrafish were exposed to either 0.2 μg/L or 20 μg/L TBT for 24 h when they were aged 24 h postfertilization (hpf), 72 hpf, or 7 days (d)pf. Immediately after exposure, larvae were transferred to system water for seven days of recovery followed by behavioral testing (startle and optomotor responses) and morphological assessment. TBT-treated larvae displayed age-dependent changes in morphology characterized by delayed/reduced growth and susceptibility to exposure. TBT exposure reduced the number of larvae displaying optomotor responses regardless of age of exposure; eye diameter was also decreased when exposure occurred at 24 hpf or 7 dpf. Startle responses were reduced only in TBT-treated larvae exposed when they were 24 hpf, suggesting transient TBT exposure during the early larval period may cause vision-specific effects.
Collapse
Affiliation(s)
- Rachel C. Bernardo
- Department of Biology, American University, Washington, DC 20016, USA.,Department of Health Studies, American University, Washington, DC 20016, USA
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC 20016, USA.,Corresponding author: VP Connaughton, Dept of Biology, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, 202-885-2188,
| |
Collapse
|
9
|
Nasri A, Mezni A, Lafon PA, Wahbi A, Cubedo N, Clair P, Harrath AH, Beyrem H, Rossel M, Perrier V. Ethinylestradiol (EE2) residues from birth control pills impair nervous system development and swimming behavior of zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145272. [PMID: 33497902 DOI: 10.1016/j.scitotenv.2021.145272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The ubiquitous use of ethinylestradiol (EE2), an active constituent of birth control preparations, results in continuous release of this synthetic estrogen to surface waters. Many studies document the untoward effects of EE2 on the endocrine system of aquatic organisms. Effects of environmental EE2 on the nervous system are still poorly documented. We studied effects of pico- to nanomolar concentrations of EE2 on early nervous system development of zebrafish larvae. EE2 disrupted axonal nerve regeneration and hair cell regeneration up to 50%. Gene expression in larval brain tissues showed significantly upregulated expression of target genes, such as estrogen and progesterone receptors, and aromatase B. In contrast, downregulation of the tyrosine hydroxylase, involved in the synthesis of neurotransmitters, occurred concomitant with diminution of proliferating cells. Overall, the size of exposed fish larvae decreased by 25% and their swimming behavior was modified compared to non-treated larvae. EE2 interferes with nervous system development, both centrally and peripherally, with negative effects on regeneration and swimming behavior. Survival of fish and other aquatic species may be at risk in chronically EE2-contaminated environments.
Collapse
Affiliation(s)
- Ahmed Nasri
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia; U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095, Montpellier, France.
| | - Ali Mezni
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Pierre-André Lafon
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095, Montpellier, France
| | - Aymen Wahbi
- Laboratory of Hetero-Organic Compounds and Nanostructured Materials (LR18ES11), Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Nicolas Cubedo
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095, Montpellier, France
| | - Philippe Clair
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095, Montpellier, France
| | - Abdel Halim Harrath
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamouda Beyrem
- Laboratory of Environment Biomonitoring, Unit of coastal Ecology and Ecotoxicology, Faculty of Sciences of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Mireille Rossel
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095, Montpellier, France
| | - Véronique Perrier
- U1198 MMDN (Molecular Mechanisms of Neurodegenerative Diseases), Inserm (National Institute for Health and Medical Research), MGX (Montpellier GenomiX), BioCampus, University of Montpellier, 34095, Montpellier, France
| |
Collapse
|
10
|
Alcaraz AJG, Potěšil D, Mikulášek K, Green D, Park B, Burbridge C, Bluhm K, Soufan O, Lane T, Pipal M, Brinkmann M, Xia J, Zdráhal Z, Schneider D, Crump D, Basu N, Hogan N, Hecker M. Development of a Comprehensive Toxicity Pathway Model for 17α-Ethinylestradiol in Early Life Stage Fathead Minnows ( Pimephales promelas). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5024-5036. [PMID: 33755441 DOI: 10.1021/acs.est.0c05942] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is increasing pressure to develop alternative ecotoxicological risk assessment approaches that do not rely on expensive, time-consuming, and ethically questionable live animal testing. This study aimed to develop a comprehensive early life stage toxicity pathway model for the exposure of fish to estrogenic chemicals that is rooted in mechanistic toxicology. Embryo-larval fathead minnows (FHM; Pimephales promelas) were exposed to graded concentrations of 17α-ethinylestradiol (water control, 0.01% DMSO, 4, 20, and 100 ng/L) for 32 days. Fish were assessed for transcriptomic and proteomic responses at 4 days post-hatch (dph), and for histological and apical end points at 28 dph. Molecular analyses revealed core responses that were indicative of observed apical outcomes, including biological processes resulting in overproduction of vitellogenin and impairment of visual development. Histological observations indicated accumulation of proteinaceous fluid in liver and kidney tissues, energy depletion, and delayed or suppressed gonad development. Additionally, fish in the 100 ng/L treatment group were smaller than controls. Integration of omics data improved the interpretation of perturbations in early life stage FHM, providing evidence of conservation of toxicity pathways across levels of biological organization. Overall, the mechanism-based embryo-larval FHM model showed promise as a replacement for standard adult live animal tests.
Collapse
Affiliation(s)
- Alper James G Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Kamil Mikulášek
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Derek Green
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Bradley Park
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Connor Burbridge
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Kerstin Bluhm
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Othman Soufan
- Computer Science Department, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Taylor Lane
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Environment and Geography, York University, York YO10 5NG, United Kingdom
| | - Marek Pipal
- RECETOX, Masaryk University, Brno 625 00, Czech Republic
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Jianguo Xia
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - David Schneider
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W9, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| |
Collapse
|
11
|
Crowley-Perry M, Barberio AJ, Zeino J, Winston ER, Connaughton VP. Zebrafish Optomotor Response and Morphology Are Altered by Transient, Developmental Exposure to Bisphenol-A. J Dev Biol 2021; 9:jdb9020014. [PMID: 33918232 PMCID: PMC8167563 DOI: 10.3390/jdb9020014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Estrogen-specific endocrine disrupting compounds (EDCs) are potent modulators of neural and visual development and common environmental contaminants. Using zebrafish, we examined the long-term impact of abnormal estrogenic signaling by testing the effects of acute, early exposure to bisphenol-A (BPA), a weak estrogen agonist, on later visually guided behaviors. Zebrafish aged 24 h postfertilization (hpf), 72 hpf, and 7 days postfertilization (dpf) were exposed to 0.001 μM or 0.1 μM BPA for 24 h, and then allowed to recover for 1 or 2 weeks. Morphology and optomotor responses (OMRs) were assessed after 1 and 2 weeks of recovery for 24 hpf and 72 hpf exposure groups; 7 dpf exposure groups were additionally assessed immediately after exposure. Increased notochord length was seen in 0.001 μM exposed larvae and decreased in 0.1 μM exposed larvae across all age groups. Positive OMR was significantly increased at 1 and 2 weeks post-exposure in larvae exposed to 0.1 μM BPA when they were 72 hpf or 7 dpf, while positive OMR was increased after 2 weeks of recovery in larvae exposed to 0.001 μM BPA at 72 hpf. A time-delayed increase in eye diameter occurred in both BPA treatment groups at 72 hpf exposure; while a transient increase occurred in 7 dpf larvae exposed to 0.1 μM BPA. Overall, short-term developmental exposure to environmentally relevant BPA levels caused concentration- and age-dependent effects on zebrafish visual anatomy and function.
Collapse
Affiliation(s)
- Mikayla Crowley-Perry
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
- Department of Chemistry, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA
| | - Angelo J. Barberio
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
| | - Jude Zeino
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
| | - Erica R. Winston
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
| | - Victoria P. Connaughton
- Department of Biology, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, USA; (M.C.-P.); (A.J.B.); (J.Z.); (E.R.W.)
- Correspondence: ; Tel.: +1-202-885-2188
| |
Collapse
|
12
|
El-Faham A, Farooq M, Almarhoon Z, Alhameed RA, Wadaan MAM, de la Torre BG, Albericio F. Di- and tri-substituted s-triazine derivatives: Synthesis, characterization, anticancer activity in human breast-cancer cell lines, and developmental toxicity in zebrafish embryos. Bioorg Chem 2019; 94:103397. [PMID: 31706684 DOI: 10.1016/j.bioorg.2019.103397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/15/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022]
Abstract
Here we report on a small library based on a 4-aminobenzonitile-s-triazine moiety. We used a straightforward orthogonal synthetic pathway to prepare di- and tri-substituted s-triazine derivatives, whose basic structure was modified. The newly synthesized compounds were fully characterized by 1H NMR, 13C NMR and elemental analysis. They showed strong anticancer activity against two human breast cancer cell lines (MIDA-MB-231 and MCF-7), with IC50 values less than 1 µM. These s-triazine compounds were generally more selective towards hormone receptor-positive breast cancer cell line MCF-7 than the triple negative MDA-MB-231 cell line. Zebrafish embryos were used to test the developmental toxicity of the target compounds in vivo. The phenotype of embryos treated with the derivatives resembled that of those treated with estrogen disruptors. This observation strongly supports the notion that that these compounds induce their anticancer activity in human breast cancer cells via targeting the estrogen and progesterone receptors.
Collapse
Affiliation(s)
- Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt.
| | - Muhammad Farooq
- Bioproducts Research Chair, College of Science, Department of Zoology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Zainab Almarhoon
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rakia Abd Alhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad A M Wadaan
- Bioproducts Research Chair, College of Science, Department of Zoology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Beatriz G de la Torre
- KRISP, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| | - Fernando Albericio
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; School of Chemistry and Physics, University of KwaZulu-Natal, University Road, Westville, Durban 4001, South Africa; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, Barcelona 08028, Spain.
| |
Collapse
|
13
|
Gould CJ, Saldanha CJ, Connaughton VP. Acute exposure to 4-OH-A, not PCB 1254, alters brain aromatase activity but does not adversely affect growth in zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:133-140. [PMID: 30889543 PMCID: PMC6516860 DOI: 10.1016/j.etap.2019.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Acute developmental exposure to pharmaceuticals or environmental contaminants can have deleterious, long lasting effects. Many of these compounds are endocrine disruptors (EDCs) that target estrogen signaling, with effects on reproductive and non-reproductive tissues. We recently reported that zebrafish larvae transiently exposed to the pharmaceutical EDC 4-OH-A display visual deficits as adults. Here, we examine whether these long-term effects are due to compound-induced morphological and/or cellular changes. Zebrafish aged 24 h, 48 h, 72 h, or 7 days post-fertilization (larvae) or 3-4mos (adults) were exposed to either 4-OH-A or PCB1254 for 24 h. After that time, notochord length, eye diameter, inter-eye distance, and heart rate were measured from larvae; and aromatase (estrogen synthase) activity was measured in homogenates of adult brain tissue. In general, indices of larval growth and development were not altered by 24 h exposure to either compound. 4-OH-A potently inhibited aromatase activity, while PCB1254 did not, with inhibition continuing even after removal from treatment. These results support differential function of EDCs and indicate that developmental exposure to 4-OH-A causes sustained inhibition of aromatase, which could be associated with altered adult behaviors.
Collapse
Affiliation(s)
- Cassie J Gould
- Department of Biology, American University, Washington, DC, United States; Behavior, Cognition & Neuroscience Program, American University, Washington, DC, United States; Center for Behavioral Neuroscience, American University, Washington, DC, United States.
| | - Colin J Saldanha
- Department of Biology, American University, Washington, DC, United States; Behavior, Cognition & Neuroscience Program, American University, Washington, DC, United States; Center for Behavioral Neuroscience, American University, Washington, DC, United States
| | - Victoria P Connaughton
- Department of Biology, American University, Washington, DC, United States; Behavior, Cognition & Neuroscience Program, American University, Washington, DC, United States; Center for Behavioral Neuroscience, American University, Washington, DC, United States
| |
Collapse
|
14
|
Gould CJ, Wiegand JL, Connaughton VP. Acute developmental exposure to 4-hydroxyandrostenedione has a long-term effect on visually-guided behaviors. Neurotoxicol Teratol 2017; 64:45-49. [PMID: 29031477 DOI: 10.1016/j.ntt.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 01/22/2023]
Abstract
Estrogenic and anti-estrogenic endocrine disrupting compounds (EDCs) are recognized as critical modulators of neural development, including sensory system development. Using the zebrafish model, we tested the effect of transient developmental exposure to a known anti-estrogenic EDC on adult visually-guided behavior. In particular, we exposed zebrafish aged 24-hour post-fertilization (hpf), 72 hpf, or 7-days post-fertilization (dpf) to the aromatase inhibitor 4-hydroxyandrostenedione (4-OH-A) for 24h. After this time, the fish were removed from treatment, placed into control conditions, and reared until adulthood (3-4months) when visually-guided optomotor responses (OMR) were assessed. Our results show significant decreases in positive OMR in adults exposed to 4-OH-A at 72 hpf and 7 dpf. These deficits were not accompanied by changes in overall swimming behaviors and startle responses, suggesting 4-OH-A specifically effected the visual system. Overall, this study identified long-term, quantifiable effects in visually-guided adult behaviors resulting from transient developmental exposure to the anti-estrogenic EDC, 4-OH-A. Further, these effects were noted when 4-OH-A exposure occurred after hatching, suggesting estrogen signaling is important for visual system maturation.
Collapse
Affiliation(s)
- Cassie J Gould
- Department of Biology, American University, Washington, DC 20016, United States; Behavior, Cognition & Neuroscience Program, American University, Washington, DC 20016, United States; The Center for Behavioral Neuroscience, American University, Washington, DC 20016, United States.
| | - Jenna L Wiegand
- Department of Biology, American University, Washington, DC 20016, United States
| | - Victoria P Connaughton
- Department of Biology, American University, Washington, DC 20016, United States; Behavior, Cognition & Neuroscience Program, American University, Washington, DC 20016, United States; The Center for Behavioral Neuroscience, American University, Washington, DC 20016, United States
| |
Collapse
|
15
|
Danford ID, Verkuil LD, Choi DJ, Collins DW, Gudiseva HV, Uyhazi KE, Lau MK, Kanu LN, Grant GR, Chavali VRM, O'Brien JM. Characterizing the "POAGome": A bioinformatics-driven approach to primary open-angle glaucoma. Prog Retin Eye Res 2017; 58:89-114. [PMID: 28223208 PMCID: PMC5464971 DOI: 10.1016/j.preteyeres.2017.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 01/10/2023]
Abstract
Primary open-angle glaucoma (POAG) is a genetically, physiologically, and phenotypically complex neurodegenerative disorder. This study addressed the expanding collection of genes associated with POAG, referred to as the "POAGome." We used bioinformatics tools to perform an extensive, systematic literature search and compiled 542 genes with confirmed associations with POAG and its related phenotypes (normal tension glaucoma, ocular hypertension, juvenile open-angle glaucoma, and primary congenital glaucoma). The genes were classified according to their associated ocular tissues and phenotypes, and functional annotation and pathway analyses were subsequently performed. Our study reveals that no single molecular pathway can encompass the pathophysiology of POAG. The analyses suggested that inflammation and senescence may play pivotal roles in both the development and perpetuation of the retinal ganglion cell degeneration seen in POAG. The TGF-β signaling pathway was repeatedly implicated in our analyses, suggesting that it may be an important contributor to the manifestation of POAG in the anterior and posterior segments of the globe. We propose a molecular model of POAG revolving around TGF-β signaling, which incorporates the roles of inflammation and senescence in this disease. Finally, we highlight emerging molecular therapies that show promise for treating POAG.
Collapse
Affiliation(s)
- Ian D Danford
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lana D Verkuil
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel J Choi
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David W Collins
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Harini V Gudiseva
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katherine E Uyhazi
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marisa K Lau
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Levi N Kanu
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gregory R Grant
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA, Penn Center for Bioinformatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Venkata R M Chavali
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Joan M O'Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
16
|
Suiko M, Kurogi K, Hashiguchi T, Sakakibara Y, Liu MC. Updated perspectives on the cytosolic sulfotransferases (SULTs) and SULT-mediated sulfation. Biosci Biotechnol Biochem 2016; 81:63-72. [PMID: 27649811 DOI: 10.1080/09168451.2016.1222266] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The cytosolic sulfotransferases (SULTs) are Phase II detoxifying enzymes that mediate the sulfate conjugation of numerous xenobiotic molecules. While the research on the SULTs has lagged behind the research on Phase I cytochrome P-450 enzymes and other Phase II conjugating enzymes, it has gained more momentum in recent years. This review aims to summarize information obtained in several fronts of the research on the SULTs, including the range of the SULTs in different life forms, concerted actions of the SULTs and other Phase II enzymes, insights into the structure-function relationships of the SULTs, regulation of SULT expression and activity, developmental expression of SULTs, as well as the use of a zebrafish model for studying the developmental pharmacology/toxicology.
Collapse
Affiliation(s)
- Masahito Suiko
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan
| | - Katsuhisa Kurogi
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan.,b Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences , University of Toledo Health Science Campus , Toledo , OH , USA
| | - Takuyu Hashiguchi
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan
| | - Yoichi Sakakibara
- a Faculty of Agriculture, Department of Biochemistry and Applied Biosciences , University of Miyazaki , Miyazaki , Japan
| | - Ming-Cheh Liu
- b Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences , University of Toledo Health Science Campus , Toledo , OH , USA
| |
Collapse
|
17
|
Alharthy KM, Albaqami FF, Thornton C, Corrales J, Willett KL. Mechanistic Evaluation of Benzo[a]pyrene's Developmental Toxicities Mediated by Reduced Cyp19a1b Activity. Toxicol Sci 2016; 155:135-147. [PMID: 27633980 DOI: 10.1093/toxsci/kfw182] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environmental contaminant that is both an endocrine disruptor and a carcinogen. Aromatase (CYP19) is a key enzyme in steroidogenesis that is responsible for conversion of androgens to estrogens and thus plays a key role in steroid homeostasis. We hypothesized that some of the adverse outcomes of early developmental exposure to BaP are the result of reduced Cyp19a1b activity. Our goal was to investigate the role of estrogen homeostasis during early development and determine the role of aromatase inhibition as a relevant mechanism in BaP's developmental toxicities. One-cell zebrafish embryos were injected with a Cyp19a1b-morpholino (MO) or control-MO. Other non-injected embryos were exposed to waterborne BaP, fadrozole (a Cyp19 inhibitor), estradiol (E2), BaP + E2, Cyp19a1b MO + E2, or fadrozole + E2 for 96 hours post-fertilization (hpf). Adverse outcomes were compared between treatments, and the ability of E2 co-exposure to rescue each observed dysmorphology was assessed. BaP significantly decreased cyp19a1b gene expression in 96 hpf zebrafish larvae homogenates. Concentrations of E2 in 48 hpf larvae were significantly decreased by BaP, fadrozole and Cyp19a1b-MO. Cumulative mortality of zebrafish larvae was significantly increased following BaP or fadrozole exposure or Cyp19a1b knockdown compared to controls. E2 co-treatment rescued mortality caused by 10 μg/L BaP, 10 μg/L fadrozole, or Cyp19a1b-MO. In a treatment-blinded morphological assessment of larvae at 96 hpf, several phenotypes were negatively impacted by BaP, fadrozole, or Cyp19a1b knockdown and rescued by exogenous E2 co-treatment; these included body length, optic vesicle size, swim bladder inflation, pericardial and abdominal edema, and incidence of normal larval tail shape. Abnormal pectoral fins were caused by BaP exposure only. Uninflated swim bladders were caused by all treatments including E2 alone. Our results indicate that certain BaP-mediated adverse developmental outcomes were mechanistically in accordance with BaP-mediated Cyp19a1b inhibition.
Collapse
Affiliation(s)
- Khalid M Alharthy
- Department of BioMolecular Sciences, Divisions of Pharmacology and Environmental Toxicology, School of Pharmacy, University of Mississippi, Mississippi
| | - Faisal F Albaqami
- Department of BioMolecular Sciences, Divisions of Pharmacology and Environmental Toxicology, School of Pharmacy, University of Mississippi, Mississippi
| | - Cammi Thornton
- Department of BioMolecular Sciences, Divisions of Pharmacology and Environmental Toxicology, School of Pharmacy, University of Mississippi, Mississippi
| | - Jone Corrales
- Department of BioMolecular Sciences, Divisions of Pharmacology and Environmental Toxicology, School of Pharmacy, University of Mississippi, Mississippi
| | - Kristine L Willett
- Department of BioMolecular Sciences, Divisions of Pharmacology and Environmental Toxicology, School of Pharmacy, University of Mississippi, Mississippi
| |
Collapse
|
18
|
Hao R, Bondesson M, Singh AV, Riu A, McCollum CW, Knudsen TB, Gorelick DA, Gustafsson JÅ. Identification of estrogen target genes during zebrafish embryonic development through transcriptomic analysis. PLoS One 2013; 8:e79020. [PMID: 24223173 PMCID: PMC3819264 DOI: 10.1371/journal.pone.0079020] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 09/17/2013] [Indexed: 12/26/2022] Open
Abstract
Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 µM 17β-estradiol (E2) or vehicle from 3 hours to 4 days post fertilization (dpf), harvested at 1, 2, 3 and 4 dpf, and subjected to RNA extraction for transcriptome analysis using microarrays. Differentially expressed genes by E2-treatment were analyzed with hierarchical clustering followed by biological process and tissue enrichment analysis. Markedly distinct sets of genes were up and down-regulated by E2 at the four different time points. Among these genes, only the well-known estrogenic marker vtg1 was co-regulated at all time points. Despite this, the biological functional categories targeted by E2 were relatively similar throughout zebrafish development. According to knowledge-based tissue enrichment, estrogen responsive genes were clustered mainly in the liver, pancreas and brain. This was in line with the developmental dynamics of estrogen-target tissues that were visualized using transgenic zebrafish containing estrogen responsive elements driving the expression of GFP (Tg(5xERE:GFP)). Finally, the identified embryonic estrogen-responsive genes were compared to already published estrogen-responsive genes identified in male adult zebrafish (Gene Expression Omnibus database). The expressions of a few genes were co-regulated by E2 in both embryonic and adult zebrafish. These could potentially be used as estrogenic biomarkers for exposure to estrogens or estrogenic endocrine disruptors in zebrafish. In conclusion, our data suggests that estrogen effects on early embryonic zebrafish development are stage- and tissue- specific.
Collapse
Affiliation(s)
- Ruixin Hao
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Maria Bondesson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| | - Amar V. Singh
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Anne Riu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Catherine W. McCollum
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Thomas B. Knudsen
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Daniel A. Gorelick
- Department of Embryology, Carnegie Institute for Science, Baltimore, Maryland, United States of America
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
19
|
Allgood OE, Hamad A, Fox J, Defrank A, Gilley R, Dawson F, Sykes B, Underwood TJ, Naylor RC, Briggs AA, Lassiter CS, Bell WE, Turner JE. Estrogen prevents cardiac and vascular failure in the 'listless' zebrafish (Danio rerio) developmental model. Gen Comp Endocrinol 2013; 189:33-42. [PMID: 23631900 DOI: 10.1016/j.ygcen.2013.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 11/21/2022]
Abstract
The presence of a robust estrogen (E2) response system throughout heart and blood vessel tissues of vertebrates, including humans, has led to the speculation that this ubiquitous hormone may play a prominent role in the health and maintenance of the adult cardiovascular system (CVS). We previously established an embryonic zebrafish model called 'listless', which results from the inhibition of E2 synthesis by treatment with aromatase enzyme inhibitors (AI). These fish have outward symptoms similar to the human condition of congestive heart failure and tamponade. E2 replacement therapy (1) reduced the severity of cardiac sac abnormalities, (2) protected heart function, (3) prevented reduction in heart size, and (4) reduced blood vessel deterioration. Nitric oxide may be a critical downstream mediator of these events. We also demonstrate that removal of fluid around the heart increases survival of AI-treated fish. These results strongly indicate the importance of E2 in the developing CVS of the zebrafish and offer a potential model for the study of its role in CVS development, maintenance, and disease conditions.
Collapse
Affiliation(s)
- Ottie E Allgood
- Department of Biology, Virginia Military Institute, Lexington, VA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Villeneuve DL, Breen M, Bencic DC, Cavallin JE, Jensen KM, Makynen EA, Thomas LM, Wehmas LC, Conolly RB, Ankley GT. Developing predictive approaches to characterize adaptive responses of the reproductive endocrine axis to aromatase inhibition: I. Data generation in a small fish model. Toxicol Sci 2013; 133:225-33. [PMID: 23492810 DOI: 10.1093/toxsci/kft068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Adaptive or compensatory responses to chemical exposure can significantly influence in vivo concentration-duration-response relationships. This study provided data to support development of a computational dynamic model of the hypothalamic-pituitary-gonadal axis of a model vertebrate and its response to aromatase inhibitors as a class of endocrine active chemicals. Fathead minnows (Pimephales promelas) were either exposed to the aromatase inhibitor fadrozole (0.5 or 30 μg/l) continuously for 1, 8, 12, 16, 20, 24, or 28 days or exposed for 8 days and then held in control water (no fadrozole) for an additional 4, 8, 12, 16, or 20 days. The time course of effects on ovarian steroid production, circulating 17β-estradiol (E2) and vitellogenin (VTG) concentrations, and expression of steroidogenesis-related genes in the ovary was measured. Exposure to 30 μg fadrozole/l significantly reduced plasma E2 and VTG concentrations after just 1 day and those effects persisted throughout 28 days of exposure. In contrast, ex vivo E2 production was similar to that of controls on day 8-28 of exposure, whereas transcripts coding for aromatase and follicle-stimulating hormone receptor were elevated, suggesting a compensatory response. Following cessation of fadrozole exposure, ex vivo E2 and plasma E2 concentrations exceeded and then recovered to control levels, but plasma VTG concentrations did not, even after 20 days of depuration. Collectively these data provide several new insights into the nature and time course of adaptive responses to an aromatase inhibitor that support development of a computational model (see companion article).
Collapse
Affiliation(s)
- Daniel L Villeneuve
- Mid-Continent Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Saili KS, Corvi MM, Weber DN, Patel AU, Das SR, Przybyla J, Anderson KA, Tanguay RL. Neurodevelopmental low-dose bisphenol A exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish. Toxicology 2011; 291:83-92. [PMID: 22108044 DOI: 10.1016/j.tox.2011.11.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/25/2011] [Accepted: 11/07/2011] [Indexed: 01/20/2023]
Abstract
Developmental bisphenol A (BPA) exposure has been implicated in adverse behavior and learning deficits. The mode of action underlying these effects is unclear. The objectives of this study were to identify whether low-dose, developmental BPA exposure affects larval zebrafish locomotor behavior and whether learning deficits occur in adults exposed during development. Two control compounds, 17β-estradiol (an estrogen receptor ligand) and GSK4716 (a synthetic estrogen-related receptor gamma ligand), were included. Larval toxicity assays were used to determine appropriate BPA, 17β-estradiol, and GSK4716 concentrations for behavior testing. BPA tissue uptake was analyzed using HPLC and lower doses were extrapolated using a linear regression analysis. Larval behavior tests were conducted using a ViewPoint Zebrabox. Adult learning tests were conducted using a custom-built T-maze. BPA exposure to <30μM was non-teratogenic. Neurodevelopmental BPA exposure to 0.01, 0.1, or 1μM led to larval hyperactivity or learning deficits in adult zebrafish. Exposure to 0.1μM 17β-estradiol or GSK4716 also led to larval hyperactivity. This study demonstrates the efficacy of using the zebrafish model for studying the neurobehavioral effects of low-dose developmental BPA exposure.
Collapse
Affiliation(s)
- Katerine S Saili
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97333, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Celeghin A, Benato F, Pikulkaew S, Rabbane MG, Colombo L, Dalla Valle L. The knockdown of the maternal estrogen receptor 2a (esr2a) mRNA affects embryo transcript contents and larval development in zebrafish. Gen Comp Endocrinol 2011; 172:120-9. [PMID: 21199655 DOI: 10.1016/j.ygcen.2010.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
Abstract
In zebrafish, ovulated oocytes are loaded with maternal estrogen receptor 2a (esr2a) mRNA which is spread as granular and filamentous structures throughout the central ooplasm and is promptly relocated inside the blastodisc area at the 1-cell stage (0.2h post-fertilization, hpf), as shown by in situ hybridization. This transcript is available for translation until its sharp decline from 4 to 8 hpf, being replaced by low levels of zygotic esr2a mRNA mainly localized in the head region and around the yolk sac from 24 hpf until hatching at 48 hpf. To test the functional role of the maternal esr2a mRNA, 1- or 2-cell embryos were injected with 10.3 ng each of morpholino (MO) to knockdown translation (MO2-esr2a) of both maternal and zygotic esr2a transcripts, with a missplicing MO (MO3-esr2a) to effectively block post-transcriptionally the zygotic transcript alone, and with a non-specific MO-control. Treatment with MO2-esr2a increased apoptosis in embryos, especially in the brain, and caused severe malformations in 63% of 1-5 dpf larvae, as compared to 10-11% in those treated with MO3-esr2a and MO-control. Defects included body growth delay with curved shape, persistent yolk sac with reduced sub-intestinal veins and swollen yolk extension, abnormal brain and splanchnocranium development, smaller eyes and otic vesicles, pericardial oedema, uninflated swim bladder and rudimentary caudal fin with aberrant circular swimming. Affected larvae could survive for only 12-14 days. The MO2-esr2a phenotype was rescued with co-injection of 30 pg/embryo of mutated zebrafish esr2a mRNA encoding the full length of Esr2a, but containing eight silent mutations in the region recognised by MO2-esr2a. A lower dosage (15 pg) failed to recover mortality and abnormality. Raising the dosage to 60 and 90 pg increased abnormality, but not mortality, whereas with 120 pg both mortality and abnormality worsened, indicating a strict quantitative requirement of Esr2a. Co-injection of an anti-p53 MO failed to rescue the MO2-esr2a phenotype, eliminating the possibility of off-target effects. Pangenomic microarray analysis revealed that 240 and 219 significantly expressed transcripts were up- and down-regulated, respectively, by maternal Esr2a protein deficiency in 8-hpf MO2-esr2a embryos. Also at 48 hpf, 162 and 120 presumably zygotic transcripts were up- and down-regulated, respectively, but only 18 were in common with each of the 8-hpf sets. In total, the transcripts from 705 genes were affected by Esr2a knockdown. These findings suggest the involvement of maternal esr2a mRNA, presumably transactivated by maternal 17β-estradiol stored in the oocyte from enveloping granulosa cells, in the epigenetic programming of zebrafish development.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cartilage/embryology
- Cartilage/growth & development
- Cartilage/metabolism
- Embryo, Nonmammalian/chemistry
- Embryo, Nonmammalian/metabolism
- Epigenesis, Genetic/physiology
- Estrogen Receptor beta
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Knockdown Techniques
- Larva/genetics
- Larva/growth & development
- Larva/metabolism
- Microarray Analysis
- Phenotype
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger, Stored/antagonists & inhibitors
- RNA, Messenger, Stored/genetics
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Validation Studies as Topic
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/growth & development
- Zebrafish/metabolism
- Zebrafish Proteins/antagonists & inhibitors
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Andrea Celeghin
- Comparative Endocrinology Laboratory, Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Pikulkaew S, De Nadai A, Belvedere P, Colombo L, Dalla Valle L. Expression analysis of steroid hormone receptor mRNAs during zebrafish embryogenesis. Gen Comp Endocrinol 2010; 165:215-20. [PMID: 19576895 DOI: 10.1016/j.ygcen.2009.06.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/14/2009] [Accepted: 06/28/2009] [Indexed: 11/27/2022]
Abstract
We have analyzed by qRT-PCR and/or RT-PCR the abundance and degradation rate of maternal mRNAs for nine steroid hormone receptors and their possible replacement by corresponding embryonic transcripts in both ovulated oocytes and embryos of zebrafish collected at 0, 1, 2, 4, 8, 12, 24 and 48 h post-fertilization (hpf). The mRNAs encoded the nuclear receptors for progesterone (pr), androgen (ar), estrogen (er alpha, er beta 1 and er beta 2), glucocorticoids (gr), mineralocorticoids (mr) and the membrane progestin receptor-alpha and beta (mpr alpha and beta). gr mRNA was the most abundant maternal transcript in oocytes and early embryos followed by er beta 2 and ar mRNAs. They declined during the first 8 hpf, being replaced, thereafter, by the embryonic messengers. er beta 1 and mr transcript levels were low until 8 hpf, but increased steadily during embryonic transcription from 24 to 48 hpf. pr transcripts were detectable only in ovulated oocytes and at 24 and 48 hpf. At these stages, there was a slight increase of er alpha mRNA that initially was very low. mPr alpha and beta mRNAs were expressed in ovulated oocytes and faintly persisted during the first 4 hpf. There was no subsequent embryonic expression of these transcripts. The possible involvement of maternal mRNAs for glucocorticoid and sex hormone receptors in the programming of early zebrafish development is intriguing, since they mainly occur at stages in which gene replication predominates over transcription.
Collapse
Affiliation(s)
- S Pikulkaew
- Comparative Endocrinology Laboratory, Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | | | | | | | | |
Collapse
|
24
|
Nelson BP, Henriet RP, Holt AW, Bopp KC, Houser AP, Allgood OE, Turner JE. The role of estrogen in the developmental appearance of sensory-motor behaviors in the zebrafish (Danio rerio): The characterization of the “listless” model. Brain Res 2008; 1222:118-28. [DOI: 10.1016/j.brainres.2008.05.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/19/2008] [Accepted: 05/20/2008] [Indexed: 01/17/2023]
|
25
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2007. [DOI: 10.1089/zeb.2007.9977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|