1
|
Harder T, de Wit S, Gonzales JL, Ho JHP, Mulatti P, Prajitno TY, Stegeman A. Epidemiology-driven approaches to surveillance in HPAI-vaccinated poultry flocks aiming to demonstrate freedom from circulating HPAIV. Biologicals 2023; 83:101694. [PMID: 37494751 DOI: 10.1016/j.biologicals.2023.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Incursion pressure of high pathogenicity avian influenza viruses (HPAIV) by secondary spread among poultry holdings and/or from infected migratory wild bird populations increases worldwide. Vaccination as an additional layer of protection of poultry holdings using appropriately matched vaccines aims at reducing clinical sequelae of HPAIV infection, disrupting HPAIV transmission, curtailing economic losses and animal welfare problems and cutting exposure risks of zoonotic HPAIV at the avian-human interface. Products derived from HPAIV-vaccinated poultry should not impose any risk of virus spread or exposure. Vaccination can be carried out with zero-tolerance for infection in vaccinated herds and must then be flanked by appropriate surveillance which requires tailoring at several levels: (i) Controlling appropriate vaccination coverage and adequate population immunity in individual flocks and across vaccinated populations; (ii) assessing HPAI-infection trends in unvaccinated and vaccinated parts of the poultry population to provide early detection of new/re-emerged HPAIV outbreaks; and (iii) proving absence of HPAIV circulation in vaccinated flocks ideally by real time-monitoring. Surveillance strategies, i.e. selecting targets, tools and random sample sizes, must be accommodated to the specific epidemiologic and socio-economic background. Methodological approaches and practical examples from three countries or territories applying AI vaccination under different circumstances are reviewed here.
Collapse
Affiliation(s)
- Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler Institute, Greifswald-Insel Riems, Germany.
| | - Sjaak de Wit
- Royal GD, Deventer, the Netherlands; Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jose L Gonzales
- Epidemiology, Bio-informatics & Animal Models, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Jeremy H P Ho
- Agriculture, Fisheries and Conservation Department, Government of the Hong Kong Special Administrative Region, Hong Kong, China
| | - Paolo Mulatti
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Teguh Y Prajitno
- Japfa Comfeed Indonesia, Vaksindo Satwa Nusantara, Animal Health & Laboratory Services, Jakarta, Indonesia
| | - Arjan Stegeman
- Department Population Health Sciences, Farm Animal Health, Veterinary Epidemiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Slomka MJ, Reid SM, Byrne AMP, Coward VJ, Seekings J, Cooper JL, Peers-Dent J, Agyeman-Dua E, de Silva D, Hansen RDE, Banyard AC, Brown IH. Efficient and Informative Laboratory Testing for Rapid Confirmation of H5N1 (Clade 2.3.4.4) High-Pathogenicity Avian Influenza Outbreaks in the United Kingdom. Viruses 2023; 15:1344. [PMID: 37376643 PMCID: PMC10304448 DOI: 10.3390/v15061344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
During the early stages of the UK 2021-2022 H5N1 high-pathogenicity avian influenza virus (HPAIV) epizootic in commercial poultry, 12 infected premises (IPs) were confirmed by four real-time reverse-transcription-polymerase chain reaction (RRT)-PCRs, which identified the viral subtype and pathotype. An assessment was undertaken to evaluate whether a large sample throughput would challenge laboratory capacity during an exceptionally large epizootic; hence, assay performance across our test portfolio was investigated. Statistical analysis of RRT-PCR swab testing supported it to be focused on a three-test approach, featuring the matrix (M)-gene, H5 HPAIV-specific (H5-HP) and N1 RRT-PCRs, which was successfully assessed at 29 subsequent commercial IPs. The absence of nucleotide mismatches in the primer/probe binding regions for the M-gene and limited mismatches for the H5-HP RRT-PCR underlined their high sensitivity. Although less sensitive, the N1 RRT-PCR remained effective at flock level. The analyses also guided successful surveillance testing of apparently healthy commercial ducks from at-risk premises, with pools of five oropharyngeal swabs tested by the H5-HP RRT-PCR to exclude evidence of infection. Serological testing at anseriform H5N1 HPAIV outbreaks, together with quantitative comparisons of oropharyngeal and cloacal shedding, provided epidemiological information concerning the chronology of initial H5N1 HPAIV incursion and onward spread within an IP.
Collapse
Affiliation(s)
- Marek J. Slomka
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone KT15 3NB, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Mortality Levels and Production Indicators for Suspicion of Highly Pathogenic Avian Influenza Virus Infection in Commercially Farmed Ducks. Pathogens 2021; 10:pathogens10111498. [PMID: 34832653 PMCID: PMC8620262 DOI: 10.3390/pathogens10111498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Highly pathogenic avian influenza (HPAI) is a viral infection characterized by inducing severe disease and high levels of mortality in gallinaceous poultry. Increased mortality, drop in egg production or decreased feed or water intake are used as indicators for notification of suspicions of HPAI outbreaks. However, infections in commercial duck flocks may result in mild disease with low mortality levels, thereby compromising notifications. (2) Methods: Data on daily mortality, egg production, feed intake and water intake from broiler and breeder duck flocks not infected (n = 56 and n = 11, respectively) and infected with HPAIV (n = 13, n = 4) were used for analyses. Data from negative flocks were used to assess the baseline (daily) levels of mortality and production parameters and to identify potential threshold values for triggering suspicions of HPAI infections and assess the specificity (Sp) of these thresholds. Data from infected flocks were used to assess the effect of infection on daily mortality and production and to evaluate the sensitivity (Se) of the thresholds for early detection of outbreaks. (3) Results: For broiler flocks, daily mortality > 0.3% (after the first week of production) or using a regression model for aberration detection would indicate infection with Se and Sp higher than 80%. Drops in mean daily feed or water intake larger than 7 g or 14 mL (after the first week of production), respectively, are sensitive indicators of infection but have poor Sp. For breeders, mortality thresholds are poor indicators of infection (low Se and Sp). However, a consecutive drop in egg production larger than 9% is an effective indicator of a HPAI outbreak. For both broiler and breeder duck flocks, cumulative average methods were also assessed, which had high Se but generated many false alarms (poor Sp). (4) Conclusions: The identified reporting thresholds can be used to update legislation and provide guidelines to farmers and veterinarians to notify suspicions of HPAI outbreaks in commercial duck flocks.
Collapse
|
4
|
Schreuder J, Manders TTM, Elbers ARW, van der Spek AN, Bouwstra RJ, Stegeman JA, Velkers FC. Highly pathogenic avian influenza subtype H5Nx clade 2.3.4.4 outbreaks in Dutch poultry farms, 2014-2018: Clinical signs and mortality. Transbound Emerg Dis 2021; 68:88-97. [PMID: 32418364 PMCID: PMC8048556 DOI: 10.1111/tbed.13597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/03/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022]
Abstract
In recent years, different subtypes of highly pathogenic avian influenza (HPAI) viruses caused outbreaks in several poultry types worldwide. Early detection of HPAI virus infection is crucial to reduce virus spread. Previously, the use of a mortality ratio threshold to expedite notification of suspicion in layer farms was proposed. The purpose of this study was to describe the clinical signs reported in the early stages of HPAI H5N8 and H5N6 outbreaks on chicken and Pekin duck farms between 2014 and 2018 in the Netherlands and compare them with the onset of an increased mortality ratio (MR). Data on daily mortality and clinical signs from nine egg-producing chicken farms and seven Pekin duck farms infected with HPAI H5N8 (2014 and 2016) and H5N6 (2017-2018) in the Netherlands were analysed. In 12 out of 15 outbreaks for which a MR was available, MR increase preceded or coincided with the first observation of clinical signs by the farmer. In one chicken and two Pekin duck outbreaks, clinical signs were observed prior to MR increase. On all farms, veterinarians observed clinical signs of general disease. Nervous or locomotor signs were reported in all Pekin duck outbreaks, but only in two chicken outbreaks. Other clinical signs were observed less frequently in both chickens and Pekin ducks. Compared to veterinarians, farmers observed and reported clinical signs, especially respiratory and gastrointestinal signs, less frequently. This case series suggests that a MR with a set threshold could be an objective parameter to detect HPAI infection on chicken and Pekin duck farms at an early stage. Observation of clinical signs may provide additional indication for farmers and veterinarians for notifying a clinical suspicion of HPAI infection. Further assessment and validation of a MR threshold in Pekin ducks are important as it could serve as an important tool in HPAI surveillance programs.
Collapse
Affiliation(s)
- Janneke Schreuder
- Department of Farm Animal HealthFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Thijs T. M. Manders
- Department of Farm Animal HealthFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Armin R. W. Elbers
- Department of Bacteriology and EpidemiologyWageningen Bioveterinary ResearchLelystadthe Netherlands
| | - Arco N. van der Spek
- Netherlands Food and Consumer Product Safety Authority (NVWA)Utrechtthe Netherlands
| | | | - J. Arjan Stegeman
- Department of Farm Animal HealthFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Francisca C. Velkers
- Department of Farm Animal HealthFaculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
5
|
Ssematimba A, Bonney PJ, Malladi S, Charles KMS, Culhane M, Goldsmith TJ, Halvorson DA, Cardona CJ. Mortality-Based Triggers and Premovement Testing Protocols for Detection of Highly Pathogenic Avian Influenza Virus Infection in Commercial Upland Game Birds. Avian Dis 2020; 63:157-164. [PMID: 31131573 DOI: 10.1637/11870-042518-reg.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 11/05/2022]
Abstract
Outbreaks involving avian influenza viruses are often devastating to the poultry industry economically and otherwise. Disease surveillance is critically important because it facilitates timely detection and generates confidence that infected birds are not moved during business continuity intended to mitigate associated economic losses. The possibility of using an abnormal increase in daily mortality to levels that exceed predetermined thresholds as a trigger to initiate further diagnostic investigations for highly pathogenic avian influenza (HPAI) virus infection in the flock is explored. The range of optimal mortality thresholds varies by bird species, trigger type, and mortality thresholds, and these should be considered when assessing sector-specific triggers. The study uses purposefully collected data and data from the literature to determine optimal mortality triggers for HPAI detection in commercial upland game bird flocks. Three trigger types were assessed for the ability to detect rapidly both HPAI (on the basis of disease-induced and normal mortality data) and false alarm rate (on the basis of normal mortality data); namely, 1) exceeding a set absolute threshold on one day, 2) exceeding a set absolute threshold on two consecutive days, or 3) exceeding a multiple of a seven-day moving average. The likelihood of disease detection using some of these triggers together with premovement real-time reverse transcription PCR (rRT-PCR) testing was examined. Results indicate that the performance of the two consecutive days trigger had the best metrics (i.e., rapid detection with few false alarms) in the trade-off analysis. The collected normal mortality data was zero on 66% of all days recorded, with an overall mean of 0.6 dead birds per day. In the surveillance scenario analyses, combining the default protocol that relied only on active surveillance (i.e., premovement testing of oropharyngeal swab samples from dead birds by rRT-PCR) together with either of the mortality-based triggers improved detection rates on all days postexposure before scheduled movement. For exposures occurring within 8 days of movement, the protocol that combined the default with single-day triggers had slightly more detections than that with two consecutive days triggers. However, all assessed protocol combinations were able to detect all infections that occurred more than 10 days before scheduled movement. These findings can inform risk-based decisions pertaining to continuity of business in the commercial upland game bird industry.
Collapse
Affiliation(s)
- Amos Ssematimba
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, .,Department of Mathematics, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Peter J Bonney
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | - Sasidhar Malladi
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | - Kaitlyn M St Charles
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | - Marie Culhane
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | - Timothy J Goldsmith
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | - David A Halvorson
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | - Carol J Cardona
- Secure Food Systems Team, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108,
| |
Collapse
|
6
|
|
7
|
Bouwstra R, Gonzales JL, de Wit S, Stahl J, Fouchier RA, Elbers AR. Risk for Low Pathogenicity Avian Influenza Virus on Poultry Farms, the Netherlands, 2007-2013. Emerg Infect Dis 2018; 23:1510-1516. [PMID: 28820139 PMCID: PMC5572893 DOI: 10.3201/eid2309.170276] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Using annual serologic surveillance data from all poultry farms in the Netherlands during 2007–2013, we quantified the risk for the introduction of low pathogenicity avian influenza virus (LPAIV) in different types of poultry production farms and putative spatial-environmental risk factors: distance from poultry farms to clay soil, waterways, and wild waterfowl areas. Outdoor-layer, turkey (meat and breeder), and duck (meat and breeder) farms had a significantly higher risk for LPAIV introduction than did indoor-layer farms. Except for outdoor-layer, all poultry types (i.e., broilers, chicken breeders, ducks, and turkeys) are kept indoors. For all production types, LPAIV risk decreased significantly with increasing distance to medium-sized waterways and with increasing distance to areas with defined wild waterfowl, but only for outdoor-layer and turkey farms. Future research should focus not only on production types but also on distance to waterways and wild bird areas. In addition, settlement of new poultry farms in high-risk areas should be discouraged.
Collapse
|
8
|
Martini MC, Caserta LC, Dos Santos MMAB, Barnabé ACS, Durães-Carvalho R, Padilla MA, Simão RM, Rizotto LS, Simas PVM, Bastos JCS, Cardoso TC, Felippe PAN, Ferreira HL, Arns CW. Avian coronavirus isolated from a pigeon sample induced clinical disease, tracheal ciliostasis, and a high humoral response in day-old chicks. Avian Pathol 2018. [PMID: 29517348 DOI: 10.1080/03079457.2018.1442557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The detection of avian coronaviruses (AvCoV) in wild birds and the emergence of new AvCoV have increased in the past few years. In the present study, the pathogenicity of three AvCoV isolates was investigated in day-old chicks. One AvCoV isolated from a pigeon, which clustered with the Massachusetts vaccine serotype, and two AvCoV isolated from chickens, which grouped with a Brazilian genotype lineage, were used. Clinical signs, gross lesions, histopathological changes, ciliary activity, viral RNA detection, and serology were evaluated during 42 days post infection. All AvCoV isolates induced clinical signs, gross lesions in the trachea, moderate histopathological changes in the respiratory tract, and mild changes in other tissues. AvCoV isolated from the pigeon sample caused complete tracheal ciliostasis over a longer time span. Specific viral RNA was detected in all tissues, but the highest RNA loads were detected in the digestive tract (cloacal swabs and ileum). The highest antibody levels were also detected in the group infected with an isolate from the pigeon. These results confirm the pathogenicity of Brazilian variants, which can cause disease and induce gross lesions and histopathological changes in chickens. Our results suggest that non-Galliformes birds can also play a role in the ecology of AvCoV.
Collapse
Affiliation(s)
- Matheus C Martini
- a Laboratory of Animal Virology , Institute of Biology, University of Campinas-UNICAMP , Campinas , SP , Brazil
| | - Leonardo C Caserta
- a Laboratory of Animal Virology , Institute of Biology, University of Campinas-UNICAMP , Campinas , SP , Brazil
| | | | - Ana C S Barnabé
- a Laboratory of Animal Virology , Institute of Biology, University of Campinas-UNICAMP , Campinas , SP , Brazil
| | - Ricardo Durães-Carvalho
- a Laboratory of Animal Virology , Institute of Biology, University of Campinas-UNICAMP , Campinas , SP , Brazil
| | - Marina A Padilla
- a Laboratory of Animal Virology , Institute of Biology, University of Campinas-UNICAMP , Campinas , SP , Brazil
| | - Raphael M Simão
- c Postgraduate Program in Experimental Epidemiology of Zoonoses, Faculty of Veterinary Medicine and Animal Science , University of Sao Paulo (FMVZ-USP) , Sao Paulo , SP , Brazil
| | - Laís S Rizotto
- c Postgraduate Program in Experimental Epidemiology of Zoonoses, Faculty of Veterinary Medicine and Animal Science , University of Sao Paulo (FMVZ-USP) , Sao Paulo , SP , Brazil
| | - Paulo V M Simas
- a Laboratory of Animal Virology , Institute of Biology, University of Campinas-UNICAMP , Campinas , SP , Brazil
| | - Juliana C S Bastos
- a Laboratory of Animal Virology , Institute of Biology, University of Campinas-UNICAMP , Campinas , SP , Brazil
| | - Tereza C Cardoso
- e DAPSA Department, Laboratory of Animal Virology and Cell Culture , College of Veterinary Medicine, Universidade Estadual Paulista , Araçatuba , SP , Brazil
| | - Paulo A N Felippe
- a Laboratory of Animal Virology , Institute of Biology, University of Campinas-UNICAMP , Campinas , SP , Brazil
| | - Helena L Ferreira
- b Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering , University of Sao Paulo (FZEA-USP) , Pirassununga , SP , Brazil.,c Postgraduate Program in Experimental Epidemiology of Zoonoses, Faculty of Veterinary Medicine and Animal Science , University of Sao Paulo (FMVZ-USP) , Sao Paulo , SP , Brazil
| | - Clarice W Arns
- a Laboratory of Animal Virology , Institute of Biology, University of Campinas-UNICAMP , Campinas , SP , Brazil
| |
Collapse
|
9
|
Evaluation of ELISA and haemagglutination inhibition as screening tests in serosurveillance for H5/H7 avian influenza in commercial chicken flocks. Epidemiol Infect 2018; 146:306-313. [PMID: 29325601 PMCID: PMC9134519 DOI: 10.1017/s0950268817002898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Avian influenza virus (AIV) subtypes H5 and H7 can infect poultry causing low pathogenicity (LP) AI, but these LPAIVs may mutate to highly pathogenic AIV in chickens or turkeys causing high mortality, hence H5/H7 subtypes demand statutory intervention. Serological surveillance in the European Union provides evidence of H5/H7 AIV exposure in apparently healthy poultry. To identify the most sensitive screening method as the first step in an algorithm to provide evidence of H5/H7 AIV infection, the standard approach of H5/H7 antibody testing by haemagglutination inhibition (HI) was compared with an ELISA, which detects antibodies to all subtypes. Sera (n = 1055) from 74 commercial chicken flocks were tested by both methods. A Bayesian approach served to estimate diagnostic test sensitivities and specificities, without assuming any ‘gold standard’. Sensitivity and specificity of the ELISA was 97% and 99.8%, and for H5/H7 HI 43% and 99.8%, respectively, although H5/H7 HI sensitivity varied considerably between infected flocks. ELISA therefore provides superior sensitivity for the screening of chicken flocks as part of an algorithm, which subsequently utilises H5/H7 HI to identify infection by these two subtypes. With the calculated sensitivity and specificity, testing nine sera per flock is sufficient to detect a flock seroprevalence of 30% with 95% probability.
Collapse
|
10
|
Verdugo C, El Masry I, Makonnen Y, Hannah H, Unger F, Soliman M, Galal S, Lubroth J, Grace D. Sensitivity and Specificity Estimation for the Clinical Diagnosis of Highly Pathogenic Avian Influenza in the Egyptian Participatory Disease Surveillance Program. Avian Dis 2017; 60:805-809. [PMID: 27902900 DOI: 10.1637/11442-060316-reg] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many developing countries lack sufficient resources to conduct animal disease surveillance. In recent years, participatory epidemiology has been used to increase the cover and decrease the costs of surveillance. However, few diagnostic performance assessments have been carried out on participatory methods. The objective of the present study was to estimate the diagnostic performance of practitioners working for the Community-Based Animal Health and Outreach (CAHO) program, which is a participatory disease surveillance system for the detection of highly pathogenic avian influenza outbreaks in Egypt. CAHO practitioners' diagnostic assessment of inspected birds was compared with real-time reverse-transcriptase polymerase chain reaction (RRT-PCR) test results at the household level. Diagnostic performance was estimated directly from two-by-two tables using RRT-PCR as a reference test in two different scenarios. In the first scenario, only results from chickens were considered. In the second scenario, results for all poultry species were analyzed. Poultry flocks in 916 households located in 717 villages were inspected by CAHO practitioners, who collected 3458 bird samples. In the first scenario, CAHO practitioners presented sensitivity (Se) and specificity (Sp) estimates of 40% (95% confidence interval [CI]: 21%-59%) and 92% (95% CI: 91%-94%), respectively. In the second scenario, diagnostic performance estimates were Se = 47% (95% CI: 29%-65%) and Sp = 88% (95% CI: 86%-90%). A significant difference was observed only between Sp estimates (P < 0.01). Practitioners' diagnostics and RRT-PCR results were in very poor agreement with kappa values of 0.16 and 0.14 for scenarios 1 and 2, respectively. However, the use of a broad case definition, the possible presence of immunity against the virus in replacement birds, and the low prevalence observed during the survey would negatively affect the practitioners' performance.
Collapse
Affiliation(s)
- C Verdugo
- A Instituto de Medicina Preventiva Veterinaria, Universidad Austral de Chile, 613 Independencia, 5090000 Valdivia, Chile.,B International Livestock Research Institute, P.O. Box 30709, 00100 Nairobi, Kenya
| | - I El Masry
- C Food and Agriculture Organization of the United Nations, 11 El Eslah El Zerai Street, 12311 Dokki, Egypt
| | - Y Makonnen
- C Food and Agriculture Organization of the United Nations, 11 El Eslah El Zerai Street, 12311 Dokki, Egypt
| | - H Hannah
- B International Livestock Research Institute, P.O. Box 30709, 00100 Nairobi, Kenya
| | - F Unger
- D International Livestock Research Institute, No. 8, Lot 13A, Trung Hoa Street, 13001 Hanoi, Vietnam
| | - M Soliman
- E General Organization for Veterinary Services, Nadi Al Saeed Street., 12311 Dokki, Egypt
| | - S Galal
- F National Laboratory for Veterinary Quality Control on Poultry Production, Nadi El-Seid Street, 12618 Dokki, Egypt
| | - J Lubroth
- G Food and Agriculture Organization of the United Nations, Viale Terme di Caracalla, 00153 Rome, Italy
| | - D Grace
- B International Livestock Research Institute, P.O. Box 30709, 00100 Nairobi, Kenya
| |
Collapse
|
11
|
Verhagen JH, Lexmond P, Vuong O, Schutten M, Guldemeester J, Osterhaus ADME, Elbers ARW, Slaterus R, Hornman M, Koch G, Fouchier RAM. Discordant detection of avian influenza virus subtypes in time and space between poultry and wild birds; Towards improvement of surveillance programs. PLoS One 2017; 12:e0173470. [PMID: 28278281 PMCID: PMC5344487 DOI: 10.1371/journal.pone.0173470] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 02/22/2017] [Indexed: 11/27/2022] Open
Abstract
Avian influenza viruses from wild birds can cause outbreaks in poultry, and occasionally infect humans upon exposure to infected poultry. Identification and characterization of viral reservoirs and transmission routes is important to develop strategies that prevent infection of poultry, and subsequently virus transmission between poultry holdings and to humans. Based on spatial, temporal and phylogenetic analyses of data generated as part of intense and large-scale influenza surveillance programs in wild birds and poultry in the Netherlands from 2006 to 2011, we demonstrate that LPAIV subtype distribution differed between wild birds and poultry, suggestive of host-range restrictions. LPAIV isolated from Dutch poultry were genetically most closely related to LPAIV isolated from wild birds in the Netherlands or occasionally elsewhere in Western Europe. However, a relatively long time interval was observed between the isolations of related viruses from wild birds and poultry. Spatial analyses provided evidence for mallards (Anas platyrhynchos) being more abundant near primary infected poultry farms. Detailed year-round investigation of virus prevalence and wild bird species distribution and behavior near poultry farms should be used to improve risk assessment in relation to avian influenza virus introduction and retarget avian influenza surveillance programs.
Collapse
Affiliation(s)
| | - Pascal Lexmond
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Oanh Vuong
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Martin Schutten
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | | | - Armin R. W. Elbers
- Central Veterinary Institute part of Wageningen UR, Lelystad, the Netherlands
| | - Roy Slaterus
- Sovon, Dutch Centre for Field Ornithology, Nijmegen, the Netherlands
| | - Menno Hornman
- Sovon, Dutch Centre for Field Ornithology, Nijmegen, the Netherlands
| | - Guus Koch
- Central Veterinary Institute part of Wageningen UR, Lelystad, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
12
|
Turner JCM, Feeroz MM, Hasan MK, Akhtar S, Walker D, Seiler P, Barman S, Franks J, Jones-Engel L, McKenzie P, Krauss S, Webby RJ, Kayali G, Webster RG. Insight into live bird markets of Bangladesh: an overview of the dynamics of transmission of H5N1 and H9N2 avian influenza viruses. Emerg Microbes Infect 2017; 6:e12. [PMID: 28270655 PMCID: PMC5378921 DOI: 10.1038/emi.2016.142] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/20/2016] [Accepted: 12/26/2016] [Indexed: 01/19/2023]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 and low pathogenic avian influenza (LPAI) H9N2 viruses have been recognized as threats to public health in Bangladesh since 2007. Although live bird markets (LBMs) have been implicated in the transmission, dissemination, and circulation of these viruses, an in-depth analysis of the dynamics of avian transmission of H5N1 and H9N2 viruses at the human-animal interface has been lacking. Here we present and evaluate epidemiological findings from active surveillance conducted among poultry in various production sectors in Bangladesh from 2008 to 2016. Overall, the prevalence of avian influenza viruses (AIVs) in collected samples was 24%. Our data show that AIVs are more prevalent in domestic birds within LBMs (30.4%) than in farms (9.6%). Quail, chickens and ducks showed a high prevalence of AIVs (>20%). The vast majority of AIVs detected (99.7%) have come from apparently healthy birds and poultry drinking water served as a reservoir of AIVs with a prevalence of 32.5% in collected samples. HPAI H5N1 was more frequently detected in ducks while H9N2 was more common in chickens and quail. LBMs, particularly wholesale markets, have become a potential reservoir for various types of AIVs, including HPAI H5N1 and LPAI H9N2. The persistence of AIVs in LBMs is of great concern to public health, and this study highlights the importance of regularly reviewing and implementing infection control procedures as a means of reducing the exposure of the general public to AIVs.Emerging Microbes & Infections (2017) 6, e12; doi:10.1038/emi.2016.142; published online 8 March 2017.
Collapse
Affiliation(s)
- Jasmine C M Turner
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mohammed M Feeroz
- Department of Zoology, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - M Kamrul Hasan
- Department of Anthropology, University of Washington, Seattle, WA 98105, USA
| | - Sharmin Akhtar
- Department of Anthropology, University of Washington, Seattle, WA 98105, USA
| | - David Walker
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Patrick Seiler
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Subrata Barman
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John Franks
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lisa Jones-Engel
- Department of Anthropology, University of Washington, Seattle, WA 98105, USA
| | - Pamela McKenzie
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Scott Krauss
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center, Houston, TX 77459, USA
- Human Link, Hazmieh, Baabda 1107-2090, Lebanon
| | - Robert G Webster
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
13
|
Bouwstra RJ, Koch G, Heutink R, Harders F, van der Spek A, Elbers AR, Bossers A. Phylogenetic analysis of highly pathogenic avian influenza A(H5N8) virus outbreak strains provides evidence for four separate introductions and one between-poultry farm transmission in the Netherlands, November 2014. ACTA ACUST UNITED AC 2015; 20. [PMID: 26159311 DOI: 10.2807/1560-7917.es2015.20.26.21174] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phylogenetic analysis of highly pathogenic avian influenza A(H5N8) virus strains causing outbreaks in Dutch poultry farms in 2014 provides evidence for separate introduction of the virus in four outbreaks in farms located 16-112 km from each other and for between-farm transmission between the third and fourth outbreak in farms located 550 m from each other. In addition, the analysis showed that all European and two Japanese H5N8 virus strains are very closely related and seem to originate from a calculated common ancestor, which arose between July and September 2014. Our findings suggest that the Dutch outbreak virus strain 'Ter Aar' and the first German outbreak strain from 2014 shared a common ancestor. In addition, the data indicate that the Dutch outbreak viruses descended from an H5N8 virus that circulated around 2009 in Asia, possibly China, and subsequently spread to South Korea and Japan and finally also to Europe. Evolution of the virus seemed to follow a parallel track in Japan and Europe, which supports the hypothesis that H5N8 virus was exchanged between migratory wild waterfowl at their breeding grounds in Siberia and from there was carried by migrating waterfowl to Europe.
Collapse
Affiliation(s)
- R J Bouwstra
- Central Veterinary Institute part of Wageningen UR, Lelystad, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Bertran K, Moresco K, Swayne DE. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay. Vaccine 2015; 33:1324-30. [PMID: 25657093 DOI: 10.1016/j.vaccine.2015.01.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/01/2014] [Accepted: 01/21/2015] [Indexed: 11/17/2022]
Abstract
High pathogenicity avian influenza virus (HPAIV) infections in chickens negatively impact egg production and cause egg contamination. Previously, vaccination maintained egg production and reduced egg contamination when challenged with a North American H5N2 HPAIV. However, Asian H5N1 HPAIV infection has some characteristics of increased pathogenicity compared to other H5 HPAIV such as more rapid drop and complete cessation in egg production. Sham (vaccinated at 25 and 28 weeks of age), inactivated H5N1 Once (1X-H5-Vax; vaccinated at 28 weeks of age only) and inactivated H5N1 Twice (2X-H5-Vax; vaccinated at 25 and 28 weeks of age) vaccinated adult White Leghorn hens were challenged intranasally at 31 weeks of age with 6.1 log10 mean embryo infectious doses (EID50) of clade 2.3.2.1a H5N1 HPAIV (A/chicken/Vietnam/NCVD-675/2011) which was homologous to the inactivated vaccine. Sham-vaccinated layers experienced 100% mortality within 3 days post-challenge; laid soft and thin-shelled eggs; had recovery of virus from oral swabs and in 53% of the eggs from eggshell surface (35%), yolk (24%), and albumin (41%); and had very high titers of virus (average 7.91 log10 EID50/g) in all segments of the oviduct and ovary. By comparison, 1X- and 2X-H5-Vax challenged hens survived infection, laid similar number of eggs pre- and post-challenge, all eggs had normal egg shell quality, and had significantly fewer contaminated eggs with reduced virus quantity. The 2X-H5-Vax hens had significantly higher HI titers by the day of challenge (304 GMT) and at termination (512 GMT) than 1X-H5-Vax hens (45 GMT and 128 GMT). The current study demonstrated that AIV infections caused by clade 2.3.2.1a H5N1 variants can be effectively controlled by either double or single homologous vaccination.
Collapse
Affiliation(s)
- Kateri Bertran
- Exotic and Emerging Avian Viral Diseases Research Unit, USDA-ARS, 934 College Station Rd, 30605 Athens, GA, USA
| | - Kira Moresco
- Exotic and Emerging Avian Viral Diseases Research Unit, USDA-ARS, 934 College Station Rd, 30605 Athens, GA, USA
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, USDA-ARS, 934 College Station Rd, 30605 Athens, GA, USA.
| |
Collapse
|
15
|
Evaluating the risk of avian influenza introduction and spread among poultry exhibition flocks in Australia. Prev Vet Med 2014; 118:128-41. [PMID: 25496909 DOI: 10.1016/j.prevetmed.2014.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 11/16/2014] [Accepted: 11/17/2014] [Indexed: 11/22/2022]
Abstract
Some practices undertaken by poultry exhibitors, such as allowing wild birds to contact domestic birds, the high frequency of bird movements and the lack of appropriate isolation for incoming birds, pose a risk for disease introduction and spread. The aim of the current study was to quantitatively assess the probability of introduction of low pathogenic avian influenza (LPAI) viruses from wild waterfowl into poultry exhibition flocks and the subsequent spread to other poultry flocks. Exposure and consequence assessments, using scenario trees and Monte Carlo stochastic simulation modelling, were conducted to identify potential pathways of introduction and spread and calculate the probabilities of these pathways occurring. Input parameters were estimated from two recently conducted cross-sectional studies among poultry exhibitors in Australia (Dusan et al., 2010; Hernández-Jover et al., 2013) and other scientific literature. According to reported practices of poultry exhibitors and the LPAI prevalence in wild birds in Australia, this assessment estimates a median (5-95%) probability of exposure of a bird kept by a poultry exhibitor of 0.004 (0.003-0.005). Due to the higher susceptibility of infection of turkeys and waterfowl, this probability is higher in flocks keeping these bird species than in those keeping chickens or pigeons only. Similarly, once exposure has occurred, establishment of infection and subsequent spread are more likely in those flocks keeping waterfowl and turkeys than in those keeping chicken and pigeons only. Spread through movement of birds is the most likely pathway of spread, followed by contaminated fomites, wild birds and airborne spread. The median probability of LPAI spread through movement of birds in flocks keeping waterfowl and turkeys was estimated to be 0.280 (0.123-0.541) and 0.230 (0.104-0.421), respectively. A lower probability was estimated for chicken (0.087; 0.027-0.202) and pigeon (0.0003; 3.0×10(-5)-0.0008) flocks. The sensitivity analysis indicates that the prevalence of LPAI in wild waterfowl and the probability of contact of domestic birds with wild waterfowl are the most influential parameters on the probability of exposure; while the probability of spread is mostly influenced by the probability of movement of birds and the probability of the exhibitor detecting and reporting LPAI. To minimize the potential risk of AI introduction and spread, poultry exhibitors should prevent contact of domestic birds with wild birds, and implement appropriate biosecurity practices. In addition, adequate extension services are required to improve exhibitors' abilities to recognize diseases and reporting behaviour.
Collapse
|
16
|
Elbers A, Knutsson R. Agroterrorism targeting livestock: a review with a focus on early detection systems. Biosecur Bioterror 2014; 11 Suppl 1:S25-35. [PMID: 23971814 DOI: 10.1089/bsp.2012.0068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Agroterrorism targeting livestock can be described as the intentional introduction of an animal disease agent against livestock with the purpose of causing economic damage, disrupting socioeconomic stability of a country, and creating panic and distress. This type of terrorism can be alluring to terrorists because animal disease agents are easily available. This review addresses the vulnerabilities of the livestock industry to agroterrorism. However, we also show that early detection systems have recently been developed for agroterrorism and deliberate spread of animal pathogens in livestock, including an agroterrorism intelligence cycle, syndromic surveillance programs, and computer-based clinical decision support systems that can be used for early detection of notifiable animal diseases. The development of DIVA-vaccines in the past 10 to 15 years has created, in principle, an excellent response instrument to counter intentional animal disease outbreaks. These developments have made our animal agriculture less vulnerable to agroterrorism. But we cannot relax; there are still many challenges, in particular with respect to integration of first line of defense, law enforcement, and early detection systems for animal diseases.
Collapse
|
17
|
Assessing the risk of highly pathogenic avian influenza H5N1 transmission through poultry movements in Bali, Indonesia. Prev Vet Med 2014; 113:599-607. [DOI: 10.1016/j.prevetmed.2013.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 11/23/2022]
|
18
|
Irvine RM. Recognising avian notifiable diseases 3. Clinical disease investigations and differential diagnoses in poultry. IN PRACTICE 2013. [DOI: 10.1136/inp.f5978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
|
20
|
Weaver JT, Malladi S, Goldsmith TJ, Hueston W, Hennessey M, Lee B, Voss S, Funk J, Der C, Bjork KE, Clouse TL, Halvorson DA. Impact of virus strain characteristics on early detection of highly pathogenic avian influenza infection in commercial table-egg layer flocks and implications for outbreak control. Avian Dis 2013; 56:905-12. [PMID: 23402111 DOI: 10.1637/10189-041012-reg.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Early detection of highly pathogenic avian influenza (HPAI) infection in commercial poultry flocks is a critical component of outbreak control. Reducing the time to detect HPAI infection can reduce the risk of disease transmission to other flocks. The timeliness of different types of detection triggers could be dependent on clinical signs that are first observed in a flock, signs that might vary due to HPAI virus strain characteristics. We developed a stochastic disease transmission model to evaluate how transmission characteristics of various HPAI strains might effect the relative importance of increased mortality, drop in egg production, or daily real-time reverse transcriptase (RRT)-PCR testing, toward detecting HPAI infection in a commercial table-egg layer flock. On average, daily RRT-PCR testing resulted in the shortest time to detection (from 3.5 to 6.1 days) depending on the HPAI virus strain and was less variable over a range of transmission parameters compared with other triggers evaluated. Our results indicate that a trigger to detect a drop in egg production would be useful for HPAI virus strains with long infectious periods (6-8 days) and including an egg-drop detection trigger in emergency response plans would lead to earlier and consistent reporting in some cases. We discuss implications for outbreak control and risk of HPAI spread attributed to different HPAI strain characteristics where an increase in mortality or a drop in egg production or both would be among the first clinical signs observed in an infected flock.
Collapse
Affiliation(s)
- J Todd Weaver
- USDA Animal and Plant Health Inspection Service, Veterinary Services, Centers for Epidemiology and Animal Health, Center for Animal Health Information and Analysis, Natural Resource Research Center, Building B MS-2W4, 2150 Centre Avenue, Fort Collins, CO 80526, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ssematimba A, Elbers ARW, Hagenaars TJ, de Jong MCM. Estimating the per-contact probability of infection by highly pathogenic avian influenza (H7N7) virus during the 2003 epidemic in The Netherlands. PLoS One 2012; 7:e40929. [PMID: 22808285 PMCID: PMC3396644 DOI: 10.1371/journal.pone.0040929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/15/2012] [Indexed: 11/18/2022] Open
Abstract
Estimates of the per-contact probability of transmission between farms of Highly Pathogenic Avian Influenza virus of H7N7 subtype during the 2003 epidemic in the Netherlands are important for the design of better control and biosecurity strategies. We used standardized data collected during the epidemic and a model to extract data for untraced contacts based on the daily number of infectious farms within a given distance of a susceptible farm. With these data, we used a maximum likelihood estimation approach to estimate the transmission probabilities by the individual contact types, both traced and untraced. The estimated conditional probabilities, conditional on the contact originating from an infectious farm, of virus transmission were: 0.000057 per infectious farm within 1 km per day, 0.000413 per infectious farm between 1 and 3 km per day, 0.0000895 per infectious farm between 3 and 10 km per day, 0.0011 per crisis organisation contact, 0.0414 per feed delivery contact, 0.308 per egg transport contact, 0.133 per other-professional contact and, 0.246 per rendering contact. We validate these outcomes against literature data on virus genetic sequences for outbreak farms. These estimates can be used to inform further studies on the role that improved biosecurity between contacts and/or contact frequency reduction can play in eliminating between-farm spread of the virus during future epidemics. The findings also highlight the need to; 1) understand the routes underlying the infections without traced contacts and, 2) to review whether the contact-tracing protocol is exhaustive in relation to all the farm’s day-to-day activities and practices.
Collapse
Affiliation(s)
- Amos Ssematimba
- Department of Epidemiology, Crisis Organization and Diagnostics, Central Veterinary Institute, Wageningen University and Research Centre, Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Swayne DE, Eggert D, Beck JR. Reduction of high pathogenicity avian influenza virus in eggs from chickens once or twice vaccinated with an oil-emulsified inactivated H5 avian influenza vaccine. Vaccine 2012; 30:4964-70. [DOI: 10.1016/j.vaccine.2012.05.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 01/06/2023]
|
23
|
Geus EDD, Rebel JM, Vervelde L. Induction of respiratory immune responses in the chicken; implications for development of mucosal avian influenza virus vaccines. Vet Q 2012; 32:75-86. [DOI: 10.1080/01652176.2012.711956] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
24
|
Optimizing early detection of avian influenza H5N1 in backyard and free-range poultry production systems in Thailand. Prev Vet Med 2012; 105:223-34. [PMID: 22296731 DOI: 10.1016/j.prevetmed.2011.12.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 12/19/2011] [Accepted: 12/31/2011] [Indexed: 11/23/2022]
Abstract
For infectious diseases such as highly pathogenic avian influenza caused by the H5N1 virus (A/H5N1 HP), early warning system is essential. Evaluating the sensitivity of surveillance is a necessary step in ensuring an efficient and sustainable system. Stochastic scenario tree modeling was used here to assess the sensitivity of the A/H5N1 HP surveillance system in backyard and free-grazing duck farms in Thailand. The whole surveillance system for disease detection was modeled with all components and the sensitivity of each component and of the overall system was estimated. Scenarios were tested according to selection of high-risk areas, inclusion of components and sampling procedure, were tested. Nationwide passive surveillance (SSC1) and risk-based clinical X-ray (SSC2) showed a similar sensitivity level, with a median sensitivity ratio of 0.96 (95% CI 0.40-15.00). They both provide higher sensitivity than the X-ray laboratory component (SSC3). With the current surveillance design, the sensitivity of detection of the overall surveillance system when the three components are implemented, was equal to 100% for a farm level prevalence of 0.05% and 82% (95% CI 71-89%) for a level of infection of 3 farms. Findings from this study illustrate the usefulness of scenario-tree modeling to document freedom from diseases in developing countries.
Collapse
|
25
|
A qualitative approach to measure the effectiveness of active avian influenza virus surveillance with respect to its cost: a case study from Switzerland. Prev Vet Med 2012; 105:209-22. [PMID: 22296733 DOI: 10.1016/j.prevetmed.2011.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 11/25/2011] [Accepted: 12/06/2011] [Indexed: 11/21/2022]
Abstract
The aim of the project was to apply cost-effectiveness analysis to the economic appraisal of avian influenza virus (AIV) surveillance, using the implemented surveillance programme in Switzerland as a case study. First a qualitative risk assessment approach was used to assess the expected impact of surveillance on the transmission and spread of AIV. The effectiveness of surveillance was expressed as the difference in defined probabilities between a scenario with surveillance and a scenario without surveillance. The following probabilities were modelled (i) transmission of highly pathogenic AIV (HPAIV) from wild birds to poultry, (ii) mutation from low pathogenic AIV (LPAIV) into HPAIV in poultry, and (iii) transmission of HPAIV to other poultry holdings given a primary outbreak. The cost-effectiveness ratio was defined conventionally as the difference in surveillance costs (ΔC) divided by the change in probability (ΔP), the technical objective, on the presumption that surveillance diminishes the respective probabilities. However, results indicated that surveillance in both wild birds and poultry was not expected to change the probabilities of primary and secondary AIV outbreaks in Switzerland. The overall surveillance costs incurred were estimated at 31,000 €/year, which, to be a rational investment of resources, must still reflect the value policy makers attribute to other benefits from having surveillance (e.g. peace of mind). The advantage of the approach adopted is that it is practical, transparent, and thus able to clarify for policy makers the key variables to be taken into account when evaluating the economic efficiency of resources invested in surveillance, prevention and intervention to exclude AIV.
Collapse
|
26
|
|
27
|
Kapczynski DR, Gonder E, Tilley B, Hernandez A, Hodgson J, Wojcinski H, Jiang H, Suarez DL. Pandemic H1N1 Influenza Virus in Chilean Commercial Turkeys with Genetic and Serologic Comparisons to U.S. H1N1 Avian Influenza Vaccine Isolates. Avian Dis 2011; 55:633-41. [DOI: 10.1637/9760-041511-reg.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Marais M, Gugushe N, Maloney SK, Gray DA. Body temperature responses of Pekin ducks (Anas platyrhynchos domesticus) exposed to different pathogens. Poult Sci 2011; 90:1234-8. [PMID: 21597064 DOI: 10.3382/ps.2011-01389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poultry, like mammals and other birds, develop fever when exposed to compounds from gram-negative bacteria. Mammals also develop fever when exposed to the constituents of viruses or gram-positive bacteria, and the fevers stimulated by these different pathogenic classes have discrete characteristics. It is not known whether birds develop fever when infected by viruses or gram-positive bacteria. Therefore, we injected Pekin ducks with muramyl dipeptide, the cell walls of heat-killed Staphylococcus aureus, or the viral mimic polyinosinic:polycytidylic acid and monitored their body temperature (T(b)). For comparative purposes we also injected a group of ducks with lipopolysaccharide, the only known pyrogen in birds. We then compared the T(b) invoked by each injection with the T(b) after an injection of saline. Muramyl dipeptide did not affect T(b). The cell walls of heat-killed S. aureus invoked long-lasting, dose-dependent fevers with relatively low magnitudes. Polyinosinic:polycytidylic acid invoked dose-dependent fevers with high febrile peaks. Fever is a well-known clinical sign of infection in mammals, and the results of this study indicate that the pattern of increase in T(b) could serve as an indicator for diverse pathogenic diseases in birds.
Collapse
Affiliation(s)
- M Marais
- School of Physiology, University of the Witwatersrand, Parktown 2193, Johannesburg, South Africa.
| | | | | | | |
Collapse
|
29
|
te Beest DE, Hagenaars TJ, Stegeman JA, Koopmans MPG, van Boven M. Risk based culling for highly infectious diseases of livestock. Vet Res 2011; 42:81. [PMID: 21714865 PMCID: PMC3160900 DOI: 10.1186/1297-9716-42-81] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 06/29/2011] [Indexed: 11/29/2022] Open
Abstract
The control of highly infectious diseases of livestock such as classical swine fever, foot-and-mouth disease, and avian influenza is fraught with ethical, economic, and public health dilemmas. Attempts to control outbreaks of these pathogens rely on massive culling of infected farms, and farms deemed to be at risk of infection. Conventional approaches usually involve the preventive culling of all farms within a certain radius of an infected farm. Here we propose a novel culling strategy that is based on the idea that farms that have the highest expected number of secondary infections should be culled first. We show that, in comparison with conventional approaches (ring culling), our new method of risk based culling can reduce the total number of farms that need to be culled, the number of culled infected farms (and thus the expected number of human infections in case of a zoonosis), and the duration of the epidemic. Our novel risk based culling strategy requires three pieces of information, viz. the location of all farms in the area at risk, the moments when infected farms are detected, and an estimate of the distance-dependent probability of transmission.
Collapse
Affiliation(s)
- Dennis E te Beest
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
30
|
Gonzales JL, Elbers ARW, Bouma A, Koch G, de Wit JJ, Stegeman JA. Low-pathogenic notifiable avian influenza serosurveillance and the risk of infection in poultry - a critical review of the European Union active surveillance programme (2005-2007). Influenza Other Respir Viruses 2010; 4:91-9. [PMID: 20167049 PMCID: PMC5779287 DOI: 10.1111/j.1750-2659.2009.00126.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Please cite this paper as: Gonzales et al. (2010) Low‐pathogenic notifiable avian influenza serosurveillance and the risk of infection in poultry – a critical review of the European Union active surveillance programme (2005–2007). Influenza and Other Respiratory Viruses 4(2), 91–99. Background Since 2003, Member States (MS) of the European Union (EU) have implemented serosurveillance programmes for low pathogenic notifiable avian influenza (LPNAI) in poultry. To date, there is the need to evaluate the surveillance activity in order to optimize the programme’s surveillance design. Objectives To evaluate MS sampling operations [sample size and targeted poultry types (PTs)] and its relation with the probability of detection and to estimate the PTs relative risk (RR) of being infected. Methods Reported data of the surveillance carried out from 2005 to 2007 were analyzed using: (i) descriptive indicators to characterize both MS sampling operations and its relation with the probability of detection and the LPNAI epidemiological situation, and (ii) multivariable methods to estimate each PTs RR of being infected. Results Member States sampling a higher sample size than that recommended by the EU had a significantly higher probability of detection. Poultry types with ducks & geese, game‐birds, ratites and “others” had a significant higher RR of being seropositive than chicken categories. The seroprevalence in duck & geese and game‐bird holdings appears to be higher than 5%, which is the EU‐recommended design prevalence (DP), while in chicken and turkey categories the seroprevalence was considerably lower than 5% and with that there is the risk of missing LPNAI seropositive holdings. Conclusion It is recommended that the European Commission discusses with its MS whether the results of our evaluation calls for refinement of the surveillance characteristics such as sampling frequency, the between‐holding DP and MS sampling operation strategies.
Collapse
Affiliation(s)
- J L Gonzales
- Department of Virology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Gowthaman V, Vanamayya PR, Nagarajan S, Suba S, Bhatia S, Jain R, Behera P, Tosh C, Murugkar HV, Dubey SC. Influence of Dose of Inocula on Outcome of Clinical Disease in Highly Pathogenic Avian Influenza (H5N1) Infections—An Experimental Study. Avian Dis 2010; 54:576-80. [DOI: 10.1637/8695-031509-resnote.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Golden NJ, Schlosser WD, Ebel ED. Risk assessment to estimate the probability of a chicken flock infected with H5N1 highly pathogenic avian influenza virus reaching slaughter undetected. Foodborne Pathog Dis 2009; 6:827-35. [PMID: 19737061 DOI: 10.1089/fpd.2008.0253] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 is an infectious disease of fowl that can cause rapid and pervasive mortality resulting in complete flock loss. It has also been shown to cause death in humans. Although H5N1 HPAI virus (HPAIV) has not been identified in the United States, there are concerns about whether an infected flock could remain undetected long enough to pose a risk to consumers. This paper considers exposure from an Asian lineage H5N1 HPAIV-infected chicken flock given that no other flocks have been identified as H5N1 HPAIV positive (the index flock). A state-transition model is used to evaluate the probability of an infected flock remaining undetected until slaughter. This model describes three possible states within the flock: susceptible, infected, and dead, and the transition probabilities that predict movements between the possible states. Assuming a 20,000-bird house with 1 bird initially infected, the probability that an H5N1 HPAIV-infected flock would be detected before slaughter is approximately 94%. This is because H5N1 HPAIV spreads rapidly through a flock, and bird mortality quickly reaches high levels. It is assumed that approximately 2% or greater bird mortality due to H5N1 HPAIV would result in on-farm identification of the flock as infected. The only infected flock likely to reach slaughter undetected is one that was infected within approximately 3.5 days of shipment. In this situation, there is not enough time for high mortality to present. These results suggest that the probability of an infected undetected flock going to slaughter is low, yet such an event could occur if a flock is infected at the most opportune time.
Collapse
Affiliation(s)
- Neal J Golden
- Risk Assessment and Residue Division, Office of Public Health Science, Food Safety and Inspection Service, U.S. Department of Agriculture, Washington, DC 20250-3766, USA.
| | | | | |
Collapse
|
33
|
Morphological changes in bird viscera in experimental infection by highly pathogenic H5N1 avian influenza virus. Bull Exp Biol Med 2009; 146:770-3. [PMID: 19513380 DOI: 10.1007/s10517-009-0376-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Intravenous infection of chicken with H5N1 avian influenza virus (strain A/Gs/Krasnoozerskoye/627/05) causes rapid lethal outcome. Pathomorphological study of bird viscera showed manifestations of disseminated intravascular coagulation syndrome, generalized inflammatory reaction, and wide-scale necrobiotic changes in tissues.
Collapse
|
34
|
van Riel D, van den Brand JMA, Munster VJ, Besteboer TM, Fouchier RAM, Osterhaus ADME, Kuiken T. Pathology and virus distribution in chickens naturally infected with highly pathogenic avian influenza A virus (H7N7) During the 2003 outbreak in The Netherlands. Vet Pathol 2009; 46:971-6. [PMID: 19429981 DOI: 10.1354/vp.08-vp-0215-k-bc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The largest recorded outbreak of highly pathogenic avian influenza virus of the subtype H7N7 occurred in The Netherlands in 2003. We describe the immunohistochemical and histopathologic findings of 3 chickens naturally infected during this outbreak. Influenza virus antigen occurred in endothelial cells and mononuclear cells of all tissues examined and occurred in parenchymal cells of heart, lung, kidney, pancreas, and trachea, often associated with multifocal inflammation and necrosis. These findings are consistent with the acute stage of highly pathogenic avian influenza from other subtypes. In the severely edematous wattle skin, most endothelial cells contained virus antigen, while in all other tissues virus antigen was only detected in a few endothelial cells. Virus histochemistry showed that this H7N7 virus attached to more endothelial cells in wattle skin than in other vascular beds. This might explain, at least partly, the tropism of the virus and the associated severity of lesions in this tissue.
Collapse
Affiliation(s)
- D van Riel
- Erasmus MC, Department of Virology, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Iwami S, Takeuchi Y, Liu X, Nakaoka S. A geographical spread of vaccine-resistance in avian influenza epidemics. J Theor Biol 2009; 259:219-28. [PMID: 19361532 DOI: 10.1016/j.jtbi.2009.03.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 02/20/2009] [Accepted: 03/31/2009] [Indexed: 01/13/2023]
Abstract
Vaccination can be a useful tool for control of avian influenza outbreaks in poultry, but its use is reconsidered in most of the countries worldwide because of its negative effects on the disease control. One of the most important negative effects is the potential for emergence of vaccine-resistant viruses. Actually, in the vaccination program in China and Mexico, several vaccine-resistant strains were confirmed. Vaccine-resistant strains usually cause a loss of the protection effectiveness of vaccination. Therefore, a vaccination program that engenders the emergence of the resistant strain might promote the spread of the resistant strain and undermine the control of the infectious disease, even if the vaccination protects against the transmission of a vaccine-sensitive strain. We designed and analyzed a deterministic patch-structured model in heterogeneous areas (with or without vaccination) illustrating transmission of vaccine-sensitive and vaccine-resistant strains during a vaccination program. We found that the vaccination program can eradicate the vaccine-sensitive strain but lead to a prevalence of vaccine-resistant strain. Further, interestingly, the replacement of viral strain could occur in another area without vaccination through a migration of non-infectious individuals due to an illegal trade of poultry. It is also a novel result that only a complete eradication of both strains in vaccination area can achieve the complete eradication in another areas. Thus we can obtain deeper understanding of an effect of vaccination for better development of vaccination strategies to control avian influenza spread.
Collapse
Affiliation(s)
- Shingo Iwami
- Graduate School of Science and Technology, Shizuoka University, Japan.
| | | | | | | |
Collapse
|
36
|
Kayali G, Ortiz EJ, Chorazy ML, Gray GC. Evidence of previous avian influenza infection among US turkey workers. Zoonoses Public Health 2009; 57:265-72. [PMID: 19486492 DOI: 10.1111/j.1863-2378.2009.01231.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The threat of an influenza pandemic is looming, with new cases of sporadic avian influenza infections in man frequently reported. Exposure to diseased poultry is a leading risk factor for these infections. In this study, we used logistic regression to investigate serological evidence of previous infection with avian influenza subtypes H4, H5, H6, H7, H8, H9, H10, and H11 among 95 adults occupationally exposed to turkeys in the US Midwest and 82 unexposed controls. Our results indicate that farmers practising backyard, organic or free-ranging turkey production methods are at an increased risk of infection with avian influenza. Among these farmers, the adjusted odds ratios (ORs) for elevated microneutralization assay titres against avian H4, H5, H6, H9, and H10 influenza strains ranged between 3.9 (95% CI 1.2-12.8) and 15.3 (95% CI 2.0-115.2) when compared to non-exposed controls. The measured ORs were adjusted for antibody titres against human influenza viruses and other exposure variables. These data suggest that sometime in their lives, the workers had been exposed to low pathogenicity avian influenza viruses. These findings support calls for inclusion of agricultural workers in priority groups in pandemic influenza preparedness efforts. These data further support increasing surveillance and other preparedness efforts to include not only confinement poultry facilities, but more importantly, also small scale farms.
Collapse
Affiliation(s)
- G Kayali
- Center for Emerging Infectious Diseases, Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA.
| | | | | | | |
Collapse
|
37
|
Paradox of vaccination: is vaccination really effective against avian flu epidemics? PLoS One 2009; 4:e4915. [PMID: 19295921 PMCID: PMC2657368 DOI: 10.1371/journal.pone.0004915] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 11/26/2008] [Indexed: 01/18/2023] Open
Abstract
Background Although vaccination can be a useful tool for control of avian influenza epidemics, it might engender emergence of a vaccine-resistant strain. Field and experimental studies show that some avian influenza strains acquire resistance ability against vaccination. We investigated, in the context of the emergence of a vaccine-resistant strain, whether a vaccination program can prevent the spread of infectious disease. We also investigated how losses from immunization by vaccination imposed by the resistant strain affect the spread of the disease. Methods and Findings We designed and analyzed a deterministic compartment model illustrating transmission of vaccine-sensitive and vaccine-resistant strains during a vaccination program. We investigated how the loss of protection effectiveness impacts the program. Results show that a vaccination to prevent the spread of disease can instead spread the disease when the resistant strain is less virulent than the sensitive strain. If the loss is high, the program does not prevent the spread of the resistant strain despite a large prevalence rate of the program. The epidemic's final size can be larger than that before the vaccination program. We propose how to use poor vaccines, which have a large loss, to maximize program effects and describe various program risks, which can be estimated using available epidemiological data. Conclusions We presented clear and simple concepts to elucidate vaccination program guidelines to avoid negative program effects. Using our theory, monitoring the virulence of the resistant strain and investigating the loss caused by the resistant strain better development of vaccination strategies is possible.
Collapse
|
38
|
Bouma A, Claassen I, Natih K, Klinkenberg D, Donnelly CA, Koch G, van Boven M. Estimation of transmission parameters of H5N1 avian influenza virus in chickens. PLoS Pathog 2009; 5:e1000281. [PMID: 19180190 PMCID: PMC2627927 DOI: 10.1371/journal.ppat.1000281] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 12/26/2008] [Indexed: 11/25/2022] Open
Abstract
Despite considerable research efforts, little is yet known about key epidemiological parameters of H5N1 highly pathogenic influenza viruses in their avian hosts. Here we show how these parameters can be estimated using a limited number of birds in experimental transmission studies. Our quantitative estimates, based on Bayesian methods of inference, reveal that (i) the period of latency of H5N1 influenza virus in unvaccinated chickens is short (mean: 0.24 days; 95% credible interval: 0.099–0.48 days); (ii) the infectious period of H5N1 virus in unvaccinated chickens is approximately 2 days (mean: 2.1 days; 95%CI: 1.8–2.3 days); (iii) the reproduction number of H5N1 virus in unvaccinated chickens need not be high (mean: 1.6; 95%CI: 0.90–2.5), although the virus is expected to spread rapidly because it has a short generation interval in unvaccinated chickens (mean: 1.3 days; 95%CI: 1.0–1.5 days); and (iv) vaccination with genetically and antigenically distant H5N2 vaccines can effectively halt transmission. Simulations based on the estimated parameters indicate that herd immunity may be obtained if at least 80% of chickens in a flock are vaccinated. We discuss the implications for the control of H5N1 avian influenza virus in areas where it is endemic. Outbreaks of highly pathogenic H5N1 avian influenza in poultry first occurred in China in 1996. Since that time, the virus has become endemic in Asia, and has been the cause of outbreaks in Africa and Europe. Although many aspects of H5N1 virus biology have been studied in detail, surprisingly little is known about the key epidemiological parameters of the virus in its avian hosts (the length of time from infection until a bird becomes infectious, the duration of infectiousness, how many birds each infectious bird will infect). In this paper we show, using experimental transmission studies with unvaccinated and vaccinated chickens, that H5N1 avian influenza induces a short duration of infectiousness (∼2 days) and a very short period of time from infection until infectiousness (∼0.25 day) in unvaccinated chickens. Furthermore, while transmission was efficient among unvaccinated birds, no bird-to-bird transmission was observed in vaccinated chickens. Our results indicate that it may be difficult to curb outbreaks by vaccination after an introduction in a flock has been detected. On the other hand, preventive vaccination could be effective in preventing virus introductions and limiting the size of outbreaks.
Collapse
Affiliation(s)
- Annemarie Bouma
- Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Ivo Claassen
- Central Veterinary Institute, Wageningen University and Research Centre, The Netherlands
| | - Ketut Natih
- National Veterinary Drug Assay Laboratory, Bogor, Indonesia
| | - Don Klinkenberg
- Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Christl A. Donnelly
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Guus Koch
- Central Veterinary Institute, Wageningen University and Research Centre, The Netherlands
| | - Michiel van Boven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, The Netherlands
- * E-mail:
| |
Collapse
|
39
|
Savill NJ, St Rose SG, Woolhouse MEJ. Detection of mortality clusters associated with highly pathogenic avian influenza in poultry: a theoretical analysis. J R Soc Interface 2009; 5:1409-19. [PMID: 18477540 DOI: 10.1098/rsif.2008.0133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rapid detection of infectious disease outbreaks is often crucial for their effective control. One example is highly pathogenic avian influenza (HPAI) such as H5N1 in commercial poultry flocks. There are no quantitative data, however, on how quickly the effects of HPAI infection in poultry flocks can be detected. Here, we study, using an individual-based mathematical model, time to detection in chicken flocks. Detection is triggered when mortality, food or water intake or egg production in layers pass recommended thresholds suggested from the experience of past HPAI outbreaks. We suggest a new threshold for caged flocks--the cage mortality detection threshold--as a more sensitive threshold than current ones. Time to detection is shown to depend nonlinearly on R0 and is particularly sensitive for R0<10. It also depends logarithmically on flock size and number of birds per cage. We also examine how many false alarms occur in uninfected flocks when we vary detection thresholds owing to background mortality. The false alarm rate is shown to be sensitive to detection thresholds, dependent on flock size and background mortality and independent of the length of the production cycle. We suggest that current detection thresholds appear sufficient to rapidly detect the effects of a high R0 HPAI strain such as H7N7 over a wide range of flock sizes. Time to detection of the effects of a low R0 HPAI strain such as H5N1 can be significantly improved, particularly for large flocks, by lowering detection thresholds, and this can be accomplished without causing excessive false alarms in uninfected flocks. The results are discussed in terms of optimizing the design of disease surveillance programmes in general.
Collapse
Affiliation(s)
- Nicholas J Savill
- Centre for Infectious Diseases, Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| | | | | |
Collapse
|
40
|
Spickler AR, Trampel DW, Roth JA. The onset of virus shedding and clinical signs in chickens infected with high-pathogenicity and low-pathogenicity avian influenza viruses. Avian Pathol 2009; 37:555-77. [PMID: 19023755 DOI: 10.1080/03079450802499118] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Some avian influenza viruses may be transmissible to mammals by ingestion. Cats and dogs have been infected by H5N1 avian influenza viruses when they ate raw poultry, and two human H5N1 infections were linked to the ingestion of uncooked duck blood. The possibility of zoonotic influenza from exposure to raw poultry products raises concerns about flocks with unrecognized infections. The present review examines the onset of virus shedding and the development of clinical signs for a variety of avian influenza viruses in chickens. In experimentally infected birds, some high-pathogenicity avian influenza (HPAI) and low-pathogenicity avian influenza (LPAI) viruses can occur in faeces and respiratory secretions as early as 1 to 2 days after inoculation. Some HPAI viruses have also been found in meat 1 day after inoculation and in eggs after 3 days. There is no evidence that LPAI viruses can be found in meat, and the risk of their occurrence in eggs is poorly understood. Studies in experimentally infected birds suggest that clinical signs usually develop within a few days of virus shedding; however, some models and outbreak descriptions suggest that clinical signs may not become evident for a week or more in some H5 or H7 HPAI-infected flocks. During this time, avian influenza viruses might be found in poultry products. LPAI viruses can be shed in asymptomatically infected or minimally affected flocks, but these viruses are unlikely to cause significant human disease.
Collapse
Affiliation(s)
- Anna R Spickler
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | | | | |
Collapse
|
41
|
Abstract
Avian influenza (AI) is a listed disease of the World Organisation for Animal Health (OIE) that has become a disease of great importance both for animal and human health. The increased relevance of AI in the fields of animal and human health has highlighted the lack of scientific information on several aspects of the disease, which has hampered the adequate management of some of the recent crises. Millions of animals have died, and there is growing concern over the loss of human lives and over the management of the pandemic potential. The present paper aims to identify areas of knowledge of veterinary competence that need to be improved in order to generate information to support the global AI crisis, and highlights the major changes in AI legislation, including regulations related to trade. It also reviews the human health implications of AI, including the mechanisms by which a human pandemic virus may be generated, and the food safety issues related to this infection. The application of control policies, ranging from stamping out to emergency and prophylactic vaccination, are discussed on the basis of data generated in recent outbreaks, and in the light of new regulations, also in view of the maintenance of good animal welfare. Poultry veterinarians working for the industry or for the public sector represent the first line of defence against the pandemic threat and for the prevention and control of this infection in poultry and in wild birds. However, given the current situation, it is imperative that close collaboration is sought and achieved by health officials involved in the veterinary, agricultural and medical aspects of the disease. Only through the exchange of data, experiences, views and information will it be possible to combat this zoonosis, which represents a major threat to public health and animal well-being.
Collapse
Affiliation(s)
- Ilaria Capua
- OIE, FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padova, Italy.
| | | |
Collapse
|
42
|
Report on Epidemiological analysis of the 2006 bluetongue virus serotype 8 epidemic in north‐western Europe. EFSA J 2007. [DOI: 10.2903/j.efsa.2007.34r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
43
|
Steensels M, Van Borm S, Lambrecht B, De Vriese J, Le Gros FX, Bublot M, van den Berg T. Efficacy of an Inactivated and a Fowlpox-Vectored Vaccine in Muscovy Ducks Against an Asian H5N1 Highly Pathogenic Avian Influenza Viral Challenge. Avian Dis 2007; 51:325-31. [PMID: 17494576 DOI: 10.1637/7628-042806r.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The efficacy of an inactivated vaccine containing the Eurasian isolate A/chicken/Italy/22A/98 H5N9 (H5N9-It) was compared with that of the fowlpox-vectored TROVACTM-AIV H5 (rFP-AIV-H5) vaccine against an H5N1 highly pathogenic avian influenza challenge. Five-week-old Muscovy ducks were vaccinated with either H5N9-It (0.5 ml) or rFP-AIV-H5 (5 log10 50% tissue culture infectious dose (TCID50)/dose), followed by a boost at 7 wk of age with the same vaccine (1.0 ml of H5N9-It or 5 log10 TCID50/dose rFP-AIV-H5), and a challenge at 9 wk of age with 10(7) egg infectious dose (lethality 50%) of A/crested eagle/ Belgium/01/2004 (H5N1). All unvaccinated challenged birds showed severe nervous signs (loss of balance, torticollis) starting 7 days postinfection (dpi). None of the vaccinated ducks showed these nervous signs. Shedding was measured in oropharyngeal and cloacal swabs, sampled from 3 to 19 dpi by titration in chicken embryo fibroblasts and by real-time reverse transcription-polymerase chain reaction. Virus shedding was significantly higher in oropharyngeal compared to cloacal swabs. Both vaccines reduced the percentage of positive swabs and the viral load in the swabs, but the reduction was higher with the H5N9-It vaccine. The inactivated vaccine induced hemagglutination inhibition (HI) titers (5.4 log2) that were boosted after the second administration (7.5 log2). rFP-AIV-H5-induced HI titers were lower (3 log2 only after the second administration), most probably because the fowlpox vector does not replicate in ducks. Altogether, these results indicate that significant protection from clinical signs and reduction in virus shedding may be achieved in ducks with conventional inactivated or fowlpox-vectored vaccine as compared with nonvaccinated challenged control birds.
Collapse
Affiliation(s)
- M Steensels
- Veterinary and Agrochemical Research Center, Groeselenberg 99, 1180 Ukkel, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Elbers ARW, Holtslag JB, Bouma A, Koch G. Within-Flock Mortality During the High-Pathogenicity Avian Influenza (H7N7) Epidemic in the Netherlands in 2003: Implications for an Early Detection System. Avian Dis 2007; 51:304-8. [PMID: 17494571 DOI: 10.1637/7579-040106r.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Daily within-flock mortality data, from a few days before until a few days after onset of increased mortality, from H7N7-infected flocks were analyzed with nonlinear regression for layer (organic and free-range or caged), broiler, and turkey flocks. The following notification thresholds were recommended for The Netherlands: 1) organic layer flocks, broiler flocks, and turkey flocks < or = 11 wk of age: > or = 0.5% mortality/day for two consecutive days; 2) layer flocks with birds housed in cages: > or = 0.25% mortality/day for two consecutive days; 3) turkey flocks > or = 16 wk of age: > or = 1% mortality/day for two consecutive days. Notification of increased mortality to the veterinary authorities should take place on the second day of increased mortality. Interpretation of mortality thresholds should be on the level of the poultry barn in which clinical problems arise. Because of nonoptimal specificity of proposed thresholds (mortality possibly caused by other diseases), use of PCR-diagnostics (results within 24 hr) without costs to the individual farmer should be promoted to exclude avian influenza in suspect clinical situations in order to minimize negative economic consequence for farmers and stimulate notification by farmers and veterinary practitioners.
Collapse
Affiliation(s)
- A R W Elbers
- Department of Virology, Central Institute for Animal Disease Control, Wageningen University and Research Centre, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | | | | | | |
Collapse
|
45
|
Martin MP, Anderson CM, Johnson B, Wakenell PS. Predation as a cause of neurologic signs and acute mortality in a pheasant flock. Avian Dis 2006; 50:463-6. [PMID: 17039853 DOI: 10.1637/7522-030306r.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A flock of approximately 15,000 ring-necked pheasants (Phasianus colchicus) was evaluated for a sudden increase in mortality and acute neurological signs after having been previously diagnosed 3 wk earlier with a chronic respiratory disease of undetermined etiology. Approximately 25 live birds were displaying neurological signs including circling, ataxia, and obtunded behavior and 50 birds were dead. Three birds with neurological signs were submitted for evaluation. Extensive subcutaneous hemorrhage over the head and penetrating puncture wounds through the skull and into the brain were found. Trauma from a wild predatory mammal, most likely the long-tailed weasel (Mustela frenata) that had invaded the pheasant house and expressed surplus killing behavior was determined to be the cause of the acute neurological signs and mortality. The relationship of the chronic respiratory disease to the predation episode was not determined but it is possible that pheasants with severe respiratory disease may have had increased susceptibility to predation.
Collapse
Affiliation(s)
- M P Martin
- University of California at Davis, School of Veterinary Medicine, Department of Population Health and Reproduction, 1 Shields Avenue, 1114 Tupper Hall, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
46
|
|
47
|
Abstract
The number of avian species in which coronaviruses have been detected has doubled in the past couple of years. While the coronaviruses in these species have all been in coronavirus Group 3, as for the better known coronaviruses of the domestic fowl (infectious bronchitis virus [IBV], in Gallus gallus), turkey (Meleagris gallopavo) and pheasant (Phasianus colchicus), there is experimental evidence to suggest that birds are not limited to infection with Group 3 coronaviruses. In China coronaviruses have been isolated from peafowl (Pavo), guinea fowl (Numida meleagris; also isolated in Brazil), partridge (Alectoris) and also from a non-gallinaceous bird, the teal (Anas), all of which were being reared in the vicinity of domestic fowl. These viruses were closely related in genome organization and in gene sequences to IBV. Indeed, gene sequencing and experimental infection of chickens indicated that the peafowl isolate was the H120 IB vaccine strain, while the teal isolate was possibly a field strain of a nephropathogenic IBV. Thus the host range of IBV does extend beyond the chicken. Most recently, Group 3 coronaviruses have been detected in greylag goose (Anser anser), mallard duck (Anas platyrhynchos) and pigeon (Columbia livia). It is clear from the partial genome sequencing of these viruses that they are not IBV, as they have two additional small genes near the 3' end of the genome. Twenty years ago a coronavirus was isolated after inoculation of mice with tissue from the coastal shearwater (Puffinus puffinus). While it is not certain whether the virus was actually from the shearwater or from the mice, recent experiments have shown that bovine coronavirus (a Group 2 coronavirus) can infect and also cause enteric disease in turkeys. Experiments with some Group 1 coronaviruses (all from mammals, to date) have shown that they are not limited to replicating or causing disease in a single host. SARS-coronavirus has a wide host range. Clearly there is the potential for the emergence of new coronavirus diseases in domestic birds, from both avian and mammalian sources. Modest sequence conservation within gene 1 has enabled the design of oligonucleotide primers for use in diagnostic reverse transcriptase-polymerase chain reactions, which will be useful for the detection of new coronaviruses.
Collapse
Affiliation(s)
- Dave Cavanagh
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, RG20 7NN, UK.
| |
Collapse
|