1
|
Alhazmi A, Nahdi S, Alwasel S, Harrath AH. Acephate Exposure Induces Transgenerational Ovarian Developmental Toxicity by Altering the Expression of Follicular Growth Markers in Female Rats. BIOLOGY 2024; 13:1075. [PMID: 39765742 PMCID: PMC11673910 DOI: 10.3390/biology13121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Acephate is an organophosphate foliar and soil insecticide that is used worldwide. In this study, the transgenerational ovarian developmental toxicity caused by acephate, along with its in utero reprogramming mechanisms, were explored. Thirty female virgin Wistar albino rats were randomly assigned to three groups: one control group and two acephate treatment groups. The treatment groups received daily low or high doses of acephate (34.2 mg/kg or 68.5 mg/kg body weight, respectively) from gestational day 6 until spontaneous labor, resulting in F1 offspring. At 28 days, a subgroup of F1 females were euthanized. The ovaries were extracted, thoroughly cleaned, and weighed before being fixed for further analysis. The remaining F1 females were mated with normal males to produce the F2 generation. The F1 female offspring presented reduced fertility and body weight, whereas the ovarian weight index and sex ratio increased in a dose-dependent manner. Structural analysis revealed altered follicular abnormalities with ovarian cells displaying pyknotic nuclei. Additionally, the gene and protein expression of Cyp19 decreased, whereas that of Gdf-9 increased in the high-dose treatment group (68.5 mg/kg). We also observed significantly increased expression levels of ovarian estrogen receptor 1 (Esr1) and insulin-like growth factor 1 (Igf1), whereas Insl3 expression was significantly decreased. The F2 female offspring presented reproductive phenotype alterations similar to those of F1 females including decreased fertility, reduced Cyp19 gene and protein expression, and structural ovarian abnormalities similar to those of polycystic ovary syndrome (PCOS). In conclusion, acephate induced ovarian developmental toxicity across two generations of rats, which may be linked to changes in the ovarian Cyp19, Gdf9, Insl3, and Igf1 levels.
Collapse
Affiliation(s)
| | | | | | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| |
Collapse
|
2
|
Shih ML, López-González MDL, Uribe-Ramírez M, Rojas-García AE, Verdín-Betancourt FA, Sierra-Santoyo A. Analysis of Thiodiphenol in Rat Urine as a Biomarker of Exposure to Temephos. J Xenobiot 2024; 14:1889-1900. [PMID: 39728408 DOI: 10.3390/jox14040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/17/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Temephos is an organophosphorus pesticide widely used as a larvicide in public health campaigns to control vector-borne diseases. Data on the urinary elimination of temephos metabolites are limited, and there is no validated biomarker of exposure for its evaluation. This study aimed to determine the urinary excretion kinetics of temephos and its metabolites in adult male rats. Hence, adult male Wistar rats were administered orally with a single dose of temephos (300 mg/kg). Urine samples were collected at different time intervals after dosing and enzymatically hydrolyzed using β-glucuronidase/sulfatase from H. pomatia. The metabolites were extracted and analyzed by HPLC-DAD. The metabolites detected were 4,4'-thiodiphenol (TDP), 4,4'-sulfinyldiphenol (SIDP), 4,4'-sulfonyldiphenol (SODP), or bisphenol S (BPS), a non-identified metabolite, and only traces of the parent compound. The mean urine concentrations of metabolites were used for kinetic analysis. Urinary levels of TDP were fitted to a two-compartmental model, and its half-lives (t1/2 Elim-U) were 27.8 and 272.1 h for the first and second phases, respectively. The t1/2 Elim-U of BPS was 17.7 h. TDP, the main metabolite of temephos, was eliminated by urine and is specific and stable. Therefore, it may be used as a biomarker of temephos exposure.
Collapse
Affiliation(s)
- Miao-Ling Shih
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico
| | - Ma de Lourdes López-González
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico
| | - Marisela Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic 63000, Nay., Mexico
| | - Francisco Alberto Verdín-Betancourt
- Unidad Especializada de Ciencias Ambientales, Centro Nayarita de Innovación y Transferencia de Tecnología, Av. Emilio M. González S/N, Ciudad del Conocimiento, Tepic 63173, Nay., Mexico
| | - Adolfo Sierra-Santoyo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico
| |
Collapse
|
3
|
Larsen K, Ichinose P, Fernández-San Juan R, Lifschitz A, Virkel G. Effects of acaricides on the activities of monooxygenases in bovine liver microsomes. J Vet Pharmacol Ther 2023; 46:375-384. [PMID: 37231529 DOI: 10.1111/jvp.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
Organophosphates (OPs), pyrethrins and fipronil, are acaricides commonly used in cattle, mainly as pour on formulations. Scant information is available on their potential interactions with hepatic xenobiotic metabolizing enzymes. This work aimed to evaluate in vitro the potential inhibitory effects of widely employed acaricides on catalytic activities mediated by hepatic cytochrome P450 (CYP) and flavin-monooxygenase (FMO) enzymes in cattle. Bovine (n = 4) liver microsomes were incubated in the absence (control assays) and in presence of different OPs (fenthion, chlorpyrifos, ethion, diazinon and dichlorvos), fipronil and cypermethrin at 0.1-100 μm. Five oxidative enzyme activities were assayed by spectrofluorimetric or HPLC methods: 7-ethoxyresorufin O-deethylase (for CYP1A1), methoxyresorufin O-demethylase (for CYP1A2), benzyloxyresorufin O-debenzylase (for CYP2B), testosterone 6-beta hydroxylase (for CYP3A) and benzydamine N-oxidase (for FMO). All acaricides, particularly phosphorothionate-containing OPs, inhibited to some extent more than one enzyme activity. The most frequent inhibitor was fenthion, which inhibited (p < .05) all enzyme activities tested (from 22% at 1 μm to 72% at 100 μm). However, low inhibitory potencies (IC50s higher than 7 μm) of all acaricides studied were observed against the catalytic activities assayed. Therefore, the risk of in vivo metabolic interactions due to inhibition of monooxygenases would be low under common husbandry conditions.
Collapse
Affiliation(s)
- Karen Larsen
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Buenos Aires, Argentina
| | - Paula Ichinose
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Buenos Aires, Argentina
| | - Rocío Fernández-San Juan
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Buenos Aires, Argentina
| | - Adrián Lifschitz
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Buenos Aires, Argentina
| | - Guillermo Virkel
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Buenos Aires, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Kumar D, Sinha SN, Vasudev K. Development and Validation of a New UFLC-MS/MS Method for the Detection of Organophosphate Pesticide Metabolites in Urine. Molecules 2023; 28:5800. [PMID: 37570770 PMCID: PMC10421278 DOI: 10.3390/molecules28155800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
To monitor human exposure to pesticides, experts commonly measure their metabolites in urine, particularly dialkyl phosphates (DAPs), which include diethyl phosphate (DEP), Diethyl thiophosphate (DETP), diethyl dithiophosphate (DEDTP), dimethyl phosphate (DMP), dimethyl thiophosphate (DMTP) and dimethyl dithiophosphate (DMDTP)to monitor the metabolites of organophosphates. These DAP metabolites are a urinary biomarker for assessing pesticide exposure and potential health risks. This study presented a new screening method combining ultrafast liquid chromatography with tandem mass spectrometry (UFLC-MS/MS) to detect six DAP metabolites in human urine. The study also compared standard sample extraction methods, namely, liquid-liquid extraction (LLE); quick, easy, cheap, effective, ruggedand safe (QuEChERS); and lyophilization. After a comprehensive analysis of the methods used to extract the analytes, including recovery rate, repeatability and reproducibility, the liquid-liquid extraction (LLE) method was found to be the best. It had a high recovery rate, was easy to handle, required less sample volume and had a short extraction time. Therefore, the LLE method was chosen for further analysis. The results showed excellent performance with high recoveries between 93% and 102%, precise repeatability (RSD) between 0.62% and 5.46% and acceptable reproducibility values (RSD) between 0.80% and 11.33%. The method also had limits of detection (LOD) ranging from 0.0201 ng/mL to 0.0697 ng/mL and limits of quantification (LOQ) ranging from 0.0609 ng/mL to 0.2112 ng/mL. Furthermore, the UFLC-MS/MS method was validated based on the SANTE guidance and successfully analyzed 150 urine samples from farmers and non-farmers. This validated method proved useful for biomonitoring studies focusing on OP pesticide exposure. It offers several advantages, such as a reduced need for samples, chemicals and materials, and a shorter analysis time. The method is sensitive and selective in detecting metabolites in human urine, making it a valuable approach for the practical and efficient assessment of pesticide exposure.
Collapse
Affiliation(s)
- Dileshwar Kumar
- Food Safety Division, ICMR—National Institute of Nutrition, Hyderabad 500007, Telangana, India
- Department of Biochemistry, Osmania University, Hyderabad 500007, Telangana, India
| | - Sukesh Narayan Sinha
- Food Safety Division, ICMR—National Institute of Nutrition, Hyderabad 500007, Telangana, India
| | - Kasturi Vasudev
- Food Safety Division, ICMR—National Institute of Nutrition, Hyderabad 500007, Telangana, India
| |
Collapse
|
5
|
Sadeghi H, Lynch CF, Field WR, Snetselaar LG, Jones MP, Sinha R, Torner JC. Dietary omega-6/omega-3 fatty acids and risk of prostate cancer; Is there any potential interaction by organophosphate insecticides among the agricultural health study population. Cancer Epidemiol 2023; 85:102410. [PMID: 37413804 PMCID: PMC10528409 DOI: 10.1016/j.canep.2023.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND In the United States (US), the average annual increase in the incidence of prostate cancer (PCa) has been 0.5% between 2013 and 2017. Although some modifiable factors have been identified as the risk factors for PCa, the effect of lower ratio of omega-6 to omega-3 fatty acids intake (N-6/N-3) remains unknown. Previous studies of the Agricultural Health Study (AHS) reported a significant positive association between PCa and selected organophosphate pesticides (OPs) including terbufos and fonofos. OBJECTIVE The aim of this study was to evaluate the association between N-6/N-3 and PCa and any interaction between N-6/N-3 and 2 selected OPs (i.e., terbufos and fonofos) exposure. DESIGN AND PARTICIPANTS This case-control study, nested within a prospective cohort study, was conducted on a subgroup of the AHS population (1193 PCa cases and 14,872 controls) who returned their dietary questionnaire between 1999 and 2003 MAIN OUTCOME MEASURES: PCa was coded based on the International Classification of Diseases of Oncology (ICD-O-3) definitions and obtained from the statewide cancer registries of Iowa (2003-2017) and North Carolina (2003-2014). STATISTICAL ANALYSIS Multivariate logistic regression analysis was applied to obtain the odds ratios adjusted (aORs) for age at dietary assessment (years), race/ethnicity (white, African American, other), physical activity (hours/week), smoking (yes/no), terbufos (yes/no), fonofos (yes/no), diabetes, lycopene intake (milligrams/day), family history of PCa, and the interaction of N-6/N-3 with age, terbufos and fonofos. Pesticide exposure was assessed by self-administrated questionnaires collecting data on ever/never use of mentioned pesticides during lifetime as a yes/no variable. Assessing the P value for the interaction between pesticides and N-6/N-3, we used the continuous variable of "intensity adjusted cumulative exposure" to terbufos and fonofos. This exposure score was based on duration, intensity and frequency of exposure. We also conducted a stratified regression analysis by quartiles of age. RESULTS Relative to the highest N-6/N-3 quartile, the lowest quartile was significantly associated with a decreased risk of PCa (aOR=0.61, 95% CI: 0.41-0.90), and quartile-specific aORs decreased toward the lowest quartile (Ptrend=<0.01). Based on the age-stratified analysis, the protective effect was only significant for the lowest quartile of N-6/N-3 among those aged between 48 and 55 years old (aORs=0.97, 95% CI, 0.45-0.55). Among those who were exposed to terbufos (ever exposure reported as yes in the self-report questionnaires), lower quartiles of N-6/N-3 were protective albeit nonsignificant (aORs: 0.86, 0.92, 0.91 in quartiles 1,2, and 3, respectively). No meaningful findings were observed for fonofos and N-6/N-3 interaction. CONCLUSION Findings showed that lower N-6/N-3 may decrease risk of PCa among farmers. However, no significant interaction was found between selected organophosphate pesticides and N-6/N-3.
Collapse
Affiliation(s)
- Homa Sadeghi
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA.
| | - Charles F Lynch
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - William R Field
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Linda G Snetselaar
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Michael P Jones
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Rashmi Sinha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James C Torner
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| |
Collapse
|
6
|
Martínez-Mercado JP, Sierra-Santoyo A, Verdín-Betancourt FA, Rojas-García AE, Quintanilla-Vega B. Temephos, an organophosphate larvicide for residential use: a review of its toxicity. Crit Rev Toxicol 2022; 52:113-124. [PMID: 35608007 DOI: 10.1080/10408444.2022.2065967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Temephos (O,O,O',O'-tetramethyl O,O'-thiodi-p-phenylene bis(phosphorothioate)) is a larvicide belonging to the family of organophosphate pesticides used for the control of different vectors of diseases, such as dengue, Zika, chikungunya, and dracunculiasis. The aim of this review was to discuss the available published information about temephos toxicokinetics and toxicity in mammals. Temephos is quickly absorbed in the gastrointestinal tract, distributed to all organs, and then it accumulates mainly in adipose tissue. It is metabolized by S-oxidation, oxidative desulfuration, and hydrolysis reactions, with the possible participation of cytochrome P450 (CYP). Temephos is mainly eliminated by feces, whereas some of its metabolites are eliminated by urine. The World Health Organization classifies it as class III: slightly dangerous with a NOAEL (no-observed adverse effect level) of 2.3 mg/kg/day for up to 90 days in rats, based on brain acetylcholinesterase (AChE) inhibition. A LOAEL (lowest observable adverse effect level) of 100 mg/kg/day for up to 44 days in rats was proposed based on cholinergic symptoms. However, some studies have shown that temephos causes toxic effects in mammals. The inhibition of the enzyme acetylcholinesterase (AChE) is one of its main demonstrated effects; however, this larvicide has also shown genotoxic effects and some adverse effects on male reproduction and fertility, as well as liver damage, even at low doses. We performed an extensive review through several databases of the literature about temephos toxicokinetics, and we recommend to revisit current assessment of temephos with the new available data.
Collapse
Affiliation(s)
- Juan Pablo Martínez-Mercado
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, Mexico
| | - Adolfo Sierra-Santoyo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, Mexico
| | - Francisco Alberto Verdín-Betancourt
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Mexico
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Tepic, Mexico
| | - Betzabet Quintanilla-Vega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, Mexico
| |
Collapse
|
7
|
Ramos-Flores Á, Camacho-Hernández I, Sierra-Santoyo A, Solís-Heredia MDJ, Verdín-Betancourt FA, Parra-Forero LY, López-González MDL, Hernández-Ochoa I, Quintanilla-Vega B. Temephos decreases sperm quality and fertilization rate and is metabolized in rat reproductive tissues at low dose exposure. Toxicol Sci 2021; 184:57-66. [PMID: 34382084 DOI: 10.1093/toxsci/kfab100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Temephos is an organophosphorus (OP) pesticide used in control campaigns against vectors that transmit diseases, including dengue, a public health concern. The WHO classifies temephos in category III and its safe concentration (LOAEL) in male rats is 100 mg/kg/day for up to 44 days. Temephos inhibits acetylcholinesterase (AChE) and is metabolized in different tissues, probably by mixed-function oxidases; one of its metabolites is bisphenol S (BPS), which is considered an endocrine disruptor. The aim of this study was to evaluate the effects of temephos on sperm function and its biotransformation in the testis, epididymis, and other tissues to explore its toxicity in rats treated with 100 mg/kg/day/5 or 7 days (gavage). AChE activity was inhibited 70% starting on day 3 and 13 or 41% mortality was observed at 5 or 7 days, respectively. After 7 days, temephos significantly decreased sperm motility (30%) and viability (10%) and increased (10%) lipoperoxidation, and the sperm DNA exhibited no damage. Temephos was distributed and metabolized in all tissues, with the highest levels observed in the adipose tissue and temephos levels were 16-fold higher in the epididymis than in the testis. Notably, BPS was observed in the testis. At 5 days, decreased sperm motility (12.5%) and viability (5.7%) were observed and sperm fertilization decreased (30%). These results suggest that temephos decreases sperm quality and fertilization capacity at recommended safe concentrations and that it is metabolized in male reproductive tissues. This pesticide places the reproductive health of exposed people at risk, suggesting the need to reevaluate its toxicity.
Collapse
Affiliation(s)
- Ángel Ramos-Flores
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav)
| | - Israel Camacho-Hernández
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav)
| | - Adolfo Sierra-Santoyo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav)
| | | | | | | | | | - Isabel Hernández-Ochoa
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav)
| | | |
Collapse
|
8
|
Toxicokinetics of temephos after oral administration to adult male rats. Arch Toxicol 2021; 95:935-947. [PMID: 33471133 DOI: 10.1007/s00204-021-02975-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Temephos (Tem) is the larvicide of choice to control mosquito transmission of dengue, Zika, and chikungunya. The toxicokinetic and toxicological information of temephos is very limited. The aim of this work was to determine the toxicokinetics and dosimetry of temephos and its metabolites. Male Wistar rats were orally administered temephos (300 mg/kg) emulsified with saline solution and sacrificed over time after dosing. Temephos and its metabolites were analyzed in blood and tissues by high performance liquid chromatography-diode array detector. At least eleven metabolites were detected, including temephos-sulfoxide (Tem-SO), temephos-oxon (Tem-oxon), temephos-oxon-sulfoxide (Tem-oxon-SO), temephos-oxon-SO-monohydrolyzed (Tem-oxon-SO-OH), 4,4´-thiodiphenol, 4,4´-sulfinyldiphenol, and 4,4´-sulfonyldiphenol or bisphenol S (BPS). The mean blood concentrations of temephos were fitted to a one-compartment model for kinetic analysis. At 2 h, the peak was reached (t1/2 abs = 0.38 h), and only trace levels were detected at 36 h (t1/2 elim = 8.6 h). Temephos was detected in all tissues and preferentially accumulated in fat. Temephos-sulfone-monohydrolyzed (Tem-SO2-OH) blood levels remained constant until 36 h and gradually accumulated in the kidney. Tem-oxon was detected in the brain, liver, kidney, and fat. Clearance from the liver and kidney were 7.59 and 5.52 ml/min, respectively. These results indicate that temephos is well absorbed, extensively metabolized, widely distributed and preferentially stored in adipose tissue. It is biotransformed into reactive metabolites such as Tem-oxons, Tem-dioxons, and BPS. Tem-SO2-OH, the most abundant metabolite of temephos, could be used as an exposure biomarker for toxicokinetic modeling. These results could provide critical insight into the dosimetry and toxicity of temephos and its metabolites.
Collapse
|
9
|
Larsen KE, Lifschitz AL, Lanusse CE, Virkel GL. In vitro and in vivo effects of chlorpyrifos and cypermethrin on blood cholinesterases in sheep. J Vet Pharmacol Ther 2019; 42:548-555. [PMID: 31328799 DOI: 10.1111/jvp.12798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/15/2019] [Accepted: 06/27/2019] [Indexed: 11/28/2022]
Abstract
The combination of the organophosphate (OP) chlorpyrifos (CPF) and the pyrethroid cypermethrin (CPM) is commonly marketed as pour-on formulations for the control of sheep lice, ked, and blowflies. CPF irreversibly inhibits acetylcholinesterases (AChE), while pyrethroids are not AChE inhibitors. However, combinations of pyrethroids with OPs showed a highly synergistic effect on AChE inhibition. Thus, the aim of the current work was to evaluate in vitro and in vivo the inhibitory potency of both pesticides, alone and in combination with AChE and butyrylcholinesterase (BChE) activities in sheep blood. In vitro, IC50 values were similar after CPF or CPF plus CPM incubations. The pour-on coadministration of recommended doses of CPF and CPM did not cause a significant inhibition of AChE and BChE in sheep blood. Only slight percentages of inhibition of their catalytic activities were observed when both drugs were given at 4-fold higher dose rates. The lower systemic availability of topical administration of OPs in sheep may help to explain the lower degree of inhibition of blood AChE and BChE in vivo. The results emerged from this research are a further contribution to the knowledge of the risks of implementing higher dosage regimens of OPs-containing antiparasitic formulations.
Collapse
Affiliation(s)
- Karen E Larsen
- Laboratorio de Ecotoxicología y Biología Celular, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina.,Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN-CIC-CONICET), Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Adrián L Lifschitz
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN-CIC-CONICET), Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Carlos E Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN-CIC-CONICET), Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | - Guillermo L Virkel
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN-CIC-CONICET), Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| |
Collapse
|
10
|
Yang F, Li J, Pang G, Ren F, Fang B. Effects of Diethyl Phosphate, a Non-Specific Metabolite of Organophosphorus Pesticides, on Serum Lipid, Hormones, Inflammation, and Gut Microbiota. Molecules 2019; 24:molecules24102003. [PMID: 31137755 PMCID: PMC6572208 DOI: 10.3390/molecules24102003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
Organophosphorus pesticides (OPs) can be metabolized to diethyl phosphate (DEP) in the gut environment, which may affect the immune and endocrine systems and the microbiota. Correlations between OPs and diseases have been established by epidemiological studies, mainly based on the contents of their metabolites, including DEP, in the serum or urine. However, the effects of DEP require further study. Therefore, in this study, adult male rats were exposed to 0.08 or 0.13 mg/kg DEP for 20 weeks. Serum levels of hormones, lipids, and inflammatory cytokines as well as gut microbiota were measured. DEP significantly enriched opportunistic pathogens, including Paraprevotella, Parabacteroides, Alloprevotella, and Helicobacter, leading to a decrease in interleukin-6 (IL-6). Exposure to the high dose of DEP enriched the butyrate-producing genera, Alloprevotella and Intestinimonas, leading to an increase in estradiol and a resulting decrease in total triglycerides (TGs) and low-density lipoprotein cholesterol (LDL-C); meanwhile, DEP-induced increases in peptide tyrosine‒tyrosine (PYY) and ghrelin were attributed to the enrichment of short-chain fatty acid-producing Clostridium sensu stricto 1 and Lactobacillus. These findings indicate that measuring the effects of DEP is not a proxy for measuring the effects of its parent compounds.
Collapse
Affiliation(s)
- Fangwei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jinwang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Guofang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China.
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
11
|
Chedik L, Bruyere A, Fardel O. Interactions of organophosphorus pesticides with solute carrier (SLC) drug transporters. Xenobiotica 2018; 49:363-374. [PMID: 29448871 DOI: 10.1080/00498254.2018.1442030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Organophosphorus pesticides (OPs) are known to interact with human ATP-binding cassette drug efflux pumps. The present study was designed to determine whether they can also target activities of human solute carrier (SLC) drug transporters. 2. The interactions of 13 OPs with SLC transporters involved in drug disposition, such as organic cation transporters (OCTs), multidrug and toxin extrusion proteins (MATEs), organic anion transporters (OATs) and organic anion transporting polypeptides (OATPs), were mainly investigated using transporter-overexpressing cell clones and fluorescent or radiolabeled reference substrates. 3. With a cut-off value of at least 50% modulation of transporter activity by 100 µM OPs, OAT1 and MATE2-K were not impacted, whereas OATP1B1 and MATE1 were inhibited by two and three OPs, respectively. OAT3 activity was similarly blocked by three OPs, and was additionally stimulated by one OP. Five OPs cis-stimulated OATP2B1 activity. Both OCT1 and OCT2 were inhibited by the same eight OPs, including fenamiphos and phosmet, with IC50 values however in the 3-30 µM range, likely not relevant to environmental exposure. 4. These data demonstrated that various OPs inhibit SLC drug transporter activities, especially those of OCT1 and OCT2, but only when used at high concentrations not expected to occur in environmentally-exposed humans.
Collapse
Affiliation(s)
- Lisa Chedik
- a Institut de Recherches en Santé, Environnement et Travail (IRSET) , UMR INSERM U1085, Université de Rennes 1 , Rennes , France
| | - Arnaud Bruyere
- a Institut de Recherches en Santé, Environnement et Travail (IRSET) , UMR INSERM U1085, Université de Rennes 1 , Rennes , France
| | - Olivier Fardel
- a Institut de Recherches en Santé, Environnement et Travail (IRSET) , UMR INSERM U1085, Université de Rennes 1 , Rennes , France.,b Pôle Biologie, Centre Hospitalier Universitaire , Rennes , France
| |
Collapse
|
12
|
Engel LS, Werder E, Satagopan J, Blair A, Hoppin JA, Koutros S, Lerro CC, Sandler DP, Alavanja MC, Beane Freeman LE. Insecticide Use and Breast Cancer Risk among Farmers' Wives in the Agricultural Health Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:097002. [PMID: 28934092 PMCID: PMC5915194 DOI: 10.1289/ehp1295] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Some epidemiologic and laboratory studies suggest that insecticides are related to increased breast cancer risk, but the evidence is inconsistent. Women engaged in agricultural work or who reside in agricultural areas may experience appreciable exposures to a wide range of insecticides. OBJECTIVE We examined associations between insecticide use and breast cancer incidence among wives of pesticide applicators (farmers) in the prospective Agricultural Health Study. METHODS Farmers and their wives provided information on insecticide use, demographics, and reproductive history at enrollment in 1993-1997 and in 5-y follow-up interviews. Cancer incidence was determined via cancer registries. Among 30,594 wives with no history of breast cancer before enrollment, we examined breast cancer risk in relation to the women's and their husbands' insecticide use using Cox proportional hazards regression to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS During an average 14.7-y follow-up, 39% of the women reported ever using insecticides, and 1,081 were diagnosed with breast cancer. Although ever use of insecticides overall was not associated with breast cancer risk, risk was elevated among women who had ever used the organophosphates chlorpyrifos [HR=1.4 (95% CI: 1.0, 2.0)] or terbufos [HR=1.5 (95% CI: 1.0, 2.1)], with nonsignificantly increased risks for coumaphos [HR=1.5 (95% CI: 0.9, 2.5)] and heptachlor [HR=1.5 (95% CI: 0.7, 2.9)]. Risk in relation to the wives' use was associated primarily with premenopausal breast cancer. We found little evidence of differential risk by tumor estrogen receptor status. Among women who did not apply pesticides, the husband's use of fonofos was associated with elevated risk, although no exposure-response trend was observed. CONCLUSION Use of several organophosphate insecticides was associated with elevated breast cancer risk. However, associations for the women's and husbands' use of these insecticides showed limited concordance. Ongoing cohort follow-up may help clarify the relationship, if any, between individual insecticide exposures and breast cancer risk. https://doi.org/10.1289/EHP1295.
Collapse
Affiliation(s)
- Lawrence S Engel
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina , Chapel Hill, North Carolina, USA
| | - Emily Werder
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina , Chapel Hill, North Carolina, USA
| | - Jaya Satagopan
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center , New York, New York, USA
| | - Aaron Blair
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS) , Bethesda, Maryland, USA
| | - Jane A Hoppin
- Department of Biological Sciences, and
- Center for Human Health and the Environment, North Carolina State University , Raleigh, North Carolina, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS) , Bethesda, Maryland, USA
| | - Catherine C Lerro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS) , Bethesda, Maryland, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS , Research Triangle Park, North Carolina, USA
| | - Michael C Alavanja
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS) , Bethesda, Maryland, USA
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS) , Bethesda, Maryland, USA
| |
Collapse
|
13
|
KAUR GURPREET, JAIN AK, SINGH SANDEEP. CYP/PON genetic variations as determinant of organophosphate pesticides toxicity. J Genet 2017; 96:187-201. [PMID: 28360405 DOI: 10.1007/s12041-017-0741-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Abstract
Drug-induced liver injury presents as various forms of acute and chronic liver disease. There is wide geographic variation in the most commonly implicated agents. Smoking can induce cytochrome P450 enzymes but this does not necessarily translate into clinically relevant drug-induced liver injury. Excessive alcohol consumption is a clear risk factor for intrinsic hepatotoxicity from acetaminophen and may predispose to injury from antituberculosis medications. Understanding of the role of infection, proinflammatory states, disorders of coagulation, and the hepatic clock in predisposing patients to drug-induced liver injury is evolving. More study focusing specifically on environmental risk factors predisposing patients to drug-induced liver injury is needed.
Collapse
Affiliation(s)
- Jonathan G Stine
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Virginia, 1215 Lee Street, PO Box 800708, MSB 2145, Charlottesville, VA 22908, USA
| | - Naga P Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Building, Suite 225, Indianapolis, IN 46202, USA.
| |
Collapse
|
15
|
Christensen CH, Barry KH, Andreotti G, Alavanja MCR, Cook MB, Kelly SP, Burdett LA, Yeager M, Beane Freeman LE, Berndt SI, Koutros S. Sex Steroid Hormone Single-Nucleotide Polymorphisms, Pesticide Use, and the Risk of Prostate Cancer: A Nested Case-Control Study within the Agricultural Health Study. Front Oncol 2016; 6:237. [PMID: 27917368 PMCID: PMC5116569 DOI: 10.3389/fonc.2016.00237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022] Open
Abstract
Experimental and epidemiologic investigations suggest that certain pesticides may alter sex steroid hormone synthesis, metabolism or regulation, and the risk of hormone-related cancers. Here, we evaluated whether single-nucleotide polymorphisms (SNPs) involved in hormone homeostasis alter the effect of pesticide exposure on prostate cancer risk. We evaluated pesticide-SNP interactions between 39 pesticides and SNPs with respect to prostate cancer among 776 cases and 1,444 controls nested in the Agricultural Health Study cohort. In these interactions, we included candidate SNPs involved in hormone synthesis, metabolism or regulation (N = 1,100), as well as SNPs associated with circulating sex steroid concentrations, as identified by genome-wide association studies (N = 17). Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. We translated p-values for interaction into q-values, which reflected the false discovery rate, to account for multiple comparisons. We observed a significant interaction, which was robust to multiple comparison testing, between the herbicide dicamba and rs8192166 in the testosterone metabolizing gene SRD5A1 (p-interaction = 4.0 × 10-5; q-value = 0.03), such that men with two copies of the wild-type genotype CC had a reduced risk of prostate cancer associated with low use of dicamba (OR = 0.62 95% CI: 0.41, 0.93) and high use of dicamba (OR = 0.44, 95% CI: 0.29, 0.68), compared to those who reported no use of dicamba; in contrast, there was no significant association between dicamba and prostate cancer among those carrying one or two copies of the variant T allele at rs8192166. In addition, interactions between two organophosphate insecticides and SNPs related to estradiol metabolism were observed to result in an increased risk of prostate cancer. While replication is needed, these data suggest both agonistic and antagonistic effects on circulating hormones, due to the combination of exposure to pesticides and genetic susceptibility, may impact prostate cancer risk.
Collapse
Affiliation(s)
- Carol H Christensen
- Office of Science, Center for Tobacco Products, Food and Drug Administration, Document Control Center , Silver Spring, MD , USA
| | - Kathryn Hughes Barry
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA; Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Gabriella Andreotti
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Michael C R Alavanja
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Michael B Cook
- Metabolic Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Scott P Kelly
- Metabolic Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Laurie A Burdett
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., National Cancer Institute-Frederick , Frederick, MD , USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., National Cancer Institute-Frederick , Frederick, MD , USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Sonja I Berndt
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Stella Koutros
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| |
Collapse
|
16
|
Chauhan LKS, Varshney M, Pandey V, Sharma P, Verma VK, Kumar P, Goel SK. ROS-dependent genotoxicity, cell cycle perturbations and apoptosis in mouse bone marrow cells exposed to formulated mixture of cypermethrin and chlorpyrifos. Mutagenesis 2016; 31:635-642. [DOI: 10.1093/mutage/gew031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Aliagas I, Gobbi A, Heffron T, Lee ML, Ortwine DF, Zak M, Khojasteh SC. A probabilistic method to report predictions from a human liver microsomes stability QSAR model: a practical tool for drug discovery. J Comput Aided Mol Des 2015; 29:327-38. [DOI: 10.1007/s10822-015-9838-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/14/2015] [Indexed: 02/04/2023]
|
18
|
De Felice A, Venerosi A, Ricceri L, Sabbioni M, Scattoni ML, Chiarotti F, Calamandrei G. Sex-dimorphic effects of gestational exposure to the organophosphate insecticide chlorpyrifos on social investigation in mice. Neurotoxicol Teratol 2014; 46:32-9. [DOI: 10.1016/j.ntt.2014.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/12/2022]
|
19
|
Berman T, Goldsmith R, Göen T, Spungen J, Novack L, Levine H, Amitai Y, Shohat T, Grotto I. Urinary concentrations of organophosphate pesticide metabolites in adults in Israel: demographic and dietary predictors. ENVIRONMENT INTERNATIONAL 2013; 60:183-189. [PMID: 24064379 DOI: 10.1016/j.envint.2013.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/30/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
Exposure to organophosphate pesticides (OPs) in agricultural and urban populations has been associated with a range of adverse health effects. The purpose of the current study was to estimate exposure to OPs in the general adult population in Israel and to determine dietary and demographic predictors of exposure. We measured six non-specific organophosphate pesticide metabolites (dialkyl phosphates) in urine samples collected from 247 Israeli adults from the general population. We collected detailed demographic and dietary data from these individuals, and explored associations between demographic and dietary characteristics and urinary dialkyl phosphate concentrations. OP metabolites were detectable in all urine samples. Concentrations of several dialkyl phosphate metabolites (dimethylphosphate, dimethylthiophosphate, diethylphosphate) were high in our study population relative to the general populations in the US and Canada and were comparable to those reported in 2010 in France. Total dialkyl phosphates were higher in individuals with fruit consumption above the 75th percentile. In a multivariate analysis, total molar dialkyl phosphate concentration increased with age and was higher in individuals with high income compared to individuals with the lowest income. Total diethyl metabolite concentrations were higher in females and in study participants whose fruit consumption was above the 75th percentile. In conclusion, we found that levels of exposure to OP pesticides were high in our study population compared to the general population in the US and Canada and that intake of fruits is an important source of exposure.
Collapse
Affiliation(s)
- T Berman
- Public Health Services, Ministry of Health, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Koutros S, Beane Freeman LE, Lubin JH, Heltshe SL, Andreotti G, Barry KH, DellaValle CT, Hoppin JA, Sandler DP, Lynch CF, Blair A, Alavanja MCR. Risk of total and aggressive prostate cancer and pesticide use in the Agricultural Health Study. Am J Epidemiol 2013; 177:59-74. [PMID: 23171882 DOI: 10.1093/aje/kws225] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Because pesticides may operate through different mechanisms, the authors studied the risk of prostate cancer associated with specific pesticides in the Agricultural Health Study (1993-2007). With 1,962 incident cases, including 919 aggressive prostate cancers among 54,412 applicators, this is the largest study to date. Rate ratios and 95% confidence intervals were calculated by using Poisson regression to evaluate lifetime use of 48 pesticides and prostate cancer incidence. Three organophosphate insecticides were significantly associated with aggressive prostate cancer: fonofos (rate ratio (RR) for the highest quartile of exposure (Q4) vs. nonexposed = 1.63, 95% confidence interval (CI): 1.22, 2.17; P(trend) < 0.001); malathion (RR for Q4 vs. nonexposed = 1.43, 95% CI: 1.08, 1.88; P(trend) = 0.04); and terbufos (RR for Q4 vs. nonexposed = 1.29, 95% CI: 1.02, 1.64; P(trend) = 0.03). The organochlorine insecticide aldrin was also associated with increased risk of aggressive prostate cancer (RR for Q4 vs. nonexposed = 1.49, 95% CI: 1.03, 2.18; P(trend) = 0.02). This analysis has overcome several limitations of previous studies with the inclusion of a large number of cases with relevant exposure and detailed information on use of specific pesticides at 2 points in time. Furthermore, this is the first time specific pesticides are implicated as risk factors for aggressive prostate cancer.
Collapse
Affiliation(s)
- Stella Koutros
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Boulevard, EPS 8115, MSC 7240, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hoppin JA, Long S, Umbach DM, Lubin JH, Starks SE, Gerr F, Thomas K, Hines CJ, Weichenthal S, Kamel F, Koutros S, Alavanja M, Beane Freeman LE, Sandler DP. Lifetime organophosphorous insecticide use among private pesticide applicators in the Agricultural Health Study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2012; 22:584-92. [PMID: 22854518 PMCID: PMC3478402 DOI: 10.1038/jes.2012.79] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/16/2012] [Indexed: 05/11/2023]
Abstract
Organophosphorous insecticides (OPs) are the most commonly used insecticides in US agriculture, but little information is available regarding specific OP use by individual farmers. We describe OP use for licensed private pesticide applicators from Iowa and North Carolina in the Agricultural Health Study (AHS) using lifetime pesticide use data from 701 randomly selected male participants collected at three time periods. Of 27 OPs studied, 20 were used by >1%. Overall, 95% had ever applied at least one OP. The median number of different OPs used was 4 (maximum=13). Malathion was the most commonly used OP (74%) followed by chlorpyrifos (54%). OP use declined over time. At the first interview (1993-1997), 68% of participants had applied OPs in the past year; by the last interview (2005-2007), only 42% had. Similarly, median annual application days of OPs declined from 13.5 to 6 days. Although OP use was common, the specific OPs used varied by state, time period, and individual. Much of the variability in OP use was associated with the choice of OP, rather than the frequency or duration of application. Information on farmers' OP use enhances our ability to characterize and understand the potential health effects of multiple OP exposures.
Collapse
Affiliation(s)
- Jane A Hoppin
- Epidemiology Branch, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina 27709-2233, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Androutsopoulos VP, Hernandez AF, Liesivuori J, Tsatsakis AM. A mechanistic overview of health associated effects of low levels of organochlorine and organophosphorous pesticides. Toxicology 2012; 307:89-94. [PMID: 23041710 DOI: 10.1016/j.tox.2012.09.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 12/19/2022]
Abstract
Organochlorine and organophosphate pesticides are compounds that can be detected in human populations as a result of occupational or residential exposure. Despite their occurrence in considerably low levels in humans, their biological effects are hazardous since they interact with a plethora of enzymes, proteins, receptors and transcription factors. In this review we summarize the cell and molecular effects of organochlorine and organophosphate pesticides with respect to their toxicity, with particular emphasis on glucose and lipid metabolism, their interaction with some members of the nuclear receptor family of ligand-activated transcription factors, including the steroid and peroxisome proliferator activated receptors that changes the expression of genes involved in lipid metabolism and xenobiotic detoxification. More importantly, evidence regarding the metabolic degradation of pesticides and their accumulation in tissues is presented. Potential non-cholinergic mechanisms after long-term low-dose organophosphate exposure resulting in neurodevelopmental outcomes and neurodegeneration are also addressed. We conclude that the mechanism of pesticide-mediated toxicity is a combination of various enzyme-inhibitory, metabolic and transcriptional events acting at the cellular and molecular level.
Collapse
|
23
|
Xenobiotic-metabolizing gene variants, pesticide use, and the risk of prostate cancer. Pharmacogenet Genomics 2012; 21:615-23. [PMID: 21716162 DOI: 10.1097/fpc.0b013e3283493a57] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND To explore associations with prostate cancer and farming, it is important to investigate the relationship between pesticide use and single nucleotide polymorphisms (SNPs) in xenobiotic metabolic enzyme (XME) genes. OBJECTIVE [corrected] We evaluated pesticide-SNP interactions between 45 pesticides and 1913 XME SNPs with respect to prostrate cancer among 776 cases and 1444 controls in the Agricultural Health Study. METHODS We used unconditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. RESULTS A positive monotonic interaction was observed between petroleum oil/petroleum distillate use and rs1883633 in the oxidative stress gene glutamate cysteine ligase (GCLC; P interaction=1.0×10(-4)); men carrying at least one variant allele (minor allele) experienced an increased prostate cancer risk (OR=3.7, 95% CI: 1.9-7.3). Among men carrying the variant allele for thioredoxin reductase 2 (TXNRD2) rs4485648, microsomal epoxide hydrolase 1 (EPHX1) rs17309872, or myeloperoxidase (MPO) rs11079344, an increased prostate cancer risk was observed with high, compared with no, petroleum oil/petroleum distillate (OR=1.9, 95% CI: 1.1-3.2, P interaction=0.01; OR=2.1, 95% CI: 1.1-4.0, P interaction=0.01), or terbufos (OR=3.0, 95% CI: 1.5-6.0, P interaction=2.0×10(-3)) use, respectively. No interactions were deemed noteworthy at the false discovery rate=0.20 level; the number of observed interactions in XMEs was comparable with the number expected by chance alone. CONCLUSION We observed several pesticide-SNP interactions in oxidative stress and phase I/II enzyme genes and risk of prostate cancer. Additional work is needed to explain the joint contribution of genetic variation in XMEs, pesticide use, and prostate cancer risk.
Collapse
|
24
|
Wallace AD. Toxic Endpoints in the Study of Human Exposure to Environmental Chemicals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 112:89-115. [DOI: 10.1016/b978-0-12-415813-9.00004-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Behrens T, Lynge E, Cree I, Lutz JM, Eriksson M, Guénel P, Merletti F, Morales-Suarez-Varela M, Afonso N, Stengrevics A, Févotte J, Sabroe S, Llopis-González A, Gorini G, Hardell L, Stang A, Ahrens W. Pesticide exposure in farming and forestry and the risk of uveal melanoma. Cancer Causes Control 2011; 23:141-51. [DOI: 10.1007/s10552-011-9863-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/20/2011] [Indexed: 12/01/2022]
|
26
|
Koutros S, Beane Freeman LE, Berndt SI, Andreotti G, Lubin JH, Sandler DP, Hoppin JA, Yu K, Li Q, Burdette LA, Yuenger J, Yeager M, Alavanja MCR. Pesticide use modifies the association between genetic variants on chromosome 8q24 and prostate cancer. Cancer Res 2010; 70:9224-33. [PMID: 20978189 DOI: 10.1158/0008-5472.can-10-1078] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genome-wide association studies have identified 8q24 region variants as risk factors for prostate cancer. In the Agricultural Health Study, a prospective study of licensed pesticide applicators, we observed increased prostate cancer risk with specific pesticide use among those with a family history of prostate cancer. Thus, we evaluated the interaction among pesticide use, 8q24 variants, and prostate cancer risk. The authors estimated odds ratios (OR) and 95% confidence intervals (95% CI) for interactions among 211 8q24 variants, 49 pesticides, and prostate cancer risk in 776 cases and 1,444 controls. The ORs for a previously identified variant, rs4242382, and prostate cancer increased significantly (P<0.05) with exposure to the organophosphate insecticide fonofos, after correction for multiple testing, with per allele ORnonexposed of 1.17 (95% CI, 0.93-1.48), per allele OR(low) of 1.30 (95% CI, 0.75-2.27), and per allele ORhigh of 4.46 (95% CI, 2.17-9.17; P-interaction=0.002, adjusted P-interaction=0.02). A similar effect modification was observed for three other organophosphate insecticides (coumaphos, terbufos, and phorate) and one pyrethroid insecticide (permethrin). Among ever users of fonofos, subjects with three or four risk alleles at rs7837328 and rs4242382 had approximately three times the risk of prostate cancer (OR, 3.14; 95% CI, 1.41-7.00) compared with subjects who had zero risk alleles and never used fonofos. We observed a significant interaction among variants on chromosome 8q24, pesticide use, and risk of prostate cancer. Insecticides, particularly organophosphates, were the strongest modifiers of risk, although the biological mechanism is unclear. This is the first report of effect modification between 8q24 and an environmental exposure on prostate cancer risk.
Collapse
Affiliation(s)
- Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Rockville, Maryland 20852, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schmeisser N, Kaerlev L, Bourdon-Raverdy N, Ganry O, Llopis-González A, Guénel P, Hardell L, Merletti F, Zambon P, Morales-Suárez-Varela M, Olsen J, Olsson H, Vyberg M, Ahrens W. Occupational exposure to pesticides and bile tract carcinoma in men: results from a European multicenter case-control study. Cancer Causes Control 2010; 21:1493-502. [PMID: 20533085 DOI: 10.1007/s10552-010-9578-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 05/03/2010] [Indexed: 01/11/2023]
Abstract
OBJECTIVES To estimate the associations between occupational exposure to pesticides and extrahepatic biliary tract carcinoma in men, a population-based case-control study was carried out. METHODS Cases (n = 104), aged 35-70, diagnosed in 1995-1997, were sampled by active reporting systems from hospitals. Controls (n = 1,401) were a random sample of the general male population. Information on occupation and confounding factors was obtained by questionnaires. Exposures were quantified with respect to time, application methods, and use of personal protective equipment. Intensity was evaluated by using a published algorithm which weighted the exposure assigned according to the use of personal protective equipment and mode of application. Logistic regression analyses were conducted adjusted for gallstones, age, and country. RESULTS Being ever exposed to pesticides resulted in an odds ratio (OR) of 1.0 [95%-confidence interval (CI) 0.6-1.6]. A modestly elevated risk was found for backpack mounted sprayers OR = 1.4 [95% CI 0.7-2.6] and vine farmers OR = 2.5 [95% CI 0.9-7.2]. Using time periods and exposure frequency as intensity measure, no elevated risks were found. The only exception was year of maximum exposure which yielded an OR of 1.6 [95% CI 0.7-3.5]. However, no clear trend was observed in this analysis. CONCLUSIONS This study does not rule out that pesticide exposure represents an occupational risk factor for extrahepatic biliary tract carcinoma, but no indication of a strong association was observed. Some modes of exposure were weakly, albeit not significantly associated with carcinoma risk. The observed estimates of effects may be influenced by a lack of precise exposure assessment. Different chemical compositions of pesticides were utilized during a long time span of pesticide exposure, and it should be considered that the exposure is assessed with substantial uncertainty that could non-differential and bias results toward the null.
Collapse
Affiliation(s)
- N Schmeisser
- Bremen Institute for Prevention Research and Social Medicine, University of Bremen, Bremen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Povey AC. Gene-environmental interactions and organophosphate toxicity. Toxicology 2010; 278:294-304. [PMID: 20156521 DOI: 10.1016/j.tox.2010.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/19/2009] [Accepted: 02/08/2010] [Indexed: 12/12/2022]
Abstract
Organophosphates (OPs) are an important class of insecticides that in the UK have been widely used for treating sheep for ectoparasites as well as in other sectors of the farming industry. Health problems associated with acute OP toxicity are well defined but, ill-health induced by chronic exposures to OPs remains controversial. A substantial number of sheep farmers complain of chronic ill-health which they attribute to repeated exposure to OPs. If OPs were associated with chronic ill-health then individuals with specific defects in OP metabolism might be expected to be at greater risk of ill-health following exposure. To examine such a hypothesis, the characterisation of both OP exposure and those pathways which lead to the formation and removal of the active OP metabolites becomes important. A wide range of OPs have previously been used to treat sheep but currently the only OP licenced for treating sheep is diazinon. Immediately after treatment, farmers' urines contain detectable levels of OP metabolites but few farmers have a significant decrease in plasma cholinesterase activity. Diazinon, like chlorpyrifos, is an organothiophosphate which is metabolised, particularly by cytochrome p450s, to the corresponding active oxon form. CYP metabolism also leads to the inactivation of the parent compound and the relative balance of inactivation and activation can depend upon the specific OP and the CYP isoform. OP oxons are inactivated by serum paraoxonase (PON1) and mice lacking PON1 activity are susceptible to oxon and parent OP induced toxicity. PON1 polymorphisms at positions 192 (R form with arginine at 192 and Q with glutamine) and 55 (L form with a leucine and a M form with methionine) influence paroxonase activity. The effect of the Q192R polymorphism is substrate specific with reports indicating that diazoxon is metabolised less by the R isoform. In a study of sheep farmers within the UK, the R allele was associated with an increased risk of self-reported chronic ill-health, a result consistent with the hypothesis that this ill-health may have been caused by OPs. Studies in other populations exposed to pesticides also show associations between ill-health and PON1 Q192R polymorphisms but not consistently so. This is not surprisingly given that exposure is often poorly characterised. In vivo models also suggest that PON1 genotypes may have little influence on susceptibility at low doses of the parent OP. Hence further work is required not only to better characterise OP exposure in humans populations but also to identify those populations susceptible to OP toxicity.
Collapse
Affiliation(s)
- Andrew C Povey
- Centre for Occupational and Environmental Health, School of Community-Based Medicine, Faculty of Medical and Human Sciences, University of Manchester, Ellen Wilkinson Building, Devas Street, Manchester M139PT, United Kingdom.
| |
Collapse
|
29
|
Di Consiglio E, De Angelis G, Traina ME, Urbani E, Testai E. Effect of lindane on CYP-mediated steroid hormone metabolism in male mice followingin uteroexposure. J Appl Toxicol 2009; 29:648-55. [DOI: 10.1002/jat.1452] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Hreljac I, Filipic M. Organophosphorus pesticides enhance the genotoxicity of benzo(a)pyrene by modulating its metabolism. Mutat Res 2009; 671:84-92. [PMID: 19800895 DOI: 10.1016/j.mrfmmm.2009.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 09/19/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
Organophosphorus compounds (OPs) are widely used as pesticides. They act primarily as neurotoxins, but there is increasing evidence for secondary mechanisms of their toxicity. We have shown that the model OPs, methyl parathion (PT) and methyl paraoxon (PO), are genotoxic. Benzo(a)pyrene (BaP) is a widespread environmental genotoxin found in cigarette smoke, polluted air and grilled food. As people are constantly exposed to low concentrations of BaP and also to OPs, the aim of this study was to determine possible synergistic effects of PT and PO on BaP-induced genotoxicity. In the bacterial reverse mutation assay, PT and PO increased the number of BaP-induced mutations. The comet assay with human hepatoma HepG2 cells showed that BaP-induced DNA strand breaks were increased by PT but slightly decreased by PO. Using the acellular comet assay with UVC-induced DNA strand breaks, we observed a decrease in DNA migration, indicating that OPs cause cross-linking, thus interfering with comet assay results. In HepG2 cells the two OPs induced micronuclei formation at very low doses (0.01 microg/ml) and together with BaP, a more than additive increase of micronuclei was observed, confirming their co-genotoxic effect. We demonstrated for the first time that PT and PO modulate the metabolic activation of BaP. Addition of PT or PO increased aldo-keto reductase (AKR1C1/2) levels in the presence of BaP, while cytochrome 1A (CYP1A) mRNA expression and activity were decreased. Further, specific inhibition of CYP1A had no effect on BaP or OP+BaP-induced micronuclei, whereas inhibition of AKR1C dramatically decreased the number of micronuclei induced by BaP or OP+BaP. Based on these results we propose that co-genotoxicity results from OPs mediated modulation of BaP metabolism, favouring the induction of AKR1C enzymes known to catalyse the formation of DNA reactive BaP o-quinones and the production of reactive oxygen species.
Collapse
Affiliation(s)
- Irena Hreljac
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Vecna pot 111, Ljubljana, Slovenia
| | | |
Collapse
|
31
|
Gomes J, Lloyd OL. Oral exposure of mice to formulations of organophosphorous pesticides: gestational and litter outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2009; 19:125-137. [PMID: 19370463 DOI: 10.1080/09603120802415818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The purpose of this study was to examine gestational and litter outcomes in mice models from oral exposure to a mixture of formulations of organophosphorous pesticides used in local vegetable production. Male and female mice were exposed to premating and preconception, respectively, to a mixture of organophosphorous pesticide formulations for a period of 7 weeks. The pregnant dams were monitored during gestation and delivered by Caesarean section pre-partum. The percentages of resorptions and the resorptions/implantations ratios, in all the exposed groups, were significantly higher than the reference and the control groups. Percentages of litters with one or more lost embryos were observed in all the exposed groups and were significantly higher than the comparison groups. Fetal weights were significantly lower and the maternal weight gains per live fetus were significantly higher in the medium-dose-exposed groups than the control group. Percentages of fetuses with intra-uterine growth retardation at one standard deviation were significantly higher in all the exposed groups than the comparison groups.
Collapse
Affiliation(s)
- James Gomes
- Department of Health Sciences, University of Ottawa, Ontario, Canada.
| | | |
Collapse
|
32
|
Morgan AM, Abd El-Aty AM. Reproductive Toxicity Evaluation of Pestban Insecticide Exposure in Male and Female Rats. Toxicol Res 2008; 24:137-150. [PMID: 32038788 PMCID: PMC7006254 DOI: 10.5487/tr.2008.24.2.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/02/2008] [Accepted: 05/02/2008] [Indexed: 11/20/2022] Open
Abstract
Sexually mature male and female rats were orally intubated with the organophosphorus insecticide, Pestban at a daily dosage of 7.45 or 3.72 mg/kg bwt, equivalent to 1/20 and 1/40 LD50, respectively. Male rats were exposed for 70 days, while the female rats were exposed for 14 days, premating, during mating and throughout the whole length of gestation and lactation periods till weaning. The results showed depressed acetylcholinesterase (AChE) activity in the brain of parents, fetuses and their placentae in a dose-dependent manner. The fertility was significantly reduced with increasing the dose in both treated groups, with more pronounced suppressive effects in the male treated group. The number of implantation sites and viable fetuses were significantly reduced in pregnant females of both treated groups. However, the number of resorptions, dead fetuses, and pre-and postimplantation losses were significantly increased. The incidence of resorptions was more pronounced in treated female compared to male group and was dose dependant. The behavioral responses as well as fetal survival and viability indices were altered in both treated groups during the lactation period. The incidence of these effects was more pronounced in the treated female group and occurred in a dose-related manner. The recorded morphological, visceral, and skeletal anomalies were significantly increased with increasing the dose in fetuses of both treated groups, with more pronounced effects on fetuses of treated females. In conclusion, the exposure of adult male and female rats to Pestban would cause adverse effects on fertility and reproduction.
Collapse
Affiliation(s)
- Ashraf M. Morgan
- Department of Toxicology and Forensic Medicine; Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - A. M. Abd El-Aty
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul, 143-701 Korea
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| |
Collapse
|
33
|
Musilek K, Holas O, Kuca K, Jun D, Dohnal V, Opletalova V, Dolezal M. Synthesis of monooxime-monocarbamoyl bispyridinium compounds bearing (E)-but-2-ene linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase. J Enzyme Inhib Med Chem 2008; 23:70-6. [PMID: 18341256 DOI: 10.1080/14756360701383981] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Six AChE monooxime-monocarbamoyl reactivators with an (E)-but-2-ene linker were synthesized using modification of currently known synthetic pathways. Their potency to reactivate AChE inhibited by the nerve agent tabun and insecticide paraoxon was tested in vitro. The reactivation efficacies of pralidoxime, HI-6, obidoxime, K048, K075 and the newly prepared reactivators were compared. According to the results obtained, one reactivator seems to be promising against tabun-inhibited AChE and two reactivators against paraoxon-inhibited AChE. The best results were obtained for bisquaternary substances with at least one oxime group in position four.
Collapse
Affiliation(s)
- Kamil Musilek
- Department of Toxicology, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
34
|
Timchalk C, Poet T. Development of a physiologically based pharmacokinetic and pharmacodynamic model to determine dosimetry and cholinesterase inhibition for a binary mixture of chlorpyrifos and diazinon in the rat. Neurotoxicology 2008; 29:428-43. [DOI: 10.1016/j.neuro.2008.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 01/31/2008] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
|
35
|
Molecular and cellular effects of food contaminants and secondary plant components and their plausible interactions at the intestinal level. Food Chem Toxicol 2008; 46:813-41. [DOI: 10.1016/j.fct.2007.12.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/25/2007] [Accepted: 12/03/2007] [Indexed: 01/16/2023]
|
36
|
Gomes J, Lloyd OL, Hong Z. Oral exposure of male and female mice to formulations of organophosphorous pesticides: congenital malformations. Hum Exp Toxicol 2008; 27:231-40. [DOI: 10.1177/0960327108090266] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Birth outcome was studied in pre-partum litters of mice exposed to oral doses of organophosphorous pesticides at low and high concentrations before mating. Exposed and unexposed pregnant dams were delivered by Caesarean section 1 day before partum, the fetuses were collected, counted and weighed, and the numbers of resorptions were recorded. Live litter sizes were non-significantly higher in all the exposed groups compared with the control group. The numbers of resorptions were significantly higher in all the exposed groups than in the comparison groups. The incidence of intra-uterine growth retardation was significantly higher in all the exposed groups than in the comparison groups. The incidences of congenital malformations were significantly higher in the exposed groups than in one or more of the comparison groups for the defects of the ears, eyes, jaws, brain, and tongue in all the exposed groups. Low set microtia, cataract or open eyelids, microcephaly or anencephaly, maxillary or mandibular hypoplasia, and protruding tongue were observed in all groups, but the numbers were significantly higher in the exposed groups compared with one or more of the comparison groups. Curled or missing tail and intra-auricular septal or intra-ventricular septal defects were observed in higher numbers in the groups in which both the males and the females were exposed than in the comparison groups. Male:female sex ratios were significantly higher in the groups in which males only and females only were exposed.
Collapse
Affiliation(s)
- J Gomes
- Health Sciences Program, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada; McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa, Ottawa, Ontario, Canada; Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Ontario, Canada; Centre for Advanced Research in Environmental Genomics (CAREG), University of Ottawa, Ottawa, Ontario, Canada
| | - OL Lloyd
- Formerly Department of Community Medicine, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Z Hong
- Blood Safety Surveillance Division, Centre for Infectious Disease Prevention and Control, Public Health Agency of Canada, Ottawa, Ontario, Canada
| |
Collapse
|
37
|
Joo H, Choi K, Rose RL, Hodgson E. Inhibition of fipronil and nonane metabolism in human liver microsomes and human cytochrome P450 isoforms by chlorpyrifos. J Biochem Mol Toxicol 2007; 21:76-80. [PMID: 17427179 DOI: 10.1002/jbt.20161] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previous studies have established that chlorpyrifos (CPS), fipronil, and nonane can all be metabolized by human liver microsomes (HLM) and a number of cytochrome P450 (CYP) isoforms. However, metabolic interactions between these three substrates have not been described. In this study the effect of either coincubation or preincubation of CPS with HLM or CYP isoforms with either fipronil or nonane as substrate was investigated. In both co- and preincubation experiments, CPS significantly inhibited the metabolism of fipronil or nonane by HLM although CPS inhibited the metabolism of fipronil more effectively than that of nonane. CPS significantly inhibited the metabolism of fipronil by CYP3A4 as well as the metabolism of nonane by CYP2B6. In both cases, preincubation with CPS caused greater inhibition than coincubation, suggesting that the inhibition is mechanism based.
Collapse
Affiliation(s)
- Hyun Joo
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
38
|
Hodgson E, Rose RL. The importance of cytochrome P450 2B6 in the human metabolism of environmental chemicals. Pharmacol Ther 2007; 113:420-8. [PMID: 17157385 DOI: 10.1016/j.pharmthera.2006.10.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 10/05/2006] [Indexed: 10/24/2022]
Abstract
Cytochrome P450 (CYP) 2B6 (CYP2B6) is a human CYP isoform found in variable amounts in the liver and other organs. It is known to be inducible and polymorphic and has a wide range of xenobiotic substrates. Studies of CYP2B6 to date have concentrated heavily on clinical drugs. In the present communication, however, we concentrate on its role in the metabolism of environmental xenobiotics. The term environment is used, in its broadest sense, to include natural ecosystems and agroecosystems as well as the industrial and indoor domestic environments. In essence, this excludes only clinical drugs and drugs of abuse. Many of these chemicals, including agrochemicals and industrial chemicals, can serve as substrates, inhibitors and/or inducers of CYP2B6, these activities being often modified by the existence of polymorphic variants. Metabolism-based interactions between environmental chemicals are discussed, as well as the emerging possibility of metabolic interactions between environmental chemicals and clinical drugs.
Collapse
Affiliation(s)
- Ernest Hodgson
- Department of Environmental and Molecular Toxicology, North Carolina State University, NC 27695-7633, USA.
| | | |
Collapse
|
39
|
Furlong CE. Genetic variability in the cytochrome P450–paraoxonase 1 (PON1) pathway for detoxication of organophosphorus compounds. J Biochem Mol Toxicol 2007; 21:197-205. [DOI: 10.1002/jbt.20181] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Musilek K, Holas O, Kuca K, Jun D, Dohnal V, Dolezal M. Synthesis of asymmetrical bispyridinium compounds bearing cyano-moiety and evaluation of their reactivation activity against tabun and paraoxon-inhibited acetylcholinesterase. Bioorg Med Chem Lett 2006; 16:5673-6. [PMID: 16934462 DOI: 10.1016/j.bmcl.2006.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 07/31/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
Three asymmetrical AChE reactivators with cyano-moiety and propane linker were synthesized using modification of currently known synthetic pathways. Their potency to reactivate AChE inhibited by nerve agent tabun and insecticide paraoxon was tested in vitro and compared to pralidoxime, HI-6, obidoxime, K027, and K048. According to the results, three compounds seem to be promising against paraoxon-inhibited AChE. Better results were obtained for bisquaternary substances at least with one oxime group in position four. None of tested substances was able to satisfactorily reactivate tabun-inhibited AChE at concentration applicable for in vivo experiments.
Collapse
Affiliation(s)
- Kamil Musilek
- Department of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | | | | | | | | | | |
Collapse
|