1
|
Podgorski MN, Keto AB, Coleman T, Bruning JB, De Voss JJ, Krenske EH, Bell SG. The Oxidation of Oxygen and Sulfur-Containing Heterocycles by Cytochrome P450 Enzymes. Chemistry 2023; 29:e202301371. [PMID: 37338048 DOI: 10.1002/chem.202301371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The cytochrome P450 (CYP) superfamily of monooxygenase enzymes play important roles in the metabolism of molecules which contain heterocyclic, aromatic functional groups. Here we study how oxygen- and sulfur-containing heterocyclic groups interact with and are oxidized using the bacterial enzyme CYP199A4. This enzyme oxidized both 4-(thiophen-2-yl)benzoic acid and 4-(thiophen-3-yl)benzoic acid almost exclusively via sulfoxidation. The thiophene oxides produced were activated towards Diels-Alder dimerization after sulfoxidation, forming dimeric metabolites. Despite X-ray crystal structures demonstrating that the aromatic carbon atoms of the thiophene ring were located closer to the heme than the sulfur, sulfoxidation was still favoured with 4-(thiophen-3-yl)benzoic acid. These results highlight a preference of this cytochrome P450 enzyme for sulfoxidation over aromatic hydroxylation. Calculations predict a strong preference for homodimerization of the enantiomers of the thiophene oxides and the formation of a single major product, in broad agreement with the experimental data. 4-(Furan-2-yl)benzoic acid was oxidized to 4-(4'-hydroxybutanoyl)benzoic acid using a whole-cell system. This reaction proceeded via a γ-keto-α,β-unsaturated aldehyde species which could be trapped in vitro using semicarbazide to generate a pyridazine species. The combination of the enzyme structures, the biochemical data and theoretical calculations provides detailed insight into the formation of the metabolites formed from these heterocyclic compounds.
Collapse
Affiliation(s)
- Matthew N Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Angus B Keto
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Tom Coleman
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
2
|
Ambrus-Aikelin G, Takeda K, Joetham A, Lazic M, Povero D, Santini AM, Pranadinata R, Johnson CD, McGeough MD, Beasley FC, Stansfield R, McBride C, Trzoss L, Hoffman HM, Feldstein AE, Stafford JA, Veal JM, Bain G, Gelfand EW. JT002, a small molecule inhibitor of the NLRP3 inflammasome for the treatment of autoinflammatory disorders. Sci Rep 2023; 13:13524. [PMID: 37598239 PMCID: PMC10439952 DOI: 10.1038/s41598-023-39805-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023] Open
Abstract
The NLRP3 inflammasome is an intracellular, multiprotein complex that promotes the auto-catalytic activation of caspase-1 and the subsequent maturation and secretion of the pro-inflammatory cytokines, IL-1β and IL-18. Persistent activation of the NLRP3 inflammasome has been implicated in the pathophysiology of a number of inflammatory and autoimmune diseases, including neuroinflammation, cardiovascular disease, non-alcoholic steatohepatitis, lupus nephritis and severe asthma. Here we describe the preclinical profile of JT002, a novel small molecule inhibitor of the NLRP3 inflammasome. JT002 potently reduced NLRP3-dependent proinflammatory cytokine production across a number of cellular assays and prevented pyroptosis, an inflammatory form of cell death triggered by active caspase-1. JT002 demonstrated in vivo target engagement at therapeutically relevant concentrations when orally dosed in mice and prevented body weight loss and improved inflammatory and fibrotic endpoints in a model of Muckle-Wells syndrome (MWS). In two distinct models of neutrophilic airway inflammation, JT002 treatment significantly reduced airway hyperresponsiveness and airway neutrophilia. These results provide a rationale for the therapeutic targeting of the NLRP3 inflammasome in severe asthma and point to the use of JT002 in a variety of inflammatory disorders.
Collapse
Affiliation(s)
| | - Katsuyuki Takeda
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Anthony Joetham
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | | | - Davide Povero
- Jecure Therapeutics, San Diego, CA, USA.
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.
| | | | | | - Casey D Johnson
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Matthew D McGeough
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | - Hal M Hoffman
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Ariel E Feldstein
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Erwin W Gelfand
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| |
Collapse
|
3
|
Liao Y, Wang X, Ran G, Zhang S, Wu C, Tan R, Liu Y, He Y, Liu T, Wu Z, Peng Y, Li W, Zheng J. DNA damage and up-regulation of PARP-1 induced by columbin in vitro and in vivo. Toxicol Lett 2023; 379:20-34. [PMID: 36905973 DOI: 10.1016/j.toxlet.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Columbin (CLB) is the most abundant (>1.0%) furan-containing diterpenoid lactone in herbal medicine Tinospora sagittate (Oliv.) Gagnep. The furano-terpenoid was found to be hepatotoxic, but the exact mechanisms remain unknown. The present study demonstrated that administration of CLB at 50 mg/kg induced hepatotoxicity, DNA damage and up-regulation of PARP-1 in vivo. Exposure to CLB (10 μM) induced GSH depletion, over-production of ROS, DNA damage, up-regulation of PARP-1 and cell death in cultured mouse primary hepatocytes in vitro. Co-treatment of mouse primary hepatocytes with ketoconazole (10 μM) or glutathione ethyl ester (200 μM) attenuated the GSH depletion, over-production of ROS, DNA damage, up-regulation of PARP-1, and cell death induced by CLB, while co-exposure to L-buthionine sulfoximine (BSO, 1000 μM) intensified such adverse effects resulting from CLB exposure. These results suggest that the metabolic activation of CLB by CYP3A resulted in the depletion of GSH and increase of ROS formation. The resultant over-production of ROS subsequently disrupted the DNA integrity and up-regulated the expression of PARP-1 in response to DNA damage, and ROS-induced DNA damage was involved in the hepatotoxicity of CLB.
Collapse
Affiliation(s)
- Yufen Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Xin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Guangyun Ran
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Shiyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, PR China
| | - Chutian Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Rong Tan
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yan He
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Zhongxiu Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants & Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, PR China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
4
|
Li W, Hu Z, Sun C, Wang Y, Li W, Peng Y, Zheng J. A Metabolic Activation-Based Chemoproteomic Platform to Profile Adducted Proteins Derived from Furan-Containing Compounds. ACS Chem Biol 2022; 17:873-882. [PMID: 35353477 DOI: 10.1021/acschembio.1c00917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human exposure to widespread furan-containing compounds (FCCs) has drawn much attention due to the high risk of their toxicities. Identifying adducted proteins resulting from the metabolic activation of FCCs is the core to learning the mechanism of FCCs' toxic action. We succeeded in establishing a metabolic activation-based chemoproteomic platform to map FCC-derived protein adducts in cultured primary hepatocytes treated with FCCs and to pinpoint the modification sites, using click chemistry but without alkynylation or azidation of FCCs to be investigated. The proposed platform was systematically verified by biomimetic synthesis, liver microsomal incubation, and primary hepatocyte culture. A mixture of furan, 2-methylfuran, and 2,5-dimethylfuran as model was tested by use of the established platform. A total of hepatic 171 lysine-based adducted proteins and 145 cysteine-based adducted proteins by the reactive metabolites of the three FCCs were enriched and identified (Byonic score ≥ 100). The target proteins were found to mainly participate in ATP synthesis. The technique was also successfully applied to furan-containing natural products. The established platform made it possible to profile covalently adducted proteins, because of potential exposure to a vast inventory of over two million of FCCs documented.
Collapse
Affiliation(s)
- Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Zixia Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Chen Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yuwei Wang
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, P. R. China
| |
Collapse
|
5
|
Abu-Bakar A, Tan BH, Halim H, Ramli S, Pan Y, Ong6 CE. Cytochromes P450: Role in Carcinogenesis and Relevance to Cancers. Curr Drug Metab 2022; 23:355-373. [DOI: 10.2174/1389200223666220328143828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Abstracts:
Cancer is a leading factor of mortality globally. Cytochrome P450 (CYP) enzymes play a pivotal role in the biotransformation of both endogenous and exogenous compounds. Evidence from numerous epidemiological, animal, and clinical studies points to instrumental role of CYPs in cancer initiation, metastasis, and prevention. Substantial research has found that CYPs are involved in activating different carcinogenic chemicals in the environment, such as polycyclic aromatic hydrocarbons and tobacco-related nitrosamines. Electrophilic intermediates produced from these chemicals can covalently bind to DNA, inducing mutation and cellular transformation that collectively result in cancer development. While bioactivation of procarcinogens and promutagens by CYPs has long been established, the role of CYP-derived endobiotics in carcinogenesis has emerged in recent years. Eicosanoids derived from arachidonic acid via CYP oxidative pathways have been implicated in tumorigenesis, cancer progression and metastasis. The purpose of this review is to update on the current state of knowledge about the cancer molecular mechanism involving CYPs with focus on the biochemical and biotransformation mechanisms in the various CYP-mediated carcinogenesis, and the role of CYP-derived reactive metabolites, from both external and endogenous sources, on cancer growth and tumour formation.
Collapse
Affiliation(s)
- A’edah Abu-Bakar
- Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, PETRONAS, Kuala Lumpur, Malaysia
| | - Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Hasseri Halim
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Salfarina Ramli
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong6
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Prasse C, von Gunten U, Sedlak DL. Chlorination of Phenols Revisited: Unexpected Formation of α,β-Unsaturated C 4-Dicarbonyl Ring Cleavage Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:826-834. [PMID: 31904937 PMCID: PMC7665061 DOI: 10.1021/acs.est.9b04926] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite decades of research on the fate of phenolic compounds when water is disinfected with hypochlorous acid (HOCl), there is still considerable uncertainty regarding the formation mechanisms and identity of ring cleavage products, especially at higher chlorine doses. This study focuses on the formation of electrophilic ring cleavage products-a class of compounds that poses potential health risks at relatively low concentrations-from the reactions of phenols with chlorine. By monitoring the formation of products of reactions between ring cleavage products and the model nucleophile N-α-acetyl-lysine, we identified the α,β-unsaturated dialdehyde 2-butene-1,4-dial (BDA) and its chlorinated analogue, chloro-2-butene-1,4-dial (Cl-BDA), after the chlorination of phenol, para- and ortho-substituted chlorophenols (2-Cl, 4-Cl, 2,4-diCl-, 2,6-diCl, and 2,4,6-triCl-phenol), and 3,5-di-Cl-catechol. Maximum yields of BDA were observed when chlorine was present in large excess (HOCl/phenol ratios of 30:1 to 50:1), with yields ranging from 18% for phenol to 46% for 3,5-diCl-catechol. BDA and Cl-BDA formation was also observed during the chlorination of brominated phenols. For methyl-substituted phenols, the presence of methyl substituents in both positions ortho to the hydroxy group inhibited BDA and Cl-BDA formation, but the chlorination of cresols and 2,3-dimethylphenol yielded methyl- and dimethyl-BDA species. This study provides new insights into the formation of reactive and toxic electrophiles during chlorine disinfection. It also provides evidence for the importance of phenoxy radicals produced by one-electron transfer reactions initiated by chlorine in the production of dicarbonyl ring cleavage products.
Collapse
Affiliation(s)
- Carsten Prasse
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
- School of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fedérale de Lausanne, 1015 Lausanne, Switzerland
| | - David L. Sedlak
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Yordanova D, Schultz TW, Kuseva C, Ivanova H, Pavlov T, Chankov G, Karakolev Y, Gissi A, Sobanski T, Mekenyan OG. Alert performance: A new functionality in the OECD QSAR Toolbox. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2018.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Yahia D, El-Amir YO, Abd El-Maguid DS, Elsharkawy EE. Co-administration of glutathione alleviates the toxic effects of 2,3,7,8 TCDF on the DNA integrity of sperm and in the testes of mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32572-32581. [PMID: 30242650 DOI: 10.1007/s11356-018-3259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to investigate the toxic impact prompted in the testes of adult mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF). Four groups of 12 mice each were used in the present study. Group 1 mice were kept as control and administered corn oil only. Group 2 animals were given glutathione (GSH) in a dose of 100 mg/kg body weight by oral gavage twice a week. Group 3 was given TCDF orally twice per week, in a dose of 0.5 μg/kg body weight for 8 weeks. Group 4 was administered GSH orally in a dosage of 100 mg/kg body weight plus TCDF twice a week for 8 weeks. Animals were sacrificed after 2, 4, and 8 weeks of exposure, serum samples were collected for estimation of testosterone hormone, the testes were dissected and one part was used for estimation of superoxide dismutase (SOD), malondialdehyde (MDA), lactate dehydrogenase (LDH), and 3β-hydroxysteroid dehydrogenase. Another portion of the testis was kept in formalin for histopathological examination. The results showed that the activities of SOD were decreased while the levels of lipid peroxidation MDA were increased in the testicular tissues of the exposed mice. The serum testosterone level and the steroidogenic enzyme 3β-hydroxysteroid dehydrogenase activity of testicular homogenate were essentially decreased in TCDF-treated mice. A significant increment in the testicular LDH activity in testicular tissues was recorded in mice exposed to TCDF. The percentage of DNA chromatin disintegration was significantly increased in TCDF-treated mice. Histopathological changes were recorded in TCDF-exposed group as degenerative changes of the seminiferous tubules with formation of spermatid giant cells at 2 weeks in addition to exhaustion of germinal epithelium and detachment of the germ cells from the basal lamina at 4 and 8 weeks. Co-administration of GSH could reestablish MDA and LDH levels besides reduction in percentage of sperm DNA damage and improvement of the testicular tissue architecture.
Collapse
Affiliation(s)
- Doha Yahia
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| | - Yasmin O El-Amir
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Doaa S Abd El-Maguid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Branch of New Valley, Assiut University, Assiut, Egypt
| | - Eman E Elsharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Fuerst R, Yong Choi J, Knapinska AM, Smith L, Cameron MD, Ruiz C, Fields GB, Roush WR. Development of matrix metalloproteinase-13 inhibitors - A structure-activity/structure-property relationship study. Bioorg Med Chem 2018; 26:4984-4995. [PMID: 30249495 DOI: 10.1016/j.bmc.2018.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/07/2018] [Accepted: 08/15/2018] [Indexed: 11/28/2022]
Abstract
A structure-activity/structure-property relationship study based on the physicochemical as well as in vitro pharmacokinetic properties of a first generation matrix metalloproteinase (MMP)-13 inhibitor (2) was undertaken. After systematic variation of inhibitor 2, compound 31 was identified which exhibited microsomal half-life higher than 20 min, kinetic solubility higher than 20 μM, and a permeability coefficient greater than 20 × 10-6 cm/s. Compound 31 also showed excellent in vivo PK properties after IV dosing (Cmax = 56.8 μM, T1/2 (plasma) = 3.0 h, Cl = 0.23 mL/min/kg) and thus is a suitable candidate for in vivo efficacy studies in an OA animal model.
Collapse
Affiliation(s)
- Rita Fuerst
- Department of Chemistry, Scripps Florida, Jupiter, FL 33458, United States; Institute of Organic Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Jun Yong Choi
- Department of Chemistry, Scripps Florida, Jupiter, FL 33458, United States; Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, New York 11367, United States
| | - Anna M Knapinska
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, United States
| | - Lyndsay Smith
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, United States
| | - Michael D Cameron
- Department of Chemistry, Scripps Florida, Jupiter, FL 33458, United States
| | - Claudia Ruiz
- Department of Chemistry, Scripps Florida, Jupiter, FL 33458, United States
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL 33458, United States
| | - William R Roush
- Department of Chemistry, Scripps Florida, Jupiter, FL 33458, United States.
| |
Collapse
|
10
|
Rietjens IMCM, Dussort P, Günther H, Hanlon P, Honda H, Mally A, O'Hagan S, Scholz G, Seidel A, Swenberg J, Teeguarden J, Eisenbrand G. Exposure assessment of process-related contaminants in food by biomarker monitoring. Arch Toxicol 2018; 92:15-40. [PMID: 29302712 PMCID: PMC5773647 DOI: 10.1007/s00204-017-2143-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022]
Abstract
Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario's and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.
Collapse
Affiliation(s)
- Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - P Dussort
- International Life Sciences Institute, Europe (ILSI Europe), Av E. Mounier 83, Box 6, 1200, Brussels, Belgium.
| | - Helmut Günther
- Mondelēz International, Postfach 10 78 40, 28078, Bremen, Germany
| | - Paul Hanlon
- Abbott Nutrition, 3300 Stelzer Road, Dept. 104070, Bldg. RP3-2, Columbus, OH, 43219, USA
| | - Hiroshi Honda
- KAO Corporation, R&D Safety Science Research, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321 3497, Japan
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - Sue O'Hagan
- PepsiCo Europe, 4 Leycroft Road, Leicester, LE4 1ET, UK
| | - Gabriele Scholz
- Nestlé Research Center, Vers-chez-les-Blanc, PO Box 44, 1000, Lausanne 26, Switzerland
| | - Albrecht Seidel
- Biochemical Institute for Environmental Carcinogens Prof. Dr. Gernot Grimmer-Foundation, Lurup 4, 22927, Grosshansdorf, Germany
| | - James Swenberg
- Environmental Science and Engineering, UNC-Chapel Hill Cancer Genetics, 253c Rosenau Hall, Chapel Hill, NC, USA
| | - Justin Teeguarden
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA, 99352, USA
| | - Gerhard Eisenbrand
- Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, P.O. Box 3049, 67653, Kaiserslautern, Germany
| |
Collapse
|
11
|
Slawik C, Rickmeyer C, Brehm M, Böhme A, Schüürmann G. Glutathione Adduct Patterns of Michael-Acceptor Carbonyls. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4018-4026. [PMID: 28225253 DOI: 10.1021/acs.est.6b04981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glutathione (GSH) has so far been considered to facilitate detoxification of soft organic electrophiles through covalent binding at its cysteine (Cys) thiol group, followed by stepwise catalyzed degradation and eventual elimination along the mercapturic acid pathway. Here we show that in contrast to expectation from HSAB theory, Michael-acceptor ketones, aldehydes and esters may form also single, double and triple adducts with GSH involving β-carbon attack at the much harder N-terminus of the γ-glutamyl (Glu) unit of GSH. In particular, formation of the GSH-N single adduct contradicts the traditional view that S alkylation always forms the initial reaction of GSH with Michael-acceptor carbonyls. To this end, chemoassay analyses of the adduct formation of GSH with nine α,β-unsaturated carbonyls employing high performance liquid chromatography and tandem mass spectrometry have been performed. Besides enriching the GSH adductome and potential biomarker applications, electrophilic N-terminus functionalization is likely to impair GSH homeostasis substantially through blocking the γ-glutamyl transferase catalysis of the first breakdown step of modified GSH, and thus its timely reconstitution. The discussion includes a comparison with cyclic adducts of GSH and furan metabolites as reported in literature, and quantum chemically calculated thermodynamics of hard-hard, hard-soft, and soft-soft adducts.
Collapse
Affiliation(s)
- Christian Slawik
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
- Institute for Organic Chemistry, Technical University Bergakademie Freiberg , Leipziger Straße 29, 09596 Freiberg, Germany
| | - Christiane Rickmeyer
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin Brehm
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
| | - Alexander Böhme
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research , Permoserstraße 15, 04318 Leipzig, Germany
- Institute for Organic Chemistry, Technical University Bergakademie Freiberg , Leipziger Straße 29, 09596 Freiberg, Germany
| |
Collapse
|
12
|
Formation and emission of large furans and oxygenated hydrocarbons from flames. Proc Natl Acad Sci U S A 2016; 113:8374-9. [PMID: 27410045 DOI: 10.1073/pnas.1604772113] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many oxygenated hydrocarbon species formed during combustion, such as furans, are highly toxic and detrimental to human health and the environment. These species may also increase the hygroscopicity of soot and strongly influence the effects of soot on regional and global climate. However, large furans and associated oxygenated species have not previously been observed in flames, and their formation mechanism and interplay with polycyclic aromatic hydrocarbons (PAHs) are poorly understood. We report on a synergistic computational and experimental effort that elucidates the formation of oxygen-embedded compounds, such as furans and other oxygenated hydrocarbons, during the combustion of hydrocarbon fuels. We used ab initio and probabilistic computational techniques to identify low-barrier reaction mechanisms for the formation of large furans and other oxygenated hydrocarbons. We used vacuum-UV photoionization aerosol mass spectrometry and X-ray photoelectron spectroscopy to confirm these predictions. We show that furans are produced in the high-temperature regions of hydrocarbon flames, where they remarkably survive and become the main functional group of oxygenates that incorporate into incipient soot. In controlled flame studies, we discovered ∼100 oxygenated species previously unaccounted for. We found that large alcohols and enols act as precursors to furans, leading to incorporation of oxygen into the carbon skeletons of PAHs. Our results depart dramatically from the crude chemistry of carbon- and oxygen-containing molecules previously considered in hydrocarbon formation and oxidation models and spearhead the emerging understanding of the oxidation chemistry that is critical, for example, to control emissions of toxic and carcinogenic combustion by-products, which also greatly affect global warming.
Collapse
|
13
|
Tryndyak V, de Conti A, Doerge DR, Olson GR, Beland FA, Pogribny IP. Furan-induced transcriptomic and gene-specific DNA methylation changes in the livers of Fischer 344 rats in a 2-year carcinogenicity study. Arch Toxicol 2016; 91:1233-1243. [PMID: 27387713 DOI: 10.1007/s00204-016-1786-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023]
Abstract
Furan is a significant food contaminant and a potent hepatotoxicant and rodent liver carcinogen. The carcinogenic effect of furan has been attributed to genotoxic and non-genotoxic, including epigenetic, changes in the liver; however, the mechanisms of the furan-induced liver tumorigenicity are still unclear. The goal of the present study was to investigate the role of transcriptomic and epigenetic events in the development of hepatic lesions in Fischer (F344) rats induced by furan treatment in a classic 2-year rodent tumorigenicity bioassay. High-throughput whole-genome transcriptomic analysis demonstrated distinct alterations in gene expression in liver lesions induced in male F344 rats treated with 0.92 or 2.0 mg furan/kg body weight (bw)/day for 104 weeks. Compared to normal liver tissue, 1336 and 1541 genes were found to be differentially expressed in liver lesions in rats treated with 0.92 and 2.0 mg furan/kg bw/day, respectively, among which 1001 transcripts were differentially expressed at both doses. Pairing transcriptomic and next-generation bisulfite sequencing analyses of the common differentially expressed genes identified 42 CpG island-containing genes in which the methylation level was correlated inversely with gene expression. Forty-eight percent of these genes (20 genes, including Areg, Jag1, and Foxe1) that exhibited the most significant methylation and gene expression changes were involved in key pathways associated with different aspects of liver pathology. Our findings illustrate that gene-specific DNA methylation changes have functional consequences and may be an important component of furan hepatotoxicity and hepatocarcinogenicity.
Collapse
Affiliation(s)
- Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), 3900 NCTR Rd., Jefferson, AR, 72079, USA
| | - Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), 3900 NCTR Rd., Jefferson, AR, 72079, USA
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), 3900 NCTR Rd., Jefferson, AR, 72079, USA
| | - Greg R Olson
- Toxicologic Pathology Associates, National Center for Toxicological Research (NCTR), Jefferson, AR, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), 3900 NCTR Rd., Jefferson, AR, 72079, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), 3900 NCTR Rd., Jefferson, AR, 72079, USA.
| |
Collapse
|
14
|
Cañas AI, Delgado JP, Gartner C. Biocompatible scaffolds composed of chemically crosslinked chitosan and gelatin for tissue engineering. J Appl Polym Sci 2016. [DOI: 10.1002/app.43814] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ana Isabel Cañas
- Grupo De Investigación Ciencia De Los Materiales; Universidad De Antioquia. Sede De Investigación Universitaria; SIU. Calle 70 Nº. 52-21 Medellín 05001000 Colombia
- Grupo Genética, Regeneración Y Cáncer; Universidad De Antioquia. Sede De Investigación Universitaria; SIU. Calle 70 Nº. 52-21 Medellín 05001000 Colombia
| | - Jean Paul Delgado
- Grupo Genética, Regeneración Y Cáncer; Universidad De Antioquia. Sede De Investigación Universitaria; SIU. Calle 70 Nº. 52-21 Medellín 05001000 Colombia
| | - Carmiña Gartner
- Grupo De Investigación Ciencia De Los Materiales; Universidad De Antioquia. Sede De Investigación Universitaria; SIU. Calle 70 Nº. 52-21 Medellín 05001000 Colombia
| |
Collapse
|
15
|
Carrette LLG, Gyssels E, De Laet N, Madder A. Furan oxidation based cross-linking: a new approach for the study and targeting of nucleic acid and protein interactions. Chem Commun (Camb) 2016; 52:1539-54. [PMID: 26679922 DOI: 10.1039/c5cc08766j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The coming of age story of furan oxidation cross-linking.
Collapse
Affiliation(s)
- L. L. G. Carrette
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - E. Gyssels
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - N. De Laet
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - A. Madder
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| |
Collapse
|
16
|
London BK, Claville MOF, Babu S, Fronczek FR, Uppu RM. A co-crystal of nona-hydrated disodium(II) with mixed anions from m-chloro-benzoic acid and furosemide. Acta Crystallogr E Crystallogr Commun 2015; 71:1266-9. [PMID: 26594422 PMCID: PMC4647361 DOI: 10.1107/s2056989015017430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/17/2015] [Indexed: 11/11/2022]
Abstract
In the title compound, [Na2(H2O)9](C7H4ClO2)(C12H10ClN2O5S) {systematic name: catena-poly[[[triaquasodium(I)]-di-μ-aqua-[triaquasodium(I)]-μ-aqua] 3-chlorobenzoate 4-chloro-2-[(furan-2-ylmethyl)amino]-5-sulfamoylbenzoate]}, both the original m-chloro-benzoic acid and furosemide exist with deprotonated carboxyl-ates, and the sodium cations and water mol-ecules exist in chains with stoichiometry [Na2(OH2)9](2+) that propagate in the [-110] direction. Each of the two independent Na(+) ions is coordinated by three monodentate water mol-ecules, two double-water bridges, and one single-water bridge. There is considerable cross-linking between the [Na2(OH2)9](2+) chains and to furosemide sulfonamide and carboxyl-ate by inter-molecular O-H⋯O hydrogen bonds. All hydrogen-bond donors participate in a complex two-dimensional array parallel to the ab plane. The furosemide NH group donates an intra-molecular hydrogen bond to the carboxyl-ate group, and the furosemide NH2 group donates an intra-molecular hydrogen bond to the Cl atom and an inter-molecular one to the m-chloro-benzoate O atom. The plethora of hydrogen-bond donors on the cation/water chain leads to many large rings, up to graph set R 4 (4)(24), involving two chains and two furosemide anions. The chloro-benzoate is involved in only one R 2 (2)(8) ring, with two water mol-ecules cis-coordinated to Na. The furan O atom is not hydrogen bonded.
Collapse
Affiliation(s)
- Bianca King London
- Environmental Toxicology PhD Program and the Health Research Center, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | | | - Sainath Babu
- School of Science, Hampton University, Hampton, VA 23668, USA
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
| | - Rao M. Uppu
- Environmental Toxicology PhD Program and the Health Research Center, Southern University and A&M College, Baton Rouge, LA 70813, USA
| |
Collapse
|
17
|
Wahlang B, Falkner KC, Cave MC, Prough RA. Role of Cytochrome P450 Monooxygenase in Carcinogen and Chemotherapeutic Drug Metabolism. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:1-33. [PMID: 26233902 DOI: 10.1016/bs.apha.2015.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purpose of this chapter is to provide insight into which human cytochromes P450 (CYPs) may be involved in metabolism of chemical carcinogens and anticancer drugs. A historical overview of this field and the development of literature using relevant animal models and expressed human CYPs have provided information about which specific CYPs may be involved in carcinogen metabolism. Definition of the biochemical properties of CYP activity came from several groups who studied the reaction stoichiometry of butter yellow and benzo[α]pyrene, including their role in induction of these enzyme systems. This chapter will list as much as is known about the human CYPs involved in carcinogen and anticancer drug metabolism, as well as summarize studies with rodent CYPs. A review of three major classes of anticancer drugs and their metabolism in humans is covered for cyclophosphamide, procarbazine, and anthracycline antibiotics, cancer chemotherapeutic compounds extensively metabolized by CYPs. The emerging information about human CYP gene polymorphisms as well as other enzymes involved in foreign compound metabolism provides considerable information about how these genetic variants affect carcinogen and anticancer drug metabolism. With information available from individual's genomic sequences, consideration of populations who may be at risk due to environmental exposure to carcinogens or how to optimize their cancer therapy regimens to enhance efficacy of the anticancer drugs appears to be an important field of study to benefit individuals in the future.
Collapse
Affiliation(s)
- B Wahlang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - K Cameron Falkner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Matt C Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA; Department of Biochemistry & Molecular Biology, University of Louisville, Louisville, Kentucky, USA
| | - Russell A Prough
- Department of Biochemistry & Molecular Biology, University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
18
|
Pluskota-Karwatka D, Muńko M, Hoffmann M, Kuta M, Kronberg L. Studies on the reactions between the DNA bases and a model α,β-unsaturated oxoaldehyde. NEW J CHEM 2015. [DOI: 10.1039/c5nj01149c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two sets of adducts of 2′-dC with a model oxoenal were characterised based on 2D NMR spectroscopy. DFT calculations indicated that two mechanisms can be involved in these compounds formation. The instability of one of these products leads to deamination of 2′-dC.
Collapse
Affiliation(s)
| | - Malwina Muńko
- Adam Mickiewicz University in Poznań
- Faculty of Chemistry
- 61-614 Poznań
- Poland
| | - Marcin Hoffmann
- Adam Mickiewicz University in Poznań
- Faculty of Chemistry
- 61-614 Poznań
- Poland
| | - Martyna Kuta
- Adam Mickiewicz University in Poznań
- Faculty of Chemistry
- 61-614 Poznań
- Poland
| | - Leif Kronberg
- Laboratory of Organic Chemistry
- Åbo Akademi University
- 20500 Turku/Åbo
- Finland
| |
Collapse
|
19
|
Srivastava A, Ramachandran S, Hameed SP, Ahuja V, Hosagrahara VP. Identification and Mitigation of a Reactive Metabolite Liability Associated with Aminoimidazoles. Chem Res Toxicol 2014; 27:1586-97. [DOI: 10.1021/tx500212c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | | | | | | | - Vinayak P. Hosagrahara
- Drug
Metabolism and Pharmacokinetics, Infection IMED, AstraZeneca, 35 Gatehouse
Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
20
|
Schmidt MJ, Weber A, Pott M, Welte W, Summerer D. Structural basis of furan-amino acid recognition by a polyspecific aminoacyl-tRNA-synthetase and its genetic encoding in human cells. Chembiochem 2014; 15:1755-60. [PMID: 24737732 DOI: 10.1002/cbic.201402006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 11/05/2022]
Abstract
The site-selective introduction of photo-crosslinking groups into proteins enables the discovery and mapping of weak and/or transient protein interactions with high spatiotemporal resolution, both in vitro and in vivo. We report the genetic encoding of a furan-based, photo-crosslinking amino acid in human cells; it can be activated with red light, thus offering high penetration depths in biological samples. This is achieved by activation of the amino acid and charging to its cognate tRNA by a pyrrolysyl-tRNA-synthetase (PylRS) mutant with broad polyspecificity. To gain insights into the recognition of this amino acid and to provide a rationale for its polyspecificity, we solved three crystal structures of the PylRS mutant: in its apo-form, in complex with adenosine 5'-(β,γ-imido)triphosphate (AMP-PNP) and in complex with the AMP ester of the furan amino acid. These structures provide clues for the observed polyspecificity and represent a promising starting point for the engineering of PylRS mutants with further increased substrate scope.
Collapse
Affiliation(s)
- Moritz J Schmidt
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz (Germany)
| | | | | | | | | |
Collapse
|
21
|
Conti AD, Kobets T, Escudero-Lourdes C, Montgomery B, Tryndyak V, Beland FA, Doerge DR, Pogribny IP. Dose- and time-dependent epigenetic changes in the livers of Fisher 344 rats exposed to furan. Toxicol Sci 2014; 139:371-80. [PMID: 24614236 DOI: 10.1093/toxsci/kfu044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The presence of furan in common cooked foods along with evidence from experimental studies that lifetime exposure to furan causes liver tumors in rats and mice has caused concern to regulatory public health agencies worldwide; however, the mechanisms of the furan-induced hepatocarcinogenicity remain unclear. The goal of the present study was to investigate whether or not long-term exposure to furan causes epigenetic alterations in rat liver. Treating of male Fisher 344 rats by gavage 5 days per week with 0, 0.92, 2.0, or 4.4 mg furan/kg body weight (bw)/day resulted in dose- and time-dependent epigenetic changes consisting of alterations in DNA methylation and histone lysine methylation and acetylation, altered expression of chromatin modifying genes, and gene-specific methylation. Specifically, exposure to furan at doses 0.92, 2.0, or 4.4 mg furan/kg bw/day caused global DNA demethylation after 360 days of treatment. There was also a sustained decrease in the levels of histone H3 lysine 9 and H4 lysine 20 trimethylation after 180 and 360 days of furan exposure, and a marked reduction of histone H3 lysine 9 and H3 lysine 56 acetylation after 360 days at 4.4 mg/kg bw/day. These histone modification changes were accompanied by a reduced expression of Suv39h1, Prdm2, and Suv4-20h2 histone methyltransferases and Ep300 and Kat2a histone acetyltransferases. Additionally, furan at 2.0 and 4.4 mg/kg bw/day induced hypermethylation-dependent down-regulation of the Rassf1a gene in the livers after 180 and 360 days. These findings indicate possible involvement of dose- and time-dependent epigenetic modifications in the furan hepatotoxicity and carcinogenicity.
Collapse
Affiliation(s)
- Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas, 72079 USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Carrette LLG, Madder A. A synthetic oligonucleotide model for evaluating the oxidation and crosslinking propensities of natural furan-modified DNA. Chembiochem 2013; 15:103-7. [PMID: 24323800 DOI: 10.1002/cbic.201300612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Indexed: 11/10/2022]
Abstract
We have previously developed a crosslinking methodology for oligonucleotides based on the incorporation of furan moieties, which can be selectively oxidised to reactive intermediates that will quickly react with the opposite bases in DNA, forming toxic interstrand crosslinks (ICLs). Furan moieties also occur in natural DNA, as a result of oxidative stress. Moreover, the furan-containing degradation product of this modified DNA-kinetin-has been found to display beneficial anti-ageing effects. To investigate the apparent discrepancy between the effects of the synthetic and the natural furan modifications in DNA, a quick and easy postsynthetic method providing access to the natural modification in short synthetic oligonucleotides was developed. On checking for potential crosslinking propensity, we found that the furan moiety does indeed undergo oxidation, in this way functioning as an important scavenger for oxidative stress. The reactive intermediate, however, was shown to degrade without producing toxic crosslinked products.
Collapse
Affiliation(s)
- Lieselot L G Carrette
- Organic and Biomimetic Chemistry Research Group, Department of Organic Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent (Belgium).
| | | |
Collapse
|
23
|
Carrette LL, Morii T, Madder A. Toxicity Inspired Cross-Linking for Probing DNA–Peptide Interactions. Bioconjug Chem 2013; 24:2008-14. [DOI: 10.1021/bc400327q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lieselot L.G. Carrette
- Organic
and Biomimetic Chemistry Research Group, Department of Organic Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
| | | | - Annemieke Madder
- Organic
and Biomimetic Chemistry Research Group, Department of Organic Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Gent, Belgium
| |
Collapse
|
24
|
Carrette LLG, Gyssels E, Madder A. DNA interstrand cross-link formation using furan as a masked reactive aldehyde. ACTA ACUST UNITED AC 2013; 54:5.12.1-5.12.16. [PMID: 24510798 DOI: 10.1002/0471142700.nc0512s54] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This unit describes a method for interstrand cross-linking between a furan-modified oligonucleotide and its unmodified complement. The synthesis of two furan-modified phosphoramidites, selected based on high cross-linking yield versus improved cross-linking selectivity, is described. The methods allow gram-scale synthesis starting from stable and readily available furan derivatives. Cross-linking requires selective oxidation of the furan moiety to an aldehyde. The masked nature of the latter avoids undesired and off-target reactions, resulting in clean and high-yield cross-link formation.
Collapse
Affiliation(s)
- Lieselot L G Carrette
- Organic and Biomimetic Chemistry Research Group, Department of Organic Chemistry, Ghent University, Krijgslaan, Ghent, Belgium
| | - Ellen Gyssels
- Organic and Biomimetic Chemistry Research Group, Department of Organic Chemistry, Ghent University, Krijgslaan, Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic Chemistry, Ghent University, Krijgslaan, Ghent, Belgium
| |
Collapse
|
25
|
Furans and other volatile compounds in ground roasted and espresso coffee using headspace solid-phase microextraction: Effect of roasting speed. FOOD AND BIOPRODUCTS PROCESSING 2013. [DOI: 10.1016/j.fbp.2012.10.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Schmidt MJ, Summerer D. Durch rotes Licht kontrollierte Protein-RNA-Vernetzung mit einem genetisch kodierten Furan. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Red-Light-Controlled Protein-RNA Crosslinking with a Genetically Encoded Furan. Angew Chem Int Ed Engl 2013; 52:4690-3. [DOI: 10.1002/anie.201300754] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Indexed: 12/12/2022]
|
28
|
|
29
|
Onyango AN. Small reactive carbonyl compounds as tissue lipid oxidation products; and the mechanisms of their formation thereby. Chem Phys Lipids 2012; 165:777-86. [PMID: 23059118 DOI: 10.1016/j.chemphyslip.2012.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 08/16/2012] [Accepted: 09/19/2012] [Indexed: 12/24/2022]
Abstract
Small reactive carbonyl compounds (RCCs) such as formaldehyde, acetaldehyde, acrolein, crotonaldehyde, glyoxal, methylglyoxal, glycolaldehyde, glycidaldehyde, and 2-butene-1,4-dial are involved in carbonyl and oxidative stress-related physiological disorders. While some evidence indicates that lipid oxidation could be an important source of these compounds in vivo, this has sometimes been doubted because the mechanisms of their formation thereby are poorly understood. Here, representative literature supporting the significant formation of these compounds during lipid oxidation under physiologically relevant conditions are highlighted, and the strengths and weaknesses of previously proposed mechanisms of their formation thereby are considered. In addition, based on the current understanding of lipid oxidation chemistry, some new pathways of their formation are suggested. The suggested pathways also generate 4-hydroxy-2-butenal, a precursor of the carcinogen furan, whose endogenous formation in tissues has hitherto not been seriously considered.
Collapse
Affiliation(s)
- Arnold N Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000 (00200), Nairobi, Kenya.
| |
Collapse
|
30
|
Op de Beeck M, Madder A. Sequence specific DNA cross-linking triggered by visible light. J Am Chem Soc 2012; 134:10737-40. [PMID: 22698383 DOI: 10.1021/ja301901p] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new biocompatible strategy for photoinduced DNA interstrand cross-linking is presented. Methylene blue induced (1)O(2) formation triggers furan oxidation; the resulting aldehyde then rapidly reacts with complementary A or C with formation of stable adducts. Easily accessible furan modified nucleosides, a commercially available photosensitizer, and visible light irradiation constitute the necessary tools to achieve selective duplex interstrand cross-linking.
Collapse
Affiliation(s)
- Marieke Op de Beeck
- Laboratory for Organic and Biomimetic Chemistry, University of Ghent, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | | |
Collapse
|
31
|
Ding W, Petibone DM, Latendresse JR, Pearce MG, Muskhelishvili L, White GA, Chang CW, Mittelstaedt RA, Shaddock JG, McDaniel LP, Doerge DR, Morris SM, Bishop ME, Manjanatha MG, Aidoo A, Heflich RH. In vivo genotoxicity of furan in F344 rats at cancer bioassay doses. Toxicol Appl Pharmacol 2012; 261:164-71. [DOI: 10.1016/j.taap.2012.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/27/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
|
32
|
McDaniel LP, Ding W, Dobrovolsky VN, Shaddock JG, Mittelstaedt RA, Doerge DR, Heflich RH. Genotoxicity of furan in Big Blue rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 742:72-8. [DOI: 10.1016/j.mrgentox.2011.12.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 01/01/2023]
|
33
|
Chowdhury S, Chafeev M, Liu S, Sun J, Raina V, Chui R, Young W, Kwan R, Fu J, Cadieux JA. Discovery of XEN907, a spirooxindole blocker of NaV1.7 for the treatment of pain. Bioorg Med Chem Lett 2011; 21:3676-81. [DOI: 10.1016/j.bmcl.2011.04.088] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/14/2011] [Accepted: 04/19/2011] [Indexed: 12/19/2022]
|
34
|
Lozama A, Cunningham CW, Caspers MJ, Douglas JT, Dersch CM, Rothman RB, Prisinzano TE. Opioid receptor probes derived from cycloaddition of the hallucinogen natural product salvinorin A. JOURNAL OF NATURAL PRODUCTS 2011; 74:718-726. [PMID: 21338114 PMCID: PMC3081938 DOI: 10.1021/np1007872] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
As part of our continuing efforts toward more fully understanding the structure-activity relationships of the neoclerodane diterpene salvinorin A, we report the synthesis and biological characterization of unique cycloadducts through [4+2] Diels-Alder cycloaddition. Microwave-assisted methods were developed and successfully employed, aiding in functionalizing the chemically sensitive salvinorin A scaffold. This demonstrates the first reported results for both cycloaddition of the furan ring and functionalization via microwave-assisted methodology of the salvinorin A skeleton. The cycloadducts yielded herein introduce electron-withdrawing substituents and bulky aromatic groups into the C-12 position. Kappa opioid (KOP) receptor space was explored through aromatization of the bent oxanorbornadiene system possessed by the cycloadducts to a planar phenyl ring system. Although dimethyl- and diethylcarboxylate analogues 5 and 6 retain some affinity and selectivity for KOP receptors and are full agonists, their aromatized counterparts 13 and 14 have reduced affinity for KOP receptors. The methods developed herein signify a novel approach toward rapidly probing the structure-activity relationships of furan-containing natural products.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas E. Prisinzano
- To whom correspondence should be addressed: Tel: (785) 864-3267. Fax: (785) 864-5326.
| |
Collapse
|
35
|
Christov PP, Petrova KV, Shanmugam G, Kozekov ID, Kozekova A, Guengerich FP, Stone MP, Rizzo CJ. Comparison of the in vitro replication of the 7-(2-oxoheptyl)-1,N2-etheno-2'-deoxyguanosine and 1,N2-etheno-2'-deoxyguanosine lesions by Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Chem Res Toxicol 2011; 23:1330-41. [PMID: 20578729 DOI: 10.1021/tx100082e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oligonucleotides were synthesized containing the 7-(2-oxoheptyl)-etheno-dGuo adduct, which is derived from the reaction of dGuo and the lipid peroxidation product 4-oxo-2-nonenal. The in vitro replication of 7-(2-oxoheptyl)-etheno-dGuo by the model Y-family polymerase Sulfolobus solfataricus P2 DNA Polymerase IV (Dpo4) was examined in two sequences. The extension products were sequenced using an improved LC-ESI-MS/MS protocol developed in our laboratories, and the results were compared to that of the 1,N(2)-etheno-dGuo adduct in the same sequence contexts. Both etheno adducts were highly miscoding when situated in 5'-TXG-3' local sequence contexts with <4% of the extension products being derived from error-free bypass. The major extension products resulted from the misinsertion of Ade opposite the adduct and a one-base deletion. The major extension products from replication of the etheno lesions in a 5'-CXG-3' local sequence context were the result of misinsertion of Ade, a one-base deletion, and error-free bypass. Other minor extension products were also identified. The 7-(2-oxoheptyl)-etheno-dGuo lesion resulted in a larger frequency of misinsertion of Ade, whereas the 1,N(2)-etheno-dGuo gave more of the one-base deletion product. Conformational studies of duplex DNA containing the 7-(2-oxoheptyl)-etheno-dGuo in a 5'-TXG-3' sequence context by NMR indicated the presence of a pH-dependent conformational transition, likely involving the glycosyl bond at the adducted guanosine; the pK(a) for this transition was lower than that observed for the 1,N(2)-epsilon-dGuo lesion. However, the 7-(2-oxoheptyl)-etheno-dGuo lesion, the complementary Cyt, and both flanking base pairs remained disordered at all pH values, which is attributed to the presence of the hydrophobic heptyl group of the 7-(2-oxoheptyl)-etheno-dGuo lesion. The altered pK(a) value and the structural disorder at the 7-(2-oxoheptyl)-etheno-dGuo lesion site, as compared to the same sequence containing the 1,N(2)-etheno-dGuo, may contribute to higher frequency of misinsertion of Ade.
Collapse
Affiliation(s)
- Plamen P Christov
- Department of Chemistry, Department of Biochemistry, and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37235-1822, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Enoch SJ, Cronin MTD. A review of the electrophilic reaction chemistry involved in covalent DNA binding. Crit Rev Toxicol 2011; 40:728-48. [PMID: 20722585 DOI: 10.3109/10408444.2010.494175] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The need to assess the ability of a chemical to act as a mutagen or a genotoxic carcinogen (collectively termed genotoxicity) is one of the primary requirements in regulatory toxicology. Several pieces of legislation have led to an increased interest in the use of in silico methods, specifically the formation of chemical categories for the assessment of toxicological endpoints. A key step in the development of chemical categories for genotoxicity is defining the organic chemistry associated with the formation of a covalent bond between DNA and an exogenous chemical. This organic chemistry is typically defined as structural alerts. To this end, this article has reviewed the literature defining the structural alerts associated with covalent DNA binding. Importantly, this review article also details the mechanistic organic chemistry associated with each of the structural alerts. This information is extremely important in terms of meeting regulatory requirements for the acceptance of the chemical category approach. The structural alerts and associated mechanistic chemistry have been incorporated into the Organisation for Economic Co-operation and Development (OECD) (Q)SAR Application Toolbox.
Collapse
Affiliation(s)
- S J Enoch
- School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, England, UK
| | | |
Collapse
|
37
|
Guan L, Greenberg MM. An Oxidized Abasic Lesion as an Intramolecular Source of DNA Adducts. Aust J Chem 2011; 64:438-442. [PMID: 25392543 DOI: 10.1071/ch10420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
5'-(2-Phosphoryl-1,4-dioxobutane) (DOB) is a lesion produced in DNA via a variety of damaging agents. The DOB lesion spontaneously generates cis- and trans-but-2-en-1,4-dial (1) via β-elimination. Cis- and trans-but-2-en-1,4-dial forms exocyclic adducts with nucleosides. We used chemically synthesized DNA containing tritiated DOB incorporated at defined sites to examine the reactivity of cis- and trans-but-2-en-1,4-dial. Although the local DNA sequence does not appear to influence the distribution of nucleoside adducts, we find that DOB generates relatively high yields of cis- and trans-but-2-en-1,4-dial nucleoside adducts that likely are promutagenic.
Collapse
Affiliation(s)
- Lirui Guan
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
38
|
Op de Beeck M, Madder A. Unprecedented C-selective interstrand cross-linking through in situ oxidation of furan-modified oligodeoxynucleotides. J Am Chem Soc 2010; 133:796-807. [PMID: 21162525 DOI: 10.1021/ja1048169] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemical reagents that form interstrand cross-links have been used for a long time in cancer therapy. They covalently link two strands of DNA, thereby blocking transcription. Cross-link repair enzymes, however, can restore the transcription processes, causing resistance to certain anti-cancer drugs. The mechanism of these cross-link repair processes has not yet been fully revealed. One of the obstacles in this study is the lack of sufficient amounts of well-defined, stable, cross-linked duplexes to study the pathways of cross-link repair enzymes. Our group has developed a cross-link strategy where a furan moiety is incorporated into oligodeoxynucleotides (ODNs). These furan-modified nucleic acids can form interstrand cross-links upon selective furan oxidation with N-bromosuccinimide. We here report on the incorporation of the furan moiety at the 2'-position of a uridine through an amido or ureido linker. The resulting modified ODNs display an unprecedented selectivity for cross-linking toward a cytidine opposite the modified residue, forming one specific cross-linked duplex, which could be isolated in good yield. Furthermore, the structure of the formed cross-linked duplexes could be unambiguously characterized.
Collapse
Affiliation(s)
- Marieke Op de Beeck
- Laboratory for Organic and Biomimetic Chemistry, University of Ghent, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | | |
Collapse
|
39
|
Deng P, Zhong D, Nan F, Liu S, Li D, Yuan T, Chen X, Zheng J. Evidence for the bioactivation of 4-nonylphenol to quinone methide and ortho-benzoquinone metabolites in human liver microsomes. Chem Res Toxicol 2010; 23:1617-28. [PMID: 20843008 DOI: 10.1021/tx100223h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
4-Nonylphenol (4-NP) is a well-known toxic environmental contaminant. The major objective of the present study was to identify reactive metabolites of 4-NP. Following incubations of 4-NP with NADPH- and GSH-supplemented human liver microsomes, 6 GSH conjugates, along with 19 oxidized metabolites, were detected by UPLC/Q-TOF mass spectrometry utilizing the mass defect filter method. Several authentic key metabolite standards were chemically synthesized for structural identification. Three GSH conjugates were found to derive from quinone methide intermediates, and the other three resulted from ortho-benzoquinone intermediates. Conjugation of the quinone methides with GSH produced benzylic-orientated GSH conjugates by 1,6-addition, while the reaction of the ortho-benzoquinone intermediates offered aromatic-orientated GSH conjugates. The conversion of 4-NP to the quinone methides and ortho-hydroquinones required cytochromes P450, specifically CYPs1A2, 2C19, 2D6, 2E1, and 3A4, while the oxidation of ortho-benzohydroquinones to the corresponding benzoquinones was apparently independent of microsomal enzymes. The ortho-benzoquinone derived from 4-NP was isomerized to the corresponding hydroxyquinone methide, and the former dominated the latter at a rate of approximately 20:1. The findings of the quinone methide and benzoquinone metabolites intensified the concern on the impact of 4-NP exposure on human health.
Collapse
Affiliation(s)
- Pan Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Toxicity and carcinogenicity of furan in human diet. Arch Toxicol 2010; 84:563-78. [DOI: 10.1007/s00204-010-0531-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 02/22/2010] [Indexed: 01/31/2023]
|
41
|
Cordelli E, Leopardi P, Villani P, Marcon F, Macrì C, Caiola S, Siniscalchi E, Conti L, Eleuteri P, Malchiodi-Albedi F, Crebelli R. Toxic and genotoxic effects of oral administration of furan in mouse liver. Mutagenesis 2010; 25:305-14. [PMID: 20194422 DOI: 10.1093/mutage/geq007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, the effects induced in mouse liver by repeated oral exposure to furan were investigated. To this aim, the compound was given for 28 days by daily gavage to male B6C3F1 mice at 2, 4, 8 and 15 mg/kg body weight (b.w.)/day. Twenty-four hours after last administration, animals were sacrificed, liver was excised and the following parameters were evaluated: histological alterations, apoptosis, cell proliferation, polyploidy, overall DNA methylation, gene expression and DNA damage by the immunofluorescence detection of foci of phosphorylated histone H2AX (gamma-H2AX) and by alkaline comet assays, using both standard and modified protocols for the detection of DNA cross links. Liver DNA damage by comet assays was also evaluated in mice receiving furan as a single acute oral dose (15, 100 or 250 mg/kg b.w.). Microscopic analysis of liver sections indicated that repeated oral administration of furan was moderately toxic, producing mild histological alterations with necrotic figures, apoptosis and limited regenerative cell proliferation. The flow cytometric analysis of DNA content in single-cell suspensions of liver cells showed a statistically significant increase in polyploid (8N) cells at the highest dose. No treatment-related changes in overall DNA methylation, gamma-H2AX foci, DNA strand breaks and cross links were observed at the end of the 4-week exposure period. However, several genes involved in DNA damage response, beyond stress and liver toxicity, were over-expressed in mice treated with the highest furan dose (15 mg/kg b.w./day). Acute administration of furan induced evident liver toxicity at the highest dose (250 mg/kg b.w.), which was associated with a significant increase of DNA damage in the alkaline comet assay and with a distinct decrease in gamma-ray-induced DNA migration. Overall, the results obtained suggest that the contribution of genotoxicity to the mechanism of furan carcinogenicity in mouse liver should not be dismissed.
Collapse
Affiliation(s)
- Eugenia Cordelli
- Section of Toxicology and Biomedical Sciences, ENEA CR Casaccia, Research Center Casaccia, Via Anguillarese 301, 00123-Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Approaches for minimizing metabolic activation of new drug candidates in drug discovery. Handb Exp Pharmacol 2010:511-44. [PMID: 20020275 DOI: 10.1007/978-3-642-00663-0_19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A large body of circumstantial evidence suggests that metabolic activation of drug candidates to chemically reactive electrophilic metabolites that are capable of covalently modifying cellular macromolecules may result in acute and/or immune system-mediated idiosyncratic toxicities in humans. Thus, minimizing the potential for metabolic activation of new drug candidates during the drug discovery and lead optimization stage represents a prudent strategy to help discover and develop the next generation of safe and effective therapeutic agents. In the present chapter, we discuss the scientific methodologies that currently are available to industrial pharmaceutical scientists for assessing and minimizing metabolic activation during drug discovery, their attributes and limitations, and future scientific directions that have the potential to help advance progress in this field. We also propose a roadmap that should help utilize the armamentarium of available scientific tools in a logical way and contribute to addressing metabolic activation issues in the drug discovery-setting in a rapid, scientifically appropriate, and resource-conscious manner.
Collapse
|
43
|
Leopardi P, Cordelli E, Villani P, Cremona TP, Conti L, De Luca G, Crebelli R. Assessment of in vivo genotoxicity of the rodent carcinogen furan: evaluation of DNA damage and induction of micronuclei in mouse splenocytes. Mutagenesis 2009; 25:57-62. [PMID: 19850624 DOI: 10.1093/mutage/gep043] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent years, several surveys have highlighted the presence of the rodent carcinogen furan in a variety of food items. Even though the evidence of carcinogenicity of furan is unequivocal, the underlying mechanism has not been fully elucidated. In particular, the role of genotoxicity in furan carcinogenicity is still not clear, even though this information is considered pivotal for the assessment of the risk posed by the presence of low doses of furan in food. In this work, the genotoxic potential of furan in vivo has been investigated in mice, under exposure conditions similar to those associated with cancer onset in the National Toxicology Program long-term bioassay. To this aim, male B6C3F1 mice were treated by gavage for 4 weeks with 2, 4, 8 and 15 mg furan/kg b.w./day. Spleen was selected as the target organ for genotoxicity assessment, in view of the capability of quiescent splenocytes to accumulate DNA damage induced by repeat dose exposure. The induction of primary DNA damage in splenocytes was evaluated by alkaline single-cell gel electrophoresis (comet assay) and by the immunofluorescence detection of foci of phosphorylated histone H2AX (gamma-H2AX). The presence of cross-links was probed in a modified comet assay, in which cells were irradiated in vitro with gamma-rays before electrophoresis. Chromosome damage was quantitated through the detection of micronuclei in mitogen-stimulated splenocytes using the cytokinesis-block method. Micronucleus induction was also assessed with a modified protocol, using the repair inhibitor 1-beta-arabinofuranosyl-cytosine to convert single-strand breaks in micronuclei. The results obtained show a significant (P < 0.01) increase of gamma-H2AX foci in mitogen-stimulated splenocytes of mice treated with 8 and 15 mg furan/kg b.w. and a statistically significant (P < 0.001) increases of micronuclei in binucleated splenocytes cultured in vitro. Conversely, no effect of in vivo exposure to furan was observed when freshly isolated quiescent splenocytes were analysed by immunofluorescence and in comet assays, both with standard and radiation-modified protocols. These results indicate that the in vivo exposure to furan gives rise to pre-mutagenic DNA damage in resting splenocytes, which remains undetectable until it is converted in frank lesions during the S-phase upon mitogen stimulation. The resulting DNA strand breaks are visualized by the increase in gamma-H2AX foci and may originate micronuclei at the subsequent mitosis.
Collapse
Affiliation(s)
- Paola Leopardi
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Johnston PA, Foster CA, Tierno MB, Shun TY, Shinde SN, Paquette WD, Brummond KM, Wipf P, Lazo JS. Cdc25B dual-specificity phosphatase inhibitors identified in a high-throughput screen of the NIH compound library. Assay Drug Dev Technol 2009; 7:250-65. [PMID: 19530895 DOI: 10.1089/adt.2008.186] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The University of Pittsburgh Molecular Library Screening Center (Pittsburgh, PA) conducted a screen with the National Institutes of Health compound library for inhibitors of in vitro cell division cycle 25 protein (Cdc25) B activity during the pilot phase of the Molecular Library Screening Center Network. Seventy-nine (0.12%) of the 65,239 compounds screened at 10 muM met the active criterion of > or =50% inhibition of Cdc25B activity, and 25 (31.6%) of these were confirmed as Cdc25B inhibitors with 50% inhibitory concentration (IC(50)) values <50 microM. Thirteen of the Cdc25B inhibitors were represented by singleton chemical structures, and 12 were divided among four clusters of related structures. Thirteen (52%) of the Cdc25B inhibitor hits were quinone-based structures. The Cdc25B inhibitors were further characterized in a series of in vitro secondary assays to confirm their activity, to determine their phosphatase selectivity against two other dual-specificity phosphatases, mitogen-activated protein kinase phosphatase (MKP)-1 and MKP-3, and to examine if the mechanism of Cdc25B inhibition involved oxidation and inactivation. Nine Cdc25B inhibitors did not appear to affect Cdc25B through a mechanism involving oxidation because they did not generate detectable amounts of H(2)O(2) in the presence of dithiothreitol, and their Cdc25B IC(50) values were not significantly affected by exchanging the dithiothreitol for beta-mercaptoethanol or reduced glutathione or by adding catalase to the assay. Six of the nonoxidative hits were selective for Cdc25B inhibition versus MKP-1 and MKP-3, but only the two bisfuran-containing hits, PubChem substance identifiers 4258795 and 4260465, significantly inhibited the growth of human MBA-MD-435 breast and PC-3 prostate cancer cell lines. To confirm the structure and biological activity of 4260465, the compound was resynthesized along with two analogs. Neither of the substitutions to the two analogs was tolerated, and only the resynthesized hit 26683752 inhibited Cdc25B activity in vitro (IC(50) = 13.83 +/- 1.0 microM) and significantly inhibited the growth of the MBA-MD-435 breast and PC-3 prostate cancer cell lines (IC(50) = 20.16 +/- 2.0 microM and 24.87 +/- 2.25 microM, respectively). The two bis-furan-containing hits identified in the screen represent novel nonoxidative Cdc25B inhibitor chemotypes that block tumor cell proliferation. The availability of non-redox active Cdc25B inhibitors should provide valuable tools to explore the inhibition of the Cdc25 phosphatases as potential mono- or combination therapies for cancer.
Collapse
Affiliation(s)
- Paul A Johnston
- University of Pittsburgh Drug Discovery Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Simpson DS, Lovell KM, Lozama A, Han N, Day VW, Dersch CM, Rothman RB, Prisinzano TE. Synthetic studies of neoclerodane diterpenes from Salvia divinorum: role of the furan in affinity for opioid receptors. Org Biomol Chem 2009; 7:3748-56. [PMID: 19707679 DOI: 10.1039/b905148a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Further synthetic modification of the furan ring of salvinorin A (1), the major active component of Salvia divinorum, has resulted in novel neoclerodane diterpenes with opioid receptor affinity and activity. A computational study has predicted 1 to be a reproductive toxicant in mammals and is suggestive that use of 1 may be associated with adverse effects. We report in this study that piperidine 21 and thiomorpholine 23 have been identified as selective partial agonists at kappa opioid receptors. This indicates that additional structural modifications of 1 may provide ligands with good selectivity for opioid receptors but with reduced potential for toxicity.
Collapse
Affiliation(s)
- Denise S Simpson
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045-7582, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lu D, Sullivan MM, Phillips MB, Peterson LA. Degraded protein adducts of cis-2-butene-1,4-dial are urinary and hepatocyte metabolites of furan. Chem Res Toxicol 2009; 22:997-1007. [PMID: 19441776 PMCID: PMC2696637 DOI: 10.1021/tx800377v] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Furan is a liver toxicant and carcinogen in rodents. On the basis of these observations and the large potential for human exposure, furan has been classified as a possible human carcinogen. The mechanism of tumor induction by furan is unknown. However, the toxicity requires cytochrome P450-catalyzed oxidation of furan. The product of this oxidation, cis-2-butene-1,4-dial (BDA), reacts readily with glutathione, amino acids, and DNA and is a bacterial mutagen in Ames assay strain TA104. Characterization of the urinary metabolites of furan is expected to provide information regarding the structure(s) of the reactive metabolite(s). Recently, several urinary metabolites have been identified. We reported the presence of a monoglutathione-BDA reaction product, N-[4-carboxy-4-(3-mercapto-1H-pyrrol-1-yl)-1-oxobutyl]-l-cysteinylglycine cyclic sulfide. Three additional urinary metabolites of furan were also characterized as follows: R-2-acetylamino-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)-1-hexanoic acid, N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine, and its sulfoxide. It was postulated that these three metabolites are derived from degraded protein adducts. However, the possibility that these metabolites result from the reaction of BDA with free lysine and/or cysteine was not ruled out. In this latter case, one might predict that the reaction of thiol-BDA with free lysine would not occur exclusively on the epsilon-amino group. Reaction of BDA with N-acetylcysteine or GSH in the presence of lysine indicated that both the alpha- and the epsilon-amino groups of lysine can be modified by thiol-BDA. The N-acetylcysteine-BDA-N-acetyllysine urinary metabolites were solely linked through the epsilon-amino group of lysine. A GSH-BDA-lysine cross-link was a significant hepatocyte metabolite of furan. In this case, the major product resulted from reaction with the epsilon-amino group of lysine; however, small amounts of the alpha-amino reaction product were also observed. Western analysis of liver and hepatocyte protein extracts using anti-GSH antibody indicated that GSH was covalently linked to proteins in tissues or cells exposed to furan. Our data support the hypothesis that GSH-BDA can react with either free lysine or protein lysine groups. These data suggest that there are multiple pathways by which furan can modify cellular nucleophiles. In one pathway, BDA reacts directly with proteins to form cysteine-lysine reaction products. In another, BDA reacts with GSH to form GSH-BDA conjugates, which then react with cellular nucleophiles like free lysine or lysine moieties in proteins. Both pathways will give rise to N-acetyl-S-[1-(5-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-l-cysteine. Given the abundance of these metabolites in urine of furan-treated rats, these pathways appear to be major pathways of furan biotransformation in vivo.
Collapse
Affiliation(s)
- Ding Lu
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | | | - Martin B. Phillips
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Lisa A. Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
47
|
Tests for genotoxicity and mutagenicity of furan and its metabolite cis-2-butene-1,4-dial in L5178Y tk+/− mouse lymphoma cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 657:127-32. [DOI: 10.1016/j.mrgentox.2008.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 07/22/2008] [Accepted: 08/16/2008] [Indexed: 11/23/2022]
|
48
|
Kellert M, Wagner S, Lutz U, Lutz WK. Biomarkers of Furan Exposure by Metabolic Profiling of Rat Urine with Liquid Chromatography-Tandem Mass Spectrometry and Principal Component Analysis. Chem Res Toxicol 2008; 21:761-8. [DOI: 10.1021/tx7004212] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marco Kellert
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Silvia Wagner
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Ursula Lutz
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Werner K. Lutz
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| |
Collapse
|
49
|
Chen LJ, Burka LT. Chemical and Enzymatic Oxidation of Furosemide: Formation of Pyridinium Salts. Chem Res Toxicol 2007; 20:1741-4. [PMID: 17914885 DOI: 10.1021/tx700262z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Furosemide (Lasix) is frequently used in the treatment of cardiovascular and renal disease. Only one metabolite, furosemide glucuronide, has ever been identified. Oxidation of furosemide by cytochrome P450 has been demonstrated, but the metabolite(s) has never been identified. The oxidation of furosemide by dimethyldioxirane in acetone and by liver microsomal incubations was explored in this study. The first observable product from dimethyldioxirane oxidation was a ring-expanded enone resulting from an intramolecular condensation of the aldehyde group of the enonal, the secondary amine, and the carboxylic acid in a Mannich-like reaction. Keto-enol tautomerization and opening of the lactone gave a stable pyridinium salt. The pyridinium salt was also observed in the microsomal incubations of furosemide. The presence of an internal nucleophile in furosemide may have a significant effect on the toxicology and possibly the pharmacology of this furan.
Collapse
Affiliation(s)
- Ling-Jen Chen
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|