1
|
Derosa G, D’Angelo A, Maffioli P, Cucinella L, Nappi RE. The Use of Nigella sativa in Cardiometabolic Diseases. Biomedicines 2024; 12:405. [PMID: 38398007 PMCID: PMC10886913 DOI: 10.3390/biomedicines12020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 02/25/2024] Open
Abstract
Nigella sativa L. is an herb that is commonly used in cooking and in traditional medicine, particularly in Arab countries, the Indian subcontinent, and some areas of eastern Europe. Nigella sativa is also called "black cumin" or "black seeds", as the seeds are the most-used part of the plant. They contain the main bioactive component thymoquinone (TQ), which is responsible for the pleiotropic pharmacological properties of the seeds, including anti-oxidant, anti-inflammatory, anti-hypertensive, anti-hepatotoxic, hypoglycemic, and lipid-lowering properties. In this narrative review, both the potential mechanisms of action of Nigella sativa and the fundamental role played by pharmaceutical technology in optimizing preparations based on this herb in terms of yield, quality, and effectiveness have been outlined. Moreover, an analysis of the market of products containing Nigella sativa was carried out based on the current literature with an international perspective, along with a specific focus on Italy.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Centre of Diabetes, Metabolic Diseases, and Dyslipidemias, University of Pavia, 27100 Pavia, Italy;
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and Atherosclerosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Italian Nutraceutical Society (SINut), 40100 Bologna, Italy
- Laboratory of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Angela D’Angelo
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and Dyslipidemias, University of Pavia, 27100 Pavia, Italy;
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and Atherosclerosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Italian Nutraceutical Society (SINut), 40100 Bologna, Italy
| | - Laura Cucinella
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.E.N.)
- Research Center for Reproductive Medicine and Gynecological Endocrinology, Menopause Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Rossella Elena Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.E.N.)
- Research Center for Reproductive Medicine and Gynecological Endocrinology, Menopause Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
2
|
Abdulrahman SJ, Abdulhadi MA, Turki Jalil A, Falah D, Merza MS, Almulla AF, Ali A, Ali RT. Conjugated linoleic acid and glucosamine supplements may prevent bone loss in aging by regulating the RANKL/RANK/OPG pathway. Mol Biol Rep 2023; 50:10579-10588. [PMID: 37932498 DOI: 10.1007/s11033-023-08839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023]
Abstract
The skeleton is a living organ that undergoes constant changes, including bone formation and resorption. It is affected by various diseases, such as osteoporosis, osteopenia, and osteomalacia. Nowadays, several methods are applied to protect bone health, including the use of hormonal and non-hormonal medications and supplements. However, certain drugs like glucocorticoids, thiazolidinediones, heparin, anticonvulsants, chemotherapy, and proton pump inhibitors can endanger bone health and cause bone loss. New studies are exploring the use of supplements, such as conjugated linoleic acid (CLA) and glucosamine, with fewer side effects during treatment. Various mechanisms have been proposed for the effects of CLA and glucosamine on bone structure, both direct and indirect. One mechanism that deserves special attention is the regulatory effect of RANKL/RANK/OPG on bone turnover. The RANKL/RANK/OPG pathway is considered a motive for osteoclast maturation and bone resorption. The cytokine system, consisting of the receptor activator of the nuclear factor (NF)-kB ligand (RANKL), its receptor RANK, and its decoy receptor, osteoprotegerin (OPG), plays a vital role in bone turnover. Over the past few years, researchers have observed the impact of CLA and glucosamine on the RANKL/RANK/OPG mechanism of bone turnover. However, no comprehensive study has been published on these supplements and their mechanism. To address this gap in knowledge, we have critically reviewed their potential effects. This review aims to assist in developing efficient treatment strategies and focusing future studies on these supplements.
Collapse
Affiliation(s)
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | | | - Dumooa Falah
- National University of Science and Technology, Dhi Qar, Iraq
| | - Muna S Merza
- Prosthetic dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ahmed Ali
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Ronak Taher Ali
- College of Medical Technology, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
3
|
Jamka M, Czochralska-Duszyńska A, Mądry E, Lisowska A, Jończyk-Potoczna K, Cielecka-Piontek J, Bogdański P, Walkowiak J. The Effect of Conjugated Linoleic Acid Supplementation on Densitometric Parameters in Overweight and Obese Women-A Randomised Controlled Trial. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1690. [PMID: 37763810 PMCID: PMC10537680 DOI: 10.3390/medicina59091690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Background and Objectives: Conjugated linoleic acid (CLA) can improve bone health in animals, yet the effects on humans have not been consistent. Therefore, this parallel randomised controlled trial aimed to assess the effect of CLA supplementation on bone mineral density (BMD) and content (BMC) in overweight or obese women. Materials and Methods: The study population included 74 women who were divided into the CLA (n = 37) and control (n = 37) groups. The CLA group received six capsules per day containing approximately 3 g of cis-9, trans-11 and trans-10, cis-12 CLA isomers in a 50:50 ratio. The control group received the same number of placebo capsules that contained sunflower oil. BMC and BMD at total body, lumbar spine (L1-L4), and femoral neck were measured before and after a three-month intervention. Results: The comparison of BMC and BMD for the total body, lumbar spine (L1-L4), and femoral neck before and after the intervention showed no differences between the groups. However, a within-group analysis demonstrated a significant increase in BMC (p = 0.0100) and BMD (p = 0.0397) at lumbar spine (L1-L4) in the CLA group. Nevertheless, there were no significant differences between the CLA and placebo groups in changes in all analysed densitometric parameters. Conclusions: Altogether, three-month CLA supplementation in overweight and obese women did not improve bone health, although the short intervention period could have limited our findings, long-term intervention studies are needed. The study protocol was registered in the German Clinical Trials Register database (ID: DRKS00010462, date of registration: 4 May 2016).
Collapse
Affiliation(s)
- Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland;
| | - Agata Czochralska-Duszyńska
- Department of Physiology, Poznan University of Medical Sciences, Święcickiego Str. 6, 61-781 Poznań, Poland; (A.C.-D.); (E.M.)
| | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, Święcickiego Str. 6, 61-781 Poznań, Poland; (A.C.-D.); (E.M.)
| | - Aleksandra Lisowska
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland;
| | - Katarzyna Jończyk-Potoczna
- Department of Pediatric Radiology, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka Str. 3, 60-806 Poznań, Poland;
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego Str. 84, 60-569 Poznań, Poland;
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznań, Poland;
| |
Collapse
|
4
|
Farshbaf-Khalili A, Farajnia S, Pourzeinali S, Shakouri SK, Salehi-Pourmehr H. The effect of nanomicelle curcumin supplementation and Nigella sativa oil on the expression level of miRNA-21, miRNA-422a, and miRNA-503 gene in postmenopausal women with low bone mass density: A randomized, triple-blind, placebo-controlled clinical trial with factorial design. Phytother Res 2021; 35:6216-6227. [PMID: 34496087 DOI: 10.1002/ptr.7259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the effect of nanomicelle curcumin (CUR), Nigella sativa oil (NS), and CUR and NS on the plasma levels of miR-21, miR-422a, and miR-503 expression in postmenopausal women with low bone mass density (BMD). This randomized, triple-blind, placebo-controlled clinical trial with a factorial design was conducted on 120 postmenopausal women from the integrated healthcare system, Tabriz-Iran. The BMD was determined using dual-energy X-ray absorptiometry (DEXA). Women were randomly divided into four groups of 30 participants: (a) CUR (80 mg) and placebo of NS, (b) NS (1,000 mg) and placebo of CUR, (c) CUR (80 mg) and NS (1,000 mg), and (d) both placebos (containing microcrystalline cellulose). The plasma level of miRNA-21, miRNA-422a, and miRNA-503 was determined by qRT-PCR. The expression level of miRNAs at the baseline was similar. At the end of the intervention, only the expression level of miRNA-21 changed statistically significantly between the four groups (p = .037) and between the NS and placebo groups (p = .005). Also, its expression in the two groups receiving NS (p = .037) and NS-CUR (p = .043) was significantly increased. NS and NS-CUR supplementation can increase the expression level of miRNA-21 in postmenopausal women with low bone density, and bring perspective to further studies of the target.
Collapse
Affiliation(s)
- Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Centre, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Samira Pourzeinali
- Health Center, Vice Chancellor for Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Centre, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-based medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical, Tabriz, Iran
| |
Collapse
|
5
|
Shan Z, Zhao Y, Qiu Z, Angxiu S, Gu Y, Luo J, Bi H, Luo W, Xiong R, Ma S, He Z, Chen L. Conjugated linoleic acid prompts bone formation in ovariectomized osteoporotic rats and weakens osteoclast formation after treatment with ultraviolet B. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:503. [PMID: 33850900 PMCID: PMC8039685 DOI: 10.21037/atm-21-934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background Ultraviolet B (UVB) has been reported to prevent bone loss by promoting the synthesis of vitamin D. However, UVB can also enhance osteoclastic differentiation, inhibit osteogenic differentiation, and cause oxidative damage. The present study aimed to analyze the osteoprotective effects of UVB and conjugated linoleic acid (CLA) in rats with ovariectomy-induced osteoporosis, and to determine the interactions between UVB and CLA and their effects on bone mesenchymal stem cells (BMSCs) and bone marrow mononuclear cells (BMMCs). Methods In vitro, the distance of UVB irradiation and the dose of CLA were selected by immunofluorescence assays and Cytotoxicity assay. BMSCs and BMMCs were detected by immunohistochemical and immunofluorescence assays. In vivo, three-month-old female Sprague-Dawley rats that had undergone ovariectomy were treated with UVB and CLA. After 8 weeks of therapy, the femurs of the rats were examined by micro-computed tomography (CT) and immunohistochemical detection to assess the therapeutic efficacy. Results The least inhibitive UVB distance and dosage of CLA were selected for the in vivo experiments. CLA effectively weakened the osteogenic inhibitory effect of UVB (72 cm), significantly improved the activity of alkaline phosphatase (ALP), promoted the formation of mineralized nodules, and alleviated the oxidative damage induced by UVB. CLA also effectively weakened the osteoclast-promoting effect of UVB (72 cm), inhibited osteoclast formation, and inhibited the inflammatory damage to BMMCs caused by UVB (72 cm) irradiation. Micro-CT results showed that UVB irradiation could promote bone formation in ovariectomized Sprague-Dawley rats, while CLA could significantly promote bone regeneration. Immunofluorescence assays results showed that CLA alleviated UVB-induced oxidative damage to osteoblasts. The ROS detection results demonstrated that CLA effectively alleviated UVB-induced oxidative damage to BMSCs. Furthermore, Immunohistochemical assays showed that UVB and CLA treatment increased bone density, inhibited osteolytic osteolysis, and enhanced osteogenic activity. Conclusions CLA can effectively weaken osteoclast promotion, osteogenic inhibition, and oxidative damage caused by UVB. Combination treatment of UVB and CLA exerts an osteoprotective effect on ovariectomized osteoporotic rats and stimulates osteogenesis. The molecular mechanism of this interaction requires further investigation.
Collapse
Affiliation(s)
- Zhongshu Shan
- Department of Orthopedic Surgery, the 1st Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopedic Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Yanyan Zhao
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Zhixue Qiu
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Suonan Angxiu
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Yong Gu
- Department of Orthopedic Surgery, the 1st Affiliated Hospital of Soochow University, Suzhou, China
| | - Junming Luo
- Department of Pathology, People's Hospital of Qinghai Province, Xining, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences; Xining, China
| | - Wei Luo
- Department of Endocrinology, People's Hospital of Qinghai Province, Xining, China
| | - Rui Xiong
- Nutrition Department, People's Hospital of Qinghai Province, Xining, China
| | - Siqing Ma
- Department of Critical Care Medicine, People's Hospital of Qinghai Province, Xining, China
| | - Zhao He
- Department of Orthopedic Surgery, People's Hospital of Qinghai Province, Xining, China
| | - Liang Chen
- Department of Orthopedic Surgery, the 1st Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Zhang R, Sun X, Zhang K, Zhang Y, Song Y, Wang F. Fatty acid composition of 21 cultivars of Chinese jujube fruits (Ziziphus jujuba Mill.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00718-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Ilesanmi-Oyelere BL, Kruger MC. The Role of Milk Components, Pro-, Pre-, and Synbiotic Foods in Calcium Absorption and Bone Health Maintenance. Front Nutr 2020; 7:578702. [PMID: 33072800 PMCID: PMC7539038 DOI: 10.3389/fnut.2020.578702] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
Increasing peak bone mass during adolescence and reducing bone loss in later life are two approaches to reduce the risk of osteoporosis with aging. Osteoporosis affects a large proportion of the elderly population worldwide and the incidence is increasing. Milk consumption is an accepted strategy in building peak bone mass and therefore may reduce the risk of osteoporosis. In childhood calcium, phosphorous, and growth factors are the important components to support bone growth but in adults the positive influence on bone density/maintenance may also be due to other bioactive proteins/peptides or lipids in milk acting directly in the gastrointestinal tract (GIT). Lactose has been known to increase calcium absorption; galactooligosaccharides (GOS) are derived from lactose and are non-digestible oligosaccharides. They have been shown to improve mineral balance and bone properties as well as causing increases in bifidobacteria in the gut, therefore a prebiotic effect. Supplementation with fortified milk and dairy products with added prebiotics, increased both calcium and magnesium absorption and caused some modulation of gut microbiota in animals and humans. Fermented milk is now also recognized to contain highly active components such as vitamins, peptides, oligosaccharides, and organic acids. In this review, the role of milk and milk components in improving calcium absorption and thereby supporting bone health is discussed. In addition, some reference is made to the significance of combining the inherent beneficial components from milk with fortificants/nutrients that will support bone health through adulthood. Novel data suggesting differences in diversity of the microbiota between healthy and osteoporotic women are provided.
Collapse
Affiliation(s)
- Bolaji L Ilesanmi-Oyelere
- School of Health Sciences, College of Health, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Marlena C Kruger
- School of Health Sciences, College of Health, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
8
|
Prommaban A, Utama‐ang N, Chaikitwattana A, Uthaipibull C, Srichairatanakool S. Linoleic acid‐rich guava seed oil: Safety and bioactivity. Phytother Res 2019; 33:2749-2764. [DOI: 10.1002/ptr.6449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/04/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Adchara Prommaban
- Department of Biochemistry, Faculty of MedicineChiang Mai University Chiang Mai Thailand
| | - Niramon Utama‐ang
- Department of Product Development Technology, Faculty of Agro‐ScienceUniversity Chiang Mai Thailand
| | | | - Chairat Uthaipibull
- National Science and Technology Development AgencyProtein‐Ligand Engineering and Molecular Biology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC) Thailand Science Park Pathum Thani Thailand
| | | |
Collapse
|
9
|
Reche J, Almansa MS, Hernández F, Carbonell-Barrachina ÁA, Legua P, Amorós A. Fatty acid profile of peel and pulp of Spanish jujube (Ziziphus jujuba Mill.) fruit. Food Chem 2019; 295:247-253. [PMID: 31174755 DOI: 10.1016/j.foodchem.2019.05.147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 05/21/2019] [Indexed: 11/29/2022]
Abstract
The fatty acid methyl esters (FAMEs) profiles of fruit peel and pulp of 4 Spanish cultivars of Ziziphus jujuba were studied. The FAMEs profile of the cultivar 'GAL' was studied under two farming practices, (i) organic, 'GAL-E' and conventional, 'GAL-T'. Eleven FAMEs were identified, the predominant ones were cis-palmitoleic acid (pulp) and oleic and palmitic acid (peel). When comparing the FAMEs profiles between organic and conventional 'GAL' peel jujube fruits, the 'GAL-E' (organic) presented a higher unsaturated/saturated ratio than the 'GAL-T' cultivar (conventional), while this relationship in the pulp was the opposite. The 'DAT' cultivar was interesting for its high palmitoleic acid content while the 'GAL-E' and 'GAL-T' cultivars had high contents of oleic, palmitic and linoleic acids. The LDA (linear discriminant analysis) model showed that the FAMEs contents could be used to discriminate the studied cultivars, and the agricultural practice, because all groups were clearly separated with no overlaps.
Collapse
Affiliation(s)
- Juana Reche
- Department of Plant Sciences and Microbiology, Research Group in Plant Production and Technology, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández de Elche (UMH), Ctra. de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - M Soledad Almansa
- Department of Applied Biology, EPSO, UMH, Ctra. de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - Francisca Hernández
- Department of Plant Sciences and Microbiology, Research Group in Plant Production and Technology, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández de Elche (UMH), Ctra. de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| | | | - Pilar Legua
- Department of Plant Sciences and Microbiology, Research Group in Plant Production and Technology, Escuela Politécnica Superior de Orihuela (EPSO), Universidad Miguel Hernández de Elche (UMH), Ctra. de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - Asunción Amorós
- Department of Applied Biology, EPSO, UMH, Ctra. de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain.
| |
Collapse
|
10
|
Rodríguez-Alcalá LM, Castro-Gómez MP, Pimentel LL, Fontecha J. Milk fat components with potential anticancer activity-a review. Biosci Rep 2017; 37:BSR20170705. [PMID: 29026007 PMCID: PMC6372256 DOI: 10.1042/bsr20170705] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/04/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
During many years, the milk fat has been unfairly undervalued due to its association with higher levels of cardiovascular diseases, dyslipidaemia or obesity, among others. However, currently, this relationship is being re-evaluated because some of the dairy lipid components have been attributed potential health benefits. Due to this, and based on the increasing incidence of cancer in our society, this review work aims to discuss the state of the art concerning scientific evidence of milk lipid components and reported anticancer properties. Results from the in vitro and in vivo experiments suggest that specific fatty acids (FA) (as butyric acid and conjugated linoleic acid (CLA), among others), phospholipids and sphingolipids from milk globule membrane are potential anticarcinogenic agents. However, their mechanism of action remains still unclear due to limited and inconsistent findings in human studies.
Collapse
Affiliation(s)
- Luis M Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, Porto 4202-401, Portugal
- Research Center for Natural Resources and Sustainability (CIRENYS), Bernardo O'Higgins University, Fábrica N° 1990, Segundo Piso, Santiago de Chile, Chile
| | - M Pilar Castro-Gómez
- Institute of Food Science Research, (CIAL, CSIC-UAM), Department of Bioactivity and Food Analysis, Food Lipid Biomarkers and Health Group, Campus of Autónoma University of Madrid, C/Nicolás Cabrera, Madrid 9. 28049, Spain
| | - Lígia L Pimentel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, Porto 4202-401, Portugal
| | - Javier Fontecha
- Institute of Food Science Research, (CIAL, CSIC-UAM), Department of Bioactivity and Food Analysis, Food Lipid Biomarkers and Health Group, Campus of Autónoma University of Madrid, C/Nicolás Cabrera, Madrid 9. 28049, Spain
| |
Collapse
|
11
|
Wallace TC, Frankenfeld CL. Dietary Protein Intake above the Current RDA and Bone Health: A Systematic Review and Meta-Analysis. J Am Coll Nutr 2017; 36:481-496. [PMID: 28686536 DOI: 10.1080/07315724.2017.1322924] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dietary intake of protein is fundamental for optimal acquisition and maintenance of bone across all life stages; however, it has been hypothesized that intakes above the current recommended dietary allowance (RDA) might be beneficial for bone health. We utilized the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines when preparing and reporting this systematic review and meta-analysis. A literature search strategy through April 11, 2017, was developed for the following 3 databases: PubMed, Ovid Medline, and Agricola. Included studies were those randomized controlled trials and prospective cohort studies among healthy adults ages 18 and older that examined the relationships between varying doses of protein intake at or above the current U.S. RDA (0.8 g/kg/d or 10%-15% of total caloric intake) from any source on fracture, bone mineral density (BMD)/bone mineral content (BMC), and/or markers of bone turnover. Twenty-nine articles were included for data extraction (16 randomized controlled trials [RCTs] and 13 prospective cohort studies). Meta-analysis of the prospective cohort studies showed high vs low protein intakes resulted in a statistically significant 16% decrease in hip fractures (standardized mean difference [SMD] = 0.84, 95% confidence interval [CI], 0.73, 0.95; I2 = 36.8%). Data from studies included in these analyses collectively lean toward the hypothesis that protein intake above the current RDA is beneficial to BMD at several sites. This systematic review supports that protein intakes above the current RDA may have some beneficial role in preventing hip fractures and BMD loss. There were no differences between animal or plant proteins, although data in this area were scarce. Larger, long-term, and more well-controlled clinical trials measuring fracture outcomes and BMD are needed to adequately assess whether protein intake above the current RDA is beneficial as a preventative measure and/or intervention strategy for osteoporosis. Key teaching points: • • Bone health is a multifactorial musculoskeletal issue, and optimal protein intakes are key in developing and maintaining bone throughout the life span. • • Dietary protein at levels above the current RDA may be beneficial in preventing hip fractures and BMD loss. • • Plant vs animal proteins do not seem to differ in their ability to prevent bone loss; however, data in this area are scarce. • • Larger, long-term RCTs using women not using hormone replacement therapy (HRT) are needed to adequately assess the magnitude of impact that protein intakes above the RDA have on preventing bone loss.
Collapse
Affiliation(s)
- Taylor C Wallace
- a Department of Nutrition and Food Studies , George Mason University , Fairfax , Virginia , USA.,b Think Healthy Group, Inc. , Washington , DC
| | - Cara L Frankenfeld
- c Department of Global and Community Health , George Mason University , Fairfax , Virginia , USA
| |
Collapse
|
12
|
Balci Yuce H, Akbulut N, Ocakli S, Kayir O, Elmastas M. The effect of commercial conjugated linoleic acid products on experimental periodontitis and diabetes mellitus in Wistar rats. Acta Odontol Scand 2017; 75:21-29. [PMID: 27897090 DOI: 10.1080/00016357.2016.1244355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim of present study was to determine the effects of conjugated linoleic acid enriched milk on alveolar bone loss, hyperglycaemia, oxidative stress and apoptosis in ligature-induced periodontal disease in diabetic rat model. METHODS Wistar rats were divided into six experimental groups: 1; non-ligated (NL, n = 6) group, 2; ligature only (LO, n = 6) group, 3; streptozotocin only (STZ, n = 8) group, 4; STZ and ligature (STZ + L, n = 8) group, 5; ligature and conjugated linoleic acid (CLA) (L + CLA, n = 8) group, 6; STZ, ligature and CLA group (STZ + L + CLA, n = 8) group. Diabetes mellitus was induced by 60 mg/kg streptozotocin. Rats were fed with CLA enriched milk for four weeks. Silk ligatures were placed at the gingival margin of lower first molars of mandibular quadrant. The study duration was four weeks after diabetes induction and the animals were sacrificed at the end of this period. Changes in alveolar bone levels were clinically measured and tissues were histopathologically examined. Inducible nitric oxide synthase (iNOS) and Bax protein expressions, serum interleukin-1β (IL-1β), low-density lipoprotein (LDL), high-density lipoprotein (HDL) and triglyceride levels and tartrate resistant acid phosphatase (TRAP)+ osteoclast numbers were also evaluated. RESULTS At the end of four weeks, alveolar bone loss was significantly higher in the STZ + LO group compared to the other groups (p < .05). CLA decreased alveolar bone loss in L + CLA and STZ + L + CLA groups. CLA significantly decreased TRAP + osteoclast numbers and increased osteoblastic activity compared to the STZ + L group (p < .05). Diabetes and CLA increased Bax protein levels (p < .05) however CLA had no effect on iNOS expression (p > .05). CONCLUSION Within the limits of this study, commercial CLA product administration in addition to diet significantly reduced alveolar bone loss, increased osteoblastic activity and decreased osteoclastic activity in the diabetic Wistar rats.
Collapse
|
13
|
Burr LL, Taylor CG, Weiler HA. Dietary Conjugated Linoleic Acid Does Not Adversely Affect Bone Mass in Obese fa/fa or Lean Zucker Rats. Exp Biol Med (Maywood) 2016; 231:1602-9. [PMID: 17060680 DOI: 10.1177/153537020623101004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Conjugated linoleic acid (CLA) elevates body ash in healthy animals. The objective of the present study was to determine if single or mixed CLA isomers improve bone mass in an obese and hyperinsulinemic state. Male (n = 120) lean and obese fa/fa Zucker rats (age, 6 weeks) were randomized to 8 weeks on a control diet or to 0.4% (w/w) cis-9, trans-11 CLA (Group 1); 0.4% (w/w) trans-10, cis-12 CLA (Group 2); 0.4% (w/w) cis-9, trans-11 CLA and 0.4% (w/w) trans-10, cis-12 CLA (Group 3); 0.4% (w/w) cis-9, trans-11 CLA, 0.4% (w/w) trans-10, cis-12 CLA, and traces of other CLA isomers (Group 4); and 0.4% (w/w) cis-9, trans-11 CLA, 0.4% (w/w) trans-10, cis-12 CLA, and 0.3% (w/w) other CLA isomers (Group 5). Bone area (BA), bone mineral content (BMC), and bone mineral density (BMD) of the whole body, spine, and femur were measured at baseline (6 weeks) and at 14 weeks of age. Effects of genotype, diet, and genotype × diet interactions were assessed using factorial analysis of variance. At 6 and 14 weeks, whole-body BA and BMC were lower in lean rats compared with fa/fa rats. Similarly, at 14 weeks, fa/fa rats had a higher spine and femur BMD despite a lower femur weight. The fa/fa rats in Groups 4 and 5 had higher adjusted whole-body BMC compared with Group 3, but not with Group 1, Group 2, or the control. In lean rats, Group 3 had a greater adjusted whole-body BMC than Groups 1 and 2, but not Group 4, Group 5, or the control. Thus, commercially available CLA mixtures and single CLA isomers do not affect bone mass in a hyperinsulinemic, obese state.
Collapse
Affiliation(s)
- Laura L Burr
- School of Dietetics and Human Nutrition, McGill University, 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | | | | |
Collapse
|
14
|
CLA Has a Useful Effect on Bone Markers in Patients with Rheumatoid Arthritis. Lipids 2016; 51:1397-1405. [PMID: 27815799 DOI: 10.1007/s11745-016-4201-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 09/07/2016] [Indexed: 02/04/2023]
Abstract
Rheumatoid arthritis is a systemic, chronic disease which may increase the risk of osteoporosis. This study was carried out in order to examine the effect of conjugated linoleic acid (CLA) on bone markers in rheumatoid arthritis disease which is the most common autoimmune disease. The present study is a randomized double-blind clinical trial. Subjects included 52 patients with active rheumatoid arthritis who were divided into two groups. Group I received standard treatment plus 2 daily 1.25 g capsules (Containing about 2 g of 9-cis 11-trans isomer and 10-cis 12-trans isomer in ratio of 50 -50 CLA in glycerinated form), Group II received standard treatment plus 2 Placebo 1.25 g capsules containing sunflower oil with high oleic acid. Telopeptides C, osteocalcin, and MMP3 were analyzed by ELISA method, PGE2 was done by competitive enzymatic immunoassay method, and IGF-1 was analyzed by the IRMA method based on the sandwich method and ALK-P of bone. Before and after the intervention, the questionnaires about general information, nutrition assessment and medical history were filled out by the subjects. Nutritional assessment was done by a 24-h record questionnaire for the three-day diet. The results were analyzed using SPSS software (version 18). FINDINGS There was no significant difference between the groups in enzyme activity of ALK-P of bone, PGE2 and MMP3 variables. However, differences between the two groups in terms of activity of telopeptides C, Osteocalcin, and IGF1 were significant (P < 0.05). CLA has a potentially beneficial effect on bone markers in patients with rheumatoid arthritis. Therefore, in order to study the effect of CLA on bone health in patients with RA and all patients with autoimmune and bone diseases more studies with longer duration and evaluation of bone mass density are required.
Collapse
|
15
|
Kim JH, Kim Y, Kim YJ, Park Y. Conjugated Linoleic Acid: Potential Health Benefits as a Functional Food Ingredient. Annu Rev Food Sci Technol 2016; 7:221-44. [DOI: 10.1146/annurev-food-041715-033028] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Ho Kim
- Department of Food and Biotechnology, Korea University, Sejong 339-700, Republic of Korea
| | - Yoo Kim
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003;
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 339-700, Republic of Korea
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003;
| |
Collapse
|
16
|
Kim JH, Kim YJ, Park Y. Conjugated Linoleic Acid and Postmenopausal Women's Health. J Food Sci 2015; 80:R1137-43. [DOI: 10.1111/1750-3841.12905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Ho Kim
- Dept. of Food and Biotechnology; Korea Univ; Sejong 339-700 Republic of Korea
| | - Young Jun Kim
- Dept. of Food and Biotechnology; Korea Univ; Sejong 339-700 Republic of Korea
| | - Yeonhwa Park
- Dept. of Food Science; Univ. of Massachusetts; Amherst MA 01003 U.S.A
| |
Collapse
|
17
|
Zeng FF, Xie HL, Fan F, Xue WQ, Wu BH, Zhu HL, Chen YM. Association of dietary fat intake with the risk of hip fractures in an elderly Chinese population: A matched case-control study. Geriatr Gerontol Int 2014; 15:1171-8. [PMID: 25495763 DOI: 10.1111/ggi.12417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2014] [Indexed: 02/01/2023]
Abstract
AIM The aim of the present study was to examine the association between dietary fat intake and the risk of hip fractures in an elderly Chinese population. METHODS A case-control study of 646 patients with newly diagnosed hip fractures and 646 controls, matched by age (±3 years) and sex, was carried out among elderly Chinese (55-80 years) in Guangdong, China. Their dietary fat intake was measured and calculated using a 79-item food-frequency questionnaire. RESULTS After adjusting for potential confounders, a dose-dependent increased risk of hip fractures was found to be associated with higher intakes of total fat, animal fat, saturated fatty acids and mono-unsaturated fatty acids (P for trend < 0.005). The adjusted odds ratios (95% confidence intervals) for hip fractures from a comparison of extreme quartiles were 1.92 (1.26-2.92) for total fat, 2.60 (1.70-3.99) for animal fat, 1.95 (1.30-2.93) for saturated fatty acids and 2.22 (1.46-3.39) for animal mono-unsaturated fatty acids, respectively. No significant association was observed for plant fat or polyunsaturated fatty acids (P for trend = 0.063 for plant fat and 0.174 for polyunsaturated fatty acids). CONCLUSIONS Our findings suggest that higher consumption of total fat and animal fat rich in saturated fatty acids might increase the risk of hip fractures in elderly Chinese.
Collapse
Affiliation(s)
- Fang-fang Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hai-li Xie
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fan Fan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen-qiong Xue
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bao-hua Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangzhou Orthopedics Trauma Hospital, Guangzhou, China
| | - Hui-lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yu-ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Abstract
A healthy gut microbiota plays many crucial functions in the host, being involved in the correct development and functioning of the immune system, assisting in the digestion of certain foods and in the production of health-beneficial bioactive metabolites or 'pharmabiotics'. These include bioactive lipids (including SCFA and conjugated linoleic acid) antimicrobials and exopolysaccharides in addition to nutrients, including vitamins B and K. Alterations in the composition of the gut microbiota and reductions in microbial diversity are highlighted in many disease states, possibly rendering the host susceptible to infection and consequently negatively affecting innate immune function. Evidence is also emerging of microbially produced molecules with neuroactive functions that can have influences across the brain-gut axis. For example, γ-aminobutyric acid, serotonin, catecholamines and acetylcholine may modulate neural signalling within the enteric nervous system, when released in the intestinal lumen and consequently signal brain function and behaviour. Dietary supplementation with probiotics and prebiotics are the most widely used dietary adjuncts to modulate the gut microbiota. Furthermore, evidence is emerging of the interactions between administered microbes and dietary substrates, leading to the production of pharmabiotics, which may directly or indirectly positively influence human health.
Collapse
|
19
|
Kim J, Park Y, Park Y. trans-10, cis-12 CLA promotes osteoblastogenesis via SMAD mediated mechanism in bone marrow mesenchymal stem cells. J Funct Foods 2014; 8:367-376. [PMID: 25035711 PMCID: PMC4095819 DOI: 10.1016/j.jff.2014.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The inverse relationship between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells has been linked to overall bone mass. It has previously been reported that conjugated linoleic acid (CLA) inhibits adipogenesis via a peroxisome-proliferator activated receptor-γ (PPARγ) mediated mechanism, while it increases osteoblastogenesis via a PPARγ-independent mechanism in mesenchymal stem cells. This suggests potential implication of CLA on improving bone mass. Thus the purpose of this study was to determine involvement of CLA on regulation of osteoblastogenesis in murine mesenchymal stem cells by focusing on the Mothers against decapentaplegic (MAD)-related family of molecules 8 (SMAD8), one of key regulators of osteoblastogenesis. The trans-10,cis-12 CLA, but not the cis-9,trans-11, significantly increased osteoblastogenesis via SMAD8, and inhibited adipogenesis independent of SMAD8, while inhibiting factors regulating osteoclastogenesis in this model. These suggest that CLA may help improve osteoblastogenesis via a SMAD8 mediated mechanism.
Collapse
Affiliation(s)
- Jonggun Kim
- Department of Food Science, University of Massachusetts, Amherst, 102
Holdsworth Way, Amherst, MA 01003
| | - Yooheon Park
- Department of Food Science, University of Massachusetts, Amherst, 102
Holdsworth Way, Amherst, MA 01003
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, 102
Holdsworth Way, Amherst, MA 01003
| |
Collapse
|
20
|
Rahman MM, Fernandes G, Williams P. Conjugated linoleic Acid prevents ovariectomy-induced bone loss in mice by modulating both osteoclastogenesis and osteoblastogenesis. Lipids 2013; 49:211-24. [PMID: 24338525 DOI: 10.1007/s11745-013-3872-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022]
Abstract
Postmenopausal osteoporosis due to estrogen deficiency is associated with severe morbidity and mortality. Beneficial effects of conjugated linoleic acid (CLA) on bone mineral density (BMD) have been reported in mice, rats and humans, but the effect of long term CLA supplementation against ovariectomy-induced bone loss in mice and the mechanisms underlying this effect have not been studied yet. Eight-week old ovariectomized (Ovx) and sham operated C57BL/6 mice were fed either a diet containing 0.5 % safflower oil (SFO) or 0.5 % CLA for 24 weeks to examine BMD, bone turn over markers and osteotropic factors. Bone marrow (BM) cells were cultured to determine the effect on inflammation, osteoclastogenesis, and osteoblastogenesis. SFO/Ovx mice had significantly lower femoral, tibial and lumbar BMD compared to SFO/Sham mice; whereas, no difference was found between CLA/Ovx and CLA/Sham mice. CLA inhibited bone resorption markers whereas enhanced bone formation markers in Ovx mice as compared to SFO-fed mice. Reverse transcriptase polymerase chain reaction and fluorescence activated cell sorting analyses of splenocytes revealed that CLA inhibited pro-osteoclastogenic receptor activator of NF-κB (RANKL) and stimulated decoy receptor of RANKL, osteoprotegerin expression. CLA also inhibited pro-inflammatory cytokine and enhanced anti-inflammatory cytokine production of lipopolysaccharide-stimulated splenocytes and BM cells. Furthermore, CLA inhibited osteoclast differentiation in BM and stimulated osteoblast differentiation in BM stromal cells as confirmed by tartrate resistant acid phosphatase and Alizarin Red staining, respectively. In conclusion, CLA may prevent postmenopausal bone loss not only by inhibiting excessive bone resorption due to estrogen deficiency but also by stimulating new bone formation. CLA might be a potential alternative therapy against osteoporotic bone loss.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229-3900, USA,
| | | | | |
Collapse
|
21
|
Park Y, Kim J, Scrimgeour AG, Condlin ML, Kim D, Park Y. Conjugated linoleic acid and calcium co-supplementation improves bone health in ovariectomised mice. Food Chem 2013; 140:280-8. [PMID: 23578644 PMCID: PMC3625250 DOI: 10.1016/j.foodchem.2012.12.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 01/18/2023]
Abstract
Osteoporosis is a significant health concern for the elderly; conjugated linoleic acid (CLA) has been shown to improve overall bone mass when calcium is included as a co-supplement. However, potential effects of CLA and calcium on bone mass during a period of bone loss have not been reported. The purpose of this study was to determine how dietary calcium modulates the effects of conjugated linoleic acid (CLA) in preventing bone loss, using an ovariectomised mouse model. CLA supplementation significantly prevented ovariectomy-associated weight and fat mass gain, compared to non-supplemented controls. CLA significantly increased bone markers without major changes in bone mineral composition in the femur compared to respective controls. CLA treatment increased serum parathyroid hormone (PTH) significantly (p=0.0172), while serum 1,25-dihydroxyvitamin D3 concentration was not changed by CLA. Meanwhile, CLA significantly reduced femur tartrate resistant acid phosphatase (TRAP) activity, suggesting potential reduction of osteoclastogenesis. The data suggest that CLA, along with dietary calcium, has great potential to be used to prevent bone loss and weight gain associated with menopause.
Collapse
Affiliation(s)
- Yooheon Park
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003
| | - Jonggun Kim
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003
| | - Angus G. Scrimgeour
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Kansas Street, Natick, MA 01760
| | - Michelle L. Condlin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine (USARIEM), Kansas Street, Natick, MA 01760
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003
| |
Collapse
|
22
|
Spilmont M, Léotoing L, Davicco MJ, Lebecque P, Mercier S, Miot-Noirault E, Pilet P, Rios L, Wittrant Y, Coxam V. Pomegranate seed oil prevents bone loss in a mice model of osteoporosis, through osteoblastic stimulation, osteoclastic inhibition and decreased inflammatory status. J Nutr Biochem 2013; 24:1840-8. [PMID: 23953990 DOI: 10.1016/j.jnutbio.2013.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/09/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022]
Abstract
In the current context of longer life expectancy, the prevalence of osteoporosis is increasingly important. This is why development of new strategies of prevention is highly suitable. Pomegranate seed oil (PSO) and its major component, punicic acid (a conjugated linolenic acid), have potent anti-inflammatory and anti-oxidative properties both in vitro and in vivo, two processes strongly involved in osteoporosis establishment. In this study, we demonstrated that PSO consumption (5% of the diet) improved significantly bone mineral density (240.24±11.85 vs. 203.04±34.19 mg/cm(3)) and prevented trabecular microarchitecture impairment in ovariectomized (OVX) mice C57BL/6J, compared to OVX control animals. Those findings are associated with transcriptional changes in bone tissue, suggesting involvement of both osteoclastogenesis inhibition and osteoblastogenesis improvement. In addition, thanks to an ex vivo experiment, we provided evidence that serum from mice fed PSO (5% by gavage) had the ability to significantly down-regulate the expression of specific osteoclast differentiation markers and RANK-RANKL downstream signaling targets in osteoclast-like cells (RAW264.7) (RANK: negative 0.49-fold vs. control conditions). Moreover, in osteoblast-like cells (MC3T3-E1), it elicited significant increase in alkaline phosphatase activity (+159% at day 7), matrix mineralization (+271% on day 21) and transcriptional levels of major osteoblast lineage markers involving the Wnt/β-catenin signaling pathways. Our data also reveal that PSO inhibited pro-inflammatory factors expression while stimulating anti-inflammatory ones. These results demonstrate that PSO is highly relevant regarding osteoporosis. Indeed, it offers promising alternatives in the design of new strategies in nutritional management of age-related bone complications.
Collapse
Affiliation(s)
- Mélanie Spilmont
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Greentech SA, Biopôle, Clermont-Limagne, 63360 Saint Beauzire, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim J, Park Y, Lee SH, Park Y. trans-10,cis-12 conjugated linoleic acid promotes bone formation by inhibiting adipogenesis by peroxisome proliferator activated receptor-γ-dependent mechanisms and by directly enhancing osteoblastogenesis from bone marrow mesenchymal stem cells. J Nutr Biochem 2013; 24:672-9. [PMID: 22832076 PMCID: PMC3482420 DOI: 10.1016/j.jnutbio.2012.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/07/2012] [Accepted: 03/19/2012] [Indexed: 12/14/2022]
Abstract
The bone undergoes continuous remodeling of osteoblastic bone formation and osteoclastic bone resorption to maintain proper bone mass. It is also reported that bone marrow adiposity has a reciprocal role in osteoblasts due to their same origin from mesenchymal stem cells. In addition, one of the key mediators of adipogenesis, peroxisome-proliferator activated receptor-γ (PPARγ), plays a significant role in osteoblastogenesis in bone marrow mesenchymal stem cells. One dietary component that is known to have significant impact on adiposity and bone mass is conjugated linoleic acid (CLA). However, the link between controlling adiposity to improving bone mass by CLA has not been studied intensively. Thus, the purpose of this study is to determine the role of CLA on bone marrow adiposity and bone formation using murine mesenchymal stem cells. The results confirmed that the trans-10,cis-12 CLA, but not the cis-9,trans-11 CLA isomer, significantly inhibited adipogenesis and promoted osteoblastogenesis from mesenchymal stem cells. The inhibition of adipogenesis by the trans-10,cis-12 CLA was mediated by PPARγ; however, the trans-10,cis-12 CLA had a direct effect on osteoblastogenesis which was independent to PPARγ in this model. The trans-10,cis-12 CLA also had significant effects on osteoclastogenesis inhibitory factor, which suggests potential influence of CLA on osteoclastogenesis. Overall, the results suggest that the trans-10,cis-12, but not the cis-9,trans-11 CLA isomer, has a positive impact on bone health by both PPARγ mediated and independent mechanisms in mesenchymal stem cells.
Collapse
Affiliation(s)
- Jonggun Kim
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
24
|
Deguire JR, Makarem N, Vanstone CA, Morin S, Duque G, Weiler HA. Conjugated linoleic acid is related to bone mineral density but does not affect parathyroid hormone in men. Nutr Res 2012; 32:911-20. [PMID: 23244536 DOI: 10.1016/j.nutres.2012.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 11/15/2022]
Abstract
The relationships between conjugated linoleic acid (CLA) status, bone, body composition, and the effect of CLA on calciotropic hormones are unclear. A cross-sectional study was designed to examine the association between c9, t11 CLA status in erythrocyte membranes (RBC) and body composition. This preceded a dose-response trial investigating if c9, t11 CLA affected parathyroid hormone (PTH). It was hypothesized that (1) higher c9, t11 CLA status in RBC will be associated with a lower fat and higher bone mass and that (2) PTH will be reduced by 30% after supplementation of c9, t11 CLA. Fifty-four men (age, 19-53 years) were included in the cross-sectional analysis, of which 31 were studied in the dose-response trial and randomized to 1 of 3 groups: placebo (n = 10), 1.5 g/d (n = 11), or 3.0 g/d (n = 10) of c9, t11 CLA for 16 weeks. Men with RBC c9, t11 CLA status above the median had higher whole body bone mineral density (BMD) (1.359 ± 0.024 vs 1.287 ± 0.023 g/cm(2); P = .04) and whole body lean mass (WBL) percentage (78.8% ± 0.9% vs 75.3% ± 1.0%; P = .01), whereas body mass index (24.8 ± 0.5 kg/m(2) vs 27.3 ± 0.9 kg/m(2); P = .01) and whole body fat mass percentage (17.3% ± 0.9% vs 21.3% ± 1.1%; P = .007) were lower. In regression analysis, RBC c9, t11 CLA status accounted for a significant proportion (r(2) = 0.10) of the variation in whole body BMD (P = .03). There were no time or treatment differences among any bone or biomarkers of bone metabolism including PTH. These findings indicate that RBC c9, t11 CLA status, a reflection of long-term (~4 months) dietary CLA intake, positively relates to BMD. However, c9, t11 CLA supplementation does not appear to affect PTH in healthy men.
Collapse
Affiliation(s)
- Jason R Deguire
- School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Conjugated linoleic acid (CLA) has drawn significant attention in the last two decades for its variety of biologically beneficial effects. CLA reduces body fat, cardiovascular diseases and cancer, and modulates immune and inflammatory responses as well as improves bone mass. It has been suggested that the overall effects of CLA are the results of interactions between two major isomers, cis-9,trans-11 and trans-10,cis-12. This review will primarily focus on current CLA publications involving humans, which are also summarized in the tables. Along with a number of beneficial effects of CLA, there are safety considerations for CLA supplementation in humans, which include effects on liver functions, milk fat depression, glucose metabolism, and oxidative stresses.
Collapse
Affiliation(s)
- Allison Dilzer
- Department of Food Science, University of Massachusetts, Amherst, Amherst , MA 01003, USA
| | | |
Collapse
|
26
|
Banu J, Varela E, Fernandes G. Alternative therapies for the prevention and treatment of osteoporosis. Nutr Rev 2012; 70:22-40. [PMID: 22221214 DOI: 10.1111/j.1753-4887.2011.00451.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is a medical condition that affects millions of men and women. People with this condition have low bone mass, which places them at increased risk for bone fracture after minor trauma. The surgeries and treatments required to repair and heal bone fractures involve long recovery periods and can be expensive. Because osteoporosis occurs frequently in the elderly, the financial burden it places on society is likely to be large. In the United States, the Food and Drug Administration has approved several drugs for use in the prevention and treatment of osteoporosis. However, all of the currently available agents have severe side effects that limit their efficacy and underscore the urgent need for new treatment options. One promising approach is the development of alternative (nonpharmaceutical) strategies for bone maintenance, as well as for the prevention and treatment of osteoporosis. This review examines the currently available nonpharmaceutical alternatives that have been evaluated in in vitro and in vivo studies. Certain plants from the following families have shown the greatest benefits on bone: Alliceae, Asteraceae, Thecaceae, Fabaceae, Oleaceae, Rosaceae, Ranunculaceae, Vitaceae, Zingiberaceae. The present review discusses the most promising findings from studies of these plant families.
Collapse
Affiliation(s)
- Jameela Banu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, San Antonio, Texas, USA.
| | | | | |
Collapse
|
27
|
Abstract
The primary purpose of the present review was to determine if the scientific evidence available for potential human health benefits of conjugated linoleic acid (CLA) is sufficient to support health claims on foods based on milk naturally enriched with cis-9, trans-11-CLA (c9, t11-CLA). A search of the scientific literature was conducted and showed that almost all the promising research results that have emerged in relation to cancer, heart health, obesity, diabetes and bone health have been in animal models or in vitro. Most human intervention studies have utilised synthetic CLA supplements, usually a 50:50 blend of c9, t11-CLA and trans-10, cis-12-CLA (t10, c12-CLA). Of these studies, the only evidence that is broadly consistent is an effect on body fat and weight reduction. A previous review of the relevant studies found that 3.2 g CLA/d resulted in a modest body fat loss in human subjects of about 0.09 kg/week, but this effect was attributed to the t10, c12-CLA isomer. There is no evidence of a consistent benefit of c9, t11-CLA on any health conditions; and in fact both synthetic isomers, particularly t10, c12-CLA, have been suspected of having pro-diabetic effects in individuals who are already at risk of developing diabetes. Four published intervention studies using naturally enriched CLA products were identified; however, the results were inconclusive. This may be partly due to the differences in the concentration of CLA administered in animal and human studies. In conclusion, further substantiation of the scientific evidence relating to CLA and human health benefits are required before health claims can be confirmed.
Collapse
|
28
|
Jutzeler van Wijlen RP. Long-term conjugated linoleic acid supplementation in humans - effects on body composition and safety. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Metabolic activities and probiotic potential of bifidobacteria. Int J Food Microbiol 2011; 149:88-105. [DOI: 10.1016/j.ijfoodmicro.2011.06.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 02/06/2023]
|
30
|
Rahman MM, Halade GV, Williams PJ, Fernandes G. t10c12-CLA maintains higher bone mineral density during aging by modulating osteoclastogenesis and bone marrow adiposity. J Cell Physiol 2011; 226:2406-14. [PMID: 21660964 DOI: 10.1002/jcp.22578] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conjugated linoleic acid (CLA) has been shown to positively influence calcium and bone metabolism. Earlier, we showed that CLA (equal mixture of c9t11-CLA and t10c12-CLA) could protect age-associated bone loss by modulating inflammatory markers and osteoclastogenesis. Since, c9t11-CLA and t10c12-CLA isomers differentially regulate functional parameters and gene expression in different cell types, we examined the efficacy of individual CLA isomers against age-associated bone loss using 12 months old C57BL/6 female mice fed for 6 months with 10% corn oil (CO), 9.5% CO + 0.5% c9t11-CLA, 9.5% CO + 0.5% t10c12-CLA or 9.5% CO + 0.25% c9t11-CLA + 0.25% t10c12-CLA. Mice fed a t10c12-CLA diet maintained a significantly higher bone mineral density (BMD) in femoral, tibial and lumbar regions than those fed CO and c9t11-CLA diets as measured by dual-energy-X-ray absorptiometry (DXA). The increased BMD was accompanied by a decreased production of osteoclastogenic factors, that is, RANKL, TRAP5b, TNF-alpha and IL-6 in serum. Moreover, a significant reduction of high fat diet-induced bone marrow adiposity was observed in t10c12-CLA fed mice as compared to that of CO and c9t11-CLA fed mice, as measured by Oil-Red-O staining of bone marrow sections. In addition, a significant reduction of osteoclast differentiation and bone resorbing pit formation was observed in t10c12-CLA treated RAW 264.7 cell culture stimulated with RANKL as compared to that of c9t11-CLA and linoleic acid treated cultures. In conclusion, these findings suggest that t10c12-CLA is the most potent CLA isomer and it exerts its anti-osteoporotic effect by modulating osteoclastogenesis and bone marrow adiposity.
Collapse
Affiliation(s)
- Md M Rahman
- Department of Medicine, University of Texas Health Science Center at San Antonio, Texas 78229-3900, USA.
| | | | | | | |
Collapse
|
31
|
Park Y, Terk M, Park Y. Interaction between dietary conjugated linoleic acid and calcium supplementation affecting bone and fat mass. J Bone Miner Metab 2011; 29:268-78. [PMID: 20697754 DOI: 10.1007/s00774-010-0212-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 06/29/2010] [Indexed: 12/22/2022]
Abstract
Dietary conjugated linoleic acid (CLA) has shown wide biologically beneficial effects, such as anticancer, antiatherosclerotic, antidiabetic, immunomodulating, and antiobesity effects. However, the effects of CLA on total body ash, reflective of bone mineral content, have not been consistent. We hypothesized that the inconsistency of the CLA effect on ash may be linked to interaction between CLA and dietary calcium levels. Thus, we investigated the effects of CLA on body ash in conjunction with various calcium levels. Male ICR mice were fed three different levels of calcium (0.01, 0.5, and 1%) with or without 0.5% CLA for 4 weeks for Experiment 1 and separate CLA isomers at 0.22% level with 1% calcium in Experiment 2. CLA feeding reduced body fat regardless of dietary calcium level, whereas CLA supplementation increased body ash compared to control only in animals fed the 1% calcium. In Experiment 2 it was confirmed that this observation was associated with the trans-10, cis-12 CLA isomer, but not with the cis-9, trans-11 isomer. CLA administration with 1% dietary calcium significantly improved total ash percent (%) in femurs, confirming that CLA has the potential to be used to improve bone mass.
Collapse
Affiliation(s)
- Yooheon Park
- Department of Food Science, University of Massachusetts, Amherst, 100 Holdsworth Way, Amherst, MA 01003, USA
| | | | | |
Collapse
|
32
|
Ing SW, Belury MA. Impact of conjugated linoleic acid on bone physiology: proposed mechanism involving inhibition of adipogenesis. Nutr Rev 2011; 69:123-31. [PMID: 21348876 PMCID: PMC3814018 DOI: 10.1111/j.1753-4887.2011.00376.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Conjugated linoleic acid (CLA) supplementation decreases adipose mass and increases bone mass in mice. Recent clinical studies demonstrate a beneficial effect of CLA on reducing weight and adipose mass in humans. This article reviews possible biological mechanisms of action of CLA on bone metabolism, focusing on modulation of nuclear receptor peroxisome proliferator-activated receptor gamma activity to steer mesenchymal stem cell differentiation toward an adipose and away from an osteoblast lineage. Clinical studies of the effects of CLA on bone mass and clinical implications of the effects of CLA on bone health in humans are summarized and discussed.
Collapse
Affiliation(s)
- Steven W Ing
- Division of Endocrinology, Diabetes, & Metabolism, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210-1296, USA.
| | | |
Collapse
|
33
|
Diets high in conjugated linoleic acid from pasture-fed cattle did not alter markers of health in young women. Nutr Res 2011; 31:33-41. [DOI: 10.1016/j.nutres.2010.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 11/21/2022]
|
34
|
|
35
|
Regulation of osteoblast and adipocyte differentiation from human mesenchymal stem cells by conjugated linoleic acid. J Nutr Biochem 2009; 20:956-64. [DOI: 10.1016/j.jnutbio.2008.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 08/28/2008] [Accepted: 08/29/2008] [Indexed: 12/11/2022]
|
36
|
|
37
|
Platt I, El-Sohemy A. Effects of 9cis,11trans and 10trans,12cis CLA on osteoclast formation and activity from human CD14+ monocytes. Lipids Health Dis 2009; 8:15. [PMID: 19402897 PMCID: PMC2680857 DOI: 10.1186/1476-511x-8-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 04/29/2009] [Indexed: 01/23/2023] Open
Abstract
Background Mixed CLA isomers variably affect bone resorption in animals and decrease osteoclast formation and activity in murine osteoclasts. These variable effects may be due to the different isomers present in commercial preparations of CLA, and the effects of the predominant individual isomers, 9cis,11trans (9,11) and 10trans,12cis (10,12) CLA are not clear. The objectives of this study were to determine the effects of the individual CLA isomers on osteoclast formation and activity from human CD14+ monocytes, and to determine whether any changes are accompanied by changes in cathepsin K, matrix metalloproteinase-9 (MMP-9), receptor activator of NF-κB (RANK) and tumour necrosis factor alpha (TNFα) gene expression. Osteoclasts were identified as TRAP+ multinucleated cells. Osteoclast activity was quantified by the amount of TRAP in the cultured media. Results At 50 μM, 9,11 CLA inhibited osteoclast formation by ~70%, and both 9,11 and 10,12 CLA decreased osteoclast activity by ~85–90%. Both isomers inhibited cathepsin K (50 μM 9,11 by ~60%; 10,12 by ~50%) and RANK (50 μM 9,11 by ~85%; 50 μM 10,12 by ~65%) expression, but had no effect on MMP-9 or TNFα expression. Conclusion 9,11 CLA inhibits osteoclast formation and activity from human cells, suggesting that this isomer may prevent bone resorption in humans. Although 10,12 CLA did not significantly reduce osteoclast formation, it reduced osteoclast activity and cathepsin K and RANK expression, suggesting that this isomer may also affect bone resorption.
Collapse
Affiliation(s)
- Ilana Platt
- Department of Nutritional Sciences, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
38
|
Park Y, Pariza M, Park Y. Cosupplementation of Dietary Calcium and Conjugated Linoleic Acid (CLA) Improves Bone Mass in Mice. J Food Sci 2008; 73:C556-60. [DOI: 10.1111/j.1750-3841.2008.00861.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Banu J, Bhattacharya A, Rahman M, Fernandes G. Beneficial effects of conjugated linoleic acid and exercise on bone of middle-aged female mice. J Bone Miner Metab 2008; 26:436-45. [PMID: 18758901 DOI: 10.1007/s00774-008-0863-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 03/04/2008] [Indexed: 10/15/2022]
Abstract
Conjugated linoleic acids (CLA) are a group of polyunsaturated fatty acids that has recently been shown to have several beneficial effects on different diseases, including prevention of bone loss. The important feature of CLA is to reduce fat mass, thereby reducing body weight significantly. Although loss of body weight is known to increase bone loss, there is increasing evidence that CLA maybe beneficial to bone. Another factor that can reduce body weight is exercise (EX). It is well established that moderate EX stimulates bone formation. In this study, we analyzed the changes in bone using pQCT densitometry in middle-aged C57Bl/6 mice fed CLA (0.5%) and/or exercised. Twelve-month-old mice were divided into the following groups: group 1, corn oil, sedentary (CO SED); group 2, corn oil, exercise (CO EX); group 3, CLA, sedentary (CLA SED); and group 4, CLA, exercise (CLA EX). Mice were maintained in the respective experimental regimens for 10 weeks, after which mice were scanned using DEXA and killed. The lumbar vertebrae, femur, and tibia were analyzed using pQCT densitometry. CLA, when given alone or in combination with EX, significantly reduced body weight and increased lean mass. CLA treatment also significantly increased bone mass. Further, additional increase in bone mass was observed in mice treated with a combination of CLA and EX in almost all the bone sites analyzed. We conclude that CLA, when consumed as a dietary supplement along with moderate treadmill EX, significantly increases bone mass in middle-aged female mice.
Collapse
Affiliation(s)
- Jameela Banu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
40
|
Omega-3 fatty acids and multiple sclerosis: relationship to depression. J Behav Med 2007; 31:127-35. [DOI: 10.1007/s10865-007-9139-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 11/13/2007] [Indexed: 10/22/2022]
|
41
|
Hur SJ, Park Y. Effect of conjugated linoleic acid on bone formation and rheumatoid arthritis. Eur J Pharmacol 2007; 568:16-24. [PMID: 17573069 DOI: 10.1016/j.ejphar.2007.04.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 04/19/2007] [Accepted: 04/25/2007] [Indexed: 11/26/2022]
Abstract
Conjugated linoleic acid (CLA) has shown a variety of biologically beneficial effects. Dietary CLA inhibits eddosteal bone resorption, increases endocortical bone formation, and modulates the action and expression of cyclooxygenase (COX) enzyme, thereby decreasing prostaglandin-dependent bone resorption. CLA also enhances calcium absorption and may improve bone formation in animals, although results are not consistent. Since CLA can also affect inflammatory cytokines, it is hypothesized that CLA may be a good tool for prevention or reduction of rheumatoid arthritis symptoms. The possible mechanisms by which CLA prevents rheumatoid arthritis as well as other inflammatory diseases is discussed.
Collapse
Affiliation(s)
- Sun Jin Hur
- Department of Food Science, University of Massachusetts Amherst, 100 Holdsworth Way, Amherst, MA 01003, United States
| | | |
Collapse
|
42
|
Rahman MM, Bhattacharya A, Banu J, Fernandes G. Conjugated linoleic acid protects against age-associated bone loss in C57BL/6 female mice. J Nutr Biochem 2006; 18:467-74. [PMID: 16997541 DOI: 10.1016/j.jnutbio.2006.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/18/2006] [Accepted: 08/08/2006] [Indexed: 11/23/2022]
Abstract
Osteoporosis is one of the major causes of morbidity in the elderly. Inflammation exerts a significant influence on bone turnover, inducing the chronic form of osteoporosis. Dietary nutrition has the capacity to modulate inflammatory response. Therefore, nutritional strategies and lifestyle changes may prevent age-related osteoporosis, thereby improving the quality of life of the elderly population. Conjugated linoleic acid (CLA) has been shown to positively influence calcium and bone metabolism. Hence, this study was undertaken to examine the effect of CLA on bone mineral density (BMD) in middle-aged C57BL/6 female mice. After 10 weeks on diet, CLA-fed mice (14 months) maintained a higher BMD in different bone regions than corn oil (CO)-fed mice. The increased BMD was accompanied by a decreased activity of proinflammatory cytokines (such as tumor necrosis factor alpha, interleukin-6 and the receptor activator of NF-kappaB ligand) and decreased osteoclast function. Furthermore, a significant decrease in fat mass and an increase in muscle mass were also observed in CLA-fed mice compared to CO-fed mice. In conclusion, these findings suggest that CLA may prevent the loss of bone and muscle mass by modulating markers of inflammation and osteoclastogenic factors.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
43
|
Rahman MM, Bhattacharya A, Fernandes G. Conjugated linoleic acid inhibits osteoclast differentiation of RAW264.7 cells by modulating RANKL signaling. J Lipid Res 2006; 47:1739-48. [PMID: 16702601 DOI: 10.1194/jlr.m600151-jlr200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bone destruction is a pathological hallmark of several chronic inflammatory diseases, including rheumatoid arthritis, periodontitis, and osteoporosis. Inflammation-induced bone loss of this sort results from increased numbers of bone-resorbing osteoclasts. Numerous studies have indicated that conjugated linoleic acid (CLA) positively influences calcium and bone metabolism. Gene-deletion studies have shown that receptor activator of nuclear factor-kappaB ligand (RANKL) is one of the critical mediators of osteoclastogenesis. In this report, we examine the ability of CLA to suppress RANKL signaling and osteoclastogenesis in RAW264.7 cells, a murine monocytic cell line. Treatment of these cells with RANKL activated nuclear factor-kappaB (NF-kappaB), and preexposure of the cells to CLA significantly suppressed RANKL-induced NF-kappaB activation, including phosphorylation of I-kappaBalpha, degradation of I-kappaBalpha, and nuclear translocation of p65. RANKL induced osteoclastogenesis in these monocytic cells, and CLA inhibited RANKL-induced tumor necrosis factor-alpha production and osteoclast differentiation, including osteoclast-specific genes such as tartrate-resistant acid phosphatase, cathepsin K, calcitonin receptor, and matrix metalloproteinase-9 expression and osteoclast-specific transcription factors such as c-Fos, nuclear factor of activated T-cells expression, and bone resorption pit formation. CLA also inhibited RANKL-induced activation of mitogen-activated protein kinase p38 but had little effect on c-Jun N-terminal kinase activation. Collectively, these data demonstrate for the first time that CLA inhibits osteoclastogenesis by modulating RANKL signaling. Thus, CLA may have important therapeutic implications for the treatment of bone diseases associated with enhanced bone resorption by excessive osteoclastogenesis.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 78229-3900, USA
| | | | | |
Collapse
|
44
|
Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G. Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 2006; 17:789-810. [PMID: 16650752 DOI: 10.1016/j.jnutbio.2006.02.009] [Citation(s) in RCA: 418] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/21/2006] [Accepted: 02/24/2006] [Indexed: 01/20/2023]
Abstract
Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of octadecadienoic acid [linoleic acid (LA), 18:2n-6] commonly found in beef, lamb and dairy products. The most abundant isomer of CLA in nature is the cis-9, trans-11 (c9t11) isomer. Commercially available CLA is usually a 1:1 mixture of c9t11 and trans-10, cis-12 (t10c12) isomers with other isomers as minor components. Conjugated LA isomer mixture and c9t11 and t10c12 isomers alone have been attributed to provide several health benefits that are largely based on animal and in vitro studies. Conjugated LA has been attributed many beneficial effects in prevention of atherosclerosis, different types of cancer, hypertension and also known to improve immune function. More recent literature with availability of purified c9t11 and t10c12 isomers suggests that t10c12 is the sole isomer involved in antiadipogenic role of CLA. Other studies in animals and cell lines suggest that the two isomers may act similarly or antagonistically to alter cellular function and metabolism, and may also act through different signaling pathways. The effect of CLA and individual isomers shows considerable variation between different strains (BALB/C mice vs. C57BL/6 mice) and species (e.g., rats vs. mice). The dramatic effects seen in animal studies have not been reflected in some clinical studies. This review comprehensively discusses the recent studies on the effects of CLA and individual isomers on body composition, cardiovascular disease, bone health, insulin resistance, mediators of inflammatory response and different types of cancer, obtained from both in vitro and animal studies. This review also discusses the latest available information from clinical studies in these areas of research.
Collapse
Affiliation(s)
- Arunabh Bhattacharya
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- V Coxam
- Alimentation Squelette et Métabolismes, Unité de Nutrition Humaine, CRNH, INRA Theix, 63122 Saint-Genès Champanelle.
| | | |
Collapse
|
46
|
Banu J, Bhattacharya A, Rahman M, O'Shea M, Fernandes G. Effects of conjugated linoleic acid and exercise on bone mass in young male Balb/C mice. Lipids Health Dis 2006; 5:7. [PMID: 16556311 PMCID: PMC1440862 DOI: 10.1186/1476-511x-5-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 03/23/2006] [Indexed: 11/10/2022] Open
Abstract
There is an increase in obesity among the population of industrialized countries, and dietary supplementation with Conjugated Linoleic Acid (CLA) has been reported to lower body fat mass. However, weight loss is generally associated with negative effects on bone mass, but CLA is reported to have beneficial effects on bone. Furthermore, another factor that is well established to have a beneficial effect on bone is exercise (EX). However, a combination therapy of CLA and EX on bone health has not been studied. In this paper, we report the beneficial effects of CLA and EX on bone, in four different groups of Balb-C young, male mice. There were 4 groups in our study: 1. Safflower oil (SFO) sedentary (SED); 2. SFO EX; 3. CLA SED; 4. CLA EX. Two months old mice, under their respective treatment regimens were followed for 14 weeks. Mice were scanned in vivo using a DEXA scanner before and after treatment. At the end of the treatment period, the animals were sacrificed, the left tibia was removed and scanned using peripheral quantitative computerized tomography (pQCT). The results showed that although CLA decreased gain in body weight by 35%, it however increased bone mass by both reducing bone resorption and increasing bone formation. EX also decreased gain in body weight by 21% and increased bone mass; but a combination of CLA and EX, however, did not show any further increase in bone mass. In conclusion, CLA increases bone mass in both cancellous and cortical bones, and the effects of CLA on bone is not further improved by EX in pure cortical bone of young male mice.
Collapse
Affiliation(s)
- Jameela Banu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| | - Arunabh Bhattacharya
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| | - Mizanur Rahman
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| | | | - Gabriel Fernandes
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Dr, San Antonio, 78229-3900, USA
| |
Collapse
|
47
|
Zhao J, Li SP, Yang FQ, Li P, Wang YT. Simultaneous determination of saponins and fatty acids in Ziziphus jujuba (Suanzaoren) by high performance liquid chromatography-evaporative light scattering detection and pressurized liquid extraction. J Chromatogr A 2006; 1108:188-94. [PMID: 16458908 DOI: 10.1016/j.chroma.2005.12.104] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 12/14/2005] [Accepted: 12/20/2005] [Indexed: 10/25/2022]
Abstract
The seed of Ziziphus jujube Mill. var. spinosa (Bunge) Hu ex H. F. Chou, Suanzaoren in Chinese, is one of commonly used Chinese medicines. Saponins and fatty oil contains several fatty acids in Suanzaoren are responsible for its therapeutic activities. In this study, a new HPLC coupled with evaporative light scattering detection (ELSD) and pressurized liquid extraction (PLE) method was developed for the simultaneous quantitative determination of 11 major components of 2 saponins and 9 fatty acids, namely jujuboside A, jujuboside B, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, arachidic acid and docosanoic acid in Suanzaoren. Simultaneous separation of these eleven compounds was achieved on a C18 analytical column. The mobile phase consisted of (A) 0.1% aqueous acetic acid and (B) methanol with 0.1% acetic acid using a gradient elution. The drift tube temperature of ELSD was set at 75 degrees C, and nitrogen flow-rate was 1.8l/min. All calibration curves showed good linearity (r(2)>0.9955) within test ranges. This method showed good reproducibility for the quantification of these eleven components in Suanzaoren with intra- and inter-day variations of less than 3.41 and 4.37%, respectively. The validated method was successfully applied to quantify 11 investigated components in nine commercial samples of Suanzaoren.
Collapse
Affiliation(s)
- J Zhao
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | | | | | | | | |
Collapse
|