1
|
Chen S, Kang J, Zhu H, Wang K, Han Z, Wang L, Liu J, Wu Y, He P, Tu Y, Li B. L-Theanine and Immunity: A Review. Molecules 2023; 28:molecules28093846. [PMID: 37175254 PMCID: PMC10179891 DOI: 10.3390/molecules28093846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
L-theanine (N-ethyl-γ-glutamine) is the main amino acid in tea leaves. It not only contributes to tea flavor but also possesses several health benefits. Compared with its sedative and calming activities, the immunomodulatory effects of L-theanine have received less attention. Clinical and epidemiological studies have shown that L-theanine reduces immunosuppression caused by strenuous exercise and prevents colds and influenza by improving immunity. Numerous cell and animal studies have proven that theanine plays an immunoregulatory role in inflammation, nerve damage, the intestinal tract, and tumors by regulating γδT lymphocyte function, glutathione (GSH) synthesis, and the secretion of cytokines and neurotransmitters. In addition, theanine can be used as an immunomodulator in animal production. This article reviews the research progress of L-theanine on immunoregulation and related mechanisms, as well as its application in poultry and animal husbandry. It is hoped that this work will be beneficial to future related research.
Collapse
Affiliation(s)
- Shuna Chen
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaxin Kang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Huanqing Zhu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Kaixi Wang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Ziyi Han
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Leyu Wang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Junsheng Liu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Puming He
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Youying Tu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Bo Li
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Mammari N, Albert Q, Devocelle M, Kenda M, Kočevar Glavač N, Sollner Dolenc M, Mercolini L, Tóth J, Milan N, Czigle S, Varbanov M. Natural Products for the Prevention and Treatment of Common Cold and Viral Respiratory Infections. Pharmaceuticals (Basel) 2023; 16:ph16050662. [PMID: 37242445 DOI: 10.3390/ph16050662] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
The common cold is generally considered a usually harmless infectious disease of the upper respiratory pathway, with mostly mild symptoms. However, it should not be overlooked, as a severe cold can lead to serious complications, resulting in hospitalization or death in vulnerable patients. The treatment of the common cold remains purely symptomatic. Analgesics as well as oral antihistamines or decongestants may be advised to relieve fever, and local treatments can clear the airways and relieve nasal congestion, rhinorrhea, or sneezing. Certain medicinal plant specialties can be used as therapy or as complementary self-treatment. Recent scientific advances discussed in more detail in this review have demonstrated the plant's efficiency in the treatment of the common cold. This review presents an overview of plants used worldwide in the treatment of cold diseases.
Collapse
Affiliation(s)
- Nour Mammari
- CNRS, L2CM, Université de Lorraine, 54000 Nancy, France
| | - Quentin Albert
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologies Fongiques, 13288 Marseille, France
- INRAE, Aix Marseille Université, CIRM-CF, 13288 Marseille, France
| | - Marc Devocelle
- SSPC (Synthesis & Solid State Pharmaceutical Centre), V94 T9PX Limerick, Ireland
- Department of Chemistry, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, D02 YN77 Dublin, Ireland
| | - Maša Kenda
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Nina Kočevar Glavač
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Marija Sollner Dolenc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Jaroslav Tóth
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Nagy Milan
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Mihayl Varbanov
- CNRS, L2CM, Université de Lorraine, 54000 Nancy, France
- Laboratoire de Virologie, CHRU de Nancy Brabois, 54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
3
|
Lewis ED, Crowley DC, Guthrie N, Evans M. Healthy adults supplemented with a nutraceutical formulation containing Aloe vera gel, rosemary and Poria cocos enhances the effect of influenza vaccination in a randomized, triple-blind, placebo-controlled trial. Front Nutr 2023; 10:1116634. [PMID: 37168053 PMCID: PMC10165552 DOI: 10.3389/fnut.2023.1116634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
The study objective was to examine the role of a formulation, UP360, containing rosemary and Poria cocos extracts and Aloe vera gel powder, in healthy adults on supporting immune function with influenza vaccination. A 56-day randomized, triple-blind, placebo-controlled, parallel study consisted of a 28-day pre-vaccination period, an influenza vaccination on Day 28 and a 28-day post-vaccination period. Men and women ages 40-80 who had not yet been vaccinated for the flu were randomized to UP360 or Placebo (n = 25/group). At baseline, Days 28 and 56, blood lymphocyte populations, immunoglobulins (Ig), and cytokines were measured, and quality of life (QoL) questionnaires administered. The Wisconsin Upper Respiratory Symptom Survey (WURSS)-24 was completed daily by participants to measure incidence of upper respiratory tract infection (URTIs). In the post-vaccination period, TCR gamma-delta (γδ+) cells, known as γδ T cells, increased with UP360 supplementation compared to Placebo (p < 0.001). The UP360 group had a 15.6% increase in influenza B-specific IgG levels in the post-vaccination period (p = 0.0006). UP360 significantly increased the amount of circulating glutathione peroxidase (GSH-Px) from baseline at Day 28 (p = 0.0214), an enzyme that is important for neutralizing free radicals. While UP360 supplementation initially decreased levels of anti-inflammatory cytokine IL-1RA in the pre-vaccination period, IL-1RA levels were increased in the post-vaccination period (p ≤ 0.0482). Levels of IL-7 increased from baseline at Day 56 with UP360 supplementation (p = 0.0458). Despite these changes in immune markers, there were no differences in URTI symptoms or QoL between UP360 and Placebo. These results suggest UP360 supplementation was beneficial in eliciting a healthy, robust immune response in the context of vaccination. No changes in subjective measures of URTI illness or QoL demonstrated that participants' QoL was not negatively impacted by UP360 supplementation. There were no differences in clinical chemistry, vitals or adverse events confirming the good safety profile of UP360. The trial was registered on the International Clinical Trials Registry Platform (ISRCTN15838713).
Collapse
|
4
|
Yamada H. Benefits of Green Tea: Clinical Evidence for Respiratory Tract Infections. YAKUGAKU ZASSHI 2022; 142:1371-1377. [DOI: 10.1248/yakushi.22-00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Hiroshi Yamada
- Department of Drug Evaluation & Informatics, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
5
|
Yao J, Zhao J, Wen JR, Yang ZJ, Lin YP, Sun L, Lu QY, Fan GJ. Flavonoid-containing supplements for preventing acute respiratory tract infections: A systematic review and meta-analysis of 20 randomized controlled trials. Complement Ther Med 2022; 70:102865. [PMID: 35940344 DOI: 10.1016/j.ctim.2022.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND This systematic review and meta-analysis was conducted to investigate the efficacy and safety of flavonoid-containing supplements in preventing acute respiratory tract infection (ARTI). METHODS Randomized controlled trials (RCTs) investigating the effects of flavonoid-containing supplements on ARTI prevention in the aspects of ARTI incidence, mean ARTI sick days, symptoms, bio-immune markers, and adverse effects were searched in 5 databases. Data were searched from inception to November 26, 2021. Stata 16.0 was used to perform the meta-analysis. RESULTS Twenty RCTs (n = 4521) were included in this systematic review and meta-analysis. Pooled results showed that in the flavonoid-containing supplement group, the ARTI incidence and mean ARTI sick days were significantly decreased compared to those in the control group (RR = 0.81, 95% CI: 0.74-0.89, p < 0.001; WMD = -0.56, 95% CI: -1.04 to -0.08, p = 0.021; respectively). In 8 RCTs, flavonoids were singly used for interventions, ARTI incidence in the experimental group significantly decreased compared to that in the control group (RR = 0.85, 95% CI: 0.72-1.00, p = 0.047). In ten RCTs, flavonoid-containing mixtures were applied for interventions, and ARTI incidence in the experimental group significantly decreased compared to that in the control group (RR = 0.79, 95% CI: 0.71-0.89, p < 0.001). Furthermore, the ARTI incidence and mean ARTI sick days were significantly decreased in the experimental group compared to those in the control group in the flavan-3-ols subgroup (RR = 0.79, 95% CI: 0.67-0.92, p = 0.002; WMD = -2.75, 95% CI: -4.30 to -1.21, p < 0.001; respectively) and the multiple subclasses subgroup (RR = 0.75, 95% CI: 0.63-0.88, p = 0.001; WMD = -0.56, 95% CI: -1.11 to -0.01, p = 0.046; respectively). However, the bio-immune markers including interleukin-6, hypersensitive-c-reactive-protein, tumor necrosis factor-α, and interferon-γ did not differ between the flavonoid group and the control group. Moreover, in the flavonoid-containing supplement group, the incidence of adverse reactions did not increase compared to that in the control group (RR = 1.16, 95% CI: 0.78-1.73, p = 0.469). CONCLUSIONS This systematic review and meta-analysis showed that flavonoid-containing supplements were efficacious and safe in preventing ARTIs. The most important limitations result from the small number of trials, poor quality of some included RCTs, differences in the composition and types of interventions, principal subclasses of flavonoids, methods of administration, and methodology. Moreover, only a few RCTs conducted independent verification of the flavonoid supplements used in the trial in terms of purity and potency, which may lead to a potential source of bias. Thus, larger and better-designed studies are needed to further verify this conclusion.
Collapse
Affiliation(s)
- Jia Yao
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Jia Zhao
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Jun-Ru Wen
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Zhao-Jun Yang
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Yu-Ping Lin
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Lu Sun
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Qi-Yun Lu
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Guan-Jie Fan
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| |
Collapse
|
6
|
Pisoschi AM, Iordache F, Stanca L, Gajaila I, Ghimpeteanu OM, Geicu OI, Bilteanu L, Serban AI. Antioxidant, Anti-inflammatory, and Immunomodulatory Roles of Nonvitamin Antioxidants in Anti-SARS-CoV-2 Therapy. J Med Chem 2022; 65:12562-12593. [PMID: 36136726 PMCID: PMC9514372 DOI: 10.1021/acs.jmedchem.2c01134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/28/2022]
Abstract
Viral pathologies encompass activation of pro-oxidative pathways and inflammatory burst. Alleviating overproduction of reactive oxygen species and cytokine storm in COVID-19 is essential to counteract the immunogenic damage in endothelium and alveolar membranes. Antioxidants alleviate oxidative stress, cytokine storm, hyperinflammation, and diminish the risk of organ failure. Direct antiviral roles imply: impact on viral spike protein, interference with the ACE2 receptor, inhibition of dipeptidyl peptidase 4, transmembrane protease serine 2 or furin, and impact on of helicase, papain-like protease, 3-chyomotrypsin like protease, and RNA-dependent RNA polymerase. Prooxidative environment favors conformational changes in the receptor binding domain, promoting the affinity of the spike protein for the host receptor. Viral pathologies imply a vicious cycle, oxidative stress promoting inflammatory responses, and vice versa. The same was noticed with respect to the relationship antioxidant impairment-viral replication. Timing, dosage, pro-oxidative activities, mutual influences, and interference with other antioxidants should be carefully regarded. Deficiency is linked to illness severity.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Florin Iordache
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Loredana Stanca
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Iuliana Gajaila
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Oana Margarita Ghimpeteanu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Ovidiu Ionut Geicu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Faculty of Biology, Department Biochemistry and
Molecular Biology, University of Bucharest, 91-95 Splaiul
Independentei, 050095Bucharest, Romania
| | - Liviu Bilteanu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Molecular Nanotechnology Laboratory,
National Institute for Research and Development in
Microtechnologies, 126A Erou Iancu Nicolae Street, 077190Bucharest,
Romania
| | - Andreea Iren Serban
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Faculty of Biology, Department Biochemistry and
Molecular Biology, University of Bucharest, 91-95 Splaiul
Independentei, 050095Bucharest, Romania
| |
Collapse
|
7
|
Ozato N, Yamaguchi T, Kusaura T, Kitazawa H, Hibi M, Osaki N, Ono T. Effect of Catechins on Upper Respiratory Tract Infections in Winter: A Randomized, Placebo-Controlled, Double-Blinded Trial. Nutrients 2022; 14:nu14091856. [PMID: 35565823 PMCID: PMC9102021 DOI: 10.3390/nu14091856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Tea catechins are plant-derived compounds that improve immune functions. Previous randomized control trials have demonstrated the efficacy of primarily epi-type catechins against upper respiratory tract infections (URTIs). Green tea can be consumed in several ways, including popular bottled beverages. These beverages, however, require sterilization during manufacturing, which results in catechin isomerization. We conducted a randomized, double-blinded, placebo-controlled trial involving healthy Japanese participants to evaluate whether catechin consumption via bottled beverages has an alleviating effect on the duration and severity of URTIs in winter. The catechin group (490 mg catechin, 0.14%, containing 59% epi-type catechin, n = 55) showed reduced durations of running nose, nasal congestion, and headache, compared with the placebo group (0 mg catechin, n = 54; p = 0.013, 0.018, and <0.001, respectively). Furthermore, when considering physical symptoms, the duration of nasopharyngeal symptoms improved significantly in the catechin group (p < 0.001) compared with that in the control group. The daily consumption of catechin thus reduced the duration and severity of URTIs in healthy men and women. Humans are regularly exposed to several potential infectious threats, and the oral administration of heat-epimerized tea catechins might help prevent and reduce the severity of URTIs.
Collapse
Affiliation(s)
- Naoki Ozato
- Health & Wellness Products Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan; (T.Y.); (T.K.); (N.O.)
- Correspondence: ; Tel.: +81-0804-202-2625
| | - Tohru Yamaguchi
- Health & Wellness Products Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan; (T.Y.); (T.K.); (N.O.)
| | - Tatsuya Kusaura
- Health & Wellness Products Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan; (T.Y.); (T.K.); (N.O.)
| | - Hidefumi Kitazawa
- Biological Science Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan; (H.K.); (M.H.)
| | - Masanobu Hibi
- Biological Science Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan; (H.K.); (M.H.)
| | - Noriko Osaki
- Health & Wellness Products Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan; (T.Y.); (T.K.); (N.O.)
| | | |
Collapse
|
8
|
A Comprehensive Review of the Potential Use of Green Tea Polyphenols in the Management of COVID-19. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7170736. [PMID: 34899956 PMCID: PMC8664505 DOI: 10.1155/2021/7170736] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023]
Abstract
Green tea is produced from Camellia sinensis (L.) buds and leaves that have not gone through the oxidation and withering processes used to produce black and oolong teas. It was originated in China, but its cultivation and production have expanded to other Eastern Asian countries. Several polyphenolic compounds, including flavandiols, flavonols, flavonoids, and phenolic acids, are found in green tea and may constitute greater than 30% of the dry weight. Flavonols, especially catechins, represent the majority of green tea polyphenols. Green tea polyphenolic compounds have been reported to confer several health benefits. This review describes the potential use of green tea polyphenols in the management of coronavirus disease 2019 (COVID-19). The immunomodulatory, antibacterial, antioxidant, and anti-inflammatory effects of green tea polyphenols have also been considered in this review. In addition to describing the bioactivities associated with green tea polyphenols, this review discusses the potential delivery of these biomolecules using a nanoparticle drug delivery system. Moreover, the bioavailability and toxicity of green tea polyphenols are also evaluated.
Collapse
|
9
|
Mehrbod P, Safari H, Mollai Z, Fotouhi F, Mirfakhraei Y, Entezari H, Goodarzi S, Tofighi Z. Potential antiviral effects of some native Iranian medicinal plants extracts and fractions against influenza A virus. BMC Complement Med Ther 2021; 21:246. [PMID: 34598697 PMCID: PMC8485427 DOI: 10.1186/s12906-021-03423-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 09/24/2021] [Indexed: 01/11/2023] Open
Abstract
Background Influenza A virus (IAV) infection is a continual threat to the health of animals and humans globally. Consumption of the conventional drugs has shown several side effects and drug resistance. This study was aimed to screen some Iranian medicinal plants extracts and their fractions against influenza A virus. Methods Glycyrrhiza glabra (rhizome), Myrtus commonis (leaves), Melissa officinalis (leaves), Hypericum perforatum (aerial parts), Tilia platyphyllos (flower), Salix alba (bark), and Camellia sinensis (green and fermented leaves) were extracted with 80% methanol and fractionated with chloroform and methanol, respectively. The cytotoxicity of the compounds were determined by MTT colorimetric assay on MDCK cells. The effective concentrations (EC50) of the compounds were calculated from the MTT results compared to the negative control with no significant effects on cell viability. The effects of EC50 of the compounds on viral surface glycoproteins and viral titer were tested by HI and HA virological assays, respectively and compared with oseltamivir and amantadine. Preliminary phytochemical analysis were done for promising anti-IAV extracts and fractions. Results The most effective samples against IAV titer (P ≤ 0.05) were crude extracts of G. glabra, M. officinalis and S. alba; methanol fractions of M. communis and M. officinalis; and chloroform fractions of M. communis and C. sinensis (fermented) mostly in co- and pre-penetration combined treatments. The potential extracts and fractions were rich in flavonoids, tannins, steroids and triterpenoids. Conclusion The outcomes confirmed a scientific basis for anti-influenza A virus capacity of the extracts and fractions from the selected plants for the first time, and correlated their effects with their phytochemical constituents. It is worth focusing on elucidating pure compounds and identifying their mechanism(s) of action. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03423-x.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran, Iran
| | - Hanieh Safari
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Mollai
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran, Iran
| | - Yasaman Mirfakhraei
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Entezari
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Goodarzi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahra Tofighi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. .,Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Umeda M, Tominaga T, Kozuma K, Kitazawa H, Furushima D, Hibi M, Yamada H. Preventive effects of tea and tea catechins against influenza and acute upper respiratory tract infections: a systematic review and meta-analysis. Eur J Nutr 2021; 60:4189-4202. [PMID: 34550452 PMCID: PMC8456193 DOI: 10.1007/s00394-021-02681-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/11/2021] [Indexed: 01/21/2023]
Abstract
Purpose Gargling with tea has protective effects against influenza infection and upper respiratory tract infection (URTI). To evaluate if tea and tea catechin consumption has the same protective effects as gargling with tea, we performed a systematic review and meta-analysis. Methods We performed a comprehensive literature search using the PubMed, Cochrane Library, Web of Science, and Ichu-shi Web databases. The search provided six randomized controlled trials (RCTs) and four prospective cohort studies (n = 3748). The quality of each trial or study was evaluated according to the Cochrane risk-of-bias tool or Newcastle–Ottawa Scale. We collected data from publications meeting the search criteria and conducted a meta-analysis of the effect of tea gargling and tea catechin consumption for preventing URTI using a random effects model. Results Tea gargling and tea catechin consumption had significant preventive effects against URTI (risk ratio [RR] = 0.74, 95% confidence interval [CI] 0.64–0.87). In sub-analyses, a significant preventive effect was observed by study type (prospective cohort study: RR = 0.67, 95% CI 0.50–0.91; RCT: RR = 0.79, 95% CI 0.66–0.94) and disease type (influenza: RR = 0.69, 95% CI 0.58–0.84; acute URTI: RR = 0.78, 95% CI 0.62–0.98). Both gargling with tea and consuming tea catechins effectively protected against URTI (tea and tea catechins consumption: RR = 0.68, 95% CI 0.52–0.87; tea gargling: RR = 0.83, 95% CI 0.72–0.96). Conclusion Our findings suggest that tea gargling and tea catechin consumption may have preventive effects against influenza infection and URTI. The potential effectiveness of these actions as non-pharmaceutical interventions, however, requires further investigation.
Collapse
Affiliation(s)
- Mai Umeda
- Biological Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo, 131-8501, Japan.
| | - Takeichiro Tominaga
- Department of Drug Evaluation and Informatics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Kazuya Kozuma
- Health and Wellness Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Hidefumi Kitazawa
- Biological Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Daisuke Furushima
- Department of Drug Evaluation and Informatics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Masanobu Hibi
- Biological Science Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Hiroshi Yamada
- Department of Drug Evaluation and Informatics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| |
Collapse
|
11
|
Rawangkan A, Kengkla K, Kanchanasurakit S, Duangjai A, Saokaew S. Anti-Influenza with Green Tea Catechins: A Systematic Review and Meta-Analysis. Molecules 2021; 26:molecules26134014. [PMID: 34209247 PMCID: PMC8272076 DOI: 10.3390/molecules26134014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Influenza is one of the most serious respiratory viral infections worldwide. Although several studies have reported that green tea catechins (GTCs) might prevent influenza virus infection, this remains controversial. We performed a systematic review and meta-analysis of eight studies with 5048 participants that examined the effect of GTC administration on influenza prevention. In a random-effects meta-analysis of five RCTs, 884 participants treated with GTCs showed statistically significant effects on the prevention of influenza infection compared to the control group (risk ratio (RR) 0.67, 95% CIs 0.51–0.89, p = 0.005) without evidence of heterogeneity (I2 = 0%, p = 0.629). Similarly, in three cohort studies with 2223 participants treated with GTCs, there were also statistically significant effects (RR 0.52, 95% CIs 0.35–0.77, p = 0.001) with very low evidence of heterogeneity (I2 = 3%, p = 0.358). Additionally, the overall effect in the subgroup analysis of gargling and orally ingested items (taking capsules and drinking) showed a pooled RR of 0.62 (95% CIs 0.49–0.77, p = 0.003) without heterogeneity (I2 = 0%, p = 0.554). There were no obvious publication biases (Egger’s test (p = 0.138) and Begg’s test (p = 0.103)). Our analysis suggests that green tea consumption is effective in the prophylaxis of influenza infections. To confirm the findings before implementation, longitudinal clinical trials with specific doses of green tea consumption are warranted.
Collapse
Affiliation(s)
- Anchalee Rawangkan
- School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.R.); (A.D.)
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Kirati Kengkla
- Division of Pharmacy Practice, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand; (K.K.); (S.K.)
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Sukrit Kanchanasurakit
- Division of Pharmacy Practice, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand; (K.K.); (S.K.)
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Division of Pharmaceutical Care, Department of Pharmacy, Phrae Hospital, Phrae 54000, Thailand
| | - Acharaporn Duangjai
- School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (A.R.); (A.D.)
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Surasak Saokaew
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Division of Pharmacy Practice, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand; (K.K.); (S.K.)
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Division of Pharmaceutical Care, Department of Pharmacy, Phrae Hospital, Phrae 54000, Thailand
- Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
- Correspondence: ; Tel.: +66 (0)5446 6666; Fax: +66 (0)5446 6661
| |
Collapse
|
12
|
Yang Y, Han X, Chen Y, Wu J, Li M, Yang H, Xu W, Wei L. EGCG Induces Pro-inflammatory Response in Macrophages to Prevent Bacterial Infection through the 67LR/p38/JNK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5638-5651. [PMID: 33993695 DOI: 10.1021/acs.jafc.1c01353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extensive studies focused on the therapeutic efficacy of epigallocatechin-3-gallate (EGCG) against bacterial infection. However, little is known about its prophylactic efficacy against bacterial infection. Herein, we found that EGCG showed an effective prophylactic efficacy against bacterial infection with a broad spectrum, including Gram-negative, Gram-positive, and drug-resistant bacteria. Pretreatment with EGCG through intraperitoneal injection, intravenous injection, or intragastric administration significantly reduced the bacterial load, inflammatory response, and mortality in mouse abdominal infection models induced by bacterial inoculation or cecal ligation and puncture. Pretreatment with EGCG by intraperitoneal injection significantly increased the numbers of neutrophils and monocytes/macrophages in the abdominal cavity and peripheral blood of mice, and depletion of neutrophils and monocytes/macrophages by specific antibodies or chemical drugs obviously increased the bacterial load in mice. Of note, EGCG did not directly induce neutrophil and macrophage migration, and it just induced phagocyte migration in the presence of macrophages in a co-cultured system, implying that EGCG-induced phagocyte migration relies on its immunoregulatory effects on macrophages. EGCG markedly induced the production of cytokines and chemokines in macrophages and mouse peritoneal lavage, including tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β), IL-6, CXC chemokine ligands 1 and 2 (CXCL1 and 2), and monocyte chemotactic protein-1 (MCP-1). EGCG significantly induced the phosphorylation of p38 and JNK mitogen-activated protein kinases (MAPKs) in macrophages, and inhibition of p38 and JNK MAPKs markedly reduced EGCG-induced chemokine and cytokine production. Anti-67-kDa laminin receptor (67LR) antibody treatment significantly reduced EGCG-induced chemokine production and p38 and JNK phosphorylation in macrophages. Together, EGCG showed an obvious prophylactic efficacy against bacterial infection by inducing a pro-inflammatory response in macrophages through the 67LR/p38/JNK signaling pathway, supporting the further development of EGCG as a potent prophylaxis for bacterial infection and providing new clues to understand the healthcare function of green tea.
Collapse
Affiliation(s)
- Yang Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoyang Han
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yue Chen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Min Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Lin Wei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
13
|
Bibi S, Sarfraz A, Mustafa G, Ahmad Z, Zeb MA, Wang YB, Khan T, Khan MS, Kamal MA, Yu H. Impact of Traditional Plants and their Secondary Metabolites in the Discovery of COVID-19 Treatment. Curr Pharm Des 2021; 27:1123-1143. [PMID: 33213320 DOI: 10.2174/1381612826666201118103416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Coronavirus Disease-2019 belongs to the family of viruses which cause serious pneumonia along with fever, breathing issues and infection of lungs, and was first reported in China and later spread worldwide. OBJECTIVE Several studies and clinical trials have been conducted to identify potential drugs and vaccines for Coronavirus Disease-2019. The present study listed natural secondary metabolites identified from plant sources with antiviral properties and could be a safer and tolerable treatment for Coronavirus Disease-2019. METHODS A comprehensive search on the reported studies was conducted using different search engines such as Google Scholar, SciFinder, Sciencedirect, Medline PubMed, and Scopus for the collection of research articles based on plant-derived secondary metabolites, herbal extracts, and traditional medicine for coronavirus infections. RESULTS Status of COVID-19 worldwide and information of important molecular targets involved in COVID- 19 are described, and through literature search, it is highlighted that numerous plant species and their extracts possess antiviral properties and are studied with respect to coronavirus treatments. Chemical information, plant source, test system type with a mechanism of action for each secondary metabolite are also mentioned in this review paper. CONCLUSION The present review has listed plants that have presented antiviral potential in the previous coronavirus pandemics and their secondary metabolites, which could be significant for the development of novel and a safer drug which could prevent and cure coronavirus infection worldwide.
Collapse
Affiliation(s)
- Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| | - Ayesha Sarfraz
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zeeshan Ahmad
- Kohsar Homeopathic Medical College, Rawalpindi, Pakistan
| | - Muhammad A Zeb
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yuan-Bing Wang
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| | - Tahir Khan
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| | - Muhammad S Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Mohammad A Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environment, Institute of Herbal Biotic Resource, Yunnan University, Kunming 650504, Yunnan, China
| |
Collapse
|
14
|
Rowaiye AB, Okpalefe OA, Onuh Adejoke O, Ogidigo JO, Hannah Oladipo O, Ogu AC, Oli AN, Olofinase S, Onyekwere O, Rabiu Abubakar A, Jahan D, Islam S, Dutta S, Haque M. Attenuating the Effects of Novel COVID-19 (SARS-CoV-2) Infection-Induced Cytokine Storm and the Implications. J Inflamm Res 2021; 14:1487-1510. [PMID: 33889008 PMCID: PMC8057798 DOI: 10.2147/jir.s301784] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic constitutes an arduous global health challenge, and the increasing number of fatalities calls for the speedy pursuit of a remedy. This review emphasizes the changing aspects of the COVID-19 disease, featuring the cytokine storm's pathological processes. Furthermore, we briefly reviewed potential therapeutic agents that may modulate and alleviate cytokine storms. The literature exploration was made using PubMed, Embase, MEDLINE, Google scholar, and China National Knowledge Infrastructure databases to retrieve the most recent literature on the etiology, diagnostic markers, and the possible prophylactic and therapeutic options for the management of cytokine storm in patients hospitalized with COVID-19 disease. The causative agent, severe acute respiratory coronavirus-2 (SARS-CoV-2), continually threatens the efficiency of the immune system of the infected individuals. As the first responder, the innate immune system provides primary protection against COVID-19, affecting the disease's progression, clinical outcome, and prognosis. Evidence suggests that the fatalities associated with COVID-19 are primarily due to hyper-inflammation and an aberrant immune function. Accordingly, the magnitude of the release of pro-inflammatory cytokines such as interleukin (IL)-1, (IL-6), and tumor necrosis alpha (TNF-α) significantly differentiate between mild and severe cases of COVID-19. The early prediction of a cytokine storm is made possible by several serum chemistry and hematological markers. The prompt use of these markers for diagnosis and the aggressive prevention and management of a cytokine release syndrome is critical in determining the level of morbidity and fatality associated with COVID-19. The prophylaxis and the rapid treatment of cytokine storm by clinicians will significantly enhance the fight against the dreaded COVID-19 disease.
Collapse
Affiliation(s)
- Adekunle Babajide Rowaiye
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | | | - Olukemi Onuh Adejoke
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Joyce Oloaigbe Ogidigo
- Bioresources Development Centre, Abuja, National Biotechnology Development Agency, Abuja, Nigeria
| | - Oluwakemi Hannah Oladipo
- Bioresources Development Centre, Ilorin, National Biotechnology Development Agency, Kwara State, Nigeria
| | - Amoge Chidinma Ogu
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Samson Olofinase
- Department of Genetics, Genomics, Bioinformatics, National Biotechnology Development Agency, Abuja, Nigeria
| | - Onyekachi Onyekwere
- Bioresources Development Centre, Ubulu-Uku, National Biotechnology Development Agency, Delta State, Nigeria
| | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, 700233, Nigeria
| | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, Gandaria, Dhaka, 1204, Bangladesh
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
15
|
El-Missiry MA, Fekri A, Kesar LA, Othman AI. Polyphenols are potential nutritional adjuvants for targeting COVID-19. Phytother Res 2020; 35:2879-2889. [PMID: 33354848 DOI: 10.1002/ptr.6992] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
The newly emerging severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) is a dangerous pathogen that causes global health problems. It causes a disease called coronavirus disease 2019 (COVID-19) with high morbidity and mortality rates. In SARS-Cov-2-infected patients, elevated oxidative stress and upsurge of inflammatory cytokines are the main pathophysiological events that contribute to the severity and progression of symptoms and death. The polyphenols are natural compounds abundant in fruits and vegetables that are characterized by their high antioxidant and anti-inflammatory effects. Polyphenols have potential as an intervention for preventing respiratory virus infection. The beneficial effects of polyphenols on COVID-19 might be due to multiple mechanisms. Polyphenols can strengthen the body's anti-inflammatory and antioxidant defenses against viral infection. Targeting virus proteins and/or blocking cellular receptors are other plausible antiviral approaches to prevent the entry of the virus and its replication in the host cells. The results on the antiviral effects of various polyphenols, especially on SARS-CoV-2, are promising. The aim of this review is to clarify the role of polyphenols in strengthening antioxidant defenses and upregulating the immune systems of COVID-19 patients and to prevent replication and spreading of the virus.
Collapse
Affiliation(s)
| | - Ahmed Fekri
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Lakshmi A Kesar
- Collage of Natural and health sciences, Zayed University, Abudhabi, UAE
| | - Azza I Othman
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
16
|
Jalali A, Dabaghian F, Akbrialiabad H, Foroughinia F, Zarshenas MM. A pharmacology-based comprehensive review on medicinal plants and phytoactive constituents possibly effective in the management of COVID-19. Phytother Res 2020; 35:1925-1938. [PMID: 33159391 DOI: 10.1002/ptr.6936] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022]
Abstract
Arisen in China, COVID-19 (SARS-CoV-II) is a novel coronavirus that has been expanding fast worldwide. Till now, no definite remedial drug or vaccine has been identified for COVID-19 treatment. Still, for a majority of infected patients, supportive therapy is the cornerstone of the management plan. To the importance of managing the COVID-19 pandemic, this article proposed to collecting capable medicinal plants and bioactive components in both treat and supportive therapy of this novel viral infection. Clinical points in the pathogenesis, symptoms, and complications of COVID-19 were considered. The effective plants and bioactives that may play a role in supportive therapy/management of COVID-19 were searched, collected through the "Scopus" database and listed in three sections. Numerous medicinal plants such as Citrus Spp., Camellia sinensis, and Glycyrrhiza glabra can interference with COVID-19 pathogenesis via inhibition of virus replication and entry to its host cells. Also, some anti-inflammatory herbal medicine such as Andrographis paniculata, Citrus spp., and Cuminum cyminum can relieve fever and cough in COVID-19 patients. Medicinal plants such as G. glabra, Thymus vulgaris, Allium sativum, Althea officinalis, and Panax ginseng may modulate the immune system and possess prevention and supportive therapy. However, more clinical data are required to confirm these hypotheses.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Dabaghian
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Akbrialiabad
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Foroughinia
- Department of Clinical Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Saeed M, Khan MS, Kamboh AA, Alagawany M, Khafaga AF, Noreldin AE, Qumar M, Safdar M, Hussain M, Abd El-Hack ME, Chao S. L-theanine: an astounding sui generis amino acid in poultry nutrition. Poult Sci 2020; 99:5625-5636. [PMID: 33142480 PMCID: PMC7647716 DOI: 10.1016/j.psj.2020.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 01/30/2023] Open
Abstract
L-theanine (γ-Glutamylethylamide) is a nonprotein water soluble amino acid (AA) mostly found in leaves of Camellia sinensis (green tea). This is a key component of green tea and is considered as the most abundant form of total AAs in green tea (i.e., about 50%). L-theanine is an exclusive taste ingredient of tea producing an attractive flavor and aroma in tea. It has biological effects such as antioxidant, growth promoter, immune booster, anti-stresser, hepatoprotective, antitumor, antiaging, antimicrobial, anti-inflammatory, and antianxiety activities that are worth noticing. It could reduce the oxidative impairment by reducing the synthesis of reactive oxygen species, oxidative parameters, and lipid damage as well as increasing the activity of antioxidant enzymes. The oral ingestion of L-theanine enhanced γδ T-cell proliferation. Therefore, it is being considered an essential compound of green tea that has the ability to improve immune function. The L-theanine can be used as a potential treatment for hepatic injury and immune-related liver diseases via the downregulation of the inflammatory response through the initiation of nitric oxide synthesis and glutathione production which are likely to be critical for the control of hepatic diseases as well as for the improvement of immune function. In addition, it could be used as a best natural feed additive with a potent antistressor by decreasing the levels of corticosterone, dopamine, and noradrenaline. After systematically reviewing the literature, it is noticed that most studies were carried out on mice, pig, human, and butterfly; while dietary supplementation studies of L-theanine in animal and poultry especially among broilers are very limited because of less awareness of this AA. So, the aim of this review is to encourage the veterinarian and poultry researchers to conduct more research at the molecular level about this AA to expose its more beneficial effects and its mechanism of absorption for potential use of this unique green tea AA in poultry nutrition.
Collapse
Affiliation(s)
- Muhammad Saeed
- Northwest A&F University, Yangling 712100, PR China; Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Muhammad Sajjad Khan
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan.
| | - Asghar Ali Kamboh
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam 70060, Pakistan
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22516, Egypt
| | - Muhammad Qumar
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Muhammad Safdar
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Mubashar Hussain
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sun Chao
- Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
18
|
Menegazzi M, Campagnari R, Bertoldi M, Crupi R, Di Paola R, Cuzzocrea S. Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19? Int J Mol Sci 2020; 21:ijms21145171. [PMID: 32708322 PMCID: PMC7404268 DOI: 10.3390/ijms21145171] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/22/2023] Open
Abstract
Some coronavirus disease 2019 (COVID-19) patients develop acute pneumonia which can result in a cytokine storm syndrome in response to Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection. The most effective anti-inflammatory drugs employed so far in severe COVID-19 belong to the cytokine-directed biological agents, widely used in the management of many autoimmune diseases. In this paper we analyze the efficacy of epigallocatechin 3-gallate (EGCG), the most abundant ingredient in green tea leaves and a well-known antioxidant, in counteracting autoimmune diseases, which are dominated by a massive cytokines production. Indeed, many studies registered that EGCG inhibits signal transducer and activator of transcription (STAT)1/3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factors, whose activities are crucial in a multiplicity of downstream pro-inflammatory signaling pathways. Importantly, the safety of EGCG/green tea extract supplementation is well documented in many clinical trials, as discussed in this review. Since EGCG can restore the natural immunological homeostasis in many different autoimmune diseases, we propose here a supplementation therapy with EGCG in COVID-19 patients. Besides some antiviral and anti-sepsis actions, the major EGCG benefits lie in its anti-fibrotic effect and in the ability to simultaneously downregulate expression and signaling of many inflammatory mediators. In conclusion, EGCG can be considered a potential safe natural supplement to counteract hyper-inflammation growing in COVID-19.
Collapse
Affiliation(s)
- Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (R.C.); (M.B.)
- Correspondence:
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (R.C.); (M.B.)
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (R.C.); (M.B.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, I-98168 Messina, Italy;
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (R.D.P.); (S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (R.D.P.); (S.C.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
19
|
Checconi P, De Angelis M, Marcocci ME, Fraternale A, Magnani M, Palamara AT, Nencioni L. Redox-Modulating Agents in the Treatment of Viral Infections. Int J Mol Sci 2020; 21:E4084. [PMID: 32521619 PMCID: PMC7312898 DOI: 10.3390/ijms21114084] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022] Open
Abstract
Viruses use cell machinery to replicate their genome and produce viral proteins. For this reason, several intracellular factors, including the redox state, might directly or indirectly affect the progression and outcome of viral infection. In physiological conditions, the redox balance between oxidant and antioxidant species is maintained by enzymatic and non-enzymatic systems, and it finely regulates several cell functions. Different viruses break this equilibrium and induce an oxidative stress that in turn facilitates specific steps of the virus lifecycle and activates an inflammatory response. In this context, many studies highlighted the importance of redox-sensitive pathways as novel cell-based targets for therapies aimed at blocking both viral replication and virus-induced inflammation. In the review, we discuss the most recent findings in this field. In particular, we describe the effects of natural or synthetic redox-modulating molecules in inhibiting DNA or RNA virus replication as well as inflammatory pathways. The importance of the antioxidant transcription factor Nrf2 is also discussed. Most of the data reported here are on influenza virus infection. We believe that this approach could be usefully applied to fight other acute respiratory viral infections characterized by a strong inflammatory response, like COVID-19.
Collapse
Affiliation(s)
- Paola Checconi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (P.C.); (A.T.P.)
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy; (A.F.); (M.M.)
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy; (A.F.); (M.M.)
| | - Anna Teresa Palamara
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (P.C.); (A.T.P.)
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| |
Collapse
|
20
|
Furushima D, Nishimura T, Takuma N, Iketani R, Mizuno T, Matsui Y, Yamaguchi T, Nakashima Y, Yamamoto S, Hibi M, Yamada H. Prevention of Acute Upper Respiratory Infections by Consumption of Catechins in Healthcare Workers: A Randomized, Placebo-Controlled Trial. Nutrients 2019; 12:nu12010004. [PMID: 31861349 PMCID: PMC7019590 DOI: 10.3390/nu12010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 01/14/2023] Open
Abstract
Catechins, phytochemicals contained mainly in green tea, exhibit antiviral activity against various acute infectious diseases experimentally. Clinical evidence supporting these effects, however, is not conclusive. We performed a placebo-controlled, single-blind, randomized control trial to evaluate the clinical effectiveness of consumption of catechins-containing beverage for preventing acute upper respiratory tract infections (URTIs). Two hundred and seventy healthcare workers were randomly allocated to high-catechin (three daily doses of 57 mg catechins and 100 mg xanthan gum), low-catechin (one daily dose of 57 mg catechins and 100 mg xanthan gum), or placebo (0 mg catechins and 100 mg xanthan gum) group. Subjects consumed a beverage with or without catechins for 12 weeks from December 2017 through February 2018. The primary endpoint was incidence of URTIs compared among groups using a time-to-event analysis. A total of 255 subjects were analyzed (placebo group n = 86, low-catechin group n = 85, high catechin group n = 84). The URTI incidence rate was 26.7% in the placebo group, 28.2% in the low-catechin group, and 13.1% in the high-catechin group (log rank test, p = 0.042). The hazard ratio (95% confidence interval (CI)) with reference to the placebo group was 1.09 (0.61-1.92) in the low-catechin group and 0.46 (0.23-0.95) in the high-catechin group. These findings suggest that catechins combined with xanthan gum protect against URTIs.
Collapse
Affiliation(s)
- Daisuke Furushima
- Department of Drug Evaluation and Informatics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (T.N.); (R.I.); (H.Y.)
- Correspondence: ; Tel./Fax: +81-54-264-5591
| | - Takuma Nishimura
- Department of Drug Evaluation and Informatics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (T.N.); (R.I.); (H.Y.)
| | | | - Ryo Iketani
- Department of Drug Evaluation and Informatics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (T.N.); (R.I.); (H.Y.)
| | - Tomohito Mizuno
- Biological Science Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan; (T.M.); (Y.M.); (M.H.)
| | - Yuji Matsui
- Biological Science Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan; (T.M.); (Y.M.); (M.H.)
| | - Tohru Yamaguchi
- Health Care Food Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan;
| | - Yu Nakashima
- Personal Healthcare Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan; (Y.N.); (S.Y.)
| | - Shinji Yamamoto
- Personal Healthcare Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan; (Y.N.); (S.Y.)
| | - Masanobu Hibi
- Biological Science Research Laboratories, Kao Corporation, Tokyo 131-8501, Japan; (T.M.); (Y.M.); (M.H.)
| | - Hiroshi Yamada
- Department of Drug Evaluation and Informatics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (T.N.); (R.I.); (H.Y.)
| |
Collapse
|
21
|
Saeed M, Yatao X, Tiantian Z, Qian R, Chao S. 16S ribosomal RNA sequencing reveals a modulation of intestinal microbiome and immune response by dietary L-theanine supplementation in broiler chickens. Poult Sci 2019; 98:842-854. [PMID: 30169691 PMCID: PMC7107316 DOI: 10.3382/ps/pey394] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
Despite the availability of abundant literature on green tea, studies on the use of L-theanine (an amino acid found only in green tea) as a feed additive in poultry especially broiler are limited. So, this study was conducted to explore the effects of L-theanine on the intestinal microbiome and immune response in a broiler. A total of 400-d-old chicks were randomly divided into four treatment groups (A, B, C, and D) using a complete randomized design. Treatments were as follows: A, control (basal diet); B, basal diet + 100 mg L-theanine/kg diet; C, basal diet + 200 mg L-theanine/kg diet; and D, basal diet + 300 mg L-theanine/kg diet. Mucosal samples from ileum and jejunum of broiler chicken were extracted at 21 and 42 d of age. Extraction of genomic DNA was followed by amplification of V3 and V4 hypervariable regions of 16S ribosomal RNA. After Illumina sequencing, results revealed that treatment with L-theanine significantly increased the population of Lactobacillus in ileum and jejunum as compared to a control group, but the higher population was observed in jejunum at both 21 and 42 d of age. The overall diversity of the jejunum microbiome in the treatment group was significantly lower than that of the ileum and control group (P < 0.05). Results of this study revealed that mRNA expression of TLRs (TLR-2 and TLR-4) and cytokines (TNF-α, IFN-γ, and IL-2) was decreased in response to treatment with L-theanine. Moreover, the negative correlation of abundance of Lactobacillus was observed with expression of IL-2 and IFN-γ in the intestine and these effects were highly significant (P < 0.01). In summary, our finding revealed that dietary supplementation of L-theanine exhibited a positive influence on intestinal bacteria by supporting beneficial microbes like Lactobacillus while decreasing harmful microbes like Clostridium.
Collapse
Affiliation(s)
- Muhammad Saeed
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, 712100, P.R China
| | - Xu Yatao
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, 712100, P.R China
| | - Zhang Tiantian
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, 712100, P.R China
| | - Ren Qian
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, 712100, P.R China
| | - Sun Chao
- College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, 712100, P.R China
| |
Collapse
|
22
|
Furushima D, Ide K, Yamada H. Effect of Tea Catechins on Influenza Infection and the Common Cold with a Focus on Epidemiological/Clinical Studies. Molecules 2018; 23:molecules23071795. [PMID: 30037024 PMCID: PMC6100025 DOI: 10.3390/molecules23071795] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 01/14/2023] Open
Abstract
Influenza and the common cold are acute infectious diseases of the respiratory tract. Influenza is a severe disease that is highly infectious and can progress to life-threating diseases such as pneumonia or encephalitis when aggravated. Due to the fact that influenza infections and common colds spread easily via droplets and contact, public prevention measures, such as hand washing and facial masks, are recommended for influenza prophylaxis. Experimental studies have reported that tea catechins inhibited influenza viral adsorption and suppressed replication and neuraminidase activity. They were also effective against some cold viruses. In addition, tea catechins enhance immunity against viral infection. Although the antiviral activity of tea catechins has been demonstrated, the clinical evidence to support their utility remains inconclusive. Since the late 1990s, several epidemiological studies have suggested that the regular consumption of green tea decreases influenza infection rates and some cold symptoms, and that gargling with tea catechin may protect against the development of influenza infection. This review briefly summarizes the effect of tea catechins on influenza infection and the common cold with a focus on epidemiological/clinical studies, and clarifies the need for further studies to confirm their clinical efficacy.
Collapse
Affiliation(s)
- Daisuke Furushima
- Department of Drug Evaluation & Informatics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8002, Japan.
| | - Kazuki Ide
- Department of Drug Evaluation & Informatics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8002, Japan.
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto 606-8501, Japan.
- Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan.
| | - Hiroshi Yamada
- Department of Drug Evaluation & Informatics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8002, Japan.
| |
Collapse
|
23
|
Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9105261. [PMID: 30105263 PMCID: PMC6076941 DOI: 10.1155/2018/9105261] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/10/2018] [Indexed: 12/19/2022]
Abstract
Green tea is one of the most popular drinks consumed worldwide. Produced mainly in Asian countries from the leaves of the Camellia sinensis plant, the potential health benefits have been widely studied. Recently, researchers have studied the ability of green tea to eradicate infectious agents and the ability to actually prevent infections. The important components in green tea that show antimicrobial properties are the catechins. The four main catechins that occur in green tea are (-)-epicatechin (EC), (-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin (EGC), and (-)-epigallocatechin-3-gallate (EGCG). Of these catechins, EGCG and EGC are found in the highest amounts in green tea and have been the subject of most of the studies. These catechins have been shown to demonstrate a variety of antimicrobial properties, both to organisms affected and in mechanisms used. Consumption of green tea has been shown to distribute these compounds and/or their metabolites throughout the body, which allows for not only the possibility of treatment of infections but also the prevention of infections.
Collapse
|
24
|
|
25
|
Isomura T, Suzuki S, Origasa H, Hosono A, Suzuki M, Sawada T, Terao S, Muto Y, Koga T. Liver-related safety assessment of green tea extracts in humans: a systematic review of randomized controlled trials. Eur J Clin Nutr 2016; 70:1221-1229. [PMID: 27188915 PMCID: PMC5193539 DOI: 10.1038/ejcn.2016.78] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 03/07/2016] [Accepted: 03/11/2016] [Indexed: 12/15/2022]
Abstract
There remain liver-related safety concerns, regarding potential hepatotoxicity in humans, induced by green tea intake, despite being supposedly beneficial. Although many randomized controlled trials (RCTs) of green tea extracts have been reported in the literature, the systematic reviews published to date were only based on subjective assessment of case reports. To more objectively examine the liver-related safety of green tea intake, we conducted a systematic review of published RCTs. A systematic literature search was conducted using three databases (PubMed, EMBASE and Cochrane Central Register of Controlled Trials) in December 2013 to identify RCTs of green tea extracts. Data on liver-related adverse events, including laboratory test abnormalities, were abstracted from the identified articles. Methodological quality of RCTs was assessed. After excluding duplicates, 561 titles and abstracts and 119 full-text articles were screened, and finally 34 trials were identified. Of these, liver-related adverse events were reported in four trials; these adverse events involved seven subjects (eight events) in the green tea intervention group and one subject (one event) in the control group. The summary odds ratio, estimated using a meta-analysis method for sparse event data, for intervention compared with placebo was 2.1 (95% confidence interval: 0.5-9.8). The few events reported in both groups were elevations of liver enzymes. Most were mild, and no serious liver-related adverse events were reported. Results of this review, although not conclusive, suggest that liver-related adverse events after intake of green tea extracts are expected to be rare.
Collapse
Affiliation(s)
- T Isomura
- Clinical Study Support Inc.,
Nagoya, Japan
- Institute of Medical Science, Tokyo
Medical University, Tokyo, Japan
- Department of Public Health, Nagoya City
University Graduate School of Medical Sciences, Nagoya,
Japan
- Division of Biostatistics and Clinical
Epidemiology, University of Toyama Graduate School of Medicine and Pharmaceutical
Sciences, Toyama, Japan
| | - S Suzuki
- Department of Public Health, Nagoya City
University Graduate School of Medical Sciences, Nagoya,
Japan
| | - H Origasa
- Division of Biostatistics and Clinical
Epidemiology, University of Toyama Graduate School of Medicine and Pharmaceutical
Sciences, Toyama, Japan
| | - A Hosono
- Department of Public Health, Nagoya City
University Graduate School of Medical Sciences, Nagoya,
Japan
| | - M Suzuki
- Clinical Study Support Inc.,
Nagoya, Japan
| | - T Sawada
- Clinical Study Support Inc.,
Nagoya, Japan
| | - S Terao
- Clinical Study Support Inc.,
Nagoya, Japan
| | - Y Muto
- Clinical Study Support Inc.,
Nagoya, Japan
| | - T Koga
- Clinical Study Support Inc.,
Nagoya, Japan
| |
Collapse
|
26
|
Somerville VS, Braakhuis AJ, Hopkins WG. Effect of Flavonoids on Upper Respiratory Tract Infections and Immune Function: A Systematic Review and Meta-Analysis. Adv Nutr 2016; 7:488-97. [PMID: 27184276 PMCID: PMC4863266 DOI: 10.3945/an.115.010538] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous research on animals indicates flavonoid compounds have immunomodulatory properties; however, human research remains inconclusive. The aim of this systematic review was to assess the efficacy of dietary flavonoids on upper respiratory tract infections (URTIs) and immune function in healthy adults. A created search strategy was run against Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE and EMBASE classic, CINAHL, and AMED. The returned studies were initially screened, and 2 reviewers independently assessed the remaining studies for eligibility against prespecified criteria. Fourteen studies, of 387 initially identified, were included in this review, and the primary outcome measure was the effect of flavonoids on URTI incidence, duration, and severity. Of the included studies, flavonoid supplementation ranged from 0.2 to 1.2 g/d. Overall, flavonoid supplementation decreased URTI incidence by 33% (95% CI: 31%, 36%) compared with control, with no apparent adverse effects. Sick-day count was decreased by 40% with flavonoid supplementation, although unclear. Differences in bio-immune markers (e.g., interleukin-6, tumor necrosis factor-α, interferon-γ, neutrophils) were trivial between the intervention and control groups during the intervention and after exercise when a postintervention exercise bout was included. These findings suggest that flavonoids are a viable supplement to decrease URTI incidence in an otherwise healthy population.
Collapse
Affiliation(s)
- Vaughan S Somerville
- Department of Nutrition and Dietetics, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand; and
| | - Andrea J Braakhuis
- Department of Nutrition and Dietetics, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand; and
| | - Will G Hopkins
- College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| |
Collapse
|
27
|
Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure–activity relationship analysis. Fitoterapia 2014; 93:47-53. [DOI: 10.1016/j.fitote.2013.12.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/07/2013] [Accepted: 12/16/2013] [Indexed: 12/22/2022]
|
28
|
Nantz MP, Rowe CA, Muller C, Creasy R, Colee J, Khoo C, Percival SS. Consumption of cranberry polyphenols enhances human γδ-T cell proliferation and reduces the number of symptoms associated with colds and influenza: a randomized, placebo-controlled intervention study. Nutr J 2013; 12:161. [PMID: 24330619 PMCID: PMC3878739 DOI: 10.1186/1475-2891-12-161] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022] Open
Abstract
Background Our main objective was to evaluate the ability of cranberry phytochemicals to modify immunity, specifically γδ-T cell proliferation, after daily consumption of a cranberry beverage, and its effect on health outcomes related to cold and influenza symptoms. Methods The study was a randomized, double-blind, placebo-controlled, parallel intervention. Subjects drank a low calorie cranberry beverage (450 ml) made with a juice-derived, powdered cranberry fraction (n = 22) or a placebo beverage (n = 23), daily, for 10 wk. PBMC were cultured for six days with autologous serum and PHA-L stimulation. Cold and influenza symptoms were self-reported. Results The proliferation index of γδ-T cells in culture was almost five times higher after 10 wk of cranberry beverage consumption (p <0.001). In the cranberry beverage group, the incidence of illness was not reduced, however significantly fewer symptoms of illness were reported (p = 0.031). Conclusions Consumption of the cranberry beverage modified the ex vivo proliferation of γδ-T cells. As these cells are located in the epithelium and serve as a first line of defense, improving their function may be related to reducing the number of symptoms associated with a cold and flu. Trial registration ClinicalTrials.gov Identifier:
NCT01398150.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Susan S Percival
- Department of Food Science & Human Nutrition, University of Florida, Box 110370, Gainesville, FL 32611, USA.
| |
Collapse
|
29
|
Review of existing experimental methods for assessing the outcome of plant food supplementation on immune function. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Skinner MA, Bentley-Hewitt K, Rosendale D, Naoko S, Pernthaner A. Effects of kiwifruit on innate and adaptive immunity and symptoms of upper respiratory tract infections. ADVANCES IN FOOD AND NUTRITION RESEARCH 2013; 68:301-320. [PMID: 23394995 DOI: 10.1016/b978-0-12-394294-4.00017-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Maintenance of an adequate and properly regulated immune system is essential for health and well-being. Components in food may modulate immune responses in a positive way (immunonutrition), and some of these components are present in kiwifruit. Kiwifruit contains vitamin C, carotenoids, polyphenols, and dietary fiber, and these are all potentially beneficial to the immune system. Research that has contributed to our understanding of the beneficial effects that kiwifruit may have on immune responses spans from in vitro studies using cell lines and human blood cells, to using animal models targeting both mucosal and systemic immunity. Some limited human intervention trials have been undertaken and are described, in which kiwifruit has been shown to influence a number of biomarkers of oxidative stress and beneficial immune responses, to reduce the incidence and severity of symptoms of upper respiratory tract infections and potentially be more beneficial than supplementation with vitamin C alone.
Collapse
Affiliation(s)
- Margot A Skinner
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
31
|
Defining the nature of human γδ T cells: a biographical sketch of the highly empathetic. Cell Mol Immunol 2012; 10:21-9. [PMID: 23085947 DOI: 10.1038/cmi.2012.44] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The elusive task of defining the character of γδ T cells has been an evolving process for immunologists since stumbling upon their existence during the molecular characterization of the α and β T cell receptor genes of their better understood brethren. Defying the categorical rules used to distinctly characterize lymphocytes as either innate or adaptive in nature, γδ T cells inhabit a hybrid world of their own. At opposing ends of the simplified spectrum of modes of antigen recognition used by lymphocytes, natural killer and αβ T cells are particularly well equipped to respond to the 'missing self' and the 'dangerous non-self', respectively. However, between these two reductive extremes, we are chronically faced with the challenge of making peace with the 'safe non-self' and dealing with the inevitable 'distressed self', and it is within this more complex realm γδ T cells excel thanks to their highly empathetic nature. This review gives an overview of the latest insights revealing the unfolding story of human γδ T cells, providing a biographical sketch of these unique lymphocytes in an attempt to capture the essence of their fundamental nature and events that influence their life trajectory. What hangs in their balance is their nuanced ability to differentiate the friends from the foe and the pathological from the benign to help us adapt swiftly and efficiently to life's many stresses.
Collapse
|
32
|
Chatterjee A, Saluja M, Agarwal G, Alam M. Green tea: A boon for periodontal and general health. J Indian Soc Periodontol 2012; 16:161-7. [PMID: 23055579 PMCID: PMC3459493 DOI: 10.4103/0972-124x.99256] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/05/2011] [Indexed: 12/02/2022] Open
Abstract
Green tea is particularly rich in health-promoting flavonoids (which account for 30% of the dry weight of a leaf), including catechins and their derivatives. The most abundant catechin in green tea is epigallocatechin-3-gallate, which is thought to play a pivotal role in the green tea's anticancer and antioxidant effects. Catechins should be considered right alongside of the better-known antioxidants like vitamins E and C as potent free radical scavengers and health-supportive for this reason. It has been suggested that green tea also promotes periodontal health by reducing inflammation, preventing bone resorption and limiting the growth of certain bacteria associated with periodontal diseases.
Collapse
Affiliation(s)
- Anirban Chatterjee
- Department of Periodontics, Institute of Dental Sciences, Bareilly, Uttar Pradesh, India
| | | | | | | |
Collapse
|
33
|
Dell’agli M, Di Lorenzo C, Badea M, Sangiovanni E, Dima L, Bosisio E, Restani P. Plant Food Supplements with Anti-Inflammatory Properties: A Systematic Review (I). Crit Rev Food Sci Nutr 2012; 53:403-13. [DOI: 10.1080/10408398.2012.682123] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mario Dell’agli
- a Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Via Balzaretti 9, 20133 , Milano , Italy
| | - Chiara Di Lorenzo
- a Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Via Balzaretti 9, 20133 , Milano , Italy
| | - Mihaela Badea
- b Faculty of Medicine , Transilvania University of Brasov, Str. Nicolae Balcescu 56 , Brasov , Romania
| | - Enrico Sangiovanni
- a Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Via Balzaretti 9, 20133 , Milano , Italy
| | - Lorena Dima
- b Faculty of Medicine , Transilvania University of Brasov, Str. Nicolae Balcescu 56 , Brasov , Romania
| | - Enrica Bosisio
- a Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Via Balzaretti 9, 20133 , Milano , Italy
| | - Patrizia Restani
- a Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Via Balzaretti 9, 20133 , Milano , Italy
| |
Collapse
|
34
|
Costa SS, Couceiro JNSS, Silva ICV, Malvar DDC, Coutinho MAS, Camargo LMM, Muzitano MF, Vanderlinde FA. Flavonoids in the therapy and prophylaxis of flu: a patent review. Expert Opin Ther Pat 2012; 22:1111-21. [PMID: 22971104 DOI: 10.1517/13543776.2012.724062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Influenza viruses are common agents of flu outbreaks, epidemics, and pandemics that have occurred through the centuries. Prevention and control of flu are of great clinical importance, since they cause serious damage to health, with a consequent impact on quality of life and economy of a country. Resistance against the current drugs justifies the development of new anti-influenza molecules. Flavonoids exhibit significant activity against flu through their anti-inflammatory and antiviral properties. The profile of these molecules makes them particularly promising as therapeutic agents against flu. AREAS COVERED This review focus on the activity of flavonoids on different influenza virus targets as well as their use in patented pharmaceutical formulations. Twenty-one patents of these compounds for prophylaxis and treatment of influenza infection are discussed. EXPERT OPINION The H1N1 influenza pandemic in 2009 resulted in a significant increase in the number of patents claiming pharmaceutical formulations for prophylaxis and treatment of flu. The research advances on flavonoids showing anti-influenza activity and the efforts made by researchers and industries consolidate the interest on new alternatives for the therapy of an infectious disease that represents a serious public health problem throughout the world.
Collapse
Affiliation(s)
- Sônia S Costa
- Núcleo de Pesquisa de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ghazi-Moghadam K, Inançlı HM, Bazazy N, Plinkert PK, Efferth T, Sertel S. Phytomedicine in otorhinolaryngology and pulmonology: clinical trials with herbal remedies. Pharmaceuticals (Basel) 2012; 5:853-74. [PMID: 24280678 PMCID: PMC3763668 DOI: 10.3390/ph5080853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/08/2012] [Indexed: 01/04/2023] Open
Abstract
Phytomedicine has become an important alternative treatment option for patients in the Western world, as they seek to be treated in a holistic and natural way after an unsatisfactory response to conventional drugs. Ever since herbal remedies have been introduced in the Western world, clinicians have raised concerns over their efficacy and possible side-effects. A PubMed (Medline) search was performed covering the last five years (01/07-04/12) and including 55 prospective clinical randomized control trials in the medical specialities Otorhinolaryngology and Pulmonology. In this review, we present evidence-based clinical data with herbal remedies and try to enlighten the question of efficacy and reliability of phytomedicine.
Collapse
Affiliation(s)
- Koosha Ghazi-Moghadam
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Nantz MP, Rowe CA, Muller CE, Creasy RA, Stanilka JM, Percival SS. Supplementation with aged garlic extract improves both NK and γδ-T cell function and reduces the severity of cold and flu symptoms: A randomized, double-blind, placebo-controlled nutrition intervention. Clin Nutr 2012; 31:337-44. [DOI: 10.1016/j.clnu.2011.11.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/30/2011] [Accepted: 11/24/2011] [Indexed: 12/14/2022]
|
37
|
Consumption of gold kiwifruit reduces severity and duration of selected upper respiratory tract infection symptoms and increases plasma vitamin C concentration in healthy older adults. Br J Nutr 2011; 108:1235-45. [PMID: 22172428 DOI: 10.1017/s0007114511006659] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the elderly, immunosenescence and malnourishment can contribute to increased risk and severity of upper respiratory tract infections (URTI). Gold kiwifruit (Actinidia chinensis 'Hort16A') contains nutrients important for immune function and mitigation of symptoms of infection, including vitamins C and E, folate, polyphenols and carotenoids. The objective of the present study was to evaluate whether regular consumption of gold kiwifruit reduces symptoms of URTI in older people, and determine the effect it has on plasma antioxidants, and markers of oxidative stress, inflammation and immune function. A total of thirty-two community-dwelling people (≥65 years) participated in a randomised crossover study, consuming the equivalent of four kiwifruit or two bananas daily for 4 weeks, with treatments separated by a 4-week washout period. Participants completed the Wisconsin Upper Respiratory Symptom Survey-21 daily, and blood samples were collected at baseline and at the end of each treatment and washout period. Gold kiwifruit did not significantly reduce the overall incidence of URTI compared with banana, but significantly reduced the severity and duration of head congestion, and the duration of sore throat. Gold kiwifruit significantly increased plasma vitamin C, α-tocopherol and lutein/zeaxanthin concentrations, and erythrocyte folate concentrations, and significantly reduced plasma lipid peroxidation. No changes to innate immune function (natural killer cell activity, phagocytosis) or inflammation markers (high-sensitivity C-reactive protein, homocysteine) were detected. Consumption of gold kiwifruit enhanced the concentrations of several dietary plasma analytes, which may contribute to reduced duration and severity of selected URTI symptoms, offering a novel tool for reducing the burden of URTI in older individuals.
Collapse
|
38
|
Park M, Yamada H, Matsushita K, Kaji S, Goto T, Okada Y, Kosuge K, Kitagawa T. Green tea consumption is inversely associated with the incidence of influenza infection among schoolchildren in a tea plantation area of Japan. J Nutr 2011; 141:1862-70. [PMID: 21832025 DOI: 10.3945/jn.110.137547] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Green tea is known to contain antiviral components that prevent influenza infection. A limited number of adult clinical studies have been undertaken, but there is a paucity of clinical evidence concerning children. We conducted an observational study to determine the association between green tea consumption and the incidence of influenza infection among schoolchildren. Anonymous questionnaire surveys were undertaken twice during the influenza season from November 2008 to February 2009 (endemic seasonal type A influenza infection); each survey was conducted for 2663 pupils across all elementary schools in Kikugawa City (a tea plantation area), Japan. Each questionnaire was completed and submitted by 2050 pupils (response rate, 77.0%; age range, 6-13 y). The adjusted OR associated with the consumption of green tea for ≥6 d/wk compared with <3 d/wk was 0.60 [(95% CI = 0.39-0.92); P = 0.02] in cases of influenza confirmed by the antigen test. Meanwhile, the adjusted OR inversely associated with the consumption of 1 cup/d to <3 cups/d (1 cup = 200 mL) and 3-5 cups/d compared with <1 cup/d were 0.62 [(95% CI = 0.41-0.95); P = 0.03] and 0.54 [(95% CI = 0.30-0.94); P = 0.03], respectively. However, there was no significant association with the consumption of >5 cups/d. Our findings thus suggest that the consumption of 1-5 cups/d of green tea may prevent influenza infection in children.
Collapse
Affiliation(s)
- Mijong Park
- Department of Drug Evaluation and Informatics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Butler LM, Wu AH. Green and black tea in relation to gynecologic cancers. Mol Nutr Food Res 2011; 55:931-40. [PMID: 21595018 DOI: 10.1002/mnfr.201100058] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/31/2011] [Accepted: 04/06/2011] [Indexed: 12/13/2022]
Abstract
SCOPE Observational studies have evaluated the relationship between green tea intake and cancers of the ovary and endometrium, but we are not aware of the published studies on green tea intake and risk of human papillomavirus (HPV)-related cancers of the cervix, vagina, or vulva. METHODS AND RESULTS A critical review of the published literature on tea intake and risk of ovarian and endometrial cancers was conducted. In meta-analyses, we report inverse associations for green tea intake and risk of ovarian cancer (odds ratio [OR]=0.66; 95% confidence interval [CI]: 0.54, 0.80), and for green tea and risk of endometrial cancer (OR=0.78, 95% CI: 0.62, 0.98). There was no association for black tea and ovarian cancer risk (OR=0.94, 95% CI: 0.87, 1.02) and a positive association with endometrial cancer risk (OR=1.20, 95% CI: 1.05, 1.38). We summarized the experimental evidence supporting the antiviral and immunomodulatory activities of green tea catechins, and results from randomized clinical trials that demonstrated green tea catechin efficacy on treatment of cervical lesions and external genital warts. CONCLUSION Observational data support a protective role of green tea on risk of ovarian and endometrial cancers. Observational data are needed to evaluate whether green tea reduces risk of human papillomavirus-related cancers.
Collapse
Affiliation(s)
- Lesley M Butler
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1681, USA.
| | | |
Collapse
|
40
|
Matsumoto K, Yamada H, Takuma N, Niino H, Sagesaka YM. Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: a randomized controlled trial. Altern Ther Health Med 2011; 11:15. [PMID: 21338496 PMCID: PMC3049752 DOI: 10.1186/1472-6882-11-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 02/21/2011] [Indexed: 12/30/2022]
Abstract
Background Experimental studies have revealed that green tea catechins and theanine prevent influenza infection, while the clinical evidence has been inconclusive. This study was conducted to determine whether taking green tea catechins and theanine can clinically prevent influenza infection. Methods Design, Setting, and Participants: A randomized, double-blind, placebo-controlled trial of 200 healthcare workers conducted for 5 months from November 9, 2009 to April 8, 2010 in three healthcare facilities for the elderly in Higashimurayama, Japan. Interventions: The catechin/theanine group received capsules including green tea catechins (378 mg/day) and theanine (210 mg/day). The control group received placebo. Main Outcome Measures: The primary outcome was the incidence of clinically defined influenza infection. Secondary outcomes were (1) laboratory-confirmed influenza with viral antigen measured by immunochromatographic assay and (2) the time for which the patient was free from clinically defined influenza infection, i.e., the period between the start of intervention and the first diagnosis of influenza infection, based on clinically defined influenza infection. Results Eligible healthcare workers (n = 197) were enrolled and randomly assigned to an intervention; 98 were allocated to receive catechin/theanine capsules and 99 to placebo. The incidence of clinically defined influenza infection was significantly lower in the catechin/theanine group (4 participants; 4.1%) compared with the placebo group (13 participants; 13.1%) (adjusted OR, 0.25; 95% CI, 0.07 to 0.76, P = 0.022). The incidence of laboratory-confirmed influenza infection was also lower in the catechin/theanine group (1 participant; 1.0%) than in the placebo group (5 participants; 5.1%), but this difference was not significant (adjusted OR, 0.17; 95% CI, 0.01 to 1.10; P = 0.112). The time for which the patient was free from clinically defined influenza infection was significantly different between the two groups (adjusted HR, 0.27; 95% CI, 0.09 to 0.84; P = 0.023). Conclusions Among healthcare workers for the elderly, taking green tea catechins and theanine may be effective prophylaxis for influenza infection. Trial Registration ClinicalTrials (NCT): NCT01008020
Collapse
|
41
|
|
42
|
|
43
|
Immune-modulating efficacy of a polyphenol-rich beverage on symptoms associated with the common cold: a double-blind, randomised, placebo-controlled, multi-centric clinical study. Br J Nutr 2010; 104:1156-64. [PMID: 20487584 DOI: 10.1017/s0007114510002047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the present study, the immune-modulating efficacy of a polyphenol-rich beverage on symptoms associated with the common cold was evaluated. For this purpose, ninety-eight patients reporting common cold symptoms that began no longer than 24 h before the study intervention were randomly assigned to consume either the test beverage or placebo twice per d for 10 d. The severity of the disease was expressed as the total score of the five cold symptoms 'general feeling of sickness', 'headache and/or joint aches', 'sore throat and/or difficulty swallowing', 'hoarseness and/or cough' and 'stuffy nose/sniffle'. Consequently, the decrease from 10.2 (sd 3.1) points at the beginning to 2.1 (sd 2.7) points by the end of the study in the verum group demonstrated a clear improvement, whereas in the placebo group only a reduction from 10.5 (sd 3.0) to 6.3 (sd 3.8) points could be observed. The mean difference between the groups (primary efficacy criterion) of 3.9 points was highly significant (P < 0.01). At the end of the study there were highly significantly (P < 0.01) more patients in the verum group complaint free than in the placebo group (secondary efficacy criterion). In addition to these self-reported values, several local findings of the physical examination were also significantly improved in the verum group.
Collapse
|
44
|
Kalus U, Kiesewetter H, Radtke H. Effect of CYSTUS052 and green tea on subjective symptoms in patients with infection of the upper respiratory tract. Phytother Res 2010; 24:96-100. [PMID: 19444821 DOI: 10.1002/ptr.2876] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Examples of medicinal herbs that have been perpetuated along several generations based simply on a folk tradition are Cistus and green tea. The principal active constituents of the genus Cistus and green tea are polyphenolic compounds. Polyphenols exhibit a wide range of antibacterial, antifungal and antiinflammatory effects. The present work aimed to investigate the clinical effect of a Cistus extract (CYSTUS052) in comparison with green tea on 300 patients with infections of the upper respiratory tract. Due to the lack of clinical study data on their efficacy in patients, this is a report of the findings of our study on the clinical efficacy of CYSTUS052 in patients with the upper respiratory tract infections (URTIs). This study observed a total of 300 patients (277 completers) treated with CYSTUS052 given in lozenges compared with treatment with an extract of green tea. The patients scored the subjective severity of target symptoms using a predefined scale. The score of subjective symptoms decreased over the course of treatment with CYSTUS052, whereas treatment with green tea resulted in a less significant decrease of symptoms. CYSTUS052 therefore proved to be an effective adjuvant for the treatment of respiratory infections.
Collapse
Affiliation(s)
- Ulrich Kalus
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | |
Collapse
|
45
|
Abstract
All nutrients play a role in maintaining the immune system and providing substrate for the response. gammadelta T cells, on the other hand, seem to have a unique response to certain dietary bioactive components found in the plant family. Although the identification of those components is not well known yet, members of the proanthocyanidin family and the anthocyanin family of compounds are candidates. Because grapes and grape products contain both of these types of compounds, I hypothesized that grapes may help maintain or support the immune response, specifically the gammadelta T cell. Data from intact animal studies show that immune function is supported by grape products. In humans, relatively little research has been conducted using the food as an intervention; however, a study currently in progress showed that Concord grape juice supported circulating gammadelta T cells and maintained immune function, whereas participants receiving the placebo juice had changes associated with reduced immunity. After an overview of immunity, this paper will focus on reviewing the literature on grapes and other food products made from grapes and their potential for interaction with the gammadelta T cell in whole-body systems.
Collapse
Affiliation(s)
- Susan S Percival
- Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
46
|
Standardized capsule of Camellia sinensis lowers cardiovascular risk factors in a randomized, double-blind, placebo-controlled study. Nutrition 2009; 25:147-54. [DOI: 10.1016/j.nut.2008.07.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 07/02/2008] [Accepted: 07/18/2008] [Indexed: 12/25/2022]
|
47
|
Bukowski JF, Percival SS. L-theanine intervention enhances human γδ T lymphocyte function. Nutr Rev 2008; 66:96-102. [DOI: 10.1111/j.1753-4887.2007.00013.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
48
|
Percival SS, Bukowski JF, Milner J. Bioactive food components that enhance gammadelta T cell function may play a role in cancer prevention. J Nutr 2008; 138:1-4. [PMID: 18156395 DOI: 10.1093/jn/138.1.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Gammadelta T cells are found largely within the epithelium and recognize antigens differently than their alphabeta T cell counterparts. TCR delta-/- knock out mice exhibit a rapid tumor onset, along with increased tumor incidence. Although limited, research demonstrates that nutrients and bioactive food components can influence gammadelta T cell cytotoxicity, cytokine secretion, and proliferative capacity, and the results are nonetheless intriguing. Among other functions, gammadelta T cells play a role in immunosurveillance against malignant cells, as shown by the T cell receptor (TCR)delta-/- knock out mice that exhibit a rapid tumor onset and increased tumor incidence. Some common dietary modifiers of gammadelta T cell numbers or activity are apple condensed tannins, dietary nucleotides, fatty acids, and dietary alkylamines. A recent clinical study demonstrated that ingesting a fruit and vegetable juice concentrate increased the number of circulating gammadelta T cells. Clinical studies also document that the oral consumption of a tea component, L-theanine, enhances gammadelta T cell proliferation and interferon-gamma secretion. The significance of these studies awaits additional examination of the influence of exposures and duration on these and other food components. Adoptive transfer and TCRdelta-/- knock out mice models should be used more extensively to determine the physiological impact of the number and activity of these cells as a function of dietary component exposures. While clarifying the diet and gammadelta T interrelationship may not be simple, the societal implications are enormous.
Collapse
Affiliation(s)
- Susan S Percival
- Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|