1
|
Kirakosyan RN, Kalasnikova EA, Bolotina EA, Saleh A, Balakina AA, Zaytseva SM. Localization of Secondary Metabolites in Relict Gymnosperms of the Genus Sequoia In Vivo and in Cell Cultures In Vitro, and the Biological Activity of Their Extracts. Life (Basel) 2024; 14:1694. [PMID: 39768400 PMCID: PMC11680049 DOI: 10.3390/life14121694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
In order to scientifically search for new sources of secondary metabolites with valuable qualities for phytopharmacognosy, tasks requiring a step-by-step solution were set. The primary task is the development of technologies for obtaining in vitro highly productive biomass of cells of relict gymnosperms of the genus Sequoia, capable of accumulating various classes of secondary metabolites. The study of the accumulation and localization of secondary metabolites allowed us to evaluate the biological activity and cytotoxicity of in vitro Sequoia cultures. In our study, histochemical methods were used to determine the localization of secondary compounds (phenolic and terpenoid in nature) in plant tissues. Secondary metabolites-polyphenols, catechins, and terpenoids-are mainly localized in the epidermal, parenchymal, and conductive tissues of Sequoia leaves and stems. In callus and suspension cultures of Sequoia, secondary metabolites were localized in cell walls and vacuoles. The mineral composition of the nutrient medium (MS and WPM), the light source (photoperiod), and the endogenous content of polyphenols in the primary explant influenced the initiation and growth characteristics of the in vitro culture of Sequoia plants. Inhibition of growth in suspension cultures on the WPM nutrient medium was noted. The cultivation of Sequoia cell lines at a 16 h photoperiod stimulated the formation of polyphenols but had a negative effect on the growth of callus cultures. Extractive substances obtained from intact and callus tissues of evergreen Sequoia demonstrate high biological (fungicidal) activity and cytotoxicity. The inhibitory effect on Fusarium oxisporum was noted when 200 mg/L of Sequoia extract was added to the nutrient medium. Extracts of redwood callus cultures were low in toxicity to normal FetMSC cells but inhibited the growth of lines of "immortal" cervical HeLa cancer cells and human glioblastoma A172. Intact tissues of Sequoia plants and cell cultures initiated from them in vitro are producers of secondary metabolites with high biological activity.
Collapse
Affiliation(s)
- Rima N. Kirakosyan
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Elena A. Kalasnikova
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Elizaveta A. Bolotina
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Abdulrahman Saleh
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Anastasiya A. Balakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science, Ac. Semenov Avenue 1, Moscow Region, Chernogolovka, Moscow 142432, Russia;
| | - Svetlana M. Zaytseva
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| |
Collapse
|
2
|
Mirmazloum I, Slavov AK, Marchev AS. The Untapped Potential of Hairy Root Cultures and Their Multiple Applications. Int J Mol Sci 2024; 25:12682. [PMID: 39684394 DOI: 10.3390/ijms252312682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Plants are rich sources of specialized metabolites, such as alkaloids, terpenes, phenolic acids, flavonoids, coumarins, and volatile oils, which provide various health benefits including anticancer, anti-inflammatory, antiaging, skin-altering, and anti-diabetic properties. However, challenges such as low and inconsistent yields, environment and geographic factors, and species-specific production of some specialized metabolites limit the supply of raw plant material for the food, cosmetic, or pharmaceutical industries. Therefore, biotechnological approaches using plant in vitro systems offer an appealing alternative for the production of biologically active metabolites. Among these, hairy root cultures induced by Rhizobium rhizogenes have firmed up their position as "green cell factories" due to their genotypic and biosynthetic stability. Hairy roots are valuable platforms for producing high-value phytomolecules at a low cost, are amenable to pathway engineering, and can be scaled up in bioreactors, making them attractive for commercialization. This review explores the potential of hairy roots for specialized metabolites biosynthesis focusing on biotechnology tools to enhance their production. Aspects of morphological peculiarities of hairy roots, the diversity of bioreactors design, and process intensification technologies for maximizing biosynthetic capacity, as well as examples of patented plant-derived (green-labeled) products produced through hairy root cultivation at lab and industrial scales, are addressed and discussed.
Collapse
Affiliation(s)
- Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Ménesi Str. 44, 1118 Budapest, Hungary
| | - Aleksandar K Slavov
- Department of Ecological Engineering, University of Food Technologies Plovdiv, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria
| | - Andrey S Marchev
- Laboratory of Eukaryotic Cell Biology, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Nomura T, Kato Y. Activation of Cryptic Secondary Metabolite Biosynthesis in Tobacco BY-2 Suspension Cells by Epigenetic Modifiers. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05096-x. [PMID: 39560887 DOI: 10.1007/s12010-024-05096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Cultured plant cells often biosynthesize secondary metabolites to a lesser extent relative to the mother plants. This phenomenon is associated with epigenetic alterations of the biosynthetic gene(s). Here we investigated the effectiveness of epigenetic modifiers, such as inhibitors of histone deacetylase (HDAC) and DNA methyltransferase (DNMT), to activate cryptic secondary metabolite biosynthesis in tobacco (Nicotiana tabacum) BY-2 cells. The BY-2 suspension cells cultured with an HDAC inhibitor, suberoyl bis-hydroxamic acid, exhibited strong biosynthesis of four compounds that were originally present at trace concentrations. The induced compounds were identified as caffeoylputrescine (1), 4-O-β-D-glucopyranosylferulic acid (2), 5-O-caffeoylquinic acid (3), and feruloylputrescine (4). Biosynthetic activation of compounds 1-4 was reproduced by two other HDAC inhibitors. Treatment of the cells with a DNMT inhibitor (zebularine) also activated the biosynthesis of compounds 1-4, but had a limited effectiveness relative to the HDAC inhibitors, indicating that histone acetylation levels are involved more than DNA methylation levels in the epigenetic regulation of the biosynthesis of compounds 1-4 in the BY-2 cells. Following our previous demonstration using cultured cells of a monocotyledonous plant, this study demonstrates the utility of epigenetic modifiers to activate cryptic secondary metabolite biosynthesis in cultured cells of a dicotyledonous plant.
Collapse
Affiliation(s)
- Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
4
|
Alsayed MF, Alodaini HA, Aziz IM, Alshalan RM, Rizwana H, Alkhelaiwi F, ALSaigh SM, Alkubaisi NA. Silver nanoparticles synthesized using aerial part of Achillea fragrantissima and evaluation of their bioactivities. Sci Rep 2024; 14:24703. [PMID: 39433875 PMCID: PMC11494013 DOI: 10.1038/s41598-024-75558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Achillea fragrantissima (A. fragrantissima), a desert plant, is used internally in Arabian traditional medicine to treat inflammatory, spasmodic gastrointestinal disorders, and hepatobiliary diseases. The study focuses on the environmentally friendly production of silver nanoparticles (AgNPs) from the water-based aerial parts of the A. fragrantissima plant and their ability to kill bacteria and cells. Ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) were used to describe the AgNPs. They were then tested for their ability to fight cancer and bacteria. A change in colour from yellow to brown and a surface plasmon resonance peak at 440 nm, seen with UV-Vis spectroscopy, showed that AgNPs had formed. In a Gas Chromatography-Mass Spectrometry (GC-MS) test of the aerial parts of A. fragrantissima, twenty bioactive components were found. These included isolongifolol and 3E,10Z-Oxacyclotrideca-3,10-diene-2,7-dione, methylbuta-1,3-dienyl)-7-oxabicyclo [4.1.0] heptan-3-ol. The extract exhibited high phenolic and flavonoid content (77.52 ± 1.46 mg GAE/g dry weight and 59 ± 2.17 mg QE/g dry weight, respectively). According to the IC50 values of 17.2 ± 1.18 and 14 ± 2.43 µg/mL, the AgNPs had a lot of power to kill cancer cells from the MCF-7 and HepG2 lines. Some genes that cause cell death (caspase-3, 8, 9, and Bax) were turned on more in the treated cells compared to the control cells that had not been treated. These genes were Bcl-xL and Bcl-2. Additionally, substantial activity against both Gram-positive bacteria and Gram-negative bacteria was found by antibacterial screening. Overall, this study underscores A. fragrantissima's diverse biological activity and its potential in drug discovery and nanomedicine, promoting the development of natural antibacterial and anticancer therapies.
Collapse
Affiliation(s)
- Mashail Fahad Alsayed
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hissah Abdulrahman Alodaini
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ibrahim M Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Rawan M Alshalan
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Fetoon Alkhelaiwi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sara Mohammed ALSaigh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, 11433, Riyadh, Saudi Arabia
| | - Noorah A Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Kazemzadeh-Beneh H, Safari E, Zaare-Nahandi F, Mahna N. The elicitation effects of diode and He-Ne laser irradiations on the alleviation of nutrient-deficiency induced damage in anthocyanin-producing red-fleshed apple cell suspension. Int J Radiat Biol 2024; 100:1579-1593. [PMID: 39259817 DOI: 10.1080/09553002.2024.2398083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE We explored the elicitation role of the laser irradiations on the alleviation of nutrient-deficiency induced damage in anthocyanin-producing red-fleshed apple cell suspension in continuous production of anthocyanin. METHODS Anthocyanin-producing red-fleshed apple cells were irradiated by 4 intensity levels of red He-Ne (RHNL) and blue diode (BDL) lasers for 20 min. RESULTS Nutrient deficiency indicated negative effect on total soluble proteins (TSP), superoxidase dismutase (SOD) activity, and total phenolics content (TPC) while it displayed a positive effect on malondialdehyde (MDA), total flavonoids content (TFC), O2-, H2O2-, and lipoxygenase (LOX) and polyphenol oxidase (PPO) activities in light controls, illustrating oxidative stress. The laser irradiations on suspension cells indicated variable effects on measured parameters and were time of growth-, levels of intensity-, and laser type-dependent. Likewise, the elicitation effects of lasers relied on a critical threshold among ROS generation and antioxidative system which determines the fate of cells against oxidative stress. The same trend was displayed by RHNL at 6.46 mWcm-2 intensity and BDL at 13.73 mWcm-2. These intensities resulted in a significant increase in SOD, APX, POD, and CAT activities and TSP, TPC, TFC, proline, and glycine betaine accumulation, while induced decrease in LOX, and PPO activities and MDA, and ROS generation, alleviating cellular injury from prolonged nutrient deficiency by diminishing lipid peroxidation and oxidative damages of cell membrane. CONCLUSION Results suggested that lasers application on mitigating nutrient deficiency stress relied on establishing a suitable balance between ROS generation and antioxidative system, which enables the nutrient-starved anthocyanin-producing cells to continuously produce anthocyanin.
Collapse
Affiliation(s)
| | - Ebrahim Safari
- Department of Atomic and Molecular Physics, University of Tabriz, Tabriz, Iran
| | | | - Nasser Mahna
- Department of Hortiscultural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
6
|
Mei X, Hua D, Liu N, Zhang L, Zhao X, Tian Y, Zhao B, Huang J, Zhang L. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae using metabolic pathway synthases from blueberry. Microb Cell Fact 2024; 23:228. [PMID: 39143478 PMCID: PMC11323355 DOI: 10.1186/s12934-024-02500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Anthocyanins are water-soluble flavonoids in plants, which give plants bright colors and are widely used as food coloring agents, nutrients, and cosmetic additives. There are several limitations for traditional techniques of collecting anthocyanins from plant tissues, including species, origin, season, and technology. The benefits of using engineering microbial production of natural products include ease of use, controllability, and high efficiency. RESULTS In this study, ten genes encoding enzymes involved in the anthocyanin biosynthetic pathway were successfully cloned from anthocyanin-rich plant materials blueberry fruit and purple round eggplant rind. The Yeast Fab Assembly technology was utilized to construct the transcriptional units of these genes under different promoters. The transcriptional units of PAL and C4H, 4CL and CHS were fused and inserted into Chr. XVI and IV of yeast strain JDY52 respectively using homologous recombination to gain Strain A. The fragments containing the transcriptional units of CHI and F3H, F3'H and DFR were inserted into Chr. III and XVI to gain Strain B1. Strain B2 has the transcriptional units of ANS and 3GT in Chr. IV. Several anthocyanidins, including cyanidin, peonidin, pelargonidin, petunidin, and malvidin, were detected by LC-MS/MS following the predicted outcomes of the de novo biosynthesis of anthocyanins in S. cerevisiae using a multi-strain co-culture technique. CONCLUSIONS We propose a novel concept for advancing the heterologous de novo anthocyanin biosynthetic pathway, as well as fundamental information and a theoretical framework for the ensuing optimization of the microbial synthesis of anthocyanins.
Collapse
Affiliation(s)
- Xuefeng Mei
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Deping Hua
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Na Liu
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Lilin Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaowen Zhao
- Novogene Bioinformatics Institute, Beijing, 100015, China
| | - Yujing Tian
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Baiping Zhao
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Jinhai Huang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China.
| | - Lei Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
7
|
K Karunakar K, Cheriyan BV, R K, M G, B A. "Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles". BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:64-79. [PMID: 39416696 PMCID: PMC11446369 DOI: 10.1016/j.biotno.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 10/19/2024]
Abstract
Nanotechnology has the advantages of enhanced bioactivity, reduced toxicity, target specificity, and sustained release and NPs can penetrate cell membranes. The small size of silver nanoparticles, AgNPs, large surface area, and unique physicochemical properties contribute to cell lysis and increased permeability of cell membranes used in the field of biomedicine. Functional precursors integrate with phytochemicals to create distinctive therapeutic properties and the stability of the nanoparticles can be enhanced by Surface coatings and encapsulation methods, The current study explores the various synthesis methods and characterization techniques of silver nanoparticles (AgNPs) and highlights their intrinsic activity in therapeutic applications, Anti-cancer activity noted at a concentration range of 5-50 μg/ml and angiogenesis is mitigated at a dosage range of 10-50 μg/ml, Diabetes is controlled within the same concentration. Wound healing is improved at concentrations of 10-50 μg/ml and with a typical range of 10-08 μg/ml for bacteria with antimicrobial capabilities. Advancement of silver nanoparticles with a focus on the future use of AgNPs-coated wound dressings and medical devices to decrease the risk of infection. Chemotherapeutic drugs can be administered by AgNPs, which reduces adverse effects and an improvement in treatment outcomes. AgNPs have been found to improve cell proliferation and differentiation, making them beneficial for tissue engineering and regenerative medicine. Our study highlights emerging patterns and developments in the field of medicine, inferring potential future paths.
Collapse
Affiliation(s)
- Karthik K Karunakar
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Binoy Varghese Cheriyan
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Krithikeshvaran R
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Gnanisha M
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| | - Abinavi B
- Department of Pharmacy Practice, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, TN, India
| |
Collapse
|
8
|
Salas-Arias K, Irías-Mata A, Sánchez-Calvo L, Brenes-Zárate MF, Abdelnour-Esquivel A, Villalta-Romero F, Calvo-Castro LA. Eliciting Polyphenols in Strawberry Leaves: Preliminary Experiments in Fragaria × ananassa cv. Festival. Molecules 2024; 29:2467. [PMID: 38893343 PMCID: PMC11173603 DOI: 10.3390/molecules29112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Polyphenols are plant secondary metabolites that function mostly as a general stress-induced protective mechanism. Polyphenols have also gained interest due to their beneficial properties for human health. Strawberry leaves represent an agro-industrial waste material with relevant bioactive polyphenol content, which could be incorporated into circular economy strategies. However, due to the low quantities of polyphenols in plants, their production needs to be improved for cost-effective applications. The objective of this research was to compare polyphenol production in strawberry (Fragaria × ananassa cv. Festival) leaves in plants grown in greenhouse conditions and plants grown in vitro, using three possible elicitor treatments (UV irradiation, cold exposure, and cysteine). General vegetative effects were morphologically evaluated, and specific polyphenolic compounds were quantified by UHPLC-DAD-MS/MS. Gallic acid was the most abundant polyphenol found in the leaves, both in vivo and in vitro. The results showed higher amounts and faster accumulation of polyphenols in the in vitro regenerated plants, highlighting the relevance of in vitro tissue culture strategies for producing compounds such as polyphenols in this species and cultivar.
Collapse
Affiliation(s)
- Karla Salas-Arias
- Doctorado en Ciencias Naturales para el Desarrollo (DOCINADE), Instituto Tecnológico de Costa Rica, Universidad Nacional, Universidad Estatal a Distancia, Cartago P.O. Box 159-7050, Costa Rica;
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica; (M.F.B.-Z.); (A.A.-E.); (F.V.-R.)
| | - Andrea Irías-Mata
- Centro para Investigaciones en Granos y Semillas, Escuela de Agronomía, Universidad de Costa Rica, San José P.O. Box 2060, Costa Rica;
| | - Laura Sánchez-Calvo
- Escuela de Ciencias Exactas y Naturales, Universidad Estatal a Distancia, San José P.O. Box 474-2050, Costa Rica;
| | - María Fernanda Brenes-Zárate
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica; (M.F.B.-Z.); (A.A.-E.); (F.V.-R.)
| | - Ana Abdelnour-Esquivel
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica; (M.F.B.-Z.); (A.A.-E.); (F.V.-R.)
| | - Fabián Villalta-Romero
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica; (M.F.B.-Z.); (A.A.-E.); (F.V.-R.)
| | - Laura A. Calvo-Castro
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica; (M.F.B.-Z.); (A.A.-E.); (F.V.-R.)
| |
Collapse
|
9
|
Wang Y, Di Z, Qin M, Qu S, Zhong W, Yuan L, Zhang J, Hibberd JM, Yu Z. Advancing Engineered Plant Living Materials through Tobacco BY-2 Cell Growth and Transfection within Tailored Granular Hydrogel Scaffolds. ACS CENTRAL SCIENCE 2024; 10:1094-1104. [PMID: 38799669 PMCID: PMC11117683 DOI: 10.1021/acscentsci.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
In this study, an innovative approach is presented in the field of engineered plant living materials (EPLMs), leveraging a sophisticated interplay between synthetic biology and engineering. We detail a 3D bioprinting technique for the precise spatial patterning and genetic transformation of the tobacco BY-2 cell line within custom-engineered granular hydrogel scaffolds. Our methodology involves the integration of biocompatible hydrogel microparticles (HMPs) primed for 3D bioprinting with Agrobacterium tumefaciens capable of plant cell transfection, serving as the backbone for the simultaneous growth and transformation of tobacco BY-2 cells. This system facilitates the concurrent growth and genetic modification of tobacco BY-2 cells within our specially designed scaffolds. These scaffolds enable the cells to develop into predefined patterns while remaining conducive to the uptake of exogenous DNA. We showcase the versatility of this technology by fabricating EPLMs with unique structural and functional properties, exemplified by EPLMs exhibiting distinct pigmentation patterns. These patterns are achieved through the integration of the betalain biosynthetic pathway into tobacco BY-2 cells. Overall, our study represents a groundbreaking shift in the convergence of materials science and plant synthetic biology, offering promising avenues for the evolution of sustainable, adaptive, and responsive living material systems.
Collapse
Affiliation(s)
- Yujie Wang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Zhengao Di
- Department
of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K.
- Earlham
Institute, Norwich Research Park, Norwich NR4 7UG, U.K.
| | - Minglang Qin
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Shenming Qu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Wenbo Zhong
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Lingfeng Yuan
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Jing Zhang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| | - Julian M. Hibberd
- Department
of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, U.K.
| | - Ziyi Yu
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
10
|
Han T, Miao G. Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites. Molecules 2024; 29:2106. [PMID: 38731602 PMCID: PMC11085123 DOI: 10.3390/molecules29092106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Diverse secondary metabolites in plants, with their rich biological activities, have long been important sources for human medicine, food additives, pesticides, etc. However, the large-scale cultivation of host plants consumes land resources and is susceptible to pest and disease problems. Additionally, the multi-step and demanding nature of chemical synthesis adds to production costs, limiting their widespread application. In vitro cultivation and the metabolic engineering of plants have significantly enhanced the synthesis of secondary metabolites with successful industrial production cases. As synthetic biology advances, more research is focusing on heterologous synthesis using microorganisms. This review provides a comprehensive comparison between these two chassis, evaluating their performance in the synthesis of various types of secondary metabolites from the perspectives of yield and strategies. It also discusses the challenges they face and offers insights into future efforts and directions.
Collapse
Affiliation(s)
- Taotao Han
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
11
|
Blando F, Mita G, Di Sansebastiano GP, Nicoletti I, Donati E. Highly Efficient Verbascoside Production from Olive ( Olea europea L. var. Cellina di Nardò) In Vitro Cell Cultures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1162-1169. [PMID: 38166105 DOI: 10.1021/acs.jafc.3c06604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Olive (Olea europea L.) is one of the oldest and most important fruit tree species cultivated in the Mediterranean region. Various plant tissues, drupes, and olive oil contain several phenolics (including verbascoside, although it is present in the plant at a low level) that are well-known for their highly beneficial effects on human health. An in vitro olive cell suspension culture (cultivar Cellina di Nardò, "CdN") was established, characterized for its growth and morphological features. Furthermore, a vital and relatively uniform population of protoplasts was generated from the olive suspension culture to investigate their cellular characteristics during growth. The polyphenolic extract of the in vitro "CdN" olive cells contained almost exclusively verbascoside, as revealed by the UPLC-ESI-MS analysis. The content of verbascoside reached up to 100 mg/g DW, with an average production rate of approximately 50 mg/g DW over one year of culture. This level of production has not been previously reported in a limited number of previous studies. This remarkable production of verbascoside was associated with an exceptionally high antioxidant capacity. The high level of verbascoside production and purity of the extract make this system a promising tool for secondary metabolite production.
Collapse
Affiliation(s)
- Federica Blando
- Istituto di Scienze delle Produzioni Alimentari (ISPA)-CNR, UO di Lecce, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italia
| | - Giovanni Mita
- Istituto di Scienze delle Produzioni Alimentari (ISPA)-CNR, UO di Lecce, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italia
| | - Gian Pietro Di Sansebastiano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, 73100 Lecce, Italia
| | - Isabella Nicoletti
- Istituto per i Sistemi Biologici (ISB)-CNR, Area Territoriale di Ricerca di Roma 1, SP35d, 9, Montelibretti, Roma 00010, Italia
| | - Enrica Donati
- Istituto per i Sistemi Biologici (ISB)-CNR, Area Territoriale di Ricerca di Roma 1, SP35d, 9, Montelibretti, Roma 00010, Italia
| |
Collapse
|
12
|
Jalota K, Sharma V, Agarwal C, Jindal S. Eco-friendly approaches to phytochemical production: elicitation and beyond. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:5. [PMID: 38195902 PMCID: PMC10776560 DOI: 10.1007/s13659-023-00419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/19/2023] [Indexed: 01/11/2024]
Abstract
Highly ameliorated phytochemicals from plants are recognized to have numerous beneficial effects on human health. However, obtaining secondary metabolites directly from wild plants is posing a great threat to endangered plant species due to their over exploitation. Moreover, due to complicated structure and stereospecificity chemical synthesis of these compounds is a troublesome procedure. As a result, sustainable and ecofriendly in vitro strategy has been adopted for phytochemicals production. But, lack of fully differentiated cells lowers down cultured cells productivity. Consequently, for enhancing yield of metabolites produced by cultured plant cells a variety of methodologies has been followed one such approach includes elicitation of culture medium that provoke stress responses in plants enhancing synthesis and storage of bioactive compounds. Nevertheless, for conclusive breakthrough in synthesizing bioactive compounds at commercial level in-depth knowledge regarding metabolic responses to elicitation in plant cell cultures is needed. However, technological advancement has led to development of molecular based approaches like metabolic engineering and synthetic biology which can serve as promising path for phytochemicals synthesis. This review article deals with classification, stimulating effect of elicitors on cultured cells, parameters of elicitors and action mechanism in plants, modern approaches like metabolic engineering for future advances.
Collapse
Affiliation(s)
- Kritika Jalota
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Vikas Sharma
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | | | - Suruchi Jindal
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
13
|
Ludwig-Müller J. Production of Plant Proteins and Peptides with Pharmacological Potential. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 188:51-81. [PMID: 38286902 DOI: 10.1007/10_2023_246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The use of plant proteins or peptides in biotechnology is based on their identification as possessing bioactive potential in plants. This is usually the case for antimicrobial, fungicidal, or insecticidal components of the plant's defense system. They function in addition to a large number of specialized metabolites. Such proteins can be classified according to their sequence, length, and structure, and this has been tried to describe for a few examples here. Even though such proteins or peptides can be induced during plant-pathogen interaction, they are still present in rather small amounts that make the system not suitable for the production in large-scale systems. Therefore, a suitable type of host needs to be identified, such as cell cultures or adult plants. Bioinformatic predictions can also be used to add to the number of bioactive sequences. Some problems that can occur in production by the plant system itself will be discussed, such as choice of promoter for gene expression, posttranslational protein modifications, protein stability, secretion of proteins, or induction by elicitors. Finally, the plant needs to be set up by biotechnological or molecular methods for production, and the product needs to be enriched or purified. In some cases of small peptides, a direct chemical synthesis might be feasible. Altogether, the process needs to be considered marketable.
Collapse
|
14
|
Sale S, Subramaniam S, Mad’ Atari MF. Trends in the Tissue Culture Techniques and the Synthesis of Bioactive Compounds in Eurycoma longifolia Jack-Current Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 13:107. [PMID: 38202415 PMCID: PMC10780575 DOI: 10.3390/plants13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Over the last two decades, there has been a concerted effort by researchers to mass propagate Eurycoma longifolia and improve the yield of its very important and sought-after anti-cancer and aphrodisiac bioactive compounds. To achieve this, various techniques have been used to mass propagate and improve the yield of these bioactive compounds in tissue cultures. These techniques include the optimization of media conditions and application of various types and combinations of plant growth regulators (PGRs). In addition, some elicitation techniques have been used to improve the synthesis of these bioactive compounds. However, in comparison with other herbal species with similar economic importance, many techniques have not been applied to E. longifolia. Adopting the most recent methodologies would ensure efficiency and sustainability in the in vitro production of bioactive compounds in E. longifolia. Therefore, in this review, we present an up-to-date record on the success stories in the tissue culture techniques and synthesis of bioactive compounds. In addition, we attempted to identify some of the missing links on the road to the effective and sustainable biotechnological utilization of this super important biological resource.
Collapse
Affiliation(s)
- Sani Sale
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown 11800, Penang, Malaysia
- Department of Botany, Gombe State University, P.M.B 127, Gombe 760214, Nigeria
| | - Sreeramanan Subramaniam
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown 11800, Penang, Malaysia
- Centre for Chemical Biology (CCB), Universiti Sains Malaysia (USM), Bayan Lepas 11900, Penang, Malaysia
- Department of Biology, Faculty of Science and Technology Universitas Airlangga, Surabaya 60115, Indonesia
| | | |
Collapse
|
15
|
Vera-Urbina JC, Sellés-Marchart S, Martínez-Márquez A, Martínez-Esteso MJ, Pedreño MA, Morante-Carriel J, Bru-Martínez R. Factors Affecting the Bioproduction of Resveratrol by Grapevine Cell Cultures under Elicitation. Biomolecules 2023; 13:1529. [PMID: 37892211 PMCID: PMC10605596 DOI: 10.3390/biom13101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Here we present a study of the characterization and optimization of the production of trans-Resveratrol (t-R) in grape (Vitis vinifera cv. Gamay) cell cultures elicited with methyl jasmonate (MeJA) and dimethyl-β-cyclodextrin (DIMEB). The aim of this study was to determine the influence of a number of factors of the grapevine cell culture on t-R production level in 250 mL shaken flasks that would enable the better control of this bioproduction system when it is upscaled to a 2 L stirred bioreactor. The factors included the optimal growth phase for elicitation, the concentration of elicitors and of biomass, the order of addition of elicitors, and the illumination regime and ageing of cells. We found out that the optimal biomass density for the production of t-R was 19% (w/v) with an optimal ratio of 0.5 g DIMEB/g biomass. The most productive concentrations of the elicitors tested were 50 mM DIMEB and 100 µM MeJA, reaching maximum values of 4.18 mg·mL-1 and 16.3 mg·g biomass-1 of t-R concentration and specific production, respectively. We found that the order of elicitor addition matters since, as compared with the simultaneous addition of both elicitors, the addition of MeJA 48 h before DIMEB results in ca. 40% less t-R production, whilst there is no significant difference when MeJA is added 48 h after DIMEB. Upon upscaling, the better conditions tested for t-R production were aeration at 1.7 vol/vol/min without agitation, 24 °C, and 30 g·L-1 sucrose, achieving production rates similar to those obtained in shaken flasks.
Collapse
Affiliation(s)
- Juan Carlos Vera-Urbina
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
| | - Susana Sellés-Marchart
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
| | - Ascensión Martínez-Márquez
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
| | - María José Martínez-Esteso
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
| | - María Angeles Pedreño
- Department of Plant Biology, Faculty of Biology, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain;
| | - Jaime Morante-Carriel
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
- Department of Plant Biotechnology, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Quevedo 120503, Ecuador
| | - Roque Bru-Martínez
- Departamento Bioquímica y Biología Molecular y Edafología y Química Agrícola, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain; (J.C.V.-U.); (S.S.-M.); (A.M.-M.); (M.J.M.-E.); (J.M.-C.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante ISABIAL-Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana FISABIO, 03010 Alicante, Spain
| |
Collapse
|
16
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
17
|
Tsipinana S, Husseiny S, Alayande KA, Raslan M, Amoo S, Adeleke R. Contribution of endophytes towards improving plant bioactive metabolites: a rescue option against red-taping of medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1248319. [PMID: 37771494 PMCID: PMC10522919 DOI: 10.3389/fpls.2023.1248319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023]
Abstract
Medicinal plants remain a valuable source for natural drug bioprospecting owing to their multi-target spectrum. However, their use as raw materials for novel drug synthesis has been greatly limited by unsustainable harvesting leading to decimation of their wild populations coupled with inherent low concentrations of constituent secondary metabolites per unit mass. Thus, adding value to the medicinal plants research dynamics calls for adequate attention. In light of this, medicinal plants harbour endophytes which are believed to be contributing towards the host plant survival and bioactive metabolites through series of physiological interference. Stimulating secondary metabolite production in medicinal plants by using endophytes as plant growth regulators has been demonstrated to be one of the most effective methods for increasing metabolite syntheses. Use of endophytes as plant growth promotors could help to ensure continuous supply of medicinal plants, and mitigate issues with fear of extinction. Endophytes minimize heavy metal toxicity in medicinal plants. It has been hypothesized that when medicinal plants are exposed to harsh conditions, associated endophytes are the primary signalling channels that induce defensive reactions. Endophytes go through different biochemical processes which lead to activation of defence mechanisms in the host plants. Thus, through signal transduction pathways, endophytic microorganisms influence genes involved in the generation of secondary metabolites by plant cells. Additionally, elucidating the role of gene clusters in production of secondary metabolites could expose factors associated with low secondary metabolites by medicinal plants. Promising endophyte strains can be manipulated for enhanced production of metabolites, hence, better probability of novel bioactive metabolites through strain improvement, mutagenesis, co-cultivation, and media adjustment.
Collapse
Affiliation(s)
- Sinawo Tsipinana
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Samah Husseiny
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Kazeem A. Alayande
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Mai Raslan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Stephen Amoo
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Agricultural Research Council – Vegetables, Industrial and Medicinal Plants, Roodeplaat, Pretoria, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
18
|
Long ZG, Le JV, Katz BB, Lopez BG, Tenenbaum ED, Semmling B, Schmidt RJ, Grün F, Butts CT, Martin RW. Spatially resolved detection of small molecules from press-dried plant tissue using MALDI imaging. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11539. [PMID: 37915436 PMCID: PMC10617318 DOI: 10.1002/aps3.11539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 11/03/2023]
Abstract
Premise Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a chemical imaging method that can visualize spatial distributions of particular molecules. Plant tissue imaging has so far mostly used cryosectioning, which can be impractical for the preparation of large-area imaging samples, such as full flower petals. Imaging unsectioned plant tissue presents its own difficulties in extracting metabolites to the surface due to the waxy cuticle. Methods We address this by using established delipidation techniques combined with a solvent vapor extraction prior to applying the matrix with many low-concentration sprays. Results Using this procedure, we imaged tissue from three different plant species (two flowers and one carnivorous plant leaf). Material factorization analysis of the resulting data reveals a wide range of plant-specific small molecules with varying degrees of localization to specific portions of the tissue samples, while facilitating detection and removal of signal from background sources. Conclusions This work demonstrates applicability of MALDI-MSI to press-dried plant samples without freezing or cryosectioning, setting the stage for spatially resolved molecule identification. Increased mass resolution and inclusion of tandem mass spectrometry are necessary next steps to allow more specific and reliable compound identification.
Collapse
Affiliation(s)
- Zane G. Long
- Department of ChemistryUniversity of CaliforniaIrvineCalifornia92697‐2025USA
| | - Jonathan V. Le
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCalifornia92697‐3900USA
| | - Benjamin B. Katz
- Department of ChemistryUniversity of CaliforniaIrvineCalifornia92697‐2025USA
| | - Belen G. Lopez
- Department of ChemistryUniversity of CaliforniaIrvineCalifornia92697‐2025USA
| | | | - Bonnie Semmling
- The Chrysler Herbarium and Mycological Collection, School of Environmental and Biological SciencesRutgers UniversityNew BrunswickNew Jersey08901USA
| | - Ryan J. Schmidt
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew Jersey08901USA
| | - Felix Grün
- Department of ChemistryUniversity of CaliforniaIrvineCalifornia92697‐2025USA
| | - Carter T. Butts
- Departments of Sociology, Statistics, Computer Science, and Electrical Engineering and Computer ScienceUniversity of CaliforniaIrvineCalifornia92697USA
| | - Rachel W. Martin
- Department of ChemistryUniversity of CaliforniaIrvineCalifornia92697‐2025USA
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCalifornia92697‐3900USA
| |
Collapse
|
19
|
Murthy HN, Joseph KS, Hahn JE, Lee HS, Paek KY, Park SY. Suspension culture of somatic embryos for the production of high-value secondary metabolites. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1153-1177. [PMID: 37829704 PMCID: PMC10564700 DOI: 10.1007/s12298-023-01365-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Secondary metabolites from plants are ubiquitous and have applications in medicines, food additives, scents, colorants, and natural pesticides. Biotechnological production of secondary metabolites that have economic benefits is an attractive alternative to conventional methods. Cell, adventitious, and hairy root suspension cultures are typically used to produce secondary metabolites. According to recent studies, somatic embryos in suspension culture are useful tools for the generation of secondary metabolites. Somatic embryogenesis is a mode of regeneration in several plant species. This review provides an update on the use of somatic embryogenesis in the production of valuable secondary metabolites. The factors influencing the generation of secondary metabolites using somatic embryos in suspension cultures, elicitation methods, and prospective applications are also discussed in this review. Graphical abstract
Collapse
Affiliation(s)
- Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad, 580003 India
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | | | - Jong-Eun Hahn
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - Han-Sol Lee
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - Kee Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - So Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644 Republic of Korea
| |
Collapse
|
20
|
Zayed A, Farag MA, Mehring A, Salem MA, Ibrahim RM, Alseekh S, Fernie AR, Ulber R. Methyl jasmonate elicitation effect on the metabolic profile of cambial meristematic cells culture derived from sweet basil (Ocimum basilicum L.) in relation to antioxidant activity: Untargeted metabolomics study in a time-based approach. PHYTOCHEMISTRY 2023; 213:113777. [PMID: 37385363 DOI: 10.1016/j.phytochem.2023.113777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/02/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
The undifferentiated cambial meristematic cell (CMC) has been recognized as a value-added production platform for plant natural products in comparison to the dedifferentiated plant cell line (DDC). In a time-based approach at 0, 24, 48, and 72 h, the present study aimed at investigating the phytochemical metabolome of methyl jasmonate (MeJA)-elicited CMC cultures derived from sweet basil (Ocimum basilicum L.), including primary and secondary metabolites analyzed using GC/TOF-MS post-silylation and RP-UPLC-C18-FT-MS/MS, respectively, as well as the analysis of aroma composition using headspace SPME-GC-MS. The results revealed a stress response in primary metabolism manifested by an increase in amino and organic acids reaching their maximum levels after 48 (1.3-fold) and 72 (1.7-fold) h, respectively. In addition, phenolic acids (e.g., sagerinic acid, rosmarinic acid, and 3-O-methylrosmarinic acid) followed by flavonoid aglycones (e.g., salvigenin and 5,6,4'-trihydroxy-7,3'-dimethoxyflavone) were the most abundant with prominent increases at 48 (1.2-fold) and 72 (2.1-fold) h, respectively. The aroma was intensified by the elicitation along the time, especially after 48 and 72 h. Furthermore, multivariate data analyses, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) confirmed elicitation effect, especially post 48 and 72 h. The study further assessed the effect of MeJA elicitation on the antioxidant and polyphenolic content. The cultures at 48 h demonstrated a significant (p < 0.05) antioxidant activity concurrently with correlation with total polyphenolic content using Pearson's correlation. Our study provides new insights to the elicitation impact on primary and secondary metabolism, in addition to aroma profile, to orchestrate the stress response and in relation to antioxidant effect.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany; Department of Pharmacognosy, College of Pharmacy, Tanta University, Elguish street, 31527, Tanta, Egypt.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562, Cairo, Egypt.
| | - Alexander Mehring
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany.
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom, 32511, Menoufia, Egypt.
| | - Rana M Ibrahim
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562, Cairo, Egypt.
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany; Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany; Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany.
| |
Collapse
|
21
|
Kakalis A, Tsekouras V, Mavrikou S, Moschopoulou G, Kintzios S, Evergetis E, Iliopoulos V, Koulocheri SD, Haroutounian SA. Farm or Lab? A Comparative Study of Oregano's Leaf and Callus Volatile Isolates Chemistry and Cytotoxicity. PLANTS (BASEL, SWITZERLAND) 2023; 12:1472. [PMID: 37050098 PMCID: PMC10096753 DOI: 10.3390/plants12071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Oregano (Origanum vulgare, Lamiaceae plant family) is a well-known aromatic herb with great commercial value, thoroughly utilized by food and pharmaceutical industries. The present work regards the comparative assessment of in vitro propagated and commercially available oregano tissue natural products. This study includes their secondary metabolites' biosynthesis, antioxidant properties, and anticancer activities. The optimization of callus induction from derived oregano leaf explants and excessive oxidative browning was performed using various plant growth regulators, light conditions, and antioxidant compounds. The determination of oregano callus volatiles against the respective molecules in maternal herbal material was performed using gas chromatography-mass spectrometry (GC/MS) analysis. In total, the presence of twenty-seven phytochemicals was revealed in both leaf and callus extracts, from which thirteen molecules were biosynthesized in both tissues studied, seven compounds were present only in callus extracts, and seven metabolites only in leaf extracts. Carvacrol and sabinene hydrate were the prevailing volatiles in all tissues exploited, along with alkanes octacosane and triacontane and the trimethylsilyl (TMS) derivative of carvacrol that were detected in significant amounts only in callus extracts. The MTT assay was employed to assess the in vitro cytotoxic properties of oregano extracts against the epithelial human breast cancer MDA-MB-231 and the human neuroblastoma SK-N-SH cell lines. The extracts displayed concentration and time-dependent responses in cell proliferation rates.
Collapse
Affiliation(s)
- Antonis Kakalis
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece
| | - Vasileios Tsekouras
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece
| | - Sofia Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece
- EU-CONEXUS European University for Smart Urban Coastal Sustainability, 020276 Bucharest, Romania
| | - Georgia Moschopoulou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece
- EU-CONEXUS European University for Smart Urban Coastal Sustainability, 020276 Bucharest, Romania
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece
- EU-CONEXUS European University for Smart Urban Coastal Sustainability, 020276 Bucharest, Romania
| | - Epameinondas Evergetis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Vasilios Iliopoulos
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
22
|
Kim JH, Han JE, Murthy HN, Kim JY, Kim MJ, Jeong TK, Park SY. Production of Secondary Metabolites from Cell Cultures of Sageretia thea (Osbeck) M.C. Johnst. Using Balloon-Type Bubble Bioreactors. PLANTS (BASEL, SWITZERLAND) 2023; 12:1390. [PMID: 36987078 PMCID: PMC10054716 DOI: 10.3390/plants12061390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Sageretia thea is used in the preparation of herbal medicine in China and Korea; this plant is rich in various bioactive compounds, including phenolics and flavonoids. The objective of the current study was to enhance the production of phenolic compounds in plant cell suspension cultures of Sageretia thea. Optimum callus was induced from cotyledon explants on MS medium containing 2,4-dichlorophenoxyacetic acid (2,4-D; 0.5 mg L-1), naphthalene acetic acid (NAA, 0.5 mg L-1), kinetin (KN; 0.1 mg L-1) and sucrose (30 g L-1). Browning of callus was successfully avoided by using 200 mg L-1 ascorbic acid in the callus cultures. The elicitor effect of methyl jasmonate (MeJA), salicylic acid (SA), and sodium nitroprusside (SNP) was studied in cell suspension cultures, and the addition of 200 µM MeJA was found suitable for elicitation of phenolic accumulation in the cultured cells. Phenolic and flavonoid content and antioxidant activity were determined using 2,2 Diphenyl 1 picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethybenzothiazoline-6-sulphonic acid (ABTS), ferric reducing antioxidant power (FRAP) assays and results showed that cell cultures possessed highest phenolic and flavonoid content as well as highest DPPH, ABTS, and FRAP activities. Cell suspension cultures were established using 5 L capacity balloon-type bubble bioreactors using 2 L of MS medium 30 g L-1 sucrose and 0.5 mg L-1 2,4-D, 0.5 mg L-1 NAA, and 0.1 mg L-1 KN. The optimum yield of 230.81 g of fresh biomass and 16.48 g of dry biomass was evident after four weeks of cultures. High-pressure liquid chromatography (HPLC) analysis showed the cell biomass produced in bioreactors possessed higher concentrations of catechin hydrate, chlorogenic acid, naringenin, and other phenolic compounds.
Collapse
Affiliation(s)
- Ji-Hye Kim
- Department of Horticultural Science, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Jong-Eun Han
- Department of Horticultural Science, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Hosakatte Niranjana Murthy
- Department of Horticultural Science, Chungbuk National University, Cheongju-si 28644, Republic of Korea
- Department of Botany, Karnatak University, Dharwad 580003, India
| | - Ja-Young Kim
- Saimdang Cosmetics Co., Ltd., 143, Yangcheongsongdae-gil, Ochang-eup, Cheongwon-gu, Cheongju-si 28118, Republic of Korea (T.-K.J.)
| | - Mi-Jin Kim
- Saimdang Cosmetics Co., Ltd., 143, Yangcheongsongdae-gil, Ochang-eup, Cheongwon-gu, Cheongju-si 28118, Republic of Korea (T.-K.J.)
| | - Taek-Kyu Jeong
- Saimdang Cosmetics Co., Ltd., 143, Yangcheongsongdae-gil, Ochang-eup, Cheongwon-gu, Cheongju-si 28118, Republic of Korea (T.-K.J.)
| | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| |
Collapse
|
23
|
Saparbekova A, Kantureyeva G, Kudasova D, Konarbayeva Z, Latif A. Potential of phenolic compounds from pomegranate ( Punica granatum L.) by-product with significant antioxidant and therapeutic effects: A narrative review. Saudi J Biol Sci 2023; 30:103553. [PMID: 36632073 PMCID: PMC9827386 DOI: 10.1016/j.sjbs.2022.103553] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The wealth of epidemiological evidence in the scientific world underscores the possibility that a plant-based diet can reduce the prevalence of common diseases such as diabetes, cardiovascular disease, cancer, and stroke. The therapeutic effects of plant sources are partly explained by phenolic secondary metabolites or polyphenolic compounds. Therefore, polyphenolic compounds, which are widely distributed in plants, are of great interest for the development of effective specific drugs with antioxidant and anti-inflammatory effects. Moreover, polyphenol compounds have no harmful effects due to their natural biocompatibility and safety. Numerous studies have highlighted the potential of some industrial food wastes from plant material processing, including apple peels and mashed potatoes, grape skins, tomato and carrot peels, pomegranate peels and seeds, and many others. These byproducts are considered low-cost sources of natural biological compounds, including antioxidants, which have beneficial effects on human health. The polyphenol complex of pomegranate peel (Punica granatum L.), which makes up half of the pomegranate fruit, has more pronounced antioxidant and anti-inflammatory properties than other parts. And the most important active components of pomegranate peel, which are found only in this plant, are punicalagin, followed by ellagic acid and gallic acid. It is known that these polyphenolic compounds of pomegranate peel have the most pronounced therapeutic effect. Several studies have shown the protective effect of ellagic acid, punicalagin, against oxidative stress damage caused by free radicals. The potential of pomegranate peel as an antioxidant and therapeutic component in various biological systems is high, according to scientific sources. However, despite extensive research in recent years, a review of sources has shown that there is insufficient evidence to support the therapeutic effects of polyphenolic compounds from pomegranate peels. The role of pomegranate peel polyphenolic compounds, including flavonoids, as antioxidants in various biological systems also requires further research. Of particular importance are the mechanisms by which antioxidants influence the cellular response against oxidative stress. The purpose of this review was to report our current knowledge of plant polyphenolic compounds and their classification, and to evaluate the potential of phenolic compounds from pomegranate peels with significant antioxidant and therapeutic effects.
Collapse
Affiliation(s)
- A.A. Saparbekova
- M. Auezov South Kazakhstan University, Biotechnology department, Tauke-Chan av., 5, 486050 Shymkent, Kazakhstan
| | - G.O. Kantureyeva
- M. Auezov South Kazakhstan University, Biotechnology department, Tauke-Chan av., 5, 486050 Shymkent, Kazakhstan,Corresponding author.
| | - D.E. Kudasova
- M. Auezov South Kazakhstan University, Biotechnology department, Tauke-Chan av., 5, 486050 Shymkent, Kazakhstan
| | - Z.K. Konarbayeva
- M. Auezov South Kazakhstan University, Food Engineering department, Tauke-Chan av., 5, 486050 Shymkent, Kazakhstan
| | - A.S. Latif
- M. Auezov South Kazakhstan University, Biology and Geography Department, Tauke-Chan av., 5, 486050 Shymkent, Kazakhstan
| |
Collapse
|
24
|
Vidya Muthulakshmi M, Srinivasan A, Srivastava S. Antioxidant Green Factories: Toward Sustainable Production of Vitamin E in Plant In Vitro Cultures. ACS OMEGA 2023; 8:3586-3605. [PMID: 36743063 PMCID: PMC9893489 DOI: 10.1021/acsomega.2c05819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Vitamin E is a dietary supplement synthesized only by photosynthetic organisms and, hence, is an essential vitamin for human well-being. Because of the ever-increasing demand for natural vitamin E and limitations in existing synthesis modes, attempts to improve its yield using plant in vitro cultures have gained traction in recent years. With inflating industrial production costs, integrative approaches to conventional bioprocess optimization is the need of the hour for multifold vitamin E productivity enhancement. In this review, we briefly discuss the structure, isomers, and important metabolic routes of biosynthesis for vitamin E in plants. We then emphasize its vital role in human health and its industrial applications and highlight the market demand and supply. We illustrate the advantages of in vitro plant cell/tissue culture cultivation as an alternative to current commercial production platforms for natural vitamin E. We touch upon the conventional vitamin E metabolic pathway engineering strategies, such as single/multigene overexpression and chloroplast engineering. We highlight the recent progress in plant systems biology to rationally identify metabolic bottlenecks and knockout targets in the vitamin E biosynthetic pathway. We then discuss bioprocess optimization strategies for sustainable vitamin E production, including media/process optimization, precursor/elicitor addition, and scale-up to bioreactors. We culminate the review with a short discussion on kinetic modeling to predict vitamin E production in plant cell cultures and suggestions on sustainable green extraction methods of vitamin E for reduced environmental impact. This review will be of interest to a wider research fraternity, including those from industry and academia working in the field of plant cell biology, plant biotechnology, and bioprocess engineering for phytochemical enhancement.
Collapse
Affiliation(s)
- M. Vidya Muthulakshmi
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| | - Aparajitha Srinivasan
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| | - Smita Srivastava
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, 600 036 Tamil Nadu, India
| |
Collapse
|
25
|
Current status and future prospects in cannabinoid production through in vitro culture and synthetic biology. Biotechnol Adv 2023; 62:108074. [PMID: 36481387 DOI: 10.1016/j.biotechadv.2022.108074] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
For centuries, cannabis has been a rich source of fibrous, pharmaceutical, and recreational ingredients. Phytocannabinoids are the most important and well-known class of cannabis-derived secondary metabolites and display a broad range of health-promoting and psychoactive effects. The unique characteristics of phytocannabinoids (e.g., metabolite likeness, multi-target spectrum, and safety profile) have resulted in the development and approval of several cannabis-derived drugs. While most work has focused on the two main cannabinoids produced in the plant, over 150 unique cannabinoids have been identified. To meet the rapidly growing phytocannabinoid demand, particularly many of the minor cannabinoids found in low amounts in planta, biotechnology offers promising alternatives for biosynthesis through in vitro culture and heterologous systems. In recent years, the engineered production of phytocannabinoids has been obtained through synthetic biology both in vitro (cell suspension culture and hairy root culture) and heterologous systems. However, there are still several bottlenecks (e.g., the complexity of the cannabinoid biosynthetic pathway and optimizing the bioprocess), hampering biosynthesis and scaling up the biotechnological process. The current study reviews recent advances related to in vitro culture-mediated cannabinoid production. Additionally, an integrated overview of promising conventional approaches to cannabinoid production is presented. Progress toward cannabinoid production in heterologous systems and possible avenues for avoiding autotoxicity are also reviewed and highlighted. Machine learning is then introduced as a powerful tool to model, and optimize bioprocesses related to cannabinoid production. Finally, regulation and manipulation of the cannabinoid biosynthetic pathway using CRISPR- mediated metabolic engineering is discussed.
Collapse
|
26
|
Custódio L, Charles G, Magné C, Barba-Espín G, Piqueras A, Hernández JA, Ben Hamed K, Castañeda-Loaiza V, Fernandes E, Rodrigues MJ. Application of In Vitro Plant Tissue Culture Techniques to Halophyte Species: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 12:126. [PMID: 36616255 PMCID: PMC9824063 DOI: 10.3390/plants12010126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Halophytes are plants able to thrive in environments characterized by severe abiotic conditions, including high salinity and high light intensity, drought/flooding, and temperature fluctuations. Several species have ethnomedicinal uses, and some are currently explored as sources of food and cosmetic ingredients. Halophytes are considered important alternative cash crops to be used in sustainable saline production systems, due to their ability to grow in saline conditions where conventional glycophyte crops cannot, such as salt-affected soils and saline irrigation water. In vitro plant tissue culture (PTC) techniques have greatly contributed to industry and agriculture in the last century by exploiting the economic potential of several commercial crop plants. The application of PTC to selected halophyte species can thus contribute for developing innovative production systems and obtaining halophyte-based bioactive products. This work aimed to put together and review for the first time the most relevant information on the application of PTC to halophytes. Several protocols were established for the micropropagation of different species. Various explant types have been used as starting materials (e.g., basal shoots and nodes, cotyledons, epicotyls, inflorescence, internodal segments, leaves, roots, rhizomes, stems, shoot tips, or zygotic embryos), involving different micropropagation techniques (e.g., node culture, direct or indirect shoot neoformation, caulogenesis, somatic embryogenesis, rooting, acclimatization, germplasm conservation and cryopreservation, and callogenesis and cell suspension cultures). In vitro systems were also used to study physiological, biochemical, and molecular processes in halophytes, such as functional and salt-tolerance studies. Thus, the application of PTC to halophytes may be used to improve their controlled multiplication and the selection of desired traits for the in vitro production of plants enriched in nutritional and functional components, as well as for the study of their resistance to salt stress.
Collapse
Affiliation(s)
- Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Gilbert Charles
- Géoarchitecture Territoires, Urbanisation, Biodiversité, Environnement, Faculty of Sciences and Techniques, University of Western Brittany, 6 av. V. Le Gorgeu, CS 93837, CEDEX 3, 29238 Brest, France
| | - Christian Magné
- Géoarchitecture Territoires, Urbanisation, Biodiversité, Environnement, Faculty of Sciences and Techniques, University of Western Brittany, 6 av. V. Le Gorgeu, CS 93837, CEDEX 3, 29238 Brest, France
| | - Gregorio Barba-Espín
- Group of Fruit Trees Biotechnology, Department of Plant Breeding, CEBAS, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Abel Piqueras
- Group of Fruit Trees Biotechnology, Department of Plant Breeding, CEBAS, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - José A. Hernández
- Group of Fruit Trees Biotechnology, Department of Plant Breeding, CEBAS, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Karim Ben Hamed
- Centre of Biotechnology of Borj Cedria, Laboratory of Extremophile Plants, BP 95, Hammam-Lif 2050, Tunisia
| | - Viana Castañeda-Loaiza
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Eliana Fernandes
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Maria João Rodrigues
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
27
|
Nomura T, Yoneda A, Kato Y. BAHD acyltransferase induced by histone deacetylase inhibitor catalyzes 3-O-hydroxycinnamoylquinic acid formation in bamboo cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1266-1280. [PMID: 36305861 DOI: 10.1111/tpj.16013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Suspension-cultured cells of a bamboo species (Bambusa multiplex; Bm) produce 3-O-feruloylquinic acid (3-FQA) and 3-O-p-coumaroylquinic acid (3-pCQA) by treatment with the histone deacetylase inhibitor suberoyl bis-hydroxamic acid (SBHA). Acyltransferases catalyzing the formation of 5-O-hydroxycinnamoylquinic acid esters by transesterification from hydroxycinnamoyl-CoAs to the C-5 hydroxy group of quinic acid (hydroxycinnamoyl-CoA:quinate hydroxycinnamoyltransferase, HQT) have been identified in the biosynthesis of chlorogenic acids and monolignols; however, an HQT that catalyzes the acylation of the C-3 hydroxy group of quinic acid has not been identified previously. In the present study, we purified a native HQT from SBHA-treated Bm cells. The purified enzyme preferentially accepted feruloyl-/p-coumaroyl-CoAs as acyl-donors and quinic acid as the acyl-acceptor, and the enzyme specifically formed 3-FQA and 3-pCQA but not 5-O-hydroxycinnamoylquinic acid esters or esters with shikimic acid. A cDNA (BmHQT1) encoding this HQT was isolated. Although BmHQT1 is a phylogenetically unique member of the BAHD acyltransferase superfamily that does not cluster with other HQTs, functional characterization of the recombinant enzyme verified that BmHQT1 catalyzes the regiospecific formation of 3-O-hydroxycinnamoylquinic acid esters. Transcript levels of BmHQT1 markedly increased in Bm cells cultured in the presence of SBHA. Moreover, elevated acetylation levels of histone H3 were observed in the coding region of BmHQT1 in the presence of SBHA, indicating that the induced accumulation of 3-FQA/3-pCQA by SBHA is caused by transcriptional activation of BmHQT1 by the action of SBHA as a histone deacetylase inhibitor. The results demonstrate the utility of HDAC inhibitors for discovery of cryptic secondary metabolites and unknown biosynthetic enzymes.
Collapse
Affiliation(s)
- Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Akari Yoneda
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
28
|
Yadi M, Azizi M, Dianat-Moghadam H, Akbarzadeh A, Abyadeh M, Milani M. Antibacterial activity of green gold and silver nanoparticles using ginger root extract. Bioprocess Biosyst Eng 2022; 45:1905-1917. [PMID: 36269380 DOI: 10.1007/s00449-022-02780-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/28/2022] [Indexed: 11/27/2022]
Abstract
Recent studies demonstrated that the speed of synthesis, biocompatibility, and antimicrobial activity of gold (Au) and silver (Ag) metals is enhanced when biosynthesized in nano-sized particles. In the present study, Au- and Ag-based nanoparticles (NPs) were synthesized via a biological process using aqueous Ginger root extract and characterized by various spectroscopic methods. The NPs have hexagonal and spherical shapes. The average particle size for Au and Ag NPs was 20 and 15 nm, respectively. The dynamic light scattering (DLS) technique has shown that the zeta potential values of synthesized NPs were 4.8 and - 7.11 mv, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis of Ginger root extract revealed 25 compounds. The synthesized NPs showed significant activity against Staphylococcus aureus and Escherichia (E). coli in vitro, with IC50 and IC90 values for Au and Ag NPs, respectively, noted to be 7.5 and 7.3 µg/ml and 15 and 15.2 µg/ml for both bacterial strains. The protein leakage level was tremendous and morphological changes occurred in bacteria treated with biosynthesized NPs. These results suggest that the biosynthesized metallic NPs have the suitable potential for application as antibacterial agents with enhanced activities.
Collapse
Affiliation(s)
- Morteza Yadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Abyadeh
- Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Begum S, Jena S, Chand PK. Silver Nanocrystals Bio-Fabricated Using Rhizobium rhizogenes-Transformed In Vitro Root Extracts Demonstrate Health Proactive Properties. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Singh DP, Bisen MS, Shukla R, Prabha R, Maurya S, Reddy YS, Singh PM, Rai N, Chaubey T, Chaturvedi KK, Srivastava S, Farooqi MS, Gupta VK, Sarma BK, Rai A, Behera TK. Metabolomics-Driven Mining of Metabolite Resources: Applications and Prospects for Improving Vegetable Crops. Int J Mol Sci 2022; 23:ijms232012062. [PMID: 36292920 PMCID: PMC9603451 DOI: 10.3390/ijms232012062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Vegetable crops possess a prominent nutri-metabolite pool that not only contributes to the crop performance in the fields, but also offers nutritional security for humans. In the pursuit of identifying, quantifying and functionally characterizing the cellular metabolome pool, biomolecule separation technologies, data acquisition platforms, chemical libraries, bioinformatics tools, databases and visualization techniques have come to play significant role. High-throughput metabolomics unravels structurally diverse nutrition-rich metabolites and their entangled interactions in vegetable plants. It has helped to link identified phytometabolites with unique phenotypic traits, nutri-functional characters, defense mechanisms and crop productivity. In this study, we explore mining diverse metabolites, localizing cellular metabolic pathways, classifying functional biomolecules and establishing linkages between metabolic fluxes and genomic regulations, using comprehensive metabolomics deciphers of the plant’s performance in the environment. We discuss exemplary reports covering the implications of metabolomics, addressing metabolic changes in vegetable plants during crop domestication, stage-dependent growth, fruit development, nutri-metabolic capabilities, climatic impacts, plant-microbe-pest interactions and anthropogenic activities. Efforts leading to identify biomarker metabolites, candidate proteins and the genes responsible for plant health, defense mechanisms and nutri-rich crop produce are documented. With the insights on metabolite-QTL (mQTL) driven genetic architecture, molecular breeding in vegetable crops can be revolutionized for developing better nutritional capabilities, improved tolerance against diseases/pests and enhanced climate resilience in plants.
Collapse
Affiliation(s)
- Dhananjaya Pratap Singh
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
- Correspondence:
| | - Mansi Singh Bisen
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Renu Shukla
- Indian Council of Agricultural Research (ICAR), Krishi Bhawan, Dr. Rajendra Prasad Road, New Delhi 110001, India
| | - Ratna Prabha
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Sudarshan Maurya
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Yesaru S. Reddy
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Prabhakar Mohan Singh
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Nagendra Rai
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Tribhuwan Chaubey
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Krishna Kumar Chaturvedi
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Mohammad Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Birinchi K. Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Tusar Kanti Behera
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| |
Collapse
|
31
|
Xu S, Li G, Zhou J, Chen G, Shao J. Efficient production of anthocyanins in Saccharomyces cerevisiae by introducing anthocyanin transporter and knocking out endogenous degrading enzymes. Front Bioeng Biotechnol 2022; 10:899182. [PMID: 36061422 PMCID: PMC9437251 DOI: 10.3389/fbioe.2022.899182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Anthocyanins are natural pigments found in various plants. As multifunctional natural compounds, anthocyanins are widely used in food, pharmaceuticals, health products, and cosmetics. At present, the anthocyanins are heterologously biosynthesized in prokaryotes from flavan-3-ols, which is rather expensive. This study aimed to metabolically engineer Saccharomyces cerevisiae for anthocyanin production. Anthocyanin production has been extensively studied to understand the metabolic pathway enzymes in their natural hosts, including CHS (chalcone synthase); FLS (flavonol synthase); CHI (chalcone isomerase); F3H (flavanone 3-hydroxylase); F3′H (flavonoid 3′-hydroxylase); F3′5′H (flavonoid 3′,5′-hydroxylase); DFR (dihydroflavonol 4-reductase); ANS (anthocyanidin synthase); LAR (leucoanthocyanidin reductase); and UFGT (flavonoid 3-O-glucosyltransferase). The anthocyanin transporter MdGSTF6 was first introduced and proven to be indispensable for the biosynthesis of anthocyanins. By expressing MdGSTF6, FaDFR, PhANS0, and Dc3GT and disrupting EXG1 (the main anthocyanin-degrading enzyme), the BA-22 strain produced 261.6 mg/L (254.5 mg/L cyanidin-3-O-glucoside and 7.1 mg/L delphinidin-3-O-glucoside) anthocyanins from 2.0 g/L dihydroflavonols, which was known to be the highest titer in eukaryotes. Finally, 15.1 mg/L anthocyanins was obtained from glucose by expressing the de novo biosynthesis pathway in S. cerevisiae, which is known to be the highest de novo production. It is the first study to show that through the introduction of a plant anthocyanin transporter and knockout of a yeast endogenous anthocyanin degrading enzyme, the anthocyanin titer has been increased by more than 100 times.
Collapse
Affiliation(s)
- Sha Xu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- Zhejiang Esigma Biotechnology Company Limited, Haining, China
| | - Guangjian Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Guicai Chen
- Zhejiang Esigma Biotechnology Company Limited, Haining, China
- *Correspondence: Guicai Chen, ; Jianzhong Shao,
| | - Jianzhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Guicai Chen, ; Jianzhong Shao,
| |
Collapse
|
32
|
Almagro L, Correa-Sabater JM, Sabater-Jara AB, Pedreño MÁ. Biotechnological production of β-carotene using plant in vitro cultures. PLANTA 2022; 256:41. [PMID: 35834131 DOI: 10.1007/s00425-022-03953-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
β-carotene is biologically active compound widely distributed in plants. The use of plant in vitro cultures and genetic engineering is a promising strategy for its sustainable production. β-carotene is an orange carotenoid often found in leaves as well as in fruits, flowers, and roots. A member of the tetraterpene family, this 40-carbon isoprenoid has a conjugated double-bond structure, which is responsible for some of its most remarkable properties. In plants, β-carotene functions as an antenna pigment and antioxidant, providing protection against photooxidative damage caused by strong UV-B light. In humans, β-carotene acts as a precursor of vitamin A, prevents skin damage by solar radiation, and protects against several types of cancer such as oral, colon and prostate. Due to its wide spectrum of applications, the global market for β-carotene is expanding, and the demand can no longer be met by extraction from plant raw materials. Considerable research has been dedicated to finding more efficient production alternatives based on biotechnological systems. This review provides a detailed overview of the strategies used to increase the production of β-carotene in plant in vitro cultures, with particular focus on culture conditions, precursor feeding and elicitation, and the application of metabolic engineering.
Collapse
Affiliation(s)
- Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain.
| | - José Manuel Correa-Sabater
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Ana Belén Sabater-Jara
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - María Ángeles Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
33
|
Overcoming Metabolic Constraints in the MEP-Pathway Enrich Salvia sclarea Hairy Roots in Therapeutic Abietane Diterpenes. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abietane diterpenoids (e.g., carnosic acid, aethiopinone, 1-oxoaethiopinone, salvipisone, and ferruginol) synthesized in the roots of several Salvia species have proved to have promising biological activities, but their use on a large scale is limited by the very low content extracted from in vivo roots. In this review, we summarized our efforts and the achieved results aimed at optimizing the synthesis of these diterpenes in Salvia sclarea hairy roots by either elicitation or by modifying the expression of genes encoding enzymes of the MEP-pathway, the biosynthetic route from which they derive. Stable S. sclarea hairy roots (HRs) were treated with methyl jasmonate or coronatine, or genetically engineered, by tuning the expression of genes controlling enzymatic rate-limiting steps (DXS, DXR, GGPPS, CPPS alone or in combination), by silencing of the Ent-CPPS gene, encoding an enzyme acting at gibberellin lateral competitive route or by coordinate up-regulation of biosynthetic genes mediated by transcription factors (WRKY and MYC2). Altogether, these different approaches successfully increased the amount of abietane diterpenes in S. sclarea HRs from to 2 to 30 times over the content found in the control HR line.
Collapse
|
34
|
Krzemińska M, Owczarek A, Olszewska MA, Grzegorczyk-Karolak I. In Vitro Strategy for the Enhancement of the Production of Bioactive Polyphenols in Transformed Roots of Salvia bulleyana. Int J Mol Sci 2022; 23:ijms23147771. [PMID: 35887119 PMCID: PMC9322094 DOI: 10.3390/ijms23147771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
The underground parts of Salvia bulleyana, a rare Chinese plant species, have long been used in traditional Chinese medicine. The Rhizobium rhizogenes-transformed root culture obtained from this plant might be a promising novel source of valuable phenolics, including rosmarinic acid. The present study identifies for the first time, the optimal growth conditions of S. bulleyana hairy roots regarding production efficiency. The comprehensive optimization comprised cultivation in different basal media (B5, SH, MS, and WP) with full- and half-strength macro- and microelements, different vitamin contents (full, half, one-quarter part, and without) and sucrose concentrations (2, 3, 4, 5%), and under different light conditions: in dark, under blue LED (λ = 430 nm), red LED (λ = 670 nm), mixed blue and red LED (30%:70%), and white LED (390–670 nm). Hairy root growth and bioactive compound accumulation were also detailed every five days over the 50-day culture cycle. The optimal conditions were determined using a technique for order preference by similarity to the ideal solution (TOPSIS). The most efficient combination for root growth and polyphenol content was found to be ½SH liquid medium with half vitamin concentration and 3% sucrose when grown in the dark. The biomass yield during the growth cycle was 6.1 g (fresh weight—FW) and 0.92 g (dry weight—DW) on one Erlenmeyer flask: a 14.3-fold increase in FW and 16.1-fold increase in DW in relation to the inoculum. The highest mean total phenolic content was 93.6 mg/g DW including about 70 mg/g DW rosmarinic acid, reached on day 40 of culture; compared to roots of two-year-old plants grown under field conditions, the total phenolic acid content was four times higher and rosmarinic acid eight times higher. The obtained results place the investigated culture among the best hair root cultures for rosmarinic acid production.
Collapse
Affiliation(s)
- Marta Krzemińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (A.O.); (M.A.O.)
| | - Monika A. Olszewska
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (A.O.); (M.A.O.)
| | - Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
- Correspondence:
| |
Collapse
|
35
|
Kaňuková Š, Gubišová M, Klčová L, Mihálik D, Kraic J. Establishment of Stem Cell-like Cells of Sida hermaphrodita (L.) Rusby from Explants Containing Cambial Meristems. Int J Mol Sci 2022; 23:ijms23147644. [PMID: 35886991 PMCID: PMC9320681 DOI: 10.3390/ijms23147644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
The in vitro cultures of plant stem cells and stem cell-like cells can be established from tissues containing meristematic cells. Chemical compounds—as well as their production potential—is among the emerging topics of plant biotechnology. We induced the callus cell biomass growth and characterized the parameters indicating the presence of stem cells or stem cell-like cells. Four types of explants (stem, petiole, leaf, root) from Sida hermaphrodita (L.) Rusby and various combinations of auxins and cytokinins were tested for initiation of callus, growth of sub-cultivated callus biomass, and establishment of stem cells or stem cell-like cells. Induction of callus and its growth parameters were significantly affected both by the explant type and the combination of used plant growth hormones and regulators. The responsibility for callus initiation and growth was the highest in stem-derived explants containing cambial meristematic cells. Growth parameters of callus biomass and specific characteristics of vacuoles confirmed the presence of stem cells or stem cell-like cells in sub-cultivated callus cell biomass. Establishment of in vitro stem cell or stem cell-like cell cultures in S. hermaphrodita can lead to the development of various applications of in vitro cultivation systems as well as alternative applications of this crop.
Collapse
Affiliation(s)
- Šarlota Kaňuková
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (Š.K.); (D.M.)
| | - Marcela Gubišová
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
| | - Lenka Klčová
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
| | - Daniel Mihálik
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (Š.K.); (D.M.)
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
| | - Ján Kraic
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, 91701 Trnava, Slovakia; (Š.K.); (D.M.)
- Research Institute of Plant Production, National Agricultural and Food Centre, Bratislavská cesta 122, 92168 Piešťany, Slovakia; (M.G.); (L.K.)
- Correspondence: or ; Tel.: +421-337-947-168
| |
Collapse
|
36
|
Partap M, Warghat AR, Kumar S. Cambial meristematic cell culture: a sustainable technology toward in vitro specialized metabolites production. Crit Rev Biotechnol 2022:1-19. [PMID: 35658789 DOI: 10.1080/07388551.2022.2055995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cambial meristematic cells (CMCs) culture has received a fair share of scientific and industrial attention among the trending topics of plant cell culture, especially their potential toward secondary metabolites production. However, the conventional plant cell culture is often not commercially feasible because of difficulties associated with culture dedifferentiated cells. Several reports have been published to culture CMCs and bypass the dedifferentiation process in plant cell culture. Numerous mitochondria, multiple vacuoles, genetic stability, self-renewal, higher biomass, and stable metabolites accumulation are the characteristics features of CMCs compared with dedifferentiated cells (DDCs) culture. The CMCs culture has a broader application to produce large-scale natural compounds for: pharmaceuticals, food, and cosmetic industries. Cutting-edge progress in plant cellular and molecular biology has allowed unprecedented insights into cambial stem cell culture and its fundamental processes. Therefore, regarding sustainability and natural compound production, cambial cell culture ranks among the most vital biotechnological interventions for industrial and economic perspectives. This review highlights the recent advances in plant stem cell culture and understands the cambial cells induction and culture mechanisms that affect the growth and natural compounds production.
Collapse
Affiliation(s)
- Mahinder Partap
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish R Warghat
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
37
|
Biotechnology for micropropagation and camptothecin production in Ophiorrhiza sp. Appl Microbiol Biotechnol 2022; 106:3851-3877. [PMID: 35596786 DOI: 10.1007/s00253-022-11941-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022]
Abstract
Camptothecin (CPT) is a monoterpenoid-alkaloid, an anticancer compound from plant. Ever since its discovery in 1996 from the bark of Camptotheca acuminata, various researches have been conducted for enhancing its production. CPT has also been reported in several other species belonging to the plant families Icacinaceae, Rubiaceae, Apocynaceae, Nyssaceae, Betulaceae, Violaceae, Meliaceae, and Gelseminaceae. Out of these, Ophiorrhiza sp. (Rubiaceae) is the next possible candidate for sustainable CPT production after C. acuminata and Nothapodytes nimoonia. Various biotechnological-studies have been conducted on Ophiorrhiza sp. for searching the elite species and the most optimal strategies for CPT production. The genus Ophiorrhiza has been used as medicines for antiviral, antifungal, antimalarial, and anticancer activities. Phytochemical analysis has revealed the presence of alkaloids, flavonoids, triterpenes, and CPT from the plant. Because of the presence of CPT and its herbaceous habit, Ophiorrhiza sp. has now become a hot topic in research area. Currently, for mass production of the elite spp., tissue culture techniques have been implemented. In the past decades, several researchers have contributed on the diversity assessment, phytochemical analysis, mass production, and in vitro production of CPT in Ophiorrhiza sp. In this paper, we review the on the biotechnological strategies, optimal culture medium, micropropagation of Ophiorrhiza sp., effect of PGR on shoot formation, rhizogenesis, callus formation, and enhanced production of CPT for commercial use. KEY POINTS: • Latest literature on in vitro propagation of Ophiorrhiza sp. • Biotechnological production of camptothecin and related compounds • Optimization, elicitation, and transgenic studies in Ophiorrhiza sp.
Collapse
|
38
|
Kajiura H, Hiwasa-Tanase K, Ezura H, Fujiyama K. Effect of fruit maturation on N-glycosylation of plant-derived native and recombinant miraculin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:70-79. [PMID: 35276597 DOI: 10.1016/j.plaphy.2022.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Miracle fruit, Synsepalum dulcificum, produces a unique taste-modifying protein, miraculin (MIR), which has an attractive potential for commercial application as a novel low-calorie sweetener. To establish a stable supply system for MIR, a previous study established a platform for recombinant MIR (rMIR) production in tomato plants and demonstrated that native miraculin from miracle fruit (nMIR) and rMIR were almost identical in their protein modifications with N-glycan. However, neither N-glycosylation nor the influence of fruit maturation on the structural changes of N-glycan have been fully characterized in detail. Here, with a focus on N-glycosylation and the contribution of fruit maturation to N-glycan, we reanalyzed the N-glycosylation of the natural maturation stages of nMIR and rMIR, and then compared the N-glycan structures on MIRs prepared from the fruit at two different maturation stages. The detailed peptide mapping and N-glycosylation analysis of MIRs provided evidence that MIRs have variants, which were derived mainly from the differences in the N-glycan structure in nMIR and the N-glycosylation in rMIR and not from the cleavage of the peptide backbone. N-Glycan analysis of MIRs from the maturation stage of fruits demonstrated that N-glycan structures were similar among nMIRs and rMIRs at every maturation stage. These results indicated that the heterogeneously expressed rMIRs had the same characteristics in post-translational modifications, especially N-glycosylation and N-glycan structures, throughout the maturation stages. This study demonstrated the potential of recombinant protein expressed in tomato plants and paves the way for the commercial use of rMIR.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka, 565, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka, 565-0871, Japan.
| | - Kyoko Hiwasa-Tanase
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan; Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan; Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka, 565, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka, 565-0871, Japan; Osaka University Cooperative Research Station in Southeast Asia (OU:CRS), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
39
|
Yang S, Mi L, Wu J, Liao X, Xu Z. Strategy for anthocyanins production: From efficient green extraction to novel microbial biosynthesis. Crit Rev Food Sci Nutr 2022; 63:9409-9424. [PMID: 35486571 DOI: 10.1080/10408398.2022.2067117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins are widely distributed in nature and exhibit brilliant colors and multiple health-promoting effects; therefore, they are extensively incorporated into foods, pharmaceuticals, and cosmetic industries. Anthocyanins have been traditionally produced by plant extraction, which is characterized by high expenditure, low production rates, and rather complex processes, and hence cannot meet the increasing market demand. In addition, the emerging environmental issues resulting from traditional solvent extraction technologies necessitate a more efficient and eco-friendly alternative strategy for producing anthocyanins. This review summarizes the efficient approach for green extraction and introduces a novel strategy for microbial biosynthesis of anthocyanins, emphasizing the technological changes in production.
Collapse
Affiliation(s)
- Shini Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lu Mi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
40
|
Bano N, Fakhrah S, Mohanty CS, Bag SK. Transcriptome Meta-Analysis Associated Targeting Hub Genes and Pathways of Drought and Salt Stress Responses in Cotton ( Gossypium hirsutum): A Network Biology Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:818472. [PMID: 35548277 PMCID: PMC9083274 DOI: 10.3389/fpls.2022.818472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/21/2022] [Indexed: 06/12/2023]
Abstract
Abiotic stress tolerance is an intricate feature controlled through several genes and networks in the plant system. In abiotic stress, salt, and drought are well known to limit cotton productivity. Transcriptomics meta-analysis has arisen as a robust method to unravel the stress-responsive molecular network in crops. In order to understand drought and salt stress tolerance mechanisms, a meta-analysis of transcriptome studies is crucial. To confront these issues, here, we have given details of genes and networks associated with significant differential expression in response to salt and drought stress. The key regulatory hub genes of drought and salt stress conditions have notable associations with functional drought and salt stress-responsive (DSSR) genes. In the network study, nodulation signaling pathways 2 (NSP2), Dehydration-responsive element1 D (DRE1D), ethylene response factor (ERF61), cycling DOF factor 1 (CDF1), and tubby like protein 3 (TLP3) genes in drought and tubby like protein 1 (TLP1), thaumatin-like proteins (TLP), ethylene-responsive transcription factor ERF109 (EF109), ETS-Related transcription Factor (ELF4), and Arabidopsis thaliana homeodomain leucine-zipper gene (ATHB7) genes in salt showed the significant putative functions and pathways related to providing tolerance against drought and salt stress conditions along with the significant expression values. These outcomes provide potential candidate genes for further in-depth functional studies in cotton, which could be useful for the selection of an improved genotype of Gossypium hirsutum against drought and salt stress conditions.
Collapse
Affiliation(s)
- Nasreen Bano
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shafquat Fakhrah
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Chandra Sekhar Mohanty
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumit Kumar Bag
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
41
|
Biosynthesis and regulation of anthocyanin pathway genes. Appl Microbiol Biotechnol 2022; 106:1783-1798. [PMID: 35171341 DOI: 10.1007/s00253-022-11835-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/02/2022]
Abstract
Anthocyanins are the phenolic compounds responsible for coloring pigments in fruits and vegetables. Anthocyanins offer a wide range of health benefits to human health. Their scope has expanded dramatically in the past decade, making anthocyanin control, influx, and outflow regulation fascinating for many researchers. The main culprit is anthocyanin stability and concentration form, which demands novel ways because these are critical in the food industry. This review aims to examine anthocyanin synthesis via triggering transcription genes that code for anthocyanin-producing enzymes. The balance between production and breakdown determines anthocyanin accumulation. Thus, increasing the anthocyanin content in food requires the stability of molecules in the vacuolar lumen, the pigment fading process, and a better understanding of the mechanism. The promising option is biosynthesis by metabolically engineered microorganisms with a lot of success. This study aims to look into and evaluate the existing literature on anthocyanin production, namely the biosynthesis of anthocyanin pathway genes, production by microbial cell factories, and the regulatory factors that can modulate the production of anthocyanins. Understanding these mechanisms will provide new biotechnological approaches.Key points• Factors affecting the regulation of anthocyanins• Focus on degradation, biosynthesis pathway genes, and alternative systems for the production of anthocyanins• Microbial cell factories can be used to produce large amounts of anthocyanins.
Collapse
|
42
|
Genetic Manipulation and Bioreactor Culture of Plants as a Tool for Industry and Its Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030795. [PMID: 35164060 PMCID: PMC8840042 DOI: 10.3390/molecules27030795] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/31/2022]
Abstract
In recent years, there has been a considerable increase in interest in the use of transgenic plants as sources of valuable secondary metabolites or recombinant proteins. This has been facilitated by the advent of genetic engineering technology with the possibility for direct modification of the expression of genes related to the biosynthesis of biologically active compounds. A wide range of research projects have yielded a number of efficient plant systems that produce specific secondary metabolites or recombinant proteins. Furthermore, the use of bioreactors allows production to be increased to industrial scales, which can quickly and cheaply deliver large amounts of material in a short time. The resulting plant production systems can function as small factories, and many of them that are targeted at a specific operation have been patented. This review paper summarizes the key research in the last ten years regarding the use of transgenic plants as small, green biofactories for the bioreactor-based production of secondary metabolites and recombinant proteins; it simultaneously examines the production of metabolites and recombinant proteins on an industrial scale and presents the current state of available patents in the field.
Collapse
|
43
|
Pujari I, Thomas A, Rai PS, Satyamoorthy K, Babu VS. In vitro bioproduction and enhancement of moscatilin from a threatened tropical epiphytic orchid, Dendrobium ovatum (Willd.) Kraenzl. 3 Biotech 2021; 11:507. [PMID: 34868802 PMCID: PMC8607430 DOI: 10.1007/s13205-021-03059-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 11/07/2021] [Indexed: 12/17/2022] Open
Abstract
Moscatilin, a bibenzyl derivative (stilbenoid), mostly found in one of the largest genera of Orchidaceae; Dendrobium has many therapeutic benefits. Its function as an anticancer agent has been widely demonstrated through many research investigations. However, the compound has not been produced in vitro to date. The present study highlights the development of cultures viz., seedling generation, callus induction and callus regeneration (transformation of callus into plantlets). These cultures were devised to conserve the threatened tropical epiphytic orchid species, Dendrobium ovatum and identify their potential towards moscatilin bioproduction in vitro. Among the three culture platforms, callus-derived plantlets could yield high moscatilin when treated with l-Phenylalanine as a precursor. Tissue differentiation was found to be indispensable for the high production of this polyphenol. These cultures also offer potential commercial benefits as they can serve as appropriate platforms to decode moscatilin biosynthesis and other significant bibenzyl derivatives. Elicitors, such as chitosan, salicylic acid, and methyl jasmonate, were found, causing an enhancement in moscatilin content in the cultures. The seedlings obtained can serve towards ecorestoration and preservation of the studied species. Callogenesis was useful in plantlet regeneration, as callus-derived plantlets could be utilized for the enrichment and commercial scale-up of moscatilin-like chemicals.
Collapse
Affiliation(s)
- Ipsita Pujari
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104 India
| | - Abitha Thomas
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104 India
| | - Padmalatha S. Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Vidhu Sankar Babu
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104 India
| |
Collapse
|
44
|
García-Pérez P, Zhang L, Miras-Moreno B, Lozano-Milo E, Landin M, Lucini L, Gallego PP. The Combination of Untargeted Metabolomics and Machine Learning Predicts the Biosynthesis of Phenolic Compounds in Bryophyllum Medicinal Plants (Genus Kalanchoe). PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112430. [PMID: 34834793 PMCID: PMC8620224 DOI: 10.3390/plants10112430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Phenolic compounds constitute an important family of natural bioactive compounds responsible for the medicinal properties attributed to Bryophyllum plants (genus Kalanchoe, Crassulaceae), but their production by these medicinal plants has not been characterized to date. In this work, a combinatorial approach including plant tissue culture, untargeted metabolomics, and machine learning is proposed to unravel the critical factors behind the biosynthesis of phenolic compounds in these species. The untargeted metabolomics revealed 485 annotated compounds that were produced by three Bryophyllum species cultured in vitro in a genotype and organ-dependent manner. Neurofuzzy logic (NFL) predictive models assessed the significant influence of genotypes and organs and identified the key nutrients from culture media formulations involved in phenolic compound biosynthesis. Sulfate played a critical role in tyrosol and lignan biosynthesis, copper in phenolic acid biosynthesis, calcium in stilbene biosynthesis, and magnesium in flavanol biosynthesis. Flavonol and anthocyanin biosynthesis was not significantly affected by mineral components. As a result, a predictive biosynthetic model for all the Bryophyllum genotypes was proposed. The combination of untargeted metabolomics with machine learning provided a robust approach to achieve the phytochemical characterization of the previously unexplored species belonging to the Bryophyllum subgenus, facilitating their biotechnological exploitation as a promising source of bioactive compounds.
Collapse
Affiliation(s)
- Pascual García-Pérez
- Agrobiotech for Health Group, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.); (P.P.G.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.Z.); (B.M.-M.)
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.Z.); (B.M.-M.)
| | - Eva Lozano-Milo
- Agrobiotech for Health Group, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.); (P.P.G.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| | - Mariana Landin
- I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), E-15706 Santiago de Compostela, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.Z.); (B.M.-M.)
| | - Pedro P. Gallego
- Agrobiotech for Health Group, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.); (P.P.G.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| |
Collapse
|
45
|
Marchev AS, Vasileva LV, Amirova KM, Savova MS, Koycheva IK, Balcheva-Sivenova ZP, Vasileva SM, Georgiev MI. Rosmarinic acid - From bench to valuable applications in food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Niazian M, Sabbatini P. Traditional in vitro strategies for sustainable production of bioactive compounds and manipulation of metabolomic profile in medicinal, aromatic and ornamental plants. PLANTA 2021; 254:111. [PMID: 34718882 DOI: 10.1007/s00425-021-03771-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Precursor feeding, elicitation and culture medium parameters are traditional in vitro strategies to enhance bioactive compounds of medicinal, aromatic, and ornamental plants (MAOPs). Machine learning can help researchers find the best combination of these strategies to increase the secondary metabolites content of MAOPs. Many requirements for human life, from food, pharmaceuticals and cosmetics to clothes, fuel and building materials depend on plant-derived natural products. Essential oils, methanolic and ethanolic extracts of in vitro undifferentiated callus and organogenic cultures of medicinal, aromatic, and ornamental plants (MAOPs) contain bioactive compounds that have several applications for various industries, including food and pharmaceutical. In vitro culture systems provide opportunities to manipulate the metabolomic profile of MAOPs. Precursors feeding, elicitation and culture media optimization are the traditional strategies to enhance in vitro accumulation of favorable bioactive compounds. The stimulation of plant defense mechanisms through biotic and abiotic elicitors is a simple way to increase the production of secondary metabolites in different in vitro culture systems. Different elicitors have been applied to stimulate defense machinery and change the metabolomic profile of MAOPs in in vitro cultures. Plant growth regulators (PGRs), stress hormones, chitosan, microbial extracts and physical stresses are the most applied elicitors in this regard. Many other chemical tolerance-enhancer additives, such as melatonin and proline, have been applied along with stress response-inducing elicitors. The use of stress-inducing materials such as PEG and NaCl activates stress tolerance elicitors with the potential of increasing secondary metabolites content of MAOPs. The present study reviewed the state-of-the-art traditional in vitro strategies to manipulate bioactive compounds of MAOPs. The objective is to provide insights to researchers involved in in vitro production of plant-derived natural compounds. The present review provided a wide range of traditional strategies to increase the accumulation of valuable bioactive compounds of MAOPs in different in vitro systems. Traditional strategies are faster, simpler, and cost-effective than other biotechnology-based breeding methods such as genetic transformation, genome editing, metabolic pathways engineering, and synthetic biology. The integrate application of precursors and elicitors along with culture media optimization and the interpretation of their interactions through machine learning algorithms could provide an excellent opportunity for large-scale in vitro production of pharmaceutical bioactive compounds.
Collapse
Affiliation(s)
- Mohsen Niazian
- Field and Horticultural Crops Research Department, Kurdistan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Jam-e Jam Cross Way, P. O. Box 741, Sanandaj, Iran.
| | - Paolo Sabbatini
- Department of Horticulture, Michigan State University, Plant and Soil Sciences Building, East Lansing, MI, 48824, USA
| |
Collapse
|
47
|
Nieto-Trujillo A, Cruz-Sosa F, Luria-Pérez R, Gutiérrez-Rebolledo GA, Román-Guerrero A, Burrola-Aguilar C, Zepeda-Gómez C, Estrada-Zúñiga ME. Arnica montana Cell Culture Establishment, and Assessment of Its Cytotoxic, Antibacterial, α-Amylase Inhibitor, and Antioxidant In Vitro Bioactivities. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112300. [PMID: 34834662 PMCID: PMC8624820 DOI: 10.3390/plants10112300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/12/2023]
Abstract
Arnica montana cell suspension culture could be a sustainable source of a vegetal material producer of secondary metabolites (SMs) possessing biological effects. Different plant growth regulator concentrations (0-5 mg/L) were tested in foliar explants to induce a callus that was used to establish a cell suspension culture. Growth kinetics was carried out for 30 days. A methanolic extract obtained from biomass harvested at 30 days of growth kinetics was fractionated, and three fractions were tested for bioactivities. We induced a callus with 1 mg/L of picloram and 0.5 mg/L of kinetin in foliar explants, which allowed for the establishment of a cell suspension culture, and the latter had the highest total SMs contents at day 30. Three fractions showed differences in total SMs contents, with the highest values per gram as follows: 270 mg gallic acid equivalent for total phenolic content, 200 mg quercetin equivalent for total flavonoid content, 83 mg verbascoside equivalent for total phenolic acid content, and 396 mg parthenolide equivalent for total sesquiterpene lactone content. The best bioactivities were 2-6 µg/mL for the 50% inhibition of 2,2-diphenyl-1-picrylhydrazyl radical, 30% cellular viability of lymphoma cells at 40 µg/mL, 17% inhibition against Escherichia coli and Staphylococcus aureus at 8 µg/disk, and α-amylase inhibition at 12% with 10 µg/mL. The total SMs contents were correlated with bioactivities.
Collapse
Affiliation(s)
- Aurelio Nieto-Trujillo
- Centro de Investigación en Recursos Bióticos, Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca 50295, Mexico;
| | - Francisco Cruz-Sosa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco No 186, Leyes de Reforma 1ra Sección, Ciudad de México 09340, Mexico; (F.C.-S.); (A.R.-G.)
| | - Rosendo Luria-Pérez
- Unidad de Investigación en Enfermedades Hemato-Oncológicas, Hospital Infantil de México Federico Gómez, Dr. Márquez No 162, Col. Doctores, Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Gabriel Alfonso Gutiérrez-Rebolledo
- Laboratorio de Toxicología Productos Naturales, Academia de Toxicología, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas-Unidad Zacatenco, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico;
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Av. Ferrocarril San Rafael Atlixco No 186, Leyes de Reforma 1ra Sección, Ciudad de México 09340, Mexico; (F.C.-S.); (A.R.-G.)
| | - Cristina Burrola-Aguilar
- Centro de Investigación en Recursos Bióticos, Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca 50295, Mexico;
| | - Carmen Zepeda-Gómez
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Campus El Cerrillo, Carretera Toluca-Ixtlahuaca Km 15.5, Piedras Blancas, Toluca 50200, Mexico;
| | - María Elena Estrada-Zúñiga
- Centro de Investigación en Recursos Bióticos, Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca 50295, Mexico;
| |
Collapse
|
48
|
Gonçalves S, Mansinhos I, Rodríguez-Solana R, Pereira-Caro G, Moreno-Rojas JM, Romano A. Impact of Metallic Nanoparticles on In Vitro Culture, Phenolic Profile and Biological Activity of Two Mediterranean Lamiaceae Species: Lavandula viridis L'Hér and Thymus lotocephalus G. López and R. Morales. Molecules 2021; 26:molecules26216427. [PMID: 34770836 PMCID: PMC8587770 DOI: 10.3390/molecules26216427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Nanoparticles (NPs) recently emerged as new chemical elicitors acting as signaling agents affecting several processes in plant metabolism. The aim of this work was to investigate the impact of the addition of copper oxide (CuO), zinc oxide (ZnO) and iron oxide (Fe3O4) NPs (<100 nm) at different concentrations (1, 5 and 10 mg/L) to the culture media on several morphological, physiological and -biochemical parameters of in vitro shoot cultures of Lavandula viridis L’Hér and Thymus lotocephalus G. López and R. Morales (Lamiaceae), as well as on phenolic profile and bioactivity (antioxidant and enzyme inhibition capacities). Although some decreases in shoot number and length were observed in response to NPs, biomass production was not affected or was improved in both species. Most NPs treatments decreased total chlorophyll and carotenoid contents and increased malondialdehyde levels, an indicator of lipid peroxidation, in both species. HPLC-HR-MS analysis led to the identification of thirteen and twelve phenolic compounds, respectively, in L. viridis and T. lotocephalus extracts, being rosmarinic acid the major compound found in all the extracts. ZnO and Fe3O4 NPs induced an increase in total phenolic and rosmarinic acid contents in T. lotocephalus extracts. Additionally, some NPs treatments also increased antioxidant activity in extracts from this species and the opposite was observed for L. viridis. The capacity of the extracts to inhibit tyrosinase, acetylcholinesterase and butyrylcholinesterase enzymes was not considerably affected. Overall, NPs had a significant impact on different parameters of L. viridis and T. lotocephalus in vitro shoot cultures, although the results varied with the species and NPs type.
Collapse
Affiliation(s)
- Sandra Gonçalves
- MED-Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (I.M.); or (R.R.-S.)
- Correspondence: (S.G.); (A.R.); Tel.: +351-289800910 (A.R.)
| | - Inês Mansinhos
- MED-Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (I.M.); or (R.R.-S.)
| | - Raquel Rodríguez-Solana
- MED-Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (I.M.); or (R.R.-S.)
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain; (G.P.-C.); (J.M.M.-R.)
| | - Gema Pereira-Caro
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain; (G.P.-C.); (J.M.M.-R.)
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain; (G.P.-C.); (J.M.M.-R.)
| | - Anabela Romano
- MED-Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (I.M.); or (R.R.-S.)
- Correspondence: (S.G.); (A.R.); Tel.: +351-289800910 (A.R.)
| |
Collapse
|
49
|
Methyl Jasmonate Effect on Betulinic Acid Content and Biological Properties of Extract from Senna obtusifolia Transgenic Hairy Roots. Molecules 2021; 26:molecules26206208. [PMID: 34684788 PMCID: PMC8540613 DOI: 10.3390/molecules26206208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
It is known that Senna obtusifolia has been used in medicine since ancient times due to the content of many valuable compounds with a pro-health effect. One of them is betulinic acid, which is a pentacyclic triterpene with antimalarial, antiviral, anti-inflammatory and anticancer properties. In this work, a continuation of our previous research, an attempt was made to increase the level of betulinic acid accumulation by the cultivation of transgenic hairy roots that overexpress the squalene synthase gene in a 10 L sprinkle bioreactor with methyl jasmonate elicitation. We present that the applied strategy allowed us to increase the content of betulinic acid in hairy root cultures to the level of 48 mg/g dry weight. The obtained plant extracts showed a stronger cytotoxic effect on the U87MG glioblastoma cell line than the roots grown without elicitors. Additionally, the induction of apoptosis, reduction of mitochondrial membrane potential, chromosomal DNA fragmentation and activation of caspase cascades are demonstrated. Moreover, the tested extract showed inhibition of topoisomerase I activity.
Collapse
|
50
|
Cytokinin-Based Tissue Cultures for Stable Medicinal Plant Production: Regeneration and Phytochemical Profiling of Salvia bulleyana Shoots. Biomolecules 2021; 11:biom11101513. [PMID: 34680145 PMCID: PMC8533636 DOI: 10.3390/biom11101513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Salvia bulleyana is a rare Chinese medicinal plant that due to the presence of polyphenols lowers the risk of some chronic diseases especially those related to the cardiovascular system. The present study examines the organogenic competence of various combinations and concentrations of plant growth regulators to develop an efficient protocol for in vitro regeneration of S. bulleyana via leaf explants, maintaining the high production of active constituents. The purpose of the study was also to assess the possibilities of using a cytokinin-based regeneration to effectively produce therapeutic compounds. The adventitious shoot formation was observed through direct organogenesis on media with purine derivatives (meta-topolin, mT and benzylaminopurine, BAP), and through indirect organogenesis on media with urea derivatives (tidiazuron, TDZ and forchlorfenuron, CPPU). The highest regeneration frequency (95%) with 5.2 shoots per explant was obtained on leaves cultured on Murashige and Skoog (MS) medium containing 0.1 mg/L naphthalene-1-acetic acid (NAA) and 2 mg/L BAP. Following inter simple sequence repeat (ISSR) marker-based profiling, the obtained organogenic shoot lines revealed a similar banding pattern to the mother line, with total variability of 4.2–13.7%, indicating high level of genetic stability. The similar genetic profile of the studied lines translated into similar growth parameters. Moreover, HPLC analysis revealed no qualitative differences in the profile of bioactive metabolites; also, the total polyphenol content was similar for different lines, with the exception of the shoots obtained in the presence of CPPU that produced higher level of bioactive compounds. This is the first report of an effective and rapid in vitro organogenesis protocol for S. bulleyana, which can be efficiently employed for obtaining stable cultures rich in bioactive metabolites.
Collapse
|