1
|
Marques S, Kouba P, Legrand A, Sedlar J, Disson L, Planas-Iglesias J, Sanusi Z, Kunka A, Damborsky J, Pajdla T, Prokop Z, Mazurenko S, Sivic J, Bednar D. CoVAMPnet: Comparative Markov State Analysis for Studying Effects of Drug Candidates on Disordered Biomolecules. JACS AU 2024; 4:2228-2245. [PMID: 38938816 PMCID: PMC11200249 DOI: 10.1021/jacsau.4c00182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
Computational study of the effect of drug candidates on intrinsically disordered biomolecules is challenging due to their vast and complex conformational space. Here, we developed a comparative Markov state analysis (CoVAMPnet) framework to quantify changes in the conformational distribution and dynamics of a disordered biomolecule in the presence and absence of small organic drug candidate molecules. First, molecular dynamics trajectories are generated using enhanced sampling, in the presence and absence of small molecule drug candidates, and ensembles of soft Markov state models (MSMs) are learned for each system using unsupervised machine learning. Second, these ensembles of learned MSMs are aligned across different systems based on a solution to an optimal transport problem. Third, the directional importance of inter-residue distances for the assignment to different conformational states is assessed by a discriminative analysis of aggregated neural network gradients. This final step provides interpretability and biophysical context to the learned MSMs. We applied this novel computational framework to assess the effects of ongoing phase 3 therapeutics tramiprosate (TMP) and its metabolite 3-sulfopropanoic acid (SPA) on the disordered Aβ42 peptide involved in Alzheimer's disease. Based on adaptive sampling molecular dynamics and CoVAMPnet analysis, we observed that both TMP and SPA preserved more structured conformations of Aβ42 by interacting nonspecifically with charged residues. SPA impacted Aβ42 more than TMP, protecting α-helices and suppressing the formation of aggregation-prone β-strands. Experimental biophysical analyses showed only mild effects of TMP/SPA on Aβ42 and activity enhancement by the endogenous metabolization of TMP into SPA. Our data suggest that TMP/SPA may also target biomolecules other than Aβ peptides. The CoVAMPnet method is broadly applicable to study the effects of drug candidates on the conformational behavior of intrinsically disordered biomolecules.
Collapse
Affiliation(s)
- Sérgio
M. Marques
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Petr Kouba
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
- Faculty
of Electrical Engineering, Czech Technical
University in Prague, Technicka 2, Dejvice, Praha 6 166 27, Czech Republic
| | - Anthony Legrand
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Jiri Sedlar
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - Lucas Disson
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Zainab Sanusi
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Antonin Kunka
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Tomas Pajdla
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Stanislav Mazurenko
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Josef Sivic
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| |
Collapse
|
2
|
Zakaria N, Wan Harun WMRS, Mohammad Latif MA, Azaman SNA, Abdul Rahman MB, Faujan NH. Effects of anthocyanidins on the conformational transition of Aβ (1-42) peptide: Insights from molecular docking and molecular dynamics simulations. J Mol Graph Model 2024; 129:108732. [PMID: 38412813 DOI: 10.1016/j.jmgm.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/31/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Recent evidence from in vitro and in vivo studies has shown that anthocyanins and anthocyanidins can reduce and inhibit the amyloid beta (Aβ) species, one of the hallmarks of Alzheimer's disease (AD). However, their inhibition mechanisms on Aβ species at molecular details remain elusive. Therefore, in the present study, molecular modelling methods were employed to investigate their inhibitory mechanisms on Aβ(1-42) peptide. The results highlighted that anthocyanidins effectively inhibited the conformational transitions of helices into beta-sheet (β-sheet) conformation within Aβ(1-42) peptide by two different mechanisms: 1) the obstruction of two terminals from coming into contact due to the binding of anthocyanidins with residues of N- and second hydrophobic core (SHC)-C-terminals, and 2) the prevention of the folding process due to the binding of anthocyanidin with the central polar (Asp23 and Lys28) and native helix (Asp23, Lys28, and Leu34) residues. These new findings on the inhibition of β-sheet formation by targeting both N- and SHC-C-terminals, and the long-established target, D23-K28 salt bridge residues, not with the conventional central hydrophobic core (CHC) as reported in the literature, might aid in designing more potent inhibitors for AD treatment.
Collapse
Affiliation(s)
- Norzalina Zakaria
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Macromolecular Simulation Laboratory, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | - Muhammad Alif Mohammad Latif
- Center of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Macromolecular Simulation Laboratory, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Siti Nor Ani Azaman
- Center of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Macromolecular Simulation Laboratory, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Hana Faujan
- Center of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Macromolecular Simulation Laboratory, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Natural Medicine and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Zhang D, Zhang J, Ma Z, Wu Q, Liu M, Fan T, Ding L, Ren D, Wen A, Wang J. Luteoloside inhibits Aβ1-42 fibrillogenesis, disintegrates preformed fibrils, and alleviates amyloid-induced cytotoxicity. Biophys Chem 2024; 306:107171. [PMID: 38194817 DOI: 10.1016/j.bpc.2023.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Abnormal aggregation and fibrillogenesis of amyloid-β protein (Aβ) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aβ fibrillogenesis in the brain is crucial for the treatment of AD. Luteoloside, as one of the polyphenolic compounds, is found to have a certain therapeutic effect on nervous system diseases. However, it remains unknown whether luteoloside is a potential drug for treating AD by modulating Aβ aggregation pathway. In this study, we performed diverse biophysical and biochemical methods to explore the inhibition of luteoloside on Aβ1-42 which is linked to AD. The results demonstrated that luteoloside efficiently prevented amyloid oligomerization and cross-β-sheet formation, reduced the rate of amyloid growth and the length of amyloid fibrils in a dose-dependent manner. Moreover, luteoloside was able to influence aggregation and conformation of Aβ1-42 during different fiber-forming phases, and it could disintegrate already preformed fibrils of Aβ1-42 and convert them into nontoxic aggregates. Furthermore, luteoloside protected cells from amyloid-induced cytotoxicity and hemolysis, and attenuated the level of reactive oxygen species (ROS). The molecular docking study showed that luteoloside interacted with Aβ1-42 mainly via Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Pi T-shaped, Pi-Alkyl and Pi-Anion, thereby possibly preventing it from forming the aggregates. These observations indicate that luteoloside, a natural anti-oxidant molecule, may be applicable as an effective inhibitor of Aβ, and promote further exploration of the therapeutic strategy against AD.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juanli Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongying Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qianwen Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tingting Fan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Likun Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Danjun Ren
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Piccialli I, Greco F, Roviello G, Sisalli MJ, Tedeschi V, di Mola A, Borbone N, Oliviero G, De Feo V, Secondo A, Massa A, Pannaccione A. The 3-(3-oxoisoindolin-1-yl)pentane-2,4-dione (ISOAC1) as a new molecule able to inhibit Amyloid β aggregation and neurotoxicity. Biomed Pharmacother 2023; 168:115745. [PMID: 37871561 DOI: 10.1016/j.biopha.2023.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Amyloid β 1-42 (Aβ1-42) protein aggregation is considered one of the main triggers of Alzheimer's disease (AD). In this study, we examined the in vitro anti-amyloidogenic activity of the isoindolinone derivative 3-(3-oxoisoindolin-1-yl)pentane-2,4-dione (ISOAC1) and its neuroprotective potential against the Aβ1-42 toxicity. By performing the Thioflavin T fluorescence assay, Western blotting analyses, and Circular Dichroism experiments, we found that ISOAC1 was able to reduce the Aβ1-42 aggregation and conformational transition towards β-sheet structures. Interestingly, in silico studies revealed that ISOAC1 was able to bind to both the monomer and a pentameric protofibril of Aβ1-42, establishing a hydrophobic interaction with the PHE19 residue of the Aβ1-42 KLVFF motif. In vitro analyses on primary cortical neurons showed that ISOAC1 counteracted the increase of intracellular Ca2+ levels and decreased the Aβ1-42-induced toxicity, in terms of mitochondrial activity reduction and increase of reactive oxygen species production. In addition, confocal microscopy analyses showed that ISOAC1 was able to reduce the Aβ1-42 intraneuronal accumulation. Collectively, our results clearly show that ISOAC1 exerts a neuroprotective effect by reducing the Aβ1-42 aggregation and toxicity, hence emerging as a promising compound for the development of new Aβ-targeting therapeutic strategies for AD treatment.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Francesca Greco
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Giovanni Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Naples, Italy
| | - Maria Josè Sisalli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonia di Mola
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, SA, Italy
| | - Nicola Borbone
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University of Naples, Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonio Massa
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, SA, Italy.
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
5
|
Kaur A, Goyal B. Identification of new pentapeptides as potential inhibitors of amyloid-β 42 aggregation using virtual screening and molecular dynamics simulations. J Mol Graph Model 2023; 124:108558. [PMID: 37390790 DOI: 10.1016/j.jmgm.2023.108558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease mainly characterized by extracellular accumulation of amyloid-β (Aβ) peptide. Previous studies reported pentapeptide RIIGL as an effective inhibitor of Aβ aggregation and neurotoxicity induced by Aβ aggregates. In this work, a library of 912 pentapeptides based on RIIGL has been designed and assessed for their efficacy to inhibit Aβ42 aggregation using computational techniques. The top hit pentapeptides revealed by molecular docking were further assessed for their binding affinity with Aβ42 monomer using MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) method. The MM-PBSA analysis identified RLAPV, RVVPI, and RIAPA, which bind to Aβ42 monomer with a higher binding affinity -55.80, -46.32, and -44.26 kcal/mol, respectively, as compared to RIIGL (ΔGbinding = -41.29 kcal/mol). The residue-wise binding free energy predicted hydrophobic contacts between Aβ42 monomer and pentapeptides. The secondary structure analysis of the conformational ensembles generated by molecular dynamics (MD) depicted remarkably enhanced sampling of helical and no β-sheet conformations in Aβ42 monomer on the incorporation of RVVPI and RIAPA. Notably, RVVPI and RIAPA destabilized the D23-K28 salt bridge in Aβ42 monomer, which plays a crucial role in Aβ42 oligomer stability and fibril formation. The MD simulations highlighted that the incorporation of proline and arginine in pentapeptides contributed to their strong binding with Aβ42 monomer. Furthermore, RVVPI and RIAPA prevented conformational conversion of Aβ42 monomer to aggregation-prone structures, which, in turn, resulted in a lower aggregation tendency of Aβ42 monomer.
Collapse
Affiliation(s)
- Apneet Kaur
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
6
|
Effect of Antihypertensive Drug (Chlorothiazide) on Fibrillation of Lysozyme: A Combined Spectroscopy, Microscopy, and Computational Study. Int J Mol Sci 2023; 24:ijms24043112. [PMID: 36834523 PMCID: PMC9959601 DOI: 10.3390/ijms24043112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Amyloid fibrils abnormally accumulate together in the human body under certain conditions, which can result in lethal conditions. Thus, blocking this aggregation may prevent or treat this disease. Chlorothiazide (CTZ) is a diuretic and is used to treat hypertension. Several previous studies suggest that diuretics prevent amyloid-related diseases and reduce amyloid aggregation. Thus, in this study we examine the effects of CTZ on hen egg white lysozyme (HEWL) aggregation using spectroscopic, docking, and microscopic approaches. Our results showed that under protein misfolding conditions of 55 °C, pH 2.0, and 600 rpm agitation, HEWL aggregated as evidenced by the increased turbidity and Rayleigh light scattering (RLS). Furthermore, thioflavin-T, as well as trans electron microscope (TEM) analysis confirmed the formation of amyloid structures. An anti-aggregation effect of CTZ is observed on HEWL aggregations. Circular dichroism (CD), TEM, and Thioflavin-T fluorescence show that both CTZ concentrations reduce the formation of amyloid fibrils as compared to fibrillated. The turbidity, RLS, and ANS fluorescence increase with CTZ increasing. This increase is attributed to the formation of a soluble aggregation. As evidenced by CD analysis, there was no significant difference in α-helix content and β-sheet content between at 10 µM CTZ and 100 µM. A TEM analysis of HEWL coincubated with CTZ at different concentrations validated all the above-mentioned results. The TEM results show that CTZ induces morphological changes in the typical structure of amyloid fibrils. The steady-state quenching study demonstrated that CTZ and HEWL bind spontaneously via hydrophobic interactions. HEWL-CTZ also interacts dynamically with changes in the environment surrounding tryptophan. Computational results revealed the binding of CTZ to ILE98, GLN57, ASP52, TRP108, TRP63, TRP63, ILE58, and ALA107 residues in HEWL via hydrophobic interactions and hydrogen bonds with a binding energy of -6.58 kcal mol-1. We suggest that at 10 µM and 100 μM, CTZ binds to the aggregation-prone region (APR) of HEWL and stabilizes it, thus preventing aggregation. Based on these findings, we can conclude that CTZ has antiamyloidogenic activity and can prevent fibril aggregation.
Collapse
|
7
|
Gupta S, Dasmahapatra AK. Destabilization of Aβ fibrils by omega-3 polyunsaturated fatty acids: a molecular dynamics study. J Biomol Struct Dyn 2023; 41:581-598. [PMID: 34856889 DOI: 10.1080/07391102.2021.2009915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The senile plaques of neurotoxic aggregates of Aβ protein, deposited extraneuronally, mark the pathological hallmark of Alzheimer's disease (AD). The natural compounds such as omega-3 (ω-3) polyunsaturated fatty acids (PUFAs), which can access blood-brain barrier, are believed to be potential disruptors of preformed Aβ fibrils to cure AD with unknown mechanism. Herein, we present the destabilization potential of three ω-3 PUFAs, viz. Eicosapentaenoic acid (EPA), Docosahexaenoic acid (HXA), and α-linolenic acid (LNL) by molecular dynamics simulation. After an initial testing of 300 ns, EPA and HXA have been considered further for extended production run time, 500 ns. The increased value of root mean square deviation (RMSD), radius of gyration, and solvent-accessible surface area (SASA), the reduced number of H-bonds and β-sheet content, and disruption of salt bridges and hydrophobic contacts establish the binding of these ligands to Aβ fibril leading to destabilization. The polar head was found to interact with positively charged lysine (K28) residue in the fibril. However, the hydrophobicity of the long aliphatic tail competes with the intrinsic hydrophobic interactions of Aβ fibril. This amphiphilic nature of EPA and HXA led to the breaking of inherent hydrophobic contacts and formation of new bonds between the tail of PUFA and hydrophobic residues of Aβ fibril, leading to the destabilization of fibril. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) results explain the binding of EPA and HXA to Aβ fibril by interacting with different residues. The destabilization potential of EPA and HXA establishes them as promising drug leads to cure AD, and encourages prospecting of other fatty acids for therapeutic intervention in AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
8
|
Xia ZD, Ma RX, Wen JF, Zhai YF, Wang YQ, Wang FY, Liu D, Zhao XL, Sun B, Jia P, Zheng XH. Pathogenesis, Animal Models, and Drug Discovery of Alzheimer's Disease. J Alzheimers Dis 2023; 94:1265-1301. [PMID: 37424469 DOI: 10.3233/jad-230326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a chronic neurodegenerative disease induced by multiple factors. The high incidence and the aging of the global population make it a growing global health concern with huge implications for individuals and society. The clinical manifestations are progressive cognitive dysfunction and lack of behavioral ability, which not only seriously affect the health and quality of life of the elderly, but also bring a heavy burden to the family and society. Unfortunately, almost all the drugs targeting the classical pathogenesis have not achieved satisfactory clinical effects in the past two decades. Therefore, the present review provides more novel ideas on the complex pathophysiological mechanisms of AD, including classical pathogenesis and a variety of possible pathogenesis that have been proposed in recent years. It will be helpful to find out the key target and the effect pathway of potential drugs and mechanisms for the prevention and treatment of AD. In addition, the common animal models in AD research are outlined and we examine their prospect for the future. Finally, Phase I, II, III, and IV randomized clinical trials or on the market of drugs for AD treatment were searched in online databases (Drug Bank Online 5.0, the U.S. National Library of Medicine, and Alzforum). Therefore, this review may also provide useful information in the research and development of new AD-based drugs.
Collapse
Affiliation(s)
- Zhao-Di Xia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Ruo-Xin Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Jin-Feng Wen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Yu-Fei Zhai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Yu-Qi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Feng-Yun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Dan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Xiao-Long Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Bao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
- Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, PR China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| | - Xiao-Hui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, PR China
| |
Collapse
|
9
|
Combined Modeling Study of the Binding Characteristics of Natural Compounds, Derived from Psoralea Fruits, to β-Amyloid Peptide Monomer. Int J Mol Sci 2022; 23:ijms23073546. [PMID: 35408917 PMCID: PMC8998326 DOI: 10.3390/ijms23073546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
A dysfunctional protein aggregation in the nervous system can lead to several neurodegenerative disorders that result in intracellular inclusions or extracellular aggregates. An early critical event within the pathogenesis of Alzheimer’s disease is the accumulation of amyloid beta peptide within the brain. Natural compounds isolated from Psoralea Fructus (PF) have significant anti-Alzheimer effects as strong inhibitors of Aβ42 aggregation. Computer simulations provide a powerful means of linking experimental findings to nanoscale molecular events. As part of this research four prenylated compounds, the active ingredients of Psoralea Fructus (PF), were studied as Aβ42 accumulation inhibitors using molecular simulations modeling. In order to resolve the binding modes of the ligands and identify the main interactions of Aβ42 residues, we performed a 100 ns molecular dynamics simulation and binding free energy calculations starting from the model of the compounds obtained from the docking study. This study was able to pinpoint the key amino acid residues in the Aβ42 active site and provide useful information that could benefit the development of new Aβ42 accumulation inhibitors.
Collapse
|
10
|
de Oliveira OV, Gonçalves ADS, Almeida NECD. Insights into β-amyloid transition prevention by cucurbit[7]uril from molecular modeling. J Biomol Struct Dyn 2022; 40:9602-9612. [PMID: 34042019 DOI: 10.1080/07391102.2021.1932600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, comparable molecular dynamic (MD) simulations of 1.2 microseconds were performed to clarify the prevention of the β-amyloid peptide (Aβ1-42) aggregation by cucurbit[7]uril (CB[7]). The accumulation of this peptide in the brain is one of the most harmful in Alzheimer's disease. The inhibition mechanism of Aβ1-42 aggregation by different molecules is attributed to preventing of Aβ1-42 conformational transition from α-helix to the β-sheet structure. However, our structural analysis shows that the pure water and aqueous solution of the CB[7] denature the native Aβ1-42 α-helix structure forming different compactness and unfolded conformations, not in β-sheet form. On the other hand, in the three CB[7]@Aβ1-42 complexes, it was observed the encapsulation of N-terminal (Asp1), Lys16, and Val36 by CB[7] along the MD trajectory, and not with aromatic residues as suggested by the literature. Only in one CB[7]@Aβ1-42 complex was observed stable Asp23-Lys28 salt bridge with an average distance of 0.36 nm. All CB[7]@Aβ1-42 complexes are very stable with binding free energy lowest than ∼-50 kcal/mol between the CB[7] and Aβ1-42 monomer from MM/PBSA calculation. Therefore, herein we show that the mechanism of the prevention of elongation protofibril by CB[7] is due to the disruption of the Asp23-Lys28 salt bridge and steric effects of CB[7]@Aβ1-42 complex with the fibril lattice, and not due to the transition from α-helix to β-sheet following the dock-lock mechanism.Communicated by Ramaswamy H. Sarma.
Collapse
|
11
|
Gao J, Suo C, Tseng JH, Moss MA, Terry AV, Chapman J. Design and Synthesis of Ranitidine Analogs as Multi-Target Directed Ligands for the Treatment of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22063120. [PMID: 33803769 PMCID: PMC8003314 DOI: 10.3390/ijms22063120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 01/03/2023] Open
Abstract
The aggregation of amyloid β (Aβ) peptides and deposition of amyloid plaques are implicated in the pathogenesis of Alzheimer’s disease (AD). Therefore, blocking Aβ aggregation with small molecules has been proposed as one therapeutic approach for AD. In the present study, a series of ranitidine analogs containing cyclic imide isosteres were synthesized and their inhibitory activities toward Aβ aggregation were evaluated using in vitro thioflavin T assays. The structure–activity relationship revealed that the 1,8-naphthalimide moiety provided profound inhibition of Aβ aggregation and structural modifications on the other parts of the parent molecule (compound 6) maintained similar efficacy. Some of these ranitidine analogs also possessed potent inhibitory activities of acetylcholinesterase (AChE), which is another therapeutic target in AD. These ranitidine analogs, by addressing both Aβ aggregation and AChE, offer insight into the key chemical features of a new type of multi-target directed ligands for the pharmaceutical treatment of AD.
Collapse
Affiliation(s)
- Jie Gao
- Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence:
| | - Chen Suo
- Department of Chemical Engineering and Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA; (C.S.); (J.-H.T.); (M.A.M.)
| | - Jui-Heng Tseng
- Department of Chemical Engineering and Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA; (C.S.); (J.-H.T.); (M.A.M.)
| | - Melissa A. Moss
- Department of Chemical Engineering and Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA; (C.S.); (J.-H.T.); (M.A.M.)
| | - Alvin V. Terry
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA;
| | - James Chapman
- Department of Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
12
|
Dubey S, Kallubai M, Subramanyam R. Improving the inhibition of β-amyloid aggregation by withanolide and withanoside derivatives. Int J Biol Macromol 2021; 173:56-65. [PMID: 33465364 DOI: 10.1016/j.ijbiomac.2021.01.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/11/2020] [Accepted: 01/14/2021] [Indexed: 12/01/2022]
Abstract
Here, we have studied the ameliorative effects of Withania somnifera derivatives (Withanolide A, Withanolide B, Withanoside IV, and Withanoside V) on the fibril formation of amyloid-β 42 for Alzheimer's disease. We analyzed reduction in the aggregation of β amyloid protein with these Ashwagandha derivatives by Thioflavin T assay in the oligomeric and fibrillar state. We have tested the cytotoxic activity of these compounds against human SK-N-SH cell line for 48 h, and the IC 50 value found to be 28.61 ± 2.91, 14.84 ± 1.45, 18.76 ± 0.76 and 30.14 ± 2.59 μM, respectively. After the treatment of the cells with half the concentration of IC 50 value, there was a remarkable decrease in the number of apoptotic cells stained by TUNEL assay indicating the DNA damage and also observed significant decrease of reactive oxygen species. Also, the binding and molecular stability of these derivatives with amyloid β was also studied using bioinformatics tools where these molecules were interacted at LVFFA region which is inhibition site of amyloid-β1 42. These studies revealed that the Withanolides and Withanosides interact with the hydrophobic core of amyloid-β 1-42 in the oligomeric stage, preventing further interaction with the monomers and diminishing aggregation.
Collapse
Affiliation(s)
- Shreya Dubey
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India
| | - Monika Kallubai
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India.
| |
Collapse
|
13
|
Kaur A, Goyal D, Goyal B. An α-helix mimetic oligopyridylamide, ADH-31, modulates Aβ 42 monomer aggregation and destabilizes protofibril structures: insights from molecular dynamics simulations. Phys Chem Chem Phys 2020; 22:28055-28073. [PMID: 33289734 DOI: 10.1039/d0cp04672h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD), an epidemic growing worldwide due to no effective medical aid available in the market, is a neurological disorder. AD is known to be directly associated with the toxicity of amyloid-β (Aβ) aggregates. In search of potent inhibitors of Aβ aggregation, Hamilton and co-workers reported an α-helix mimetic, ADH-31, which acts as a powerful antagonist of Aβ42 aggregation. To identify the key interactions between protein-ligand complexes and to gain insights into the inhibitory mechanism of ADH-31 against Aβ42 aggregation, molecular dynamics (MD) simulations were performed in the present study. The MD simulations highlighted that ADH-31 showed distinct binding capabilities with residues spanning from the N-terminal to the central hydrophobic core (CHC) region of Aβ42 and restricted the conformational transition of the helix-rich structure of Aβ42 into another form of secondary structures (coil/turn/β-sheet). Hydrophobic contacts, hydrogen bonding and π-π interaction contribute to the strong binding between ADH-31 and Aβ42 monomer. The Dictionary of Secondary Structure of Proteins (DSSP) analysis highlighted that the probability of helical content increases from 38.5% to 50.2% and the turn content reduces from 14.7% to 6.2% with almost complete loss of the β-sheet structure (4.5% to 0%) in the Aβ42 monomer + ADH-31 complex. The per-residue binding free energy analysis demonstrated that Arg5, Tyr10, His14, Gln15, Lys16, Val18, Phe19 and Lys28 residues of Aβ42 are responsible for the favourable binding free energy in Aβ42 monomer + ADH-31 complex, which is consistent with the 2D HSQC NMR of the Aβ42 monomer that depicted a change in the chemical shift of residues spanning from Glu11 to Phe20 in the presence of ADH-31. The MD simulations highlighted the prevention of sampling of amyloidogenic β-strand conformations in Aβ42 trimer in the presence of ADH-31 as well as the ability of ADH-31 to destabilize Aβ42 trimer and protofibril structures. The lower binding affinity between Aβ42 trimer chains in the presence of ADH-31 highlights the destabilization of the Aβ42 trimer structure. Overall, MD results highlighted that ADH-31 inhibited Aβ42 aggregation by constraining Aβ peptides into helical conformation and destabilized Aβ42 trimer as well as protofibril structures. The present study provides a theoretical insight into the atomic level details of the inhibitory mechanism of ADH-31 against Aβ42 aggregation as well as protofibril destabilization and could be implemented in the structure-based drug design of potent therapeutic agents for AD.
Collapse
Affiliation(s)
- Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab, India.
| | | | | |
Collapse
|
14
|
Romanucci V, García-Viñuales S, Tempra C, Bernini R, Zarrelli A, Lolicato F, Milardi D, Di Fabio G. Modulating Aβ aggregation by tyrosol-based ligands: The crucial role of the catechol moiety. Biophys Chem 2020; 265:106434. [DOI: 10.1016/j.bpc.2020.106434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 07/12/2020] [Indexed: 01/19/2023]
|
15
|
Jokar S, Erfani M, Bavi O, Khazaei S, Sharifzadeh M, Hajiramezanali M, Beiki D, Shamloo A. Design of peptide-based inhibitor agent against amyloid-β aggregation: Molecular docking, synthesis and in vitro evaluation. Bioorg Chem 2020; 102:104050. [PMID: 32663672 DOI: 10.1016/j.bioorg.2020.104050] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Formation of the amyloid beta (Aβ) peptide aggregations represents an indispensable role in appearing and progression of Alzheimer disease. β-sheet breaker peptides can be designed and modified with different amino acids in order to improve biological properties and binding affinity to the amyloid beta peptide. In the present study, three peptide sequences were designed based on the hopeful results of LIAIMA peptide and molecular docking studies were carried out onto the monomer and fibril structure of amyloid beta peptide using AutoDock Vina software. According to the obtained interactions and binding energy from docking, the best-designed peptide (d-GABA-FPLIAIMA) was chosen and synthesized in great yield (%96) via the Fmoc solid-phase peptide synthesis. The synthesis and purity of the resulting peptide were estimated and evaluated by Mass spectroscopy and Reversed-phase high-performance liquid chromatography (RP-HPLC) methods, respectively. Stability studies in plasma and Thioflavin T (ThT) assay were performed in order to measure the binding affinity and in vitro aggregation inhibition of Aβ peptide. The d-GABA-FPLIAIMA peptide showed good binding energy and affinity to Aβ fibrils, high stability (more than 90%) in human serum, and a reduction of 20% in inhibition of the Aβ aggregation growth. Finally, the favorable characteristics of our newly designed peptide make it a promising candidate β-sheet breaker agent for further in vivo studies.
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Erfani
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Hajiramezanali
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
16
|
Kaur A, Kaur A, Goyal D, Goyal B. How Does the Mono-Triazole Derivative Modulate Aβ 42 Aggregation and Disrupt a Protofibril Structure: Insights from Molecular Dynamics Simulations. ACS OMEGA 2020; 5:15606-15619. [PMID: 32637837 PMCID: PMC7331201 DOI: 10.1021/acsomega.0c01825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/08/2020] [Indexed: 05/31/2023]
Abstract
Clinical studies have identified that abnormal self-assembly of amyloid-β (Aβ) peptide into toxic fibrillar aggregates is associated with the pathology of Alzheimer's disease (AD). The most acceptable therapeutic approach to stop the progression of AD is to inhibit the formation of β-sheet-rich structures. Recently, we designed and evaluated a series of novel mono-triazole derivatives 4(a-x), where compound 4v was identified as the most potent inhibitor of Aβ42 aggregation and disaggregates preformed Aβ42 fibrils significantly. Moreover, 4v strongly averts the Cu2+-induced Aβ42 aggregation and disaggregates the preformed Cu2+-induced Aβ42 fibrils, halts the generation of reactive oxygen species, and shows neuroprotective effects in SH-SY5Y cells. However, the underlying molecular mechanism of inhibition of Aβ42 aggregation by 4v and disaggregation of preformed Aβ42 fibrils remains obscure. In this work, molecular dynamics (MD) simulations have been performed to explore the conformational ensemble of the Aβ42 monomer and a pentameric protofibril structure of Aβ42 in the presence of 4v. The MD simulations highlighted that 4v binds preferentially at the central hydrophobic core region of the Aβ42 monomer and chains D and E of the Aβ42 protofibril. The dictionary of secondary structure of proteins analysis indicated that 4v retards the conformational conversion of the helix-rich structure of the Aβ42 monomer into the aggregation-prone β-sheet conformation. The binding free energy calculated by the molecular mechanics Poisson-Boltzmann surface area method revealed an energetically favorable process with ΔG binding = -44.9 ± 3.3 kcal/mol for the Aβ42 monomer-4v complex. The free energy landscape analysis highlighted that the Aβ42 monomer-4v complex sampled conformations with significantly higher helical contents (35 and 49%) as compared to the Aβ42 monomer alone (17%). Compound 4v displayed hydrogen bonding with Gly37 (chain E) and π-π interactions with Phe19 (chain D) of the Aβ42 protofibril. Further, the per-residue binding free energy analysis also highlighted that Phe19 (chain D) and Gly37 (chain E) of the Aβ42 protofibril showed the maximum contribution in the binding free energy. The decreased binding affinity and residue-residue contacts between chains D and E of the Aβ42 protofibril in the presence of 4v indicate destabilization of the Aβ42 protofibril structure. Overall, the structural information obtained through MD simulations indicated that 4v stabilizes the native helical conformation of the Aβ42 monomer and persuades a destabilization in the protofibril structure of Aβ42. The results of the study will be useful in the rational design of potent inhibitors against amyloid aggregation.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department
of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Anupamjeet Kaur
- Department
of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Deepti Goyal
- Department
of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Bhupesh Goyal
- School
of Chemistry & Biochemistry, Thapar
Institute of Engineering & Technology, Patiala 147004, Punjab, India
| |
Collapse
|
17
|
Gancar M, Ho K, Mohid SA, Thai NQ, Bednarikova Z, Nguyen HL, Bhunia A, Nepovimova E, Li MS, Gazova Z. 7-Methoxytacrine and 2-Aminobenzothiazole Heterodimers: Structure-Mechanism Relationship of Amyloid Inhibitors Based on Rational Design. ACS Chem Neurosci 2020; 11:715-729. [PMID: 32011847 DOI: 10.1021/acschemneuro.9b00419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The formation and accumulation of amyloid aggregates are the phenomena that accompany amyloidoses, which are currently untreatable and include Alzheimer's and Parkinson's diseases, diabetes mellitus, non-neuropathic lysozyme systemic amyloidosis, and others. One of the very promising therapeutic approaches seems to be an inhibition of amyloid formation and/or clearance of amyloid aggregates. Small molecules have a great potential to interfere with amyloid fibrillation of peptides and polypeptides, which can be improved by connection of cyclic structures into single multicyclic molecules and their dimerization. In our study, we focused on heterodimers consisting of 7-methoxytacrine (7-MEOTA) and 2-aminobenzothiazole (BTZ) parent molecules connected by an aliphatic linker. Using in vitro and in silico methods, we investigated the ability of studied compounds to inhibit the amyloid aggregation of hen egg white lysozyme. Heterodimerization led to significant improvement of inhibitory activity compared to that of the parent molecules. The efficiency of the heterodimers varied; the most effective inhibitor contained the longest linker, eight carbons long. We suggest that binding of a heterodimer to a lysozyme blocks the interaction between the β-domain and C-helix region essential for the formation of amyloid cross-β structure. Elongation of the linker ultimately enhances the compound's ability to prevent this interaction by allowing the BTZ part of the heterodimer to bind more effectively, increasing the compound's binding affinity, and also by greater steric obstruction. This study represents an important contribution to the recent rational design of potential lead small molecules with anti-amyloid properties, and the heterodimers studied are prospective candidates for the treatment of systemic lysozyme amyloidosis and other amyloid-related diseases.
Collapse
Affiliation(s)
- Miroslav Gancar
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| | - Kiet Ho
- Life Science Lab, Institute of Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Sk. Abdul Mohid
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, Ghose Bagan, CIT Road Scheme VIIM, West Bengal 700054, Kolkata, India
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City 700000, Dong Thap, Vietnam
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| | - H. Linh Nguyen
- Life Science Lab, Institute of Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, Ghose Bagan, CIT Road Scheme VIIM, West Bengal 700054, Kolkata, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| |
Collapse
|
18
|
Jokar S, Khazaei S, Behnammanesh H, Shamloo A, Erfani M, Beiki D, Bavi O. Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer's disease therapy. Biophys Rev 2019; 11:10.1007/s12551-019-00606-2. [PMID: 31713720 DOI: 10.1007/s12551-019-00606-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurological disorder that progresses gradually and can cause severe cognitive and behavioral impairments. This disease is currently considered a social and economic incurable issue due to its complicated and multifactorial characteristics. Despite decades of extensive research, we still lack definitive AD diagnostic and effective therapeutic tools. Consequently, one of the most challenging subjects in modern medicine is the need for the development of new strategies for the treatment of AD. A large body of evidence indicates that amyloid-β (Aβ) peptide fibrillation plays a key role in the onset and progression of AD. Recent studies have reported that amyloid hypothesis-based treatments can be developed as a new approach to overcome the limitations and challenges associated with conventional AD therapeutics. In this review, we will provide a comprehensive view of the challenges in AD therapy and pathophysiology. We also discuss currently known compounds that can inhibit amyloid-β (Aβ) aggregation and their potential role in advancing current AD treatments. We have specifically focused on Aβ aggregation inhibitors including metal chelators, nanostructures, organic molecules, peptides (or peptide mimics), and antibodies. To date, these molecules have been the subject of numerous in vitro and in vivo assays as well as molecular dynamics simulations to explore their mechanism of action and the fundamental structural groups involved in Aβ aggregation. Ultimately, the aim of these studies (and current review) is to achieve a rational design for effective therapeutic agents for AD treatment and diagnostics.
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials , Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Hossein Behnammanesh
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, P.O. Box: 11365-11155, Tehran, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14155-1339, Tehran, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, P.O. Box: 71555-313, Shiraz, Iran.
| |
Collapse
|
19
|
Molecular insights into the inhibitory mechanism of bi-functional bis-tryptoline triazole against β-secretase (BACE1) enzyme. Amino Acids 2019; 51:1593-1607. [PMID: 31654211 DOI: 10.1007/s00726-019-02797-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023]
Abstract
The β-site amyloid precursor protein-cleaving enzyme 1 (β-secretase, BACE1) is involved in the formation of amyloid-β (Aβ) peptide that aggregates into soluble oligomers, amyloid fibrils, and plaques responsible for the neurodegeneration in Alzheimer disease (AD). BACE1 is one of the prime therapeutic targets for the design of inhibitors against AD as BACE1 participate in the rate-limiting step in Aβ production. Jiaranaikulwanitch et al. reported bis-tryptoline triazole (BTT) compound as a potent inhibitor against BACE1, Aβ aggregation as well as possessing metal chelation and antioxidant activity. However, the molecular mechanism of BACE1 inhibition by BTT remains unclear. Thus, molecular docking and molecular dynamics (MD) simulations were performed to elucidate the inhibitory mechanism of BTT against BACE1. MD simulations highlight that BTT interact with catalytic aspartic dyad residues (Asp32 and Asp228) and active pocket residues of BACE1. The hydrogen-bond interactions, hydrophobic contacts, and π-π stacking interactions of BTT with flap residues (Val67-Asp77) of BACE1 confine the movement of the flap and help to achieve closed (non-active) conformation. The PCA analysis highlights lower conformational fluctuations for BACE1-BTT complex, which suggests enhanced conformational stability in comparison to apo-BACE1. The results of the present study provide key insights into the underlying inhibitory mechanism of BTT against BACE1 and will be helpful for the rational design of novel inhibitors with enhanced potency against BACE1.
Collapse
|
20
|
Ghorbani M, Soleymani H, Allahverdi A, Shojaeilangari S, Naderi-Manesh H. Effects of natural compounds on conformational properties and hairpin formation of amyloid-β 42 monomer: docking and molecular dynamics simulation study. J Biomol Struct Dyn 2019; 38:3371-3383. [PMID: 31496378 DOI: 10.1080/07391102.2019.1664934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The β42 amyloid peptides (Aβ) are identified as a candidate target for Alzheimer's drugs. Phenolic compounds can bind to the Aβ and inhibit amyloid formation. However, the inhibitory mechanism of phenolic compounds remains unclear. In this study, the molecular dynamic simulation and docking program were used to characterize the molecular details of inhibitory mechanism of the phenolic compounds. Our Results show that the phenolic compounds can bind to hydrophobic region in Aβ42 monomer and alter hydrophobic interactions network at Aβ42 which play a key role in β-sheet formation. The cluster analysis and interactions network analysis were used to probe conformational changes in Aβ42. In most populated clusters of Aβ42-phenolic compounds complexes, the sheet structures were not observed or reduced. It seems that the binding of phenolic compounds can induce larger conformational diversity for amyloid peptide and changes conformational properties of amyloid peptide. The phenolic compounds can deform β-Hairpin structure of Aβ by destabilizing salt bridges E22-K28 and D23-K28 which can alter the conformation of Aβ42 in aqueous solution. These findings are in accordance with experimental results, to some extent give a molecular level interpretation for the inhibitory mechanism of phenolic compounds .In addition, this study may add important new details to the inhibitory mechanism of Alzheimer's drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Ghorbani
- Faculty of Biological Sciences, Biophysics Department, Tarbiat Modares University, Tehran, Iran
| | - Hossein Soleymani
- Faculty of Biological Sciences, Biophysics Department, Tarbiat Modares University, Tehran, Iran
| | - Abdollah Allahverdi
- Faculty of Biological Sciences, Biophysics Department, Tarbiat Modares University, Tehran, Iran
| | | | - Hossein Naderi-Manesh
- Faculty of Biological Sciences, Biophysics Department, Tarbiat Modares University, Tehran, Iran.,School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
21
|
Kaur A, Narang SS, Kaur A, Mann S, Priyadarshi N, Goyal B, Singhal NK, Goyal D. Multifunctional Mono-Triazole Derivatives Inhibit Aβ42 Aggregation and Cu2+-Mediated Aβ42 Aggregation and Protect Against Aβ42-Induced Cytotoxicity. Chem Res Toxicol 2019; 32:1824-1839. [DOI: 10.1021/acs.chemrestox.9b00168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amandeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Simranjeet Singh Narang
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Sukhmani Mann
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute, S.A.S. Nagar 140306, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute, S.A.S. Nagar 140306, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| |
Collapse
|
22
|
Liu F, Ma Z, Sang J, Lu F. Edaravone inhibits the conformational transition of amyloid-β42: insights from molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:2377-2388. [PMID: 31234720 DOI: 10.1080/07391102.2019.1632225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Previous work has shown that edaravone inhibits fibrillogenesis of amyloid-β protein (Aβ). However, the detailed mechanism by which edaravone inhibits the conformational transition of the Aβ42 monomer is not known at the molecular level. Here, explicit-solvent molecular dynamics (MD) simulations were coupled with molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method to address the issue. MD simulations confirmed that edaravone inhibits the conformational transition of the Aβ42 monomer in a dose-dependent manner. It was found that the direct interactions between edaravone and Aβ42 are responsible for its inhibiting effects. The analysis of binding free energy using the MM-PBSA method demonstrated that the nonpolar interactions provide favourable contributions (about -71.7 kcal/mol). Conversely, the polar interactions are unfavourable for the binding process. A total of 14 residues were identified as greatly contributing to the binding free energy between edaravone and the Aβ42 monomer. In addition, the intra-peptide hydrophobic interactions were weakened and the salt bridge D23-K28 was interrupted by edaravone. Therefore, the conformational transition was inhibited. Our studies provide molecular-level insights into how edaravone molecules inhibit the conformational transition of the Aβ42 monomer, which may be useful for designing amyloid inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin, PR China.,Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, PR China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Zheng Ma
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Jingcheng Sang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin, PR China.,Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, PR China.,College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| |
Collapse
|
23
|
Sharma S, Singh N, Nepovimova E, Korabecny J, Kuca K, Satnami ML, Ghosh KK. Interaction of synthesized nitrogen enriched graphene quantum dots with novel anti-Alzheimer’s drugs: spectroscopic insights. J Biomol Struct Dyn 2019; 38:1822-1837. [DOI: 10.1080/07391102.2019.1619625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University, Navi Mumbai, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Manmohan L. Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| | - Kallol K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| |
Collapse
|
24
|
Narang SS, Goyal D, Goyal B. Inhibition of Alzheimer’s amyloid-β42 peptide aggregation by a bi-functional bis-tryptoline triazole: key insights from molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:1598-1611. [DOI: 10.1080/07391102.2019.1614093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Simranjeet Singh Narang
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
25
|
Shuaib S, Saini RK, Goyal D, Goyal B. Impact of K16A and K28A mutation on the structure and dynamics of amyloid-β42 peptide in Alzheimer’s disease: key insights from molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:708-721. [DOI: 10.1080/07391102.2019.1586587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Suniba Shuaib
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Rajneet Kaur Saini
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
26
|
Pandey P, Meena NK, Prakash A, Kumar V, Lynn AM, Ahmad F. Characterization of heterogeneous intermediate ensembles on the guanidinium chloride-induced unfolding pathway of β-lactoglobulin. J Biomol Struct Dyn 2019; 38:1042-1053. [PMID: 30880641 DOI: 10.1080/07391102.2019.1593245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Folding pathway of β-LgA (β-lactoglobulin) evolves through the conformational α→β transition. The α→β transition is a molecular hallmark of various neurodegenerative diseases. Thus, β-LgA may serve as a good model for understanding molecular mechanism of protein aggregation involved in neurodegenerative diseases. Here, we studied the conformational dynamics of β-LgA in 6 M GdmCl at different temperatures using MD simulations. Structural order parameters such as RMSD, Rg, SASA, native contacts (Q), hydrophobic distal-matrix and free-energy landscape (FEL) were used to investigate the conformational transitions. Our results show that GdmCl destabilizes secondary and tertiary structure of β-LgA by weakening the hydrophobic interactions and hydrogen bond network. Multidimensional FEL shows the presence of different unfolding intermediates at 400 K. I1 is long-lived intermediate which has mostly intact native secondary structure, but loose tertiary structure. I2 is structurally compact intermediate formed after the partial loss of secondary structure. The transiently and infrequently buried evolution of W19 shows that intermediate conformational ensembles are structurally heterogeneous. We observed that the intermediate conformations are largely stabilized by non-native H-bonds. The outcome of this work provides the molecular details of intermediates trapped due to non-native interactions that may be regarded as pathogenic conformations involved in neurodegenerative diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Preeti Pandey
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naveen Kumar Meena
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amresh Prakash
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| | - Andrew M Lynn
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Faizan Ahmad
- Jamia Millia Islamia, Centre for Interdisciplinary Research in Basic Sciences, New Delhi, India
| |
Collapse
|
27
|
Saini RK, Shuaib S, Goyal D, Goyal B. Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ42 aggregation and protofibril destabilization: A molecular dynamics simulation study. J Biomol Struct Dyn 2018; 37:3183-3197. [DOI: 10.1080/07391102.2018.1511475] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Rajneet Kaur Saini
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, India
| | - Suniba Shuaib
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
28
|
Goyal D, Kaur A, Goyal B. Benzofuran and Indole: Promising Scaffolds for Drug Development in Alzheimer's Disease. ChemMedChem 2018; 13:1275-1299. [DOI: 10.1002/cmdc.201800156] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Amandeep Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib 140406 Punjab India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry; Thapar Institute of Engineering & Technology; Patiala 147004 Punjab India
| |
Collapse
|
29
|
Narang SS, Shuaib S, Goyal B. Molecular insights into the inhibitory mechanism of rifamycin SV against β 2 –microglobulin aggregation: A molecular dynamics simulation study. Int J Biol Macromol 2017; 102:1025-1034. [DOI: 10.1016/j.ijbiomac.2017.04.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 01/30/2023]
|
30
|
Trusova VM, Gorbenko GP. Molecular dynamics simulations of lysozyme-lipid systems: probing the early steps of protein aggregation. J Biomol Struct Dyn 2017; 36:2249-2260. [PMID: 28665188 DOI: 10.1080/07391102.2017.1349691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Using the molecular dynamics simulation, the role of lipids in the lysozyme transition into the aggregation-competent conformation has been clarified. Analysis of the changes of lysozyme secondary structure upon its interactions with the model bilayer membranes composed of phosphatidylcholine and its mixtures with phosphatidylglycerol (10, 40, and 80 mol%) within the time interval of 100 ns showed that lipid-bound protein is characterized by the increased content of β-structures. Along with this, the formation of protein-lipid complexes was accompanied by the increase in the gyration radius and the decrease in RMSD of polypeptide chain. The results obtained were interpreted in terms of the partial unfolding of lysozyme molecule on the lipid matrix, with the magnitude of this effect being increased with increasing the fraction of anionic lipids. Based on the results of molecular dynamics simulation, a hypothetical model of the nucleation of lysozyme amyloid fibrils in a membrane environment was suggested.
Collapse
Affiliation(s)
- Valeriya M Trusova
- a Department of Nuclear and Medical Physics , V.N. Karazin Kharkov National University , 4 Svobody Sq., Kharkov 61022 , Ukraine
| | - Galyna P Gorbenko
- a Department of Nuclear and Medical Physics , V.N. Karazin Kharkov National University , 4 Svobody Sq., Kharkov 61022 , Ukraine
| |
Collapse
|
31
|
Hojati S, Ghahghaei A, Lagzian M. The potential inhibitory effect of β-casein on the aggregation and deposition of Aβ1-42 fibrils in Alzheimer’s disease: insight from in-vitro and in-silico studies. J Biomol Struct Dyn 2017. [DOI: 10.1080/07391102.2017.1345326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sedighehsadat Hojati
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Arezou Ghahghaei
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Milad Lagzian
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
32
|
Inhibition of amyloid oligomerization into different supramolecular architectures by small molecules: mechanistic insights and design rules. Future Med Chem 2017; 9:797-810. [DOI: 10.4155/fmc-2017-0026] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein misfolding and aggregation have been associated with several human disorders, including Alzheimer’s, Parkinson’s and Huntington’s diseases, as well as senile systemic amyloidosis and Type II diabetes. However, there is no current disease-modifying therapy available for the treatment of these disorders. In spite of extensive academic, pharmaceutical, medicinal and clinical research, a complete mechanistic model for this family of diseases is still lacking. In this review, we primarily discuss the different types of small molecular entities which have been used for the inhibition of the aggregation process of different amyloidogenic proteins under diseased conditions. These include small peptides, polyphenols, inositols, quinones and their derivatives, and metal chelator molecules. In recent years, these groups of molecules have been extensively studied using in vitro, in vivo and computational models to understand their mechanism of action and common structural features underlying the process of inhibition. A salient feature found to be instrumental in the process of inhibition is the balance between the aromatic unit that functions as the amyloid recognition unit and the hydrophilic amyloid breaker unit. The establishment of structure–function relationship for amyloid-modifying therapies by the various functional entities should serve as an important step toward the development of efficient therapeutics.
Collapse
|