1
|
Koutsoumpli G, Stasiukonyte N, Hoogeboom BN, Daemen T. An in vitro CD8 T-cell priming assay enables epitope selection for hepatitis C virus vaccines. Vaccine 2024; 42:126032. [PMID: 38964950 DOI: 10.1016/j.vaccine.2024.05.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
For the rational design of epitope-specific vaccines, identifying epitopes that can be processed and presented is essential. As algorithm-based epitope prediction is frequently discordant with actually recognized CD8+ T-cell epitopes, we developed an in vitro CD8 T-cell priming protocol to enable the identification of truly and functionally expressed HLA class I epitopes. The assay was established and validated to identify epitopes presented by hepatitis C virus (HCV)-infected cells. In vitro priming of naïve CD8 T cells was achieved by culturing unfractionated PBMCs in the presence of a specific cocktail of growth factors and cytokines, and next exposing the cells to hepatic cells expressing the NS3 protein of HCV. After a 10-day co-culture, HCV-specific T-cell responses were identified based on IFN-γ ELISpot analysis. For this, the T cells were restimulated with long synthetic peptides (SLPs) spanning the whole NS3 protein sequence allowing the identification of HCV-specificity. We demonstrated that this protocol resulted in the in vitro priming of naïve precursors to antigen-experienced T-cells specific for 11 out of 98 SLPs tested. These 11 SLPs contain 12 different HLA-A*02:01-restricted epitopes, as predicted by a combination of three epitope prediction algorithms. Furthermore, we identified responses against 3 peptides that were not predicted to contain any immunogenic HLA class I epitopes, yet showed HCV-specific responses in vitro. Separation of CD8+ and CD8- T cells from PBMCs primed in vitro showed responses only upon restimulation with short peptides. We established an in vitro method that enables the identification of HLA class I epitopes resulting from cross-presented antigens and that can cross-prime T cells and allows the effective selection of functional immunogenic epitopes, but also less immunogenic ones, for the design of tailored therapeutic vaccines against persistent viral infections and tumor antigens.
Collapse
Affiliation(s)
- Georgia Koutsoumpli
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, PO Box 30 001, HPC EB88, 9700RB Groningen, the Netherlands
| | - Neringa Stasiukonyte
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, PO Box 30 001, HPC EB88, 9700RB Groningen, the Netherlands
| | - Baukje Nynke Hoogeboom
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, PO Box 30 001, HPC EB88, 9700RB Groningen, the Netherlands
| | - Toos Daemen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, PO Box 30 001, HPC EB88, 9700RB Groningen, the Netherlands.
| |
Collapse
|
2
|
Dehghankhold M, Nezafat N, Farahmandnejad M, Abolmaali SS, Tamaddon AM. Immunoinformatic approach to design an efficient multi-epitope peptide vaccine against melanoma. Biotechnol Appl Biochem 2024. [PMID: 39245893 DOI: 10.1002/bab.2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 08/05/2024] [Indexed: 09/10/2024]
Abstract
Melanoma is known to be the most hazardous and life-threatening type of skin cancer. Although numerous treatments have been authorized in recent years, they often result in severe side effects and may not fully cure the disease. To combat this issue, immunotherapy has emerged as a promising approach for the prevention and treatment of melanoma. Specifically, the use of epitope melanoma vaccine, a subset of immunotherapy, has recently gained attention. The aim of this study was to create a multi-epitope melanoma vaccine using immunoinformatic methods. Two well-known antigens, NYESO-1 and MAGE-C2, were selected due to their strong immunogenicity and high expression in melanoma. To enhance the immunogenicity of the peptide vaccine, Brucella cell-surface protein 31 (BCSP31), the G5 domain of resuscitation-promoting factor B (RpfB) adjuvants, and the helper epitope of pan HLADR-binding epitope (PADRE) were incorporated to vaccine construct. These different segments were connected with suitable linkers and the resulting vaccine structure was evaluated for its physicochemical, structural, and immunological properties using computational tools. The designed vaccine was found to have satisfactory allergenicity, antigenicity, and physicochemical parameters. Additionally, a high-quality tertiary structure of the vaccine was achieved through modeling, refinement, and validation. Docking and molecular dynamics studies showed that the vaccine had a stable and appropriate interaction with the cognate TLR2 and TLR4 receptors during the simulation period. Finally, in silico immune simulation analysis revealed a significant increase in the levels of helper and cytotoxic T cells, as well as the cytokines interferon-gamma and interleukin-2, after repeated exposure to the melanoma vaccine. These results suggest that the designed vaccine has the potential to be an effective therapeutic option for melanoma. However, additional in vitro and in vivo validations are crucial to assess real-world efficacy and safety.
Collapse
Affiliation(s)
- Mahvash Dehghankhold
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mitra Farahmandnejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Singha S, Nath N, Sarma V, Barman K, Sharma GC, Saikia L, Baruah S. Identification of Immunodominant Epitopes of Dengue Virus 2 Envelope and NS1 Proteins: Evaluating the Diagnostic Potential of a Synthetic Peptide. Mol Diagn Ther 2024; 28:633-643. [PMID: 38980575 DOI: 10.1007/s40291-024-00728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND AND OBJECTIVE Dengue is a major infectious disease with potential for outbreaks and epidemics. A specific and sensitive diagnosis is a prerequisite for clinical management of the disease. We designed our study to identify epitopes on the Dengue virus (DENV) envelope (E) and non-structural protein 1 (NS1) with potential for diagnosis. METHODS Serology and immunoinformatic approaches were employed. We collected DENV-positive, DENV-negative and Japanese encephalitis virus-positive samples from collaborating hospitals in 2019 and 2022-2023. Seropositive peptides in 15-18 mer peptide arrays of E and NS1 proteins of DENV2 were determined by an indirect enzyme-linked immunosorbent assay. B-cell linear and conformational epitopes were predicted using BepiPred2.0 and ElliPro, respectively. A consensus recombinant peptide was designed, synthesised and evaluated for its diagnostic potential using patient sera. RESULTS Eight peptides of E protein and six peptides of NS1 protein were identified to be the most frequently recognised by Dengue-positive patients. These peptide sequences were compared with B-cell epitope regions and found to be overlapped with predicted B-cell linear and conformational epitopes. EP11 and NSP15 showed a 100% amino acid sequence overlap with B-cell epitopes. EP1 and NSP15 had 14 whereas EP28, EP31, EP60 16, NSP12 and NSP32 had more than 15 interacting interface residues with a neutralising antibody, suggesting a strength of interaction. Interestingly, potential epitopes identified were localised on the surface of proteins as visualised by PyMOL. Validation with a recombined synthetic peptide yielded 92.3% sensitivity and 91.42% specificity. CONCLUSIONS Immunodominant regions identified by serology and computationally predicted epitopes overlapped, thereby showing the robustness of the methodology and the peptide designed for diagnosis.
Collapse
Affiliation(s)
- Sushmita Singha
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur Assam, 784028, India
| | - Neena Nath
- Gauhati Medical College and Hospital, Bhangagarh, Guwahati, Assam, India
| | - Vaishali Sarma
- Gauhati Medical College and Hospital, Bhangagarh, Guwahati, Assam, India
| | - Kangkana Barman
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur Assam, 784028, India
| | - Gurumayum Chourajit Sharma
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur Assam, 784028, India
| | - Lahari Saikia
- Gauhati Medical College and Hospital, Bhangagarh, Guwahati, Assam, India
| | - Shashi Baruah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur Assam, 784028, India.
| |
Collapse
|
4
|
Ullah H, Ullah S, Li J, Yang F, Tan L. An In Silico Design of a Vaccine against All Serotypes of the Dengue Virus Based on Virtual Screening of B-Cell and T-Cell Epitopes. BIOLOGY 2024; 13:681. [PMID: 39336108 PMCID: PMC11428656 DOI: 10.3390/biology13090681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/30/2024]
Abstract
Dengue virus poses a significant global health challenge, particularly in tropical and subtropical regions. Despite the urgent demand for vaccines in the control of the disease, the two approved vaccines, Dengvaxia and TV003/TV005, there are current questions regarding their effectiveness due to an increased risk of antibody-dependent enhancement (ADE) and reduced protection. These challenges have underscored the need for further development of improved vaccines for Dengue Virus. This study presents a new design using an in silico approach to generate a more effective dengue vaccine. Initially, our design process began with the collection of Dengue polyprotein sequences from 10 representative countries worldwide. And then conserved fragments of viral proteins were retrieved as the bases for epitope screening. The selection of epitopes was then carried out with criteria such as antigenicity, immunogenicity, and binding affinity with MHC molecules, while the exclusion criteria were according to their allergenicity, toxicity, and potential for antibody-dependent enhancement. We then constructed a core antigen with the selected epitopes and linked the outcomes with distinct adjuvant proteins, resulting in three candidate vaccines: PSDV-1, PSDV-2, and PSDV-3. Among these, PSDV-2 was selected for further validation due to its superior physicochemical and structural properties. Extensive simulations demonstrated that PSDV-2 exhibited strong binding to pattern recognition receptors, high stability, and robust immune induction, confirming its potential as a high-quality vaccine candidate. For its recombinant expression, a plasmid was subsequently designed. Our new vaccine design offers a promising additional option for Dengue virus protection. Further experimental validations will be conducted to confirm its protective efficacy and safety.
Collapse
Affiliation(s)
- Hikmat Ullah
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaukat Ullah
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinze Li
- School of Basic Medicine and Life Sciences, Hainan Medical University, Longhua, Haikou 571199, China
| | - Fan Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Protein Cell-Based Drug, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Lei Tan
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Nasar S, Iftikhar S, Saleem R, Nadeem MS, Ali M. The N and C-terminal deleted variant of the dengue virus NS1 protein is a potential candidate for dengue vaccine development. Sci Rep 2024; 14:18883. [PMID: 39143088 PMCID: PMC11324946 DOI: 10.1038/s41598-024-65593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/21/2024] [Indexed: 08/16/2024] Open
Abstract
NS1 is an elusive dengue protein, involved in viral replication, assembly, pathogenesis, and immune evasion. Its levels in blood plasm are positively related to disease severity like thrombocytopenia, hemorrhage, and vascular leakage. Despite its pathogenic roles, NS1 is being used in various vaccine formulations due to its sequence conservancy, ability to produce protective antibodies and low risk for inducing antibody-dependent enhancement. In this study, we have used bioinformatics tools and reported literature to develop an NS1 variant (dNS1). Molecular docking studies were performed to evaluate the receptor-binding ability of the NS1 and dNS1 with TLR4. NS1 and dNS1 (153 to 312 amino acid region) genes were cloned, expressed and protein was purified followed by refolding. Docking studies showed the binding of NS1 and dNS1 with the TLR4 receptor which suggests that N and C-terminal sequences of NS1 are not critical for receptor binding. Antibodies against NS1 and dNS1 were raised in rabbits and binding affinity of anti-dNS1 anti-NS1 sera was evaluated against both NS1 and dNS1. Similar results were observed through western blotting which highlight that N and C-terminal deletion of NS1 does not compromise the immunogenic potential of dNS1 hence, supports its use in future vaccine formulations as a substitute for NS1.
Collapse
Affiliation(s)
- Sitara Nasar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| | - Rida Saleem
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Ali
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Aziz MH, Shabbir MZ, Ali MM, Asif Z, Ijaz MU. Immunoinformatics Approach for Epitope Mapping of Immunogenic Regions (N, F and H Gene) of Small Ruminant Morbillivirus and Its Comparative Analysis with Standard Vaccinal Strains for Effective Vaccine Development. Vaccines (Basel) 2022; 10:vaccines10122179. [PMID: 36560589 PMCID: PMC9785197 DOI: 10.3390/vaccines10122179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Outbreaks of small ruminant morbillivirus (SRMV) are regularly occurring in Pakistan despite vaccine availability. This study was designed to identify substitutions within the immunogenic structural and functional regions of the nucleocapsid, fusion, and hemagglutinin genes of SRMV and their comparison with vaccinal strains of Nigerian and Indian origin. METHODS Swabs and tissue samples were collected from diseased animals. RT-PCR was used to characterize selected genes encoded by viral RNA. The study's N, F, and H protein sequences and vaccinal strains were analyzed for B and T cell epitope prediction using ABCpred, Bipred, and IEDB, respectively. RESULTS Significant substitutions were found on the C terminus of the nucleocapsid, within the fusion motif region of the fusion gene and in the immunoreactive region of the hemagglutinin gene. CONCLUSION Our results emphasize the need for the development of effective vaccines that match the existing variants of SRMV strains circulating in Pakistan.
Collapse
Affiliation(s)
- Muhammad Hasaan Aziz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Muhammad Zubair Shabbir
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
- Correspondence: (M.Z.S.); (M.M.A.)
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
- Correspondence: (M.Z.S.); (M.M.A.)
| | - Zian Asif
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| | - Muhammad Usman Ijaz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan
| |
Collapse
|
7
|
Parmar M, Thumar R, Sheth J, Patel D. Designing multi-epitope based peptide vaccine targeting spike protein SARS-CoV-2 B1.1.529 (Omicron) variant using computational approaches. Struct Chem 2022; 33:2243-2260. [PMID: 36160688 PMCID: PMC9485025 DOI: 10.1007/s11224-022-02027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/02/2022] [Indexed: 10/26/2022]
Abstract
Millions of lives have been infected since the SARS-CoV-2 outbreak in 2019. The high human-to-human transmission rate has warranted a need for a vaccine to protect people. Although some vaccines are in use, due to the high mutation rate in the SARS-CoV-2 multiple variants, the current vaccines may not be sufficient to immunize people against new variant threats. One of the emerging concern variants is B1.1.529 (Omicron), which carries ~ 30 mutations in the Spike protein (S) of SARS-CoV-2 and is predicted to evade antibody recognition even from vaccinated people. We used a structure-based approach and an epitope prediction server to develop a Multi-Epitope based Subunit Vaccine (MESV) involving SARS-CoV-2 B1.1.529 variant spike glycoprotein. The predicted epitope with better antigenicity and non-toxicity was used for designing and predicting vaccine construct features and structure models. In addition, the MESV construct In silico cloning in the pET28a expression vector predicted the construct to be highly translational. The proposed MESV vaccine construct was also subjected to immune simulation prediction and was found to be highly antigenic and elicit a cell-mediated immune response. Therefore, the proposed MESV in the present study has the potential to be evaluated further for vaccine production against the newly identified B1.1.529 (Omicron) variant of concern. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-022-02027-6.
Collapse
Affiliation(s)
- Meet Parmar
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
| | - Ritik Thumar
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
| | - Jigar Sheth
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
| | - Dhaval Patel
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar-382426, Gujarat, India
- Gujarat Biotechnology University, Gujarat International Finance Tec-City, Gandhinagar, 382355 Gujarat India
| |
Collapse
|
8
|
Vahedi F, Ghasemi Y, Atapour A, Zomorodian K, Ranjbar M, Monabati A, Nezafat N, Savardashtaki A. B-Cell Epitope Mapping from Eight Antigens of Candida albicans to Design a Novel Diagnostic Kit: An Immunoinformatics Approach. Int J Pept Res Ther 2022; 28:110. [PMID: 35669279 PMCID: PMC9136830 DOI: 10.1007/s10989-022-10413-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
Invasive candidiasis is an emerging fungal infection and a leading cause of morbidity in health care facilities. Despite advances in antifungal therapy, increased antifungal drug resistance in Candida albicans has enhanced patient fatality. The most common method for Candida albicans diagnosing is blood culture, which has low sensitivity. Therefore, there is an urgent need to establish a valid diagnostic method. Our study aimed to use the bioinformatics approach to design a diagnostic kit for detecting Candida albicans with high sensitivity and specificity. Eight antigenic proteins of Candida albicans (HYR1, HWP1, ECE1, ALS, EAP1, SAP1, BGL2, and MET6) were selected. Next, a construct containing different immunodominant B-cell epitopes was derived from the antigens and connected using a suitable linker. Different properties of the final construct, such as physicochemical properties, were evaluated. Moreover, the designed construct underwent 3D modeling, reverse translation, and codon optimization. The results confirmed that the designed construct could identify Candida albicans with high sensitivity and specificity in serum samples of patients with invasive candidiasis. However, experimental studies are needed for final confirmation.
Collapse
Affiliation(s)
- Farzaneh Vahedi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Parasitology & Mycology, School of Medicines, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Ranjbar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Islam E. Development of epitope-based chimeric protein as a vaccine against Lujo virus by utilizing immunoinformatic tools. Future Virol 2022. [DOI: 10.2217/fvl-2021-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Lujo is a modern zoonotic virus that is potentially fatal and spreads by bodily fluids. In this research, immunoinformatic tools are used to build a vaccine. Methodology: The epitopes of cytotoxic T-lymphocytes, helper T-lymphocytes and linear B-lymphocytes were predicted from the most antigenic protein. The designed vaccine's physiochemical properties and 3D structure have been forecasted. Low free energy and strong binding affinity estimated in molecular docking against toll-like receptor 4 (TLR4) and dynamic simulation. Furthermore, in silico cloning in the Escherichia coli K12 host system was performed for high level of expression. Conclusion: Finally, immune simulation was used to determine immune responses to the vaccine that was formulated confirming the developed vaccine as a good candidate against Lujo virus.
Collapse
Affiliation(s)
- Enayetul Islam
- Department of Genetic Engineering & Biotechnology, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
10
|
Hasanshahi Z, Hashempour A, Ghasabi F, Moayedi J, Musavi Z, Dehghani B, Sharafi H, Joulaei H. First report on molecular docking analysis and drug resistance substitutions to approved HCV NS5A and NS5B inhibitors amongst Iranian patients. BMC Gastroenterol 2021; 21:443. [PMID: 34819046 PMCID: PMC8612383 DOI: 10.1186/s12876-021-01988-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background NS5A and NS5B proteins of hepatitis C virus (HCV) are the main targets of compounds that directly inhibit HCV infections. However, the emergence of resistance-associated substitutions (RASs) may cause substantial reductions in susceptibility to inhibitors. Methods Viral load and genotyping were determined in eighty-seven naïve HCV-infected patients, and the amplified NS5A and NS5B regions were sequenced by Sanger sequencing. In addition, physicochemical properties, structural features, immune epitopes, and inhibitors-protein interactions of sequences were analyzed using several bioinformatics tools. Results Several amino acid residue changes were found in NS5A and NS5B proteins; however, we did not find any mutations related to resistance to the treatment in NS5B. Different phosphorylation and few glycosylation sites were assessed. Disulfide bonds were identified in both proteins that had a significant effect on the function and structure of HCV proteins. Applying reliable software to predict B-cell epitopes, 3 and 5 regions were found for NS5A and NS5B, respectively, representing a considerable potential to induce the humoral immune system. Docking analysis determined amino acids involved in the interaction of inhibitors and mentioned proteins may not decrease the drug efficiency. Conclusions Strong interactions between inhibitors, NS5A and NS5B proteins and the lack of efficient drug resistance mutations in the analyzed sequences may confirm the remarkable ability of NS5A and NS5B inhibitors to control HCV infection amongst Iranian patients. The results of bioinformatics analysis could unveil all features of both proteins, which can be beneficial for further investigations on HCV drug resistance and designing novel vaccines. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-01988-y.
Collapse
Affiliation(s)
- Zahra Hasanshahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ava Hashempour
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Farzane Ghasabi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Moayedi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Musavi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Dehghani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heidar Sharafi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Middle East Liver Diseases (MELD) Center, Tehran, Iran
| | - Hassan Joulaei
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Exploring Onchocerca volvulus Cysteine Protease Inhibitor for Multi-epitope Subunit Vaccine Against Onchocerciasis: An Immunoinformatics Approach. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10224-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Behzadi M, Vakili B, Ebrahiminezhad A, Nezafat N. Iron nanoparticles as novel vaccine adjuvants. Eur J Pharm Sci 2021; 159:105718. [PMID: 33465476 DOI: 10.1016/j.ejps.2021.105718] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
The poor immunogenicity of peptide vaccines compared to conventional ones re usually improved by applying different adjuvants. As chemical or biological substances, adjuvants are added to vaccines to enhance and prolong the immune response. According to considerable investigations over the recent years in the context of finding new adjuvants, a handful of vaccine adjuvants have been licensed for human use. Recently, engineered nanoparticles (NPs) have been introduced as novel alternatives to traditional vaccine adjuvant. Metallic nanoparticles (MeNPs) are among the most promising NPs used for vaccine adjuvant as well as the delivery system that can improve immune responses against pathogens. Iron NPs, as an important class of MeNPs, have gained increasing attention as novel vaccine adjuvants. These particles have shown acceptable results in preclinical studies. Hence, understanding the physicochemical properties of iron NPs, including size, surface properties, charge and route of administration, is of substantial importance. The aim of this review is to provide an overview of the immunomodulatory effects of iron NPs as novel adjuvants. Furthermore, physicochemical properties of these NPs were also discussed.
Collapse
Affiliation(s)
- Maryam Behzadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Ebrahiminezhad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Bazhan SI, Antonets DV, Starostina EV, Ilyicheva TN, Kaplina ON, Marchenko VY, Volkova OY, Bakulina AY, Karpenko LI. In silico design of influenza a virus artificial epitope-based T-cell antigens and the evaluation of their immunogenicity in mice. J Biomol Struct Dyn 2020; 40:3196-3212. [PMID: 33222632 DOI: 10.1080/07391102.2020.1845978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The polyepitope strategy is promising approach for successfully creating a broadly protective flu vaccine, which targets T-lymphocytes (both CD4+ and CD8+) to recognise the most conserved epitopes of viral proteins. In this study, we employed a computer-aided approach to develop several artificial antigens potentially capable of evoking immune responses to different virus subtypes. These antigens included conservative T-cell epitopes of different influenza A virus proteins. To design epitope-based antigens we used experimentally verified information regarding influenza virus T-cell epitopes from the Immune Epitope Database (IEDB) (http://www.iedb.org). We constructed two "human" and two "murine" variants of polyepitope antigens. Amino acid sequences of target polyepitope antigens were designed using our original TEpredict/PolyCTLDesigner software. Immunogenic and protective features of DNA constructs encoding "murine" target T-cell immunogens were studied in BALB/c mice. We showed that mice groups immunised with a combination of computer-generated "murine" DNA immunogens had a 37.5% survival rate after receiving a lethal dose of either A/California/4/2009 (H1N1) virus or A/Aichi/2/68 (H3N2) virus, while immunisation with live flu H1N1 and H3N2 vaccine strains provided protection against homologous viruses and failed to protect against heterologous viruses. These results demonstrate that mechanisms of cross-protective immunity may be associated with the stimulation of specific T-cell responses. This study demonstrates that our computer-aided approach may be successfully used for rational designing artificial polyepitope antigens capable of inducing virus-specific T-lymphocyte responses and providing partial protection against two different influenza virus subtypes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sergei I Bazhan
- Theoretical Department, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| | - Denis V Antonets
- Theoretical Department, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| | - Ekaterina V Starostina
- Bioengineering Department, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| | - Tatyana N Ilyicheva
- Department of zoonotic infections and Influenza, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| | - Olga N Kaplina
- Bioengineering Department, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| | - Vasiliy Yu Marchenko
- Department of zoonotic infections and Influenza, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| | - Olga Yu Volkova
- Immunogenetics laboratory, Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasiya Yu Bakulina
- Theoretical Department, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia.,Laboratory of structural bioinformatics and molecular modeling, Novosibirsk State University, Novosibirsk, Russia
| | - Larisa I Karpenko
- Bioengineering Department, State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk Region, Russia
| |
Collapse
|
14
|
Jyotisha, Singh S, Qureshi IA. Multi-epitope vaccine against SARS-CoV-2 applying immunoinformatics and molecular dynamics simulation approaches. J Biomol Struct Dyn 2020; 40:2917-2933. [PMID: 33164664 PMCID: PMC7682209 DOI: 10.1080/07391102.2020.1844060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
COVID-19, caused by SARS-CoV-2, is severe respiratory illnesses leading to millions of deaths worldwide in very short span. The high case fatality rate and the lack of medical counter measures emphasize for an urgent quest to develop safe and effective vaccine. Receptor-binding domain (RBD) of spike protein of SARS-CoV-2 binds to the ACE2 receptor on human host cell for the viral attachment and entry, hence considered as a key target to develop vaccines, antibodies and therapeutics. In this study, immunoinformatics approach was employed to design a novel multi-epitope vaccine using RBD of SARS-CoV-2 spike protein. The potential B- and T-cell epitopes were selected from RBD sequence using various bioinformatics tools to design the vaccine construct. The in silico designed multi-epitope vaccine encompasses 146 amino acids with an adjuvant (human beta-defensin-2), which was further computationally evaluated for several parameters including antigenicity, allergenicity and stability. Subsequently, three-dimensional structure of vaccine construct was modelled and then docked with various toll-like receptors. Molecular dynamics (MD) study of docked TLR3-vaccine complex delineated it to be highly stable during simulation time and the stabilization of interaction was majorly contributed by electrostatic energy. The docked complex also showed low deformation and increased rigidity in motion of residues during dynamics. Furthermore, in silico cloning of the multi-epitope vaccine was carried out to generate the plasmid construct for expression in a bacterial system. Altogether, our study suggests that the designed vaccine candidate containing RBD region could provide the specific humoral and cell-mediated immune responses against SARS-CoV-2. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Jyotisha
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Samayaditya Singh
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
15
|
Rehman HM, Mirza MU, Ahmad MA, Saleem M, Froeyen M, Ahmad S, Gul R, Alghamdi HA, Aslam MS, Sajjad M, Bhinder MA. A Putative Prophylactic Solution for COVID-19: Development of Novel Multiepitope Vaccine Candidate against SARS-COV-2 by Comprehensive Immunoinformatic and Molecular Modelling Approach. BIOLOGY 2020; 9:E296. [PMID: 32962156 PMCID: PMC7563440 DOI: 10.3390/biology9090296] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
The outbreak of 2019-novel coronavirus (SARS-CoV-2) that causes severe respiratory infection (COVID-19) has spread in China, and the World Health Organization has declared it a pandemic. However, no approved drug or vaccines are available, and treatment is mainly supportive and through a few repurposed drugs. The urgency of the situation requires the development of SARS-CoV-2-based vaccines. Immunoinformatic and molecular modelling are time-efficient methods that are generally used to accelerate the discovery and design of the candidate peptides for vaccine development. In recent years, the use of multiepitope vaccines has proved to be a promising immunization strategy against viruses and pathogens, thus inducing more comprehensive protective immunity. The current study demonstrated a comprehensive in silico strategy to design stable multiepitope vaccine construct (MVC) from B-cell and T-cell epitopes of essential SARS-CoV-2 proteins with the help of adjuvants and linkers. The integrated molecular dynamics simulations analysis revealed the stability of MVC and its interaction with human Toll-like receptors (TLRs), which trigger an innate and adaptive immune response. Later, the in silico cloning in a known pET28a vector system also estimated the possibility of MVC expression in Escherichia coli. Despite that this study lacks validation of this vaccine construct in terms of its efficacy, the current integrated strategy encompasses the initial multiple epitope vaccine design concepts. After validation, this MVC can be present as a better prophylactic solution against COVID-19.
Collapse
Affiliation(s)
- Hafiz Muzzammel Rehman
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Punjab, Pakistan; (H.M.R.); (M.S.A.)
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore 54590, Punjab, Pakistan; (M.A.A.); (M.A.B.)
| | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium; (M.U.M.); (M.F.)
| | - Mian Azhar Ahmad
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore 54590, Punjab, Pakistan; (M.A.A.); (M.A.B.)
- Department of Health, Government of the Punjab, Lahore 54590, Punjab, Pakistan
| | - Mahjabeen Saleem
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Punjab, Pakistan; (H.M.R.); (M.S.A.)
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium; (M.U.M.); (M.F.)
| | - Sarfraz Ahmad
- Drug Design and Development Research Group (DDDRG), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Roquyya Gul
- Faculty of Life Sciences, Gulab Devi Educational Complex, Lahore 54590, Punjab, Pakistan;
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia;
| | - Muhammad Shahbaz Aslam
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Punjab, Pakistan; (H.M.R.); (M.S.A.)
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Quaid e Azam Campus, Lahore 54590, Punjab, Pakistan;
| | - Munir Ahmad Bhinder
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore 54590, Punjab, Pakistan; (M.A.A.); (M.A.B.)
| |
Collapse
|
16
|
Araujo SC, Pereira LR, Alves RPS, Andreata-Santos R, Kanno AI, Ferreira LCS, Gonçalves VM. Anti-Flavivirus Vaccines: Review of the Present Situation and Perspectives of Subunit Vaccines Produced in Escherichia coli. Vaccines (Basel) 2020; 8:vaccines8030492. [PMID: 32878023 PMCID: PMC7564369 DOI: 10.3390/vaccines8030492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
This article aims to review the present status of anti-flavivirus subunit vaccines, both those at the experimental stage and those already available for clinical use. Aspects regarding development of vaccines to Yellow Fever virus, (YFV), Dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV) are highlighted, with particular emphasis on purified recombinant proteins generated in bacterial cells. Currently licensed anti-flavivirus vaccines are based on inactivated, attenuated, or virus-vector vaccines. However, technological advances in the generation of recombinant antigens with preserved structural and immunological determinants reveal new possibilities for the development of recombinant protein-based vaccine formulations for clinical testing. Furthermore, novel proposals for multi-epitope vaccines and the discovery of new adjuvants and delivery systems that enhance and/or modulate immune responses can pave the way for the development of successful subunit vaccines. Nonetheless, advances in this field require high investments that will probably not raise interest from private pharmaceutical companies and, therefore, will require support by international philanthropic organizations and governments of the countries more severely stricken by these viruses.
Collapse
Affiliation(s)
- Sergio C. Araujo
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Lennon R. Pereira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Rubens P. S. Alves
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Robert Andreata-Santos
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Alex I. Kanno
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Luis Carlos S. Ferreira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| | - Viviane M. Gonçalves
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| |
Collapse
|
17
|
Gupta A, Rosato AJ, Cui F. Vaccine candidate designed against carcinoembryonic antigen-related cell adhesion molecules using immunoinformatics tools. J Biomol Struct Dyn 2020; 39:6084-6098. [PMID: 32720576 DOI: 10.1080/07391102.2020.1797539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion (CEACAM) molecules belong to a family of membrane glycoproteins that mediate intercellular interactions influencing cellular growth, immune cell activation, apoptosis, and tumor suppression. Several family members (CEACAM1, CEACAM5, and CEACAM6) are highly expressed in cancers, and they share a conserved N-terminal domain that serves as an attractive target for cancer immunotherapy. A multi-epitope vaccine candidate against this conserved domain has been developed using immunoinformatics tools. Specifically, several epitopes predicted to interact with MHC class I and II molecules were linked together with appropriate linkers. The tertiary structure of the vaccine is generated by homology and ab initio modeling. Molecular docking of epitopes to MHC structures have revealed that the lowest energy conformations are the epitopes bound to the antigen-binding groove of the MHC molecules. Subsequent molecular dynamics simulation has confirmed the stability of the binding conformations in solution. The predicted vaccine has relatively high antigenicity and low allergenicity, suggesting that it is an ideal candidate for further refinement and development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditya Gupta
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Andrew J Rosato
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
18
|
Hasanzadeh S, Farokhi M, Habibi M, Shokrgozar MA, Ahangari Cohan R, Rezaei F, Asadi Karam MR, Bouzari S. Silk Fibroin Nanoadjuvant as a Promising Vaccine Carrier to Deliver the FimH-IutA Antigen for Urinary Tract Infection. ACS Biomater Sci Eng 2020; 6:4573-4582. [DOI: 10.1021/acsbiomaterials.0c00736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sara Hasanzadeh
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mehdi Farokhi
- National Cell Bank, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | - Reza Ahangari Cohan
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Rezaei
- Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
19
|
Anwar S, Mourosi JT, Khan MF, Hosen MJ. Prediction of Epitope-Based Peptide Vaccine Against the Chikungunya Virus by Immuno-informatics Approach. Curr Pharm Biotechnol 2020; 21:325-340. [PMID: 31721709 DOI: 10.2174/1389201020666191112161743] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/16/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chikungunya is an arthropod-borne viral disease characterized by abrupt onset of fever frequently accompanied by joint pain, which has been identified in over 60 countries in Africa, the Americas, Asia, and Europe. METHODS Regardless of the availability of molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet. In the present study, a combination of B-cell and T-cell epitope predictions, followed by molecular docking simulation approach has been carried out to design a potential epitope-based peptide vaccine, which can trigger a critical immune response against the viral infections. RESULTS A total of 52 sequences of E1 glycoprotein from the previously reported isolates of Chikungunya outbreaks were retrieved and examined through in silico methods to identify a potential B-cell and T-cell epitope. From the two separate epitope prediction servers, five potential B-cell epitopes were selected, among them "NTQLSEAHVEKS" was found highly conserved across strains and manifests high antigenicity with surface accessibility, flexibility, and hydrophilicity. Similarly, two highly conserved, non-allergenic, non-cytotoxic putative T-cell epitopes having maximum population coverage were screened to bind with the HLA-C 12*03 molecule. Molecular docking simulation revealed potential T-cell based epitope "KTEFASAYR" as a vaccine candidate for this virus. CONCLUSION A combination of these B-cell and T-cell epitope-based vaccine can open up a new skyline with broader therapeutic application against Chikungunya virus with further experimental and clinical investigation.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.,Maternal and Child Health Program, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8440 112 St. NW, Edmonton, AB T6G 2R7, Canada
| | - Jarin T Mourosi
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.,Microbial and Cellular Biology Program, Department of Biology, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC, 20064, United States
| | - Md Fahim Khan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mohammad J Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
20
|
Saranya V, Radhika R, Shankar R, Vijayakumar S. In silico studies of the inhibition mechanism of dengue with papain. J Biomol Struct Dyn 2020; 39:1912-1927. [PMID: 32249700 DOI: 10.1080/07391102.2020.1742205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Dengue virus is becoming a major global disease; the envelope protein is the major target for vaccine development against Dengue. Nowadays, the attention has focused on developing inhibitors based on Papain is a promising target for treating Dengue. In the present work, the theoretical studies of E-protein(Cys74-Glu79;Lys110)…Papain(Cys25, Asn175 and His159) complexes are analysed by Density Functional Theory (M06-2X/cc-pVDZ) method. Among the E-protein(Cys74-Glu79;Lys110)…Papain(Cys25, Asn175 and Hys159) complexes, E-protein(Glu76)…Papain(Cys25) complex has the highest interaction value of -352.22 kcal/mol. Moreover, the natural bond orbital analysis also supports the above results. The 100 ns Molecular Dynamics simulation reveals that, E-protein(Ala54-Ile129)…Papain(Cys25) complex had the lowest root mean square deviation value of 1 Å compared to the E-protein(Ala54-Ile129)… Papain(Asn175 & His159) complexes. The salt bridge formation between the Asp103 and Lys110 residues are the important stabilizing factor in E-protein(Ala54-Ile129)…Papain(Cys25) complex. This result can extend our knowledge of the functional behaviour of Papain and provides structural insight to target Envelope protein as forthcoming drug targets in Dengue.
Collapse
|
21
|
Majee P, Jain N, Kumar A. Designing of a multi-epitope vaccine candidate against Nipah virus by in silico approach: a putative prophylactic solution for the deadly virus. J Biomol Struct Dyn 2020; 39:1461-1480. [PMID: 32093573 DOI: 10.1080/07391102.2020.1734088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nipah virus (NPV) is one of the most notorious viruses with a very high fatality rate. Because of the recurrent advent of this virus and its severe neurological implications, often leading to high mortality, the WHO R&D Blueprint, 2018 has listed the Nipah virus as one of the emerging infectious diseases requiring urgent research and development effort. Yet there is a major layback in the development of effective vaccines or drugs against NPV. In this study, we have designed a stable multivalent vaccine combining several T-cell and B-cell epitopes of the essential Nipah viral proteins with the help of different ligands and adjuvants which can effectively induce both humoral and cellular immune responses in human. Different advanced immune-informatic tools confirm the stability, high immunogenicity and least allergenicity of the vaccine candidate. The standard molecular dynamic cascade analysis validates the stable interaction of the vaccine construct with the human Toll-like receptor 3 (TLR3) complex. Later, codon optimization and in silico cloning in a known pET28a vector system shows the possibility for the expression of this vaccine in a simple organism like E.coli. It is believed that with further in vitro and in vivo validation, this vaccine construct can pose to be a better prophylactic solution to the Nipah viral disease. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prativa Majee
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, Indore, India
| |
Collapse
|
22
|
Bappy SS, Sultana S, Adhikari J, Mahmud S, Khan MA, Kibria KMK, Rahman MM, Shibly AZ. Extensive immunoinformatics study for the prediction of novel peptide-based epitope vaccine with docking confirmation against envelope protein of Chikungunya virus: a computational biology approach. J Biomol Struct Dyn 2020; 39:1139-1154. [PMID: 32037968 DOI: 10.1080/07391102.2020.1726815] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chikungunya virus (CHIKV) instigating Chikungunya fever is a global infective menace resulting in high fever, weakened joint-muscle pain, and brain inflammation. Inaccessibility and unavailability of effective drugs have led us to an uncertain arena when it comes to providing proper medical treatment to the affected people. In this study, authentic encroachment has been made concerning the peptide-based epitope vaccine designing against CHIKV. A Proteome-wide search was performed to locate a conserved portion among the accessible viral outer membrane proteins which showcase a remarkable immune response using specific immunoinformatics and docking simulation tools. Primarily, the most probable immunogenic envelope glycoproteins E1 and E2 were identified from the UniProt database depending on their antigenicity scores. Subsequently, we selected two distinctive sequences "SEDVYANTQLVLQRP" and "IMLLYPDHPTLLSYR" in both E1 and E2 glycoproteins respectively. These two sequences identified as the most potent T and B cell epitope-based peptides as they interacted with 6 and 7 HLA-I and 5 HLA-II molecules with an extremely low IC50 score that was verified by molecular docking. Moreover, the sequences possess no allergenicity and are certainly located outside the transmembrane region. In addition, the sequences exhibited 88.46% and 100.00% Conservancy, covering high population coverage of 89.49% to 94.74% and 60.51% to 88.87% respectively in endemic countries. The identified peptide SEDVYANTQLVLQRP and IMLLYPDHPTLLSYR can be utilized next for the development of peptide-based epitope vaccine contrary to CHIKV, so further documentations and experimentations like Antigen testing, Antigen production, Clinical trials are needed to prove the validity of it. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Syed Shahariar Bappy
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Sorna Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Juthi Adhikari
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh.,Bio-Bio-1 Research Foundation, Sangskriti Bikash Kendra Bhaban, Dhaka, Bangladesh
| | - K M Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md Masuder Rahman
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Abu Zaffar Shibly
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| |
Collapse
|
23
|
Fuzo CA, de Araujo LFL, Pontes RDS, Évora PM, Stabeli RG. Adjacent dimer epitope of envelope protein as an important region for Zika virus serum neutralization: a computational investigation. J Biomol Struct Dyn 2020; 39:1082-1092. [PMID: 32090677 DOI: 10.1080/07391102.2020.1728385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The recent emergence of Zika virus (ZIKV) has affected many countries, with severe clinical manifestations such as fetal microcephaly and Guillain-Barré syndrome. However, even though it is a major public health concern, there is no approved treatment available. Structural knowledge of the main neutralization regions of the envelope (E) protein of ZIKV and its interactions with neutralizing antibodies (nAbs) are crucial for the rational development of subunit vaccines and establishment of antibody-based interventions. In this study we screened from public data hot spot epitopes in conserved regions of ZIKV E protein that are nAbs targets. The result points to a conserved epitope located at domain II of the ZIKV E protein, namely adjacent dimer epitope, which is the ZIKV-117 and Z20 nAbs target. Although these two nAbs have been isolated from different donors, we have demonstrated, from structural and energetic details obtained by molecular dynamics of native and mutants, that hot spots residues of the epitope are the same for these nAbs, thereby indicating that they may share similar binding and neutralization mechanism. This convergence of information between these nAbs is important because both are potential targets for the development of therapies against ZIKV and only Z20 has its sequence and its complex structure with ZIKV E protein determined. Finally, these findings also contribute to existing knowledge, by fine mapping of the epitope/paratope residue pairs that are important for biotechnological development of therapies such as epitope mimetics for subunit vaccines and the rational design for antibody-based interventions against ZIKV. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Carlos Alessandro Fuzo
- Plataforma de Pesquisa em Medicina Translacional, Fundação Oswaldo Cruz - Fiocruz SP, São Paulo, Brazil.,Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz Felipe Lemes de Araujo
- Plataforma de Pesquisa em Medicina Translacional, Fundação Oswaldo Cruz - Fiocruz SP, São Paulo, Brazil.,Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael de Souza Pontes
- Plataforma de Pesquisa em Medicina Translacional, Fundação Oswaldo Cruz - Fiocruz SP, São Paulo, Brazil.,Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patricia Martinez Évora
- Plataforma de Pesquisa em Medicina Translacional, Fundação Oswaldo Cruz - Fiocruz SP, São Paulo, Brazil.,Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Guerino Stabeli
- Plataforma de Pesquisa em Medicina Translacional, Fundação Oswaldo Cruz - Fiocruz SP, São Paulo, Brazil.,Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
24
|
Javadi Mamaghani A, Seyyed Tabaei SJ, Ranjbar MM, Haghighi A, Spotin A, Ataee Dizaji P, Rezaee H. Designing Diagnostic Kit for Toxoplasma gondii Based on GRA7, SAG1, and ROP1 Antigens: An In Silico Strategy. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10021-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Tosta SFDO, Passos MS, Kato R, Salgado Á, Xavier J, Jaiswal AK, Soares SC, Azevedo V, Giovanetti M, Tiwari S, Alcantara LCJ. Multi-epitope based vaccine against yellow fever virus applying immunoinformatics approaches. J Biomol Struct Dyn 2020; 39:219-235. [PMID: 31854239 DOI: 10.1080/07391102.2019.1707120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Yellow fever disease is considered a re-emerging major health issue which has caused recent outbreaks with a high number of deaths. Tropical countries, mainly African and South American, are the most affected by Yellow fever outbreaks. Despite the availability of an attenuated vaccine, its use is limited for some groups such as pregnant and nursing women, immunocompromised and immunosuppressed patients, elderly people >65 years, infants <6 months and patients with biological disorders like thymus disorders. In order to achieve new preventive measures, we applied immunoinformatics approaches to develop a multi-epitope-based subunit vaccine for Yellow fever virus. Different epitopes, related to humoral and cell-mediated immunity, were predicted for complete polyproteins of two Yellow fever strains (Asibi and 17 D vaccine). Those epitopes common for both strains were mapped into a set of 137 sequences of Yellow fever virus, including 77 sequences from a recent outbreak at the state of Minas Gerais, southeast Brazil. Therefore, the present work uses robust bioinformatics approaches for the identification of a multi-epitope vaccine against the Yellow fever virus. Our results indicate that the identified multi-epitope vaccine might stimulate humoral and cellular immune responses and could be a potential vaccine candidate against Yellow fever virus infection. Hence, it should be subjected to further experimental validations. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Stephane Fraga de Oliveira Tosta
- Postgraduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Mariana Santana Passos
- Department of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Rodrigo Kato
- Postgraduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Álvaro Salgado
- Postgraduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Joilson Xavier
- Department of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Arun Kumar Jaiswal
- Postgraduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Department of Immunology, Microbiology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Siomar C Soares
- Department of Immunology, Microbiology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Vasco Azevedo
- Postgraduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Marta Giovanetti
- Department of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Manguinhos, Rio De Janeiro, Brazil
| | - Sandeep Tiwari
- Postgraduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luiz Carlos Junior Alcantara
- Department of Genetics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Laboratório de Flavivírus, Instituto Oswaldo Cruz, FIOCRUZ, Manguinhos, Rio De Janeiro, Brazil
| |
Collapse
|
26
|
Introducing of an integrated artificial neural network and Chou's pseudo amino acid composition approach for computational epitope-mapping of Crimean-Congo haemorrhagic fever virus antigens. Int Immunopharmacol 2020; 78:106020. [DOI: 10.1016/j.intimp.2019.106020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/09/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
|
27
|
Ul-Rahman A, Shabbir MAB. In silico analysis for development of epitopes-based peptide vaccine against Alkhurma hemorrhagic fever virus. J Biomol Struct Dyn 2019; 38:3110-3122. [PMID: 31370756 DOI: 10.1080/07391102.2019.1651673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Alkhurma hemorrhagic fever virus (ALKV) causes a fatal clinical disease in human beings of different tropical and sub-tropical regions. Recently, the ALKV epidemics have raised a great public health concern with the room for improvement in the essential therapeutic interventions. Despite increased realistic clinical cases of ALKV infection, the efficient vaccine or immunotherapy is not yet available to-date. Therefore, the current study aimed to analyze the envelope glycoprotein of ALKV for the development of B-cells and T-cells epitope-based peptide vaccine using the computational in silico method. Utilizing various immunoinformatics approaches, a total of 5 B-cells and 25 T-cells (MHC-I = 17, MHC-II = 8) epitope-based peptides were predicted in the current study. All predicted peptides had highest antigenicity and immunogenicity scores along with high binding affinity to human leukocyte antigen (HLA) class II alleles. Among 25T-cell epitopes, three peptides were found alike to have affinity to bind both MHC-I and MHC-II alleles. These outcomes suggested that these predicted epitopes could potentially be used in the development of an efficient vaccine against ALKV, which may enable to elicit both humoral and cell-mediated immunity. Although, these predicted peptides could be useful in designing a candidate vaccine for the prevention of ALKV; however, it's in vitro and in vivo assessments are prerequisite.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aziz Ul-Rahman
- Department of Microbiology and Quality Operations Laboratory, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Abu Bakr Shabbir
- Department of Microbiology and Quality Operations Laboratory, University of Veterinary and Animal Sciences, Lahore, Pakistan.,China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Sabetian S, Shamsir MS. Computer aided analysis of disease linked protein networks. Bioinformation 2019; 15:513-522. [PMID: 31485137 PMCID: PMC6704336 DOI: 10.6026/97320630015513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/26/2022] Open
Abstract
Proteins can interact in various ways, ranging from direct physical relationships to indirect interactions in a formation of protein-protein interaction network. Diagnosis of the protein connections is critical to identify various cellular pathways. Today constructing and analyzing the protein interaction network is being developed as a powerful approach to create network pharmacology toward detecting unknown genes and proteins associated with diseases. Discovery drug targets regarding therapeutic decisions are exciting outcomes of studying disease networks. Protein connections may be identified by experimental and recent new computational approaches. Due to difficulties in analyzing in-vivo proteins interactions, many researchers have encouraged improving computational methods to design protein interaction network. In this review, the experimental and computational approaches and also advantages and disadvantages of these methods regarding the identification of new interactions in a molecular mechanism have been reviewed. Systematic analysis of complex biological systems including network pharmacology and disease network has also been discussed in this review.
Collapse
Affiliation(s)
- Soudabeh Sabetian
- Department of Biological and Health Sciences, Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor, Malaysia
- Infertility Research Center, Shiraz University, Shiraz 71454, Iran, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohd Shahir Shamsir
- Department of Biological and Health Sciences, Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor, Malaysia
| |
Collapse
|
29
|
Vora J, Patel S, Athar M, Sinha S, Chhabria MT, Jha PC, Shrivastava N. Pharmacophore modeling, molecular docking and molecular dynamics simulation for screening and identifying anti-dengue phytocompounds. J Biomol Struct Dyn 2019; 38:1726-1740. [PMID: 31057055 DOI: 10.1080/07391102.2019.1615002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dengue is a fast spreading mosquito borne viral disease that poses a serious threat to human health. Lack of therapeutic drugs and vaccines signify that more resources need to be explored. Accumulated evidence has suggested that plants offer a vast reservoir for antiviral drug discovery which are safe for human consumption. Plant-based drug discovery is a complex and time-consuming process as plants possess rich repository of chemically diverse compounds. Various in silico methods can make this process simple and economic. We, therefore, performed pharmacophore mapping, molecular docking, molecular dynamics (MD) simulations and ADME (absorption, distribution, metabolism, excretion) prediction to screen potential candidates against dengue. In particular, combined pharmacophore mapping and molecular docking were used to prioritize the potentially active ligands from a ligand library. Biological activities of plant based ligands were predicted using 3D-QSAR pharmacophore modeling. Interaction between proteins, namely, envelope G protein, NS2B/NS3 protease, NS5 methyltransferase, NS1, NS5 polymerase and active plant-based ligands (pIC50 > 5.1) were analyzed using molecular docking. Best docked complex, namely, envelope G protein-mulberroside C, NS2B-NS3 protease-curcumin, NS5 methyltransferase-chebulic acid, NS1-mulberroside A, NS5 methyltransferase-punigluconin and NS5 methyltransferase-chebulic acid were further subjected to MD simulations study to assess the fluctuation and conformational changes during protein-ligand interaction. ADME studies were performed to assess their drug-likeness properties. Collectively, these in silico results helped to identify the potential plant-based hits against the various receptors of dengue virus which can be further validated by bioactivity-based experiments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jaykant Vora
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, India.,Department of Life science, Gujarat University, Ahmedabad, India
| | - Shivani Patel
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, India
| | - Mohd Athar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| | - Sonam Sinha
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, India.,Department of Life science, Gujarat University, Ahmedabad, India
| | - Mahesh T Chhabria
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad, India
| | - Prakash C Jha
- Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar, India
| | - Neeta Shrivastava
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, India
| |
Collapse
|
30
|
Dehghani B, Hashempour T, Hasanshahi Z, Moayedi J. Bioinformatics Analysis of Domain 1 of HCV-Core Protein: Iran. Int J Pept Res Ther 2019; 26:303-320. [PMID: 32435167 PMCID: PMC7223762 DOI: 10.1007/s10989-019-09838-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) infection is a serious global health problem and a cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Bioinformatics software has been an effective tool to study the HCV genome as well as core domains. Our research was based on employing several bioinformatics software applications to find important mutations in domain 1 of core protein in Iranian HCV infected samples from 2006 to 2017, and an investigation of general properties, B-cell and T-cell epitopes, modification sites, and structure of domain 1. Domain 1 sequences of 188 HCV samples isolated from 2006 to 2017, Iran, were retrieved from NCBI gene bank. Using several tools, all sequences were analyzed for determination of mutations, physicochemical analysis, B-cell epitopes prediction, T-cell and CTL epitopes prediction, post modification, secondary and tertiary structure prediction. Our analysis determined several mutations in some special positions (70, 90, 91, and 110) that are associated with HCC and hepatocarcinogenesis, efficacy of triple therapy and sustained virological response, and interaction between core and CCR6. Several B-cell, T-cell, and CTL epitopes were recognized. Secondary and tertiary structures were mapped fordomain1 and core proteins. Our study, as a first report, offered inclusive data about frequent mutation in HCV-core gene domain 1 in Iranian sequences that can provide helpful analysis on structure and function of domain 1 of the core gene.
Collapse
Affiliation(s)
- Behzad Dehghani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, 71937 Iran
| | - Tayebeh Hashempour
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, 71937 Iran
| | - Zahra Hasanshahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, 71937 Iran
| | - Javad Moayedi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, 71937 Iran
| |
Collapse
|
31
|
Bhattacharya M, Malick RC, Mondal N, Patra P, Pal BB, Patra BC, Kumar Das B. Computational characterization of epitopic region within the outer membrane protein candidate in Flavobacterium columnare for vaccine development. J Biomol Struct Dyn 2019; 38:450-459. [PMID: 30744535 DOI: 10.1080/07391102.2019.1580222] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gram-negative bacteria is the main causative agents for columnaris disease outbreak to finfishes. The outer membrane proteins (OMPs) candidate of Flavobacterium columnare bacterial cell served a critical component for cellular invasion targeted to the eukaryotic cell and survival inside the macrophages. Therefore, OMPs considered as the supreme element for the development of promising vaccine against F. columnare. Implies advanced in silico approaches, the predicted 3-D model of targeted OMPs were characterized by the Swiss model server and validated through Procheck programs and Protein Structure Analysis (ProSA) web server. The protein sequences having B-cell binding sites were preferred from sequence alignment; afterwards the B cell epitopes prediction was prepared using the BCPred and amino acid pairs (AAP) prediction algorithms modules of BCPreds. Consequently, the selected antigenic amino acids sequences (B-cell epitopic regions) were analyzed for T-cell epitopes determination (MHC I and MHC II alleles binding sequence) performing the ProPred 1 and ProPred server respectively. The epitopes (9 mer: IKKYEPAPV, YGPNYKWKF and YRGLNVGTS) within the OMPs binds to both of the MHC classes (MHC I and MHC II) and covered highest number of MHC alleles are characterized. OMPs of F. columnare being conserved across serotypes and highly immunogenic for their exposed epitopes on the cell surface as a potent candidate focus to vaccine development for combating the disease problems in commercial aquaculture. The portrayed epitopes might be beneficial for practical designing of abundant peptide-based vaccine development against the columnaris through boosting up the advantageous immune responses.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, India
| | - Ramesh Chandra Malick
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, India.,bMicrobiology Division, Regional Medical Research Centre, (ICMR), Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Niladri Mondal
- cCentre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Prasanta Patra
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Bibhuti Bhusan Pal
- Microbiology Division, Regional Medical Research Centre, (ICMR), Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Bidhan Chandra Patra
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, India
| |
Collapse
|