1
|
Shen M, Wang Y, Tang Y, Zhu F, Jiang J, Zhou J, Li Q, Meng Q, Zhang Z. Effects of different salinity reduction intervals on osmoregulation, anti-oxidation and apoptosis of Eriocheir sinensis megalopa. Comp Biochem Physiol A Mol Integr Physiol 2024; 291:111593. [PMID: 38307449 DOI: 10.1016/j.cbpa.2024.111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Eriocheir sinensis megalopa has a special life history of migrating from seawater to freshwater. In order to investigate how the megalopa adapt themselves to the freshwater environment, we designed an experiment to reduce the salinity of water from 30 ppt to 0 at rates of 30 ppt, 15 ppt, 10 ppt, and 5 ppt per 24 h to evaluate the effects of different degrees of hyposaline stress on the osmotic regulation ability and antioxidant system of the megalopa. Experimental results related to osmotic pressure regulation show that the gill tissue of megalopa in the treatment group of 30 ppt/24 h rapid reduction of salinity was damaged, while in the treatment group of 5 ppt/24 h it was intact. At the same time, the experiment also found that in each treatment group with different salinity reduction rates, compared with the control salinity, the NKA activity of megalopa increased significantly after the salinity was reduced to 20 ppt (p < 0.05). In addition, two genes involved in chloride ion transmembrane absorption have different expression patterns in the treatment groups with different salinity reduction rates. Among them, Clcn2 was significantly highly expressed only in the rapid salinity reduction intervals of 30 ppt/24 h and 15 ppt/24 h (p < 0.05). Slc26a6 was significantly highly expressed only in the slow salinity reduction intervals of 10 ppt/24 h and 5 ppt/24 h (p < 0.05). On the other hand, the results of antioxidant and apoptosis related experiments showed that in all treatment groups with different rates of salinity reduction, the activities of T-AOC, GSH-PX, and CAT basically increased significantly after salinity reduction compared to the control salinity. Moreover, the activities of T-AOC and CAT were significantly higher in the 10 ppt/24 h and 5 ppt/24 h treatment groups than in the 30 ppt/24 h and 15 ppt/24 h treatment groups. Finally, the experimental results related to apoptosis showed that the expression trends of Capase3 and Bax-2 were basically the same in the treatment groups with different salinity reduction rates, and their expressions were significantly higher in the 10 ppt/24 h and 5 ppt/24 h treatment groups than in the 30 ppt/24 h and 15 ppt/24 h treatment groups. In summary, the present study found that megalopa had strong hyposaline tolerance and were able to regulate osmolality at different rates of salinity reduction, but the antioxidant capacity differed significantly between treatment groups, with rapid salinity reduction leading to oxidative damage in the anterior gills and reduced antioxidant enzyme activity and apoptosis levels.
Collapse
Affiliation(s)
- Mingjun Shen
- Jiangsu Marine Fishery Research Institute, Nantong, China; National Demonstration Center for experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yue Wang
- Jiangsu Marine Fishery Research Institute, Nantong, China; National Demonstration Center for experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yongkai Tang
- National Demonstration Center for experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Freshwater Fisheries Research Center of the Chinese Academy of Fishery Sciences, Wuxi, China.
| | - Fei Zhu
- Jiangsu Marine Fishery Research Institute, Nantong, China
| | - Jianbin Jiang
- Tongzhou Aquatic Technology Promotion Station, Nantong, China
| | - Jianlou Zhou
- Tongzhou Aquatic Technology Promotion Station, Nantong, China
| | - Qing Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Qingguo Meng
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Zhiwei Zhang
- Jiangsu Marine Fishery Research Institute, Nantong, China; National Demonstration Center for experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
2
|
Alvanou MV, Feidantsis K, Lattos A, Stoforiadi A, Apostolidis AP, Michaelidis B, Giantsis IA. Influence of temperature on embryonic development of Pontastacus leptodactylus freshwater crayfish, and characterization of growth and osmoregulation related genes. BMC ZOOL 2024; 9:8. [PMID: 38679730 PMCID: PMC11057103 DOI: 10.1186/s40850-024-00198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
Narrow clawed crayfish, Pontastacus (Astacus) leptodactylus, represents an ecologically and economically valuable freshwater species. Despite the high importance of artificial breeding for conservation purpose and aquaculture potential, hatching protocols have not been developed so far in this species. Further, limited knowledge exists regarding the artificial egg incubation, the temperature effect on embryonic development, hatching synchronization and hatching rate. In the present study we investigated the temperature increase (from 17 oC to 22oC) effects in two different embryonic developmental stages of P. leptodactylus. Furthermore, two primer pairs for the Fibroblast Growth Factor Receptor 4 (FGFR4) gene cDNA amplification were successfully designed, characterising for the first time the FGFR4 gene in P. leptodactylus in relation to different developmental stages and temperatures. Apart from the FGFR4 gene, the Na+/K+-ATPase α-subunit expression was also explored. Both the FGFR4 and Na+/K+-ATPase α-subunit expression levels were higher in embryos closer to hatching. Egg incubation at 22oC for seven days led to significant increase of FGFR4 expression in embryos from earlier developmental stages. Nevertheless, temperature increase did not affect FGFR4 expression in eggs from latter developmental stages and Na+/K+-ATPase α-subunit expression in all developmental stages. Temperature increase represents therefore probably a promising strategy for accelerating hatching in freshwater crayfish particularly in early developmental stages. Specifically, our results indicate that FGFR4 expression increased in embryonic stages closer to hatching and that temperature influences significantly its expression in embryos from earlier developmental stages. Overall, these findings can provide a better understanding of artificial egg incubation of P. leptodactylus, and therefore can be employed for the effective management of this species, both for economic and biodiversity retention reasons.
Collapse
Affiliation(s)
- Maria V Alvanou
- Faculty of Agricultural Sciences, University of Western Macedonia, Florina, 53100, Greece
| | | | - Athanasios Lattos
- Faculty of Agricultural Sciences, University of Western Macedonia, Florina, 53100, Greece
| | - Anthi Stoforiadi
- Faculty of Agricultural Sciences, University of Western Macedonia, Florina, 53100, Greece
| | - Apostolos P Apostolidis
- Laboratory of Ichthyology & Fisheries, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Ioannis A Giantsis
- Faculty of Agricultural Sciences, University of Western Macedonia, Florina, 53100, Greece.
- Laboratory of Animal Physiology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| |
Collapse
|
3
|
Leggett MA, Vink CJ, Nelson XJ. Adaptation and Survival of Marine-Associated Spiders (Araneae). ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:481-501. [PMID: 37788437 DOI: 10.1146/annurev-ento-062923-102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Aquatic environments are an unusual habitat for most arthropods. Nevertheless, many arthropod species that were once terrestrial dwelling have transitioned back to marine and freshwater environments, either as semiaquatic or, more rarely, as fully aquatic inhabitants. Transition to water from land is exceptional, and without respiratory modifications to allow for extended submergence and the associated hypoxic conditions, survival is limited. In this article, we review marine-associated species that have made this rare transition in a generally terrestrial group, spiders. We include several freshwater spider species for comparative purposes. Marine-associated spiders comprise less than 0.3% of spider species worldwide but are found in over 14% of all spider families. As we discuss, these spiders live in environments that, with tidal action, hydraulic forces, and saltwater, are more extreme than freshwater habitats, often requiring physiological and behavioral adaptations to survive. Spiders employ many methods to survive inundation from encroaching tides, such as air bubble respiration, airtight nests, hypoxic comas, and fleeing incoming tides. While airway protection is the primary survival strategy, further survival adaptations include saltwater-induced osmotic regulation, dietary composition, predator avoidance, reproduction, locomotory responses, and adaptation to extreme temperatures and hydrostatic pressures that challenge existence in marine environments.
Collapse
Affiliation(s)
- Marlene A Leggett
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand;
| | - Cor J Vink
- Department of Pest Management and Conservation, Lincoln University, Lincoln, New Zealand
| | - Ximena J Nelson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand;
| |
Collapse
|
4
|
Bozza DC, Freire CA, Prodocimo V. A systematic evaluation on the relationship between hypo-osmoregulation and hyper-osmoregulation in decapods of different habitats. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:5-30. [PMID: 37853933 DOI: 10.1002/jez.2757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Decapods occupy all aquatic, and terrestrial and semi-terrestrial environments. According to their osmoregulatory capacity, they can be osmoconformers or osmoregulators (hypo or hyperegulators). The goal of this study is to gather data available in the literature for aquatic decapods and verify if the rare hyporegulatory capacity of decapods is associated with hyper-regulatory capacity. The metric used to quantify osmoregulation was the osmotic capacity (OC), the gradient between external and internal (hemolymph) osmolalities. We employ phylogenetic comparative methods using 83 species of decapods to test the correlation between hyper OC and hypo OC, beyond the ancestral state for osmolality habitat, which was used to reconstruct the colonization route. Our analysis showed a phylogenetic signal for habitat osmolality, hyper OC and hypo OC, suggesting that hyper-hyporegulators decapods occupy similar habitats and show similar hyper and hyporegulatory capacities. Our findings reveal that all hyper-hyporegulators decapods (mainly shrimps and crabs) originated in estuarine waters. Hyper OC and hypo OC are correlated in decapods, suggesting correlated evolution. The analysis showed that species which inhabit environments with intense salinity variation such as estuaries, supratidal and mangrove habitats, all undergo selective pressure to acquire efficient hyper-hyporegulatory mechanisms, aided by low permeabilities. Therefore, hyporegulation can be observed in any colonization route that passes through environments with extreme variations in salinity, such as estuaries or brackish water.
Collapse
Affiliation(s)
- Deivyson Cattine Bozza
- Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| | - Carolina Arruda Freire
- Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviane Prodocimo
- Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
5
|
Jeyachandran S, Chellapandian H, Park K, Kwak IS. A Review on the Involvement of Heat Shock Proteins (Extrinsic Chaperones) in Response to Stress Conditions in Aquatic Organisms. Antioxidants (Basel) 2023; 12:1444. [PMID: 37507982 PMCID: PMC10376781 DOI: 10.3390/antiox12071444] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Heat shock proteins (HSPs) encompass both extrinsic chaperones and stress proteins. These proteins, with molecular weights ranging from 14 to 120 kDa, are conserved across all living organisms and are expressed in response to stress. The upregulation of specific genes triggers the synthesis of HSPs, facilitated by the interaction between heat shock factors and gene promoter regions. Notably, HSPs function as chaperones or helper molecules in various cellular processes involving lipids and proteins, and their upregulation is not limited to heat-induced stress but also occurs in response to anoxia, acidosis, hypoxia, toxins, ischemia, protein breakdown, and microbial infection. HSPs play a vital role in regulating protein synthesis in cells. They assist in the folding and assembly of other cellular proteins, primarily through HSP families such as HSP70 and HSP90. Additionally, the process of the folding, translocation, and aggregation of proteins is governed by the dynamic partitioning facilitated by HSPs throughout the cell. Beyond their involvement in protein metabolism, HSPs also exert a significant influence on apoptosis, the immune system, and various characteristics of inflammation. The immunity of aquatic organisms, including shrimp, fish, and shellfish, relies heavily on the development of inflammation, as well as non-specific and specific immune responses to viral and bacterial infections. Recent advancements in aquatic research have demonstrated that the HSP levels in populations of fish, shrimp, and shellfish can be increased through non-traumatic means such as water or oral administration of HSP stimulants, exogenous HSPs, and heat induction. These methods have proven useful in reducing physical stress and trauma, while also facilitating sustainable husbandry practices such as vaccination and transportation, thereby offering health benefits. Hence, the present review discusses the importance of HSPs in different tissues in aquatic organisms (fish, shrimp), and their expression levels during pathogen invasion; this gives new insights into the significance of HSPs in invertebrates.
Collapse
Affiliation(s)
- Sivakamavalli Jeyachandran
- Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Hethesh Chellapandian
- Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Republic of Korea
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
6
|
Luo J, Ren C, Zhu T, Guo C, Xie S, Zhang Y, Yang Z, Zhao W, Zhang X, Lu J, Jiao L, Zhou Q, Tocher DR, Jin M. High dietary lipid level promotes low salinity adaptation in the marine euryhaline crab (Scylla paramamosain). ANIMAL NUTRITION 2022; 12:297-307. [PMID: 37013080 PMCID: PMC10065990 DOI: 10.1016/j.aninu.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/25/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022]
Abstract
The physiological processes involved in adaptation to osmotic pressure in euryhaline crustaceans are highly energy demanding, but the effects of dietary lipids (fat) on low salinity adaptations have not been well evaluated. In the present study, a total of 120 mud crabs (Scylla paramamosain, BW = 17.87 ± 1.49 g) were fed control and high-fat (HF) diets, at both medium salinity (23‰) and low salinity (4‰) for 6 wk, and each treatment had 3 replicates with each replicate containing 10 crabs. The results indicated that a HF diet significantly mitigated the reduction in survival rate, percent weight gain and feed efficiency induced by low salinity (P < 0.05). Low salinity lowered lipogenesis and activated lipolysis resulting in lipid depletion in the hepatopancreas of mud crabs (P < 0.05). Thus, HF diets enhanced the process of lipolysis to supply more energy. In the gills, low salinity and the HF diet increased the levels of mitochondrial biogenesis markers, the activity of mitochondrial complexes, and the expression levels of genes related to energy metabolism (P < 0.05). Consequently, the positive effects of the HF diet on energy metabolism in mud crabs at low salinity promoted osmotic pressure regulation. Specifically, significantly higher haemolymph osmotic pressure and inorganic ion content, as well as higher osmotic pressure regulatory enzyme activity in gills, and gene and protein expression levels of NaK-ATPase were observed in crabs fed the HF diet at low salinity (P < 0.05). In summary, high dietary lipid levels improved energy provision to facilitate mitochondrial biogenesis, which increased ATP provision for osmotic pressure regulation of mud crabs. This study also illustrates the importance of dietary lipid nutrition supplementation for low salinity adaptations in mud crabs.
Collapse
|
7
|
Lee CE, Charmantier G, Lorin-Nebel C. Mechanisms of Na + uptake from freshwater habitats in animals. Front Physiol 2022; 13:1006113. [PMID: 36388090 PMCID: PMC9644288 DOI: 10.3389/fphys.2022.1006113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 07/20/2023] Open
Abstract
Life in fresh water is osmotically and energetically challenging for living organisms, requiring increases in ion uptake from dilute environments. However, mechanisms of ion uptake from freshwater environments are still poorly understood and controversial, especially in arthropods, for which several hypothetical models have been proposed based on incomplete data. One compelling model involves the proton pump V-type H+ ATPase (VHA), which energizes the apical membrane, enabling the uptake of Na+ (and other cations) via an unknown Na+ transporter (referred to as the "Wieczorek Exchanger" in insects). What evidence exists for this model of ion uptake and what is this mystery exchanger or channel that cooperates with VHA? We present results from studies that explore this question in crustaceans, insects, and teleost fish. We argue that the Na+/H+ antiporter (NHA) is a likely candidate for the Wieczorek Exchanger in many crustaceans and insects; although, there is no evidence that this is the case for fish. NHA was discovered relatively recently in animals and its functions have not been well characterized. Teleost fish exhibit redundancy of Na+ uptake pathways at the gill level, performed by different ion transporter paralogs in diverse cell types, apparently enabling tolerance of low environmental salinity and various pH levels. We argue that much more research is needed on overall mechanisms of ion uptake from freshwater habitats, especially on NHA and other potential Wieczorek Exchangers. Such insights gained would contribute greatly to our general understanding of ionic regulation in diverse species across habitats.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI, United States
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guy Charmantier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | |
Collapse
|
8
|
Aviz D, Amorim Carmona P, Caroline de Castro Barbosa A, Rannieri Meira dos Santos C. Fecundity and reproductive patterns of the fiddler crab Uca maracoani Latreille 1802-1803 in an Amazonian estuary in northern Brazil. INVERTEBR REPROD DEV 2022. [DOI: 10.1080/07924259.2022.2125353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Daiane Aviz
- Laboratório de Invertebrados Aquáticos, Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Brazil
- Laboratório Oceanografia Biológica, Instituto de Geociências, Universidade Federal do Pará, Belém, Brazil
| | - Priscila Amorim Carmona
- Laboratório de Invertebrados Aquáticos, Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Brazil
| | | | | |
Collapse
|
9
|
Chong-Robles J, Giffard-Mena I, Patrón-Soberano A, Charmantier G, Boulo V, Rodarte-Venegas D. Ontogenetical development of branchial chambers of Litopenaeus vannamei (Boone, 1931) and their involvement in osmoregulation: ionocytes and Na +/K +-ATPase. Cell Tissue Res 2022; 390:385-398. [PMID: 36075993 DOI: 10.1007/s00441-022-03675-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
Branchial chambers constitute the main osmoregulatory site in almost all decapod crustaceans. However, few studies have been devoted to elucidate the cellular function of specific cells in every osmoregulatory structure of the branchial chambers. In decapod crustaceans, it is well-known that the osmoregulatory function is localized in specific structures that progressively specialize from early developmental stages while specific molecular mechanisms occur. In this study, we found that although the structures developed progressively during the larval and postlarval stages, before reaching juvenile or adult morphology, the osmoregulatory capabilities of Litopenaeus vannamei were gradually established only during the development of branchiostegites and epipodites, but not gills. The cellular structures of the branchial chambers observed during the larval phase do not present the typical ultrastructure of ionocytes, neither Na+/K+-ATPase expression, likely indicating that pleura, branchiostegites, or bud gills do not participate in osmoregulation. During early postlarval stages, the lack of Na+/K+-ATPase immunoreactivity of the ionocytes from the branchiostegites and epipodites suggests that they are immature ionocytes (ionocytes type I). It could be inferred from IIF and TEM results that epipodites and branchiostegites are involved in iono-osmoregulation from PL15, while gills and pleura do not participate in this function.
Collapse
Affiliation(s)
- Jennyfers Chong-Robles
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (https://ror.org/05xwcq167), Ensenada, Baja California, Mexico.
| | - Ivone Giffard-Mena
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (https://ror.org/05xwcq167), Ensenada, Baja California, Mexico
| | - Araceli Patrón-Soberano
- División de Biología Molecular, Instituto Potosino de Investigación Cientifica y Tecnológica, San Luis Potosí, Mexico
| | - Guy Charmantier
- Marbec, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Viviane Boulo
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Deyanira Rodarte-Venegas
- Facultad de Ciencias, Universidad Autónoma de Baja California (https://ror.org/05xwcq167), Ensenada, Baja California, Mexico
| |
Collapse
|
10
|
Yang Z, Zhou J, Zhu L, Chen A, Cheng Y. Label-free quantification proteomics analysis reveals acute hyper-osmotic responsive proteins in the gills of Chinese mitten crab (Eriocheir sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101009. [PMID: 35777161 DOI: 10.1016/j.cbd.2022.101009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Chinese mitten crab (Eriocheir sinensis) is a typical euryhaline crustacean to study osmotic regulation of crustaceans. Osmotic-regulation of Chinese mitten crab is a complex process. In order to study the osmotic-regulation related proteins of Chinese mitten crab, we domesticated Chinese mitten crab for 144 h with 25 salinity sea water (SW) and 0 salinity fresh water (FW) respectively, and then analyzed the proteome of its posterior gills. A total of 1453 proteins were identified by label free proteomics. Under the threshold of 2 fold change (FC), 242 differentially expressed proteins (DEPs) were screened, including 122 up-regulated DEPs and 120 down-regulated DEPs. GO database and KEGG database were used to annotate and enrich DEPs. It was found that DEPs were significantly enriched in energy metabolism, signal transduction, ion transport, actin cytoskeleton, immunity, lipid metabolism, amino acid metabolism and other biological functions. After 144 h of high salinity stress, the energy metabolism of Chinese mitten crab decreased and the expression of actin and cytoskeleton protein increased. In order to cope with oxidative damage caused by high salinity, Chinese mitten crab improved its immunity and antioxidant capacity.
Collapse
Affiliation(s)
- Zhigang Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Junyu Zhou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Liangliang Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Aqin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
11
|
Bas CC, Ituarte RB, Kittlein MJ. Decapod eggs membranes: powerful barriers or regulatory structures? J Exp Biol 2022; 225:275823. [PMID: 35762232 DOI: 10.1242/jeb.244165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
Abstract
Osmoregulatory abilities and mechanisms of adults and larvae of decapod crustaceans have been extensively investigated. However, how embryos carried by their mothers can deal with changing or extreme salinities is less understood. The egg membranes are believed to isolate embryos from a challenging environment, although osmoregulatory ability has been demonstrated in early developing embryos (naupliar stage) of two crabs. To establish whether embryos are isolated by their membranes and/or are able to osmoregulate, we measured the survival and volume change over 48 h of oocytes and embryos in different stages of three carideans (Betaeus lilianae, Palaemon macrodactylus and P. argentinus) and the brachyuran Neohelice granulata, subjected to different salinities. In addition, we recorded osmolality changes in homogenates of the same stages in P. argentinus and N. granulata after 2 h of exposure and mapped the presence of putative sites of ions exchange in the membrane of all species. High mortality, when existed, was associated to low salinity and their variation with the stage of development depended on the species. All species precipitated silver salts in or under the egg envelope, with a different pattern between carideans and brachyuran. Changes in osmolality and egg volume after hypo/hyper osmotic salinity challenges indicate that eggs are not fully isolated by their membranes, and that some osmoregulatory mechanisms are in play to maintain developmental homeostasis. We suggest that egg membranes can participate in osmoregulation by selectively transporting ions to an intramembrane space, with differences between carideans and brachyurans.
Collapse
Affiliation(s)
- Claudia C Bas
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN. Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Romina B Ituarte
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN. Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Marcelo J Kittlein
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN. Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| |
Collapse
|
12
|
Charmantier G, Nguyen-Chi M, Lutfalla G. Ontogenetic Changes in Blood Osmolality During the Postembryonic Development of Zebrafish ( Danio rerio). Zebrafish 2022; 19:1-6. [PMID: 35128940 PMCID: PMC8884165 DOI: 10.1089/zeb.2021.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The zebrafish Danio rerio is a teleost model species widely used in developmental genetics, biomedical studies, toxicology, and drug screening. Despite the interest of this species in research, little is known through indirect observations about its blood osmolality, which is a key parameter for diverse experiments. In this study, we directly measured blood osmolality using nano-osmometry at different stages of zebrafish postembryonic development. We found that blood osmolality is close to 240 mOsm·kg−1 in early larvae. It progressively increased to ∼270 mOsm·kg−1 during the larval development before reaching ∼300 mOsm·kg−1 after metamorphosis in juveniles and later in adults. These ontogenetic changes in blood osmolality illustrate the physiological changes in osmoregulation associated with postembryonic development, including metamorphosis. These values are of practical interest for adjusting the osmolality of fixatives and cell and tissue culture media for research using zebrafish as a model.
Collapse
Affiliation(s)
- Guy Charmantier
- CNRS, Ifremer, IRD, UM, Marbec, University of Montpellier, Montpellier, France
| | - Mai Nguyen-Chi
- LPHI, CNRS, University of Montpellier, Montpellier, France
| | | |
Collapse
|
13
|
Lv W, Yuan Q, Huang W, Sun X, Zhou W, Zhao Y. Effects of reduced salinity caused by reclamation on population and physiological characteristics of the sesarmid crab Chiromantes dehaani. Sci Rep 2022; 12:1591. [PMID: 35102243 PMCID: PMC8804004 DOI: 10.1038/s41598-022-05639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/10/2022] [Indexed: 11/12/2022] Open
Abstract
Reduced salinity is a major factor that causes macrobenthic degradation in reclaimed wetlands. We investigated populations of the sesarmid crab Chiromantes dehaani in reclaimed and natural wetlands. Then, in the laboratory, we exposed male and female crabs to four salinity levels (0, 6, 12 and 18) for 96 h to analyse the effects of reduced salinity on osmoregulatory enzyme activities in the posterior gills and digestive and immune enzyme activities in the hepatopancreas of C. dehaani. The results revealed a significant positive correlation between the number of crabs and salinity. In the laboratory, we found that the isosmotic point of C. dehaani was close to 16 ppt. The crabs showed strong hyper-osmotic regulation when exposed to 0-6 ppt salinities. Moreover, in this salinity range, amylase activities were significantly inhibited. Under low-salinity stress, the immune enzyme activities were significantly activated. However, phenoloxidase and lysozyme activities were inhibited in the freshwater environment. The male and female crabs showed no significant differences in most of the enzyme activities. Thus, reduced salinity can adversely affect the digestive and immune functions of C. dehaani, which may cause population degradation in reclaimed wetlands. Our findings can provide new insights into the effects of reclamation on macrobenthos.
Collapse
Affiliation(s)
- Weiwei Lv
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Runzhuang Agricultural Technology Co., Ltd, Shanghai, 201403, China
| | - Quan Yuan
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Runzhuang Agricultural Technology Co., Ltd, Shanghai, 201403, China
| | - Weiwei Huang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xiaolin Sun
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Runzhuang Agricultural Technology Co., Ltd, Shanghai, 201403, China
| | - Wenzong Zhou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
- Shanghai Runzhuang Agricultural Technology Co., Ltd, Shanghai, 201403, China.
| | - Yunlong Zhao
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
14
|
Torres G, Charmantier G, Giménez L. Ontogeny of osmoregulation of the Asian shore crab Hemigrapsus sanguineus at an invaded site of Europe. CONSERVATION PHYSIOLOGY 2021; 9:coab094. [PMID: 35145698 PMCID: PMC8824517 DOI: 10.1093/conphys/coab094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/18/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
We studied the ontogeny of osmoregulation of the Asian shore crab Hemigrapsus sanguineus at an invaded area in the North Sea. H. sanguineus is native to Japan and China but has successfully invaded the Atlantic coast of North America and Europe. In the invaded areas, H. sanguineus is becoming a keystone species as driver of community structure and the adults compete with the shore crab Carcinus maenas. Strong osmoregulatory abilities may confer the potential to use and invade coastal areas already earlier in the life cycle. We reared larvae and first juveniles at 24°C in seawater from hatching to intermoult of each developmental stage (zoea I-V, megalopa, crab I). We exposed each stage to a range of salinities (0-39 ppt) for 24 h, and then we quantified haemolymph osmolality, using nano-osmometry. In addition, we quantified osmolality in field-collected adults after acclimation to the test salinities for 6 days. Larvae of H. sanguineus were able to hyper-osmoregulate at low salinities (15 and 20 ppt) over the complete larval development, although the capacity was reduced at the zoeal stage V; at higher salinities (25-39 ppt), all larval stages were osmoconformers. The capacity to slightly hypo-regulate at high salinity appeared in the first juvenile. Adults were able to hyper-osmoregulate at low salinities and hypo-regulate at concentrated seawater (39 ppt). H. sanguineus showed a strong capacity to osmoregulate as compared to its native competitor C. maenas, which only hyper-regulates at the first and last larval stages and does not hypo-regulate at the juvenile-adult stages. The capacity of H. sanguineus to osmoregulate over most of the life cycle should underpin the potential to invade empty niches in the coastal zone (characterized by low salinity and high temperatures). Osmoregulation abilities over the whole life cycle also constitute a strong competitive advantage over C. maenas.
Collapse
Affiliation(s)
- Gabriela Torres
- * Corresponding author: Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, 27498 Helgoland, Germany. Tel: +49 4725 8193141.
| | - Guy Charmantier
- Marbec, Univ Montpellier, CNRS, Ifremer, IRD, 34095 cx 05 Montpellier, France
| | - Luis Giménez
- Biologische Anstalt Helgoland, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, 27498 Helgoland, Germany
- School of Ocean Sciences, College of Environmental Sciences and Engineering, Bangor University, LL59 5AB Menai Bridge, UK
| |
Collapse
|
15
|
Martelli A, Barón PJ. Effects of temperature and salinity on the development and survival of the embryos and zoeae I from the southern surf crab Ovalipes trimaculatus (Brachyura: Portunidae). AN ACAD BRAS CIENC 2021; 93:e20190999. [PMID: 34730735 DOI: 10.1590/0001-3765202120190999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/25/2020] [Indexed: 11/21/2022] Open
Abstract
Ovalipes trimaculatus is a highly valued fisheries resource with high potential for aquaculture production. Still, there is need for experimental information to sustain efficient husbandry practices. In this work we analyze the combined effects of different thermo-haline conditions on the length of development and survival of embryos (6, 10, 13, 15, 18, 22, 24 ⁰C x 30, 33 ‰; 13 ⁰C x 26, 30, 33, 37 ‰) and zoeae I (13, 18, 22 ⁰C x 30, 33 ‰; 13 ⁰C x 26, 30, 33, 37 ‰) from individuals sampled in the Atlantic coast of Patagonian. Among the most relevant results, it was found that the mean length of embryogenesis decreased from 63 to 19 days with increasing temperatures, but was not affected by seawater salinity. Mean embryonic survival was significantly lower at the combination of the highest temperature and salinity tested. Also, it differed between salinity conditions. Both at 30 and 33‰, the length of the Zoea I stage significantly varied between thermal treatments, being significantly longer at 13⁰C. No zoeae I reared at 13 ⁰C survived at 37‰ and mean survival at 26‰ halved that of 30-33‰. Results obtained reduce aquaculture production costs.
Collapse
Affiliation(s)
- Antonela Martelli
- Centro para el Estudio de Sistemas Marinos - CONICET, Laboratorio de Oceanografía Biológica (LOBio), Complejo CCT CONICET-CENPAT, Blvd. Brown 2915, 9120 Puerto Madryn, Chubut, Argentina.,Universidad Nacional de la Patagonia San Juan Bosco, sede Puerto Madryn UNP-SJB, Blvd. Brown 3051, Chubut Argentina
| | - Pedro J Barón
- Centro para el Estudio de Sistemas Marinos - CONICET, Laboratorio de Oceanografía Biológica (LOBio), Complejo CCT CONICET-CENPAT, Blvd. Brown 2915, 9120 Puerto Madryn, Chubut, Argentina.,Universidad Nacional de la Patagonia San Juan Bosco, sede Puerto Madryn UNP-SJB, Blvd. Brown 3051, Chubut Argentina
| |
Collapse
|
16
|
Torres G, Charmantier G, Wilcockson D, Harzsch S, Giménez L. Physiological basis of interactive responses to temperature and salinity in coastal marine invertebrate: Implications for responses to warming. Ecol Evol 2021; 11:7042-7056. [PMID: 34141274 PMCID: PMC8207410 DOI: 10.1002/ece3.7552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Developing physiological mechanistic models to predict species' responses to climate-driven environmental variables remains a key endeavor in ecology. Such approaches are challenging, because they require linking physiological processes with fitness and contraction or expansion in species' distributions. We explore those links for coastal marine species, occurring in regions of freshwater influence (ROFIs) and exposed to changes in temperature and salinity. First, we evaluated the effect of temperature on hemolymph osmolality and on the expression of genes relevant for osmoregulation in larvae of the shore crab Carcinus maenas. We then discuss and develop a hypothetical model linking osmoregulation, fitness, and species expansion/contraction toward or away from ROFIs. In C. maenas, high temperature led to a threefold increase in the capacity to osmoregulate in the first and last larval stages (i.e., those more likely to experience low salinities). This result matched the known pattern of survival for larval stages where the negative effect of low salinity on survival is mitigated at high temperatures (abbreviated as TMLS). Because gene expression levels did not change at low salinity nor at high temperatures, we hypothesize that the increase in osmoregulatory capacity (OC) at high temperature should involve post-translational processes. Further analysis of data suggested that TMLS occurs in C. maenas larvae due to the combination of increased osmoregulation (a physiological mechanism) and a reduced developmental period (a phenological mechanisms) when exposed to high temperatures. Based on information from the literature, we propose a model for C. maenas and other coastal species showing the contribution of osmoregulation and phenological mechanisms toward changes in range distribution under coastal warming. In species where the OC increases with temperature (e.g., C. maenas larvae), osmoregulation should contribute toward expansion if temperature increases; by contrast in those species where osmoregulation is weaker at high temperature, the contribution should be toward range contraction.
Collapse
Affiliation(s)
- Gabriela Torres
- Alfred‐Wegener‐Institut Helmholtz‐Zentrum für Polar‐ und MeeresforschungBiologische Anstalt HelgolandHelgolandGermany
| | - Guy Charmantier
- CNRSIfremerIRDUMMarbecUniversité MontpellierMontpellierFrance
| | - David Wilcockson
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Steffen Harzsch
- Department of Cytology and Evolutionary BiologyZoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Luis Giménez
- Alfred‐Wegener‐Institut Helmholtz‐Zentrum für Polar‐ und MeeresforschungBiologische Anstalt HelgolandHelgolandGermany
- School of Ocean SciencesCollege of Environmental Sciences and EngineeringBangor UniversityMenai BridgeUK
| |
Collapse
|
17
|
Bowen BW, Forsman ZH, Whitney JL, Faucci A, Hoban M, Canfield SJ, Johnston EC, Coleman RR, Copus JM, Vicente J, Toonen RJ. Species Radiations in the Sea: What the Flock? J Hered 2021; 111:70-83. [PMID: 31943081 DOI: 10.1093/jhered/esz075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Species flocks are proliferations of closely-related species, usually after colonization of depauperate habitat. These radiations are abundant on oceanic islands and in ancient freshwater lakes, but rare in marine habitats. This contrast is well documented in the Hawaiian Archipelago, where terrestrial examples include the speciose silverswords (sunflower family Asteraceae), Drosophila fruit flies, and honeycreepers (passerine birds), all derived from one or a few ancestral lineages. The marine fauna of Hawai'i is also the product of rare colonization events, but these colonizations usually yield only one species. Dispersal ability is key to understanding this evolutionary inequity. While terrestrial fauna rarely colonize between oceanic islands, marine fauna with pelagic larvae can make this leap in every generation. An informative exception is the marine fauna that lack a pelagic larval stage. These low-dispersal species emulate a "terrestrial" mode of reproduction (brooding, viviparity, crawl-away larvae), yielding marine species flocks in scattered locations around the world. Elsewhere, aquatic species flocks are concentrated in specific geographic settings, including the ancient lakes of Baikal (Siberia) and Tanganyika (eastern Africa), and Antarctica. These locations host multiple species flocks across a broad taxonomic spectrum, indicating a unifying evolutionary phenomenon. Hence marine species flocks can be singular cases that arise due to restricted dispersal or other intrinsic features, or they can be geographically clustered, promoted by extrinsic ecological circumstances. Here, we review and contrast intrinsic cases of species flocks in individual taxa, and extrinsic cases of geological/ecological opportunity, to elucidate the processes of species radiations.
Collapse
Affiliation(s)
- Brian W Bowen
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Zac H Forsman
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Jonathan L Whitney
- Joint Institute for Marine and Atmospheric Research, University of Hawai'i, Honolulu, HI
| | - Anuschka Faucci
- Math & Sciences Division, Leeward Community College, University of Hawai'i, Pearl City, HI
| | - Mykle Hoban
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | | | - Erika C Johnston
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Richard R Coleman
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Joshua M Copus
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Jan Vicente
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI
| |
Collapse
|
18
|
Stein W, Harzsch S. The Neurobiology of Ocean Change - insights from decapod crustaceans. ZOOLOGY 2021; 144:125887. [PMID: 33445148 DOI: 10.1016/j.zool.2020.125887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022]
Abstract
The unprecedented rate of carbon dioxide accumulation in the atmosphere has led to increased warming, acidification and oxygen depletion in the world's oceans, with projected impacts also on ocean salinity. In this perspective article, we highlight potential impacts of these factors on neuronal responses in decapod crustaceans. Decapod crustaceans comprise more than 8,800 marine species which have colonized a wide range of habitats that are particularly affected by global ocean change, including estuarine, intertidal, and coastal areas. Many decapod species have large economic value and high ecological importance because of their global invasive potential and impact on local ecosystems. Global warming has already led to considerable changes in decapod species' behavior and habitat range. Relatively little is known about how the decapod nervous system, which is the ultimate driver of all behaviors, copes with environmental stressors. We use select examples to summarize current findings and evaluate the impact of current and expected environmental changes. While data indicate a surprising robustness against stressors like temperature and pH, we find that only a handful of species have been studied and long-term effects on neuronal activity remain mostly unknown. A further conclusion is that the combined effects of multiple stressors are understudied. We call for greater research efforts towards long-term effects on neuronal physiology and expansion of cross-species comparisons to address these issues.
Collapse
Affiliation(s)
- Wolfgang Stein
- Illinois State University, School of Biological Sciences, Normal, IL 61790, USA.
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, D-17498 Greifswald, Germany.
| |
Collapse
|
19
|
Torres G, Anger K, Giménez L. Effects of short-term and continuous exposure to reduced salinities on the biochemical composition of larval lobster, Homarus gammarus. ZOOLOGY 2021; 144:125885. [PMID: 33429190 DOI: 10.1016/j.zool.2020.125885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
In coastal areas with estuarine influence, exposure to hypo-osmotic conditions may affect larval survival, development and growth. Most knowledge about effects of reduced salinity on coastal organisms is based on keeping individuals under constant conditions in the laboratory. By contrast, little is known about the effects of more realistic situations where organisms are exposed to low salinity over short time scales. Such environmental short-term fluctuations are expected to increase due to climate change. Here, we experimentally evaluated the sublethal effects of both short-term and continuous exposure to moderately reduced salinities (salinity 20 and 25; compared to seawater, salinity 32) in larvae of European lobster Homarus gammarus. Total body dry mass and biochemical composition (measured as: protein and lipid contents) were measured as response variables in Mysis stages I to III. Short-term effects of low salinity were quantified in a group of larvae kept in seawater from hatching until the time of transfer to the test salinities. After ca. 40 % of each moult cycle in seawater (determined in preliminary experiments for Mysis I, II and III), larvae were assigned to a seawater control or reduced salinities lasting for 16 h (i.e. until ca. 50 % of the time spent within the moulting cycle). Effects of continuous exposure to low salinity were quantified when larvae were exposed to the different salinities from hatching, until they reached ca. 50 % of the successive moulting stage. Surprisingly, in the Mysis II and III stages, short-term exposure to low salinity had much stronger effects on accumulation of reserves than the continuous exposure. Such effects were manifested mostly as limited accumulation, or even losses, in the lipid content as compared to reductions in the amount of protein accumulated. The most sensitive stage to exposure to low salinity was the Mysis III; by contrast in Mysis I such effects were relative weak (not always significant). Chronic exposure to low salinity also led to an increase in developmental time especially at the advanced stages. Our results highlight the importance of quantifying effects of environmental fluctuations at different time scales in order to better understand how organisms cope with realistic environmental change in the coastal zones. For H. gammarus, our results suggest that larvae respond adaptively to low salinity by maintaining protein levels at expenses of reductions in lipid accumulation and by extending the developmental time, but the capacity to elicit a fully compensatory response varies ontogenetically.
Collapse
Affiliation(s)
- Gabriela Torres
- Biologische Anstalt Helgoland, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Helgoland, Germany.
| | - Klaus Anger
- Kellerseestr. 38a, 23714, Bad Malente, Germany
| | - Luis Giménez
- Biologische Anstalt Helgoland, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Helgoland, Germany; School of Ocean Sciences, Bangor University, Menai Bridge, LL59 5AB, UK
| |
Collapse
|
20
|
Rugiu L, de Wit P, Kostian I, Jormalainen V. Climate change driven hyposalinity as a selective agent in the littoral mesoherbivore Idotea balthica. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105216. [PMID: 33227618 DOI: 10.1016/j.marenvres.2020.105216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/29/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
Climate change will include a decrease in seawater salinity in the Baltic Sea. We quantified the effects of the projected future desalination on survival of the early life stage of the littoral herbivore Idotea balthica. We collected egg-bearing Idotea from three range-margin Baltic Sea populations, we exposed half of each brood to either current (6‰) or future salinity (3.5‰). We genotyped a subsample of each brood to analyse patterns of allelic change and to identify genomic regions targeted by selection. The survival was overall reduced by hyposalinity and broods varied in response to hyposalinity implying genetic variation in tolerance, with a stronger decrease in genetic diversity in future salinity. Finally, we identified proteins with crucial roles in basic cellular functions. This study indicates that projected future northern Baltic Sea hyposalinity will not just hamper I. balthica survival, but its selective pressure may also affect genetic diversity and cell physiology.
Collapse
Affiliation(s)
- Luca Rugiu
- Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden.
| | - Pierre de Wit
- Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Iita Kostian
- Section of Ecology, Department of Biology, University of Turku, Finland
| | - Veijo Jormalainen
- Section of Ecology, Department of Biology, University of Turku, Finland
| |
Collapse
|
21
|
Li Y, Zhu Y, Ma L, Huang J, Sun Y, Zhang L, Lyu K, Yang Z. Toxic microcystis reduces tolerance of daphnia to increased chloride, and low chloride alleviates the harm of toxic microcystis to daphnia. CHEMOSPHERE 2020; 260:127594. [PMID: 32673874 DOI: 10.1016/j.chemosphere.2020.127594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Salinization of freshwater ecosystems caused by human activities and climate change is a global problem that threatens freshwater resources and aquatic organisms. The aggravation of salinization and the presence of cyanobacterial blooms may pose a serious threat to crustacean zooplankton Daphnia. To test the consequences of these effects, we exposed Daphnia magna to the combined treatments of different chloride concentrations and three food compositions (100% Chlorella pyrenoidosa, 90% C. pyrenoidosa + 10% toxic Microcystis aeruginosa, 80% C. pyrenoidosa + 20% toxic M. aeruginosa) for 21 days, recorded relevant life history indicators, and fitted them using Sigmoidal and Gaussian model if appropriate. Results showed that both increased chloride and the presence of toxic M. aeruginosa in the food had significantly negative effects on key life history traits and clearance rate, and the two factors also had a significant interaction on the survival, development, and reproduction of D. magna. The maximum values of the key life-history traits and clearance rate, the median effect chloride concentrations, and the optimal chloride concentrations derived from the models showed that the survival, reproduction, and clearance rate of D. magna were threatened by high chloride concentrations, which were exacerbated by the presence of toxic M. aeruginosa, but lower concentration of chloride was beneficial to D. magna to resist toxic M. aeruginosa. In conclusion, the combined effects of increasing chloride concentration and cyanobacterial blooms have severely adverse impacts on cladocerans, which may cause cladocera population to decline more rapidly and potentially disrupt the food webs of aquatic ecosystems.
Collapse
Affiliation(s)
- Yurou Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuying Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lili Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jing Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
22
|
Yokomizo T, Takahashi Y. Changes in transcriptomic response to salinity stress induce the brackish water adaptation in a freshwater snail. Sci Rep 2020; 10:16049. [PMID: 32994494 PMCID: PMC7524832 DOI: 10.1038/s41598-020-73000-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022] Open
Abstract
Studying the mechanisms of the establishment of a population in a novel environment allows us to examine the process of local adaptations and subsequent range expansion. In a river system, detecting genetic or phenotypic differences between a freshwater and brackish water population could contribute to our understanding of the initial process of brackish water adaptation. Here, we investigated behavioural and gene expression responses to salt water in a freshwater and brackish water population of the freshwater snail, Semisulcospira reiniana. Although the individuals in brackish water exhibited significantly higher activity in saltwater than freshwater individuals just after sampling, the activity of freshwater individuals had increased in the second observation after rearing, suggesting that their salinity tolerance was plastic rather than genetic. We found 476 and 1002 differentially expressed genes across salinity conditions in the freshwater and brackish water populations, respectively. The major biological process involved in the salinity response of the freshwater population was the biosynthesis and metabolic processing of nitrogen-containing compounds, but that of the brackish water population was influenced by the chitin metabolic process. These results suggest that phenotypic plasticity induces adaptation to brackish water in the freshwater snail by modifying its physiological response to salinity.
Collapse
Affiliation(s)
- Takumi Yokomizo
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, Chiba, Japan.
| |
Collapse
|
23
|
Osmoregulatory performance and immunolocalization of Na+/K+-ATPase in the branchiopod Artemia salina from the Sebkha of Sidi El Hani (Tunisia). Tissue Cell 2020; 63:101340. [DOI: 10.1016/j.tice.2020.101340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/23/2022]
|
24
|
Toxicity Test for the Extract of Symbiont Bacteria Bacillus sp. as Anti-bacteria. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Kengne P, Charmantier G, Blondeau‐Bidet E, Costantini C, Ayala D. Tolerance of disease‐vector mosquitoes to brackish water and their osmoregulatory ability. Ecosphere 2019. [DOI: 10.1002/ecs2.2783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Pierre Kengne
- IRD CNRS University of Montpellier MIVEGEC Montpellier France
- CIRMF Franceville Gabon
| | - Guy Charmantier
- CNRS, Ifremer IRD UM Marbec University of Montpellier Montpellier France
| | - Eva Blondeau‐Bidet
- CNRS, Ifremer IRD UM Marbec University of Montpellier Montpellier France
| | | | - Diego Ayala
- IRD CNRS University of Montpellier MIVEGEC Montpellier France
| |
Collapse
|
26
|
No compromise between metabolism and behavior of decorator crabs in reduced pH conditions. Sci Rep 2019; 9:6262. [PMID: 31000765 PMCID: PMC6472338 DOI: 10.1038/s41598-019-42696-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/02/2019] [Indexed: 11/09/2022] Open
Abstract
Many marine calcifiers experience metabolic costs when exposed to experimental ocean acidification conditions, potentially limiting the energy available to support regulatory processes and behaviors. Decorator crabs expend energy on decoration camouflage and may face acute trade-offs under environmental stress. We hypothesized that under reduced pH conditions, decorator crabs will be energy limited and allocate energy towards growth and calcification at the expense of decoration behavior. Decorator crabs, Pelia tumida, were exposed to ambient (8.01) and reduced (7.74) pH conditions for five weeks. Half of the animals in each treatment were given sponge to decorate with. Animals were analyzed for changes in body mass, exoskeleton mineral content (Ca and Mg), organic content (a proxy for metabolism), and decoration behavior (sponge mass and percent cover). Overall, decorator crabs showed no signs of energy limitation under reduced pH conditions. Exoskeleton mineral content, body mass, and organic content of crabs remained the same across pH and decoration treatments, with no effect of reduced pH on decoration behavior. Despite being a relatively inactive, osmoconforming species, Pelia tumida is able to maintain multiple regulatory processes and behavior when exposed to environmental pH stress, which underscores the complexity of responses within Crustacea to ocean acidification conditions.
Collapse
|
27
|
Fabri LM, Lucena MN, Garçon DP, Moraes CM, McNamara JC, Leone FA. Kinetic characterization of the gill (Na+, K+)-ATPase in a hololimnetic population of the diadromous Amazon River shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). Comp Biochem Physiol B Biochem Mol Biol 2019; 227:64-74. [DOI: 10.1016/j.cbpb.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
|
28
|
|
29
|
Rivera-Ingraham GA, Lignot JH. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: raising the questions for future research. ACTA ACUST UNITED AC 2018; 220:1749-1760. [PMID: 28515169 DOI: 10.1242/jeb.135624] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Osmoregulation is by no means an energetically cheap process, and its costs have been extensively quantified in terms of respiration and aerobic metabolism. Common products of mitochondrial activity are reactive oxygen and nitrogen species, which may cause oxidative stress by degrading key cell components, while playing essential roles in cell homeostasis. Given the delicate equilibrium between pro- and antioxidants in fueling acclimation responses, the need for a thorough understanding of the relationship between salinity-induced oxidative stress and osmoregulation arises as an important issue, especially in the context of global changes and anthropogenic impacts on coastal habitats. This is especially urgent for intertidal/estuarine organisms, which may be subject to drastic salinity and habitat changes, leading to redox imbalance. How do osmoregulation strategies determine energy expenditure, and how do these processes affect organisms in terms of oxidative stress? What mechanisms are used to cope with salinity-induced oxidative stress? This Commentary aims to highlight the main gaps in our knowledge, covering all levels of organization. From an energy-redox perspective, we discuss the link between environmental salinity changes and physiological responses at different levels of biological organization. Future studies should seek to provide a detailed understanding of the relationship between osmoregulatory strategies and redox metabolism, thereby informing conservation physiologists and allowing them to tackle the new challenges imposed by global climate change.
Collapse
Affiliation(s)
| | - Jehan-Hervé Lignot
- UMR 9190 MARBEC, Université de Montpellier, Place Eugène Bataillon, Montpellier 34095, France
| |
Collapse
|
30
|
Carry-over effects modulated by salinity during the early ontogeny of the euryhaline crab Hemigrapsus crenulatus from the Southeastern Pacific coast: Development time and carbon and energy content of offspring. Comp Biochem Physiol A Mol Integr Physiol 2018; 217:55-62. [DOI: 10.1016/j.cbpa.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 11/17/2022]
|
31
|
Marochi MZ, Martins SB, Masunari S. The salinity during larval development affects the dispersion in adults of the tree-climbing crab Aratus pisonii. J NAT HIST 2017. [DOI: 10.1080/00222933.2017.1365964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Murilo Zanetti Marochi
- Departamento de Zoologia, Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Salise Brandt Martins
- Departamento de Zoologia, Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Setuko Masunari
- Departamento de Zoologia, Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
32
|
Arruda Freire C, Rios LDP, Giareta EP, Castellano GC. Oxygen consumption remains stable while ammonia excretion is reduced upon short time exposure to high salinity in Macrobrachium acanthurus (Caridae: Palaemonidae), a recent freshwater colonizer. ZOOLOGIA 2017. [DOI: 10.3897/zoologia.34.e20173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Gouveia D, Chaumot A, Charnot A, Queau H, Armengaud J, Almunia C, Salvador A, Geffard O. Assessing the relevance of a multiplexed methodology for proteomic biomarker measurement in the invertebrate species Gammarus fossarum: A physiological and ecotoxicological study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:199-209. [PMID: 28750222 DOI: 10.1016/j.aquatox.2017.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Recently, a protein sequence database was built specifically for the sentinel non-model species Gammarus fossarum using a proteogenomics approach. A quantitative multiplexed targeted proteomics assay (using Selected Reaction Monitoring mass spectrometry) was then developed for a fast and simultaneous quantification of dozens of biomarker peptides specific of this freshwater sentinel crustacean species. In order to assess the relevance of this breakthrough methodology in ecotoxicology, the response patterns of a panel of 26 peptides reporting for 20 proteins from the Gammarus fossarum proteome with putative key functional roles (homeostasis, osmoregulation, nutrition, reproduction, molting,…) were recorded through male and female reproductive cycles and after exposure to environmental concentrations of cadmium and lead in laboratory-controlled conditions. Based on these results, we validated the implication of annotated vtg-like peptides in the oogenesis process, and the implication of Na+/K+ ATPase proteins in the molt cycle of organisms. Upon metal (cadmium and lead) contamination, peptides belonging to proteins annotated as involved in antioxidant and detoxification functions, immunity and molting were significantly down-regulated. Overall, this multiplex assay allowed gaining relevant insights upon disruption of different main functions in the sentinel species Gammarus fossarum. This breakthrough methodology in ecotoxicology offers a valid and high throughput alternative to currently used protocols, paving the way for future practical applications of proteogenomics-derived protein biomarkers in chemical risk assessment and environmental monitoring.
Collapse
Affiliation(s)
- D Gouveia
- IRSTEA, UR MALY, Laboratoire d'ecotoxicologie, centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France; CEA-Marcoule, DRF/Joliot/DMTS/SPI/Li2D, Laboratory-Innovative Technologies for Detection and Diagnostics, Bagnols-sur-Ceze, F-30207, France
| | - A Chaumot
- IRSTEA, UR MALY, Laboratoire d'ecotoxicologie, centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France
| | - A Charnot
- UMR 5180, Institut des Sciences Analytiques, Université de Lyon 1, F-69100 Villeurbanne, France
| | - H Queau
- IRSTEA, UR MALY, Laboratoire d'ecotoxicologie, centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France
| | - J Armengaud
- CEA-Marcoule, DRF/Joliot/DMTS/SPI/Li2D, Laboratory-Innovative Technologies for Detection and Diagnostics, Bagnols-sur-Ceze, F-30207, France
| | - C Almunia
- CEA-Marcoule, DRF/Joliot/DMTS/SPI/Li2D, Laboratory-Innovative Technologies for Detection and Diagnostics, Bagnols-sur-Ceze, F-30207, France
| | - A Salvador
- UMR 5180, Institut des Sciences Analytiques, Université de Lyon 1, F-69100 Villeurbanne, France
| | - O Geffard
- IRSTEA, UR MALY, Laboratoire d'ecotoxicologie, centre de Lyon-Villeurbanne, F-69616 Villeurbanne, France.
| |
Collapse
|
34
|
Urzúa Á, Urbina MA. Ecophysiological adaptations to variable salinity environments in the crab Hemigrapsus crenulatus from the Southeastern Pacific coast: Sodium regulation, respiration and excretion. Comp Biochem Physiol A Mol Integr Physiol 2017; 210:35-43. [DOI: 10.1016/j.cbpa.2017.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 11/28/2022]
|
35
|
Comparative proteome analysis of the hepatopancreas from the Pacific white shrimp Litopenaeus vannamei under long-term low salinity stress. J Proteomics 2017; 162:1-10. [DOI: 10.1016/j.jprot.2017.04.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/09/2016] [Accepted: 04/04/2017] [Indexed: 01/12/2023]
|
36
|
Heat Shock Proteins in Aquaculture Disease Immunology and Stress Response of Crustaceans. HEAT SHOCK PROTEINS 2017. [DOI: 10.1007/978-3-319-73377-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
37
|
Rivera-Ingraham GA, Nommick A, Blondeau-Bidet E, Ladurner P, Lignot JH. Salinity stress from the perspective of the energy-redox axis: Lessons from a marine intertidal flatworm. Redox Biol 2016; 10:53-64. [PMID: 27689738 PMCID: PMC5043416 DOI: 10.1016/j.redox.2016.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/06/2022] Open
Abstract
In the context of global change, there is an urgent need for researchers in conservation physiology to understand the physiological mechanisms leading to the acquisition of stress acclimation phenotypes. Intertidal organisms continuously cope with drastic changes in their environmental conditions, making them outstanding models for the study of physiological acclimation. As the implementation of such processes usually comes at a high bioenergetic cost, a mitochondrial/oxidative stress approach emerges as the most relevant approach when seeking to analyze whole-animal responses. Here we use the intertidal flatworm Macrostomum lignano to analyze the bioenergetics of salinity acclimation and its consequences in terms of reactive oxygen/nitrogen species formation and physiological response to counteract redox imbalance. Measures of water fluxes and body volume suggest that M. lignano is a hyper-/iso-regulator. Higher salinities were revealed to be the most energetically expensive conditions, with an increase in mitochondrial density accompanied by increased respiration rates. Such modifications came at the price of enhanced superoxide anion production, likely associated with a high caspase 3 upregulation. These animals nevertheless managed to live at high levels of environmental salinity through the upregulation of several mitochondrial antioxidant enzymes such as superoxide dismutase. Contrarily, animals at low salinities decreased their respiration rates, reduced their activity and increased nitric oxide formation, suggesting a certain degree of metabolic arrest. A contradictory increase in dichlorofluorescein fluorescence and an upregulation of gluthathione-S-transferase pi 1 (GSTP1) expression were observed in these individuals. If animals at low salinity are indeed facing metabolic depression, the return to seawater may result in an oxidative burst. We hypothesize that this increase in GSTP1 could be a "preparation for oxidative stress", i.e. a mechanism to counteract the production of free radicals upon returning to seawater. The results of the present study shed new light on how tolerant organisms carry out subcellular adaptations to withstand environmental change.
Collapse
Affiliation(s)
- Georgina A Rivera-Ingraham
- Groupe fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), UMR 9190 MARBEC, University of Montpellier, 34095 Montpellier, France.
| | - Aude Nommick
- Groupe fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), UMR 9190 MARBEC, University of Montpellier, 34095 Montpellier, France
| | - Eva Blondeau-Bidet
- Groupe fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), UMR 9190 MARBEC, University of Montpellier, 34095 Montpellier, France
| | - Peter Ladurner
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Jehan-Hervé Lignot
- Groupe fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), UMR 9190 MARBEC, University of Montpellier, 34095 Montpellier, France
| |
Collapse
|
38
|
Fukuda B, Bertini G, Almeida LCFD. Effect of salinity on the embryonic development ofMacrobrachium acanthurus(Decapoda: Palaemonidae). INVERTEBR REPROD DEV 2016. [DOI: 10.1080/07924259.2016.1244572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bianca Fukuda
- LABCRUST (Laboratório de Biologia e Cultivo de Crustáceos), Câmpus de Registro – Rua Nelson Brihi Badur, Registro, Brazil
- Universidade Estadual Paulista – UNESP, Câmpus de Registro – Rua Nelson Brihi Badur, Registro, Brazil
| | - Giovana Bertini
- LABCRUST (Laboratório de Biologia e Cultivo de Crustáceos), Câmpus de Registro – Rua Nelson Brihi Badur, Registro, Brazil
- Universidade Estadual Paulista – UNESP, Câmpus de Registro – Rua Nelson Brihi Badur, Registro, Brazil
| | | |
Collapse
|
39
|
Wright DW, Oppedal F, Dempster T. Early-stage sea lice recruits on Atlantic salmon are freshwater sensitive. JOURNAL OF FISH DISEASES 2016; 39:1179-1186. [PMID: 26956953 DOI: 10.1111/jfd.12452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
Sea lice are significant parasites of marine and brackish farmed fishes. Freshwater bathing is a potential control option against numerous sea lice species, although has been viewed as futile against those that are capable of tolerating freshwater for extended periods. By comparing freshwater survival times across host-attached stages of Lepeophtheirus salmonis (Krøyer), a key parasite in Atlantic salmon farming, we show the first attached (copepodid) stage undergoes 96-100% mortality after 1 h in freshwater, whereas later attached stages can tolerate up to 8 days. Thus, regular freshwater bathing methods targeting the more susceptible attached copepodid stage may successfully treat against L. salmonis and potentially other sea lice on fish cultured in marine and brackish waters.
Collapse
Affiliation(s)
- D W Wright
- Sustainable Aquaculture Laboratory - Temperate and Tropical, School of BioSciences, University of Melbourne, Melbourne, Vic., Australia
| | - F Oppedal
- Institute of Marine Research, Matre, Norway
| | - T Dempster
- Sustainable Aquaculture Laboratory - Temperate and Tropical, School of BioSciences, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
40
|
Gerber L, Lee CE, Grousset E, Blondeau-Bidet E, Boucheker NB, Lorin-Nebel C, Charmantier-Daures M, Charmantier G. The Legs Have It: In Situ Expression of Ion Transporters V-Type H(+)-ATPase and Na(+)/K(+)-ATPase in the Osmoregulatory Leg Organs of the Invading Copepod Eurytemora affinis. Physiol Biochem Zool 2016; 89:233-50. [PMID: 27153133 DOI: 10.1086/686323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The copepod Eurytemora affinis has an unusually broad salinity range, as some populations have recently invaded freshwater habitats independently from their ancestral saline habitats. Prior studies have shown evolutionary shifts in ion transporter activity during freshwater invasions and localization of ion transporters in newly discovered "Crusalis organs" in the swimming legs. The goals of this study were to localize and quantify expression of ion transport enzymes V-type H(+)-ATPase (VHA) and Na(+)/K(+)-ATPase (NKA) in the swimming legs of E. affinis and determine the degree of involvement of each leg in ionic regulation. We confirmed the presence of two distinct types of ionocytes in the Crusalis organs. Both cell types expressed VHA and NKA, and in the freshwater population the location of VHA and NKA in ionocytes was, respectively, apical and basal. Quantification of in situ expression of NKA and VHA established the predominance of swimming leg pairs 3 and 4 in ion transport in both saline and freshwater populations. Increases in VHA expression in swimming legs 3 and 4 of the freshwater population (in fresh water) relative to the saline population (at 15 PSU) arose from an increase in the abundance of VHA per cell rather than an increase in the number of ionocytes. This result suggests a simple mechanism for increasing ion uptake in fresh water. In contrast, the decline in NKA expression in the freshwater population arose from a decrease in ionocyte area in legs 4, likely resulting from decreases in number or size of ionocytes containing NKA. Such results provide insights into mechanisms of ionic regulation for this species, with added insights into evolutionary mechanisms underlying physiological adaptation during habitat invasions.
Collapse
|
41
|
Gelin A, Crivelli AJ, Rosecchi É, Kerambrun P. The effect of salinity changes on the population structure and reproductive traits ofCrangon crangonL. populations in the Camargue (Rhône Delta, France). ECOSCIENCE 2016. [DOI: 10.1080/11956860.2001.11682625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Pham D, Charmantier G, Boulo V, Wabete N, Ansquer D, Dauga C, Grousset E, Labreuche Y, Charmantier-Daures M. Ontogeny of osmoregulation in the Pacific blue shrimp, Litopenaeus stylirostris (Decapoda, Penaeidae): Deciphering the role of the Na(+)/K(+)-ATPase. Comp Biochem Physiol B Biochem Mol Biol 2016; 196-197:27-37. [PMID: 26827851 DOI: 10.1016/j.cbpb.2015.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/19/2015] [Accepted: 12/02/2015] [Indexed: 12/20/2022]
Abstract
The role of the main ion transporting enzyme Na+/K+-ATPase in osmoregulation processes was investigated in Litopenaeus stylirostris. The development and localization of the osmoregulation sites were studied during ontogenesis by immunodetection of Na(+)K(+)-ATPase using monoclonal antibodies and transmission electron microscopy (TEM). Osmoregulation sites were identified as the pleurae and branchiostegites in the zoeae and mysis stages. In the subsequent post-metamorphic stages the osmoregulatory function was mainly located in the epipodites and branchiostegites and osmotic regulation was later detected in the gills. The presence of ionocytes and microvilli in these tissues confirmed their role in ionic processes. The complete open reading frame of the mRNA coding for the α-subunit of Na+K+-ATPase was characterized in L. stylirostris. The resulting 3092-bp cDNA (LsNKA) encodes a putative 1011-amino-acid protein with a predicted molecular mass of 112.3kDa. The inferred amino acid sequence revealed that the putative protein possesses the main structural characteristics of the Na+K+-ATPase α-subunits. Quantitative RT-PCR analyses indicated that LsNKA transcripts did not significantly vary between the different developmental stages. The number of transcripts was about 2.5-fold higher in the epipodites and gills than in any other tissues tested in juveniles. A reverse genetic approach was finally implemented to study the role of LsNKA in vivo. Knockdown of LsNKA expression by gene-specific dsRNA injection led to an increase of shrimp mortality following an abrupt salinity change compared to control animals. These data strongly suggest that LsNKA plays an important role in osmoregulation when the shrimp are challenged by changing salinities.
Collapse
Affiliation(s)
- Dominique Pham
- Lagon, Environnement et Aquaculture Durable, Ifremer, Boulouparis, Nouvelle-Calédonie, France.
| | - Guy Charmantier
- Université de Montpellier, Adaptation Ecophysiologique et Ontogenèse, UMR 9190, Marbec, UM, CNRS, IRD, Ifremer, Place Eugène Bataillon, CC 092, 34095 Montpellier Cedex 05, France
| | - Viviane Boulo
- Lagon, Environnement et Aquaculture Durable, Ifremer, Boulouparis, Nouvelle-Calédonie, France; Université de Montpellier, Adaptation Ecophysiologique et Ontogenèse, UMR 9190, Marbec, UM, CNRS, IRD, Ifremer, Place Eugène Bataillon, CC 092, 34095 Montpellier Cedex 05, France
| | - Nelly Wabete
- Lagon, Environnement et Aquaculture Durable, Ifremer, Boulouparis, Nouvelle-Calédonie, France
| | - Dominique Ansquer
- Lagon, Environnement et Aquaculture Durable, Ifremer, Boulouparis, Nouvelle-Calédonie, France
| | - Clément Dauga
- Lagon, Environnement et Aquaculture Durable, Ifremer, Boulouparis, Nouvelle-Calédonie, France
| | - Evelyse Grousset
- Université de Montpellier, Adaptation Ecophysiologique et Ontogenèse, UMR 9190, Marbec, UM, CNRS, IRD, Ifremer, Place Eugène Bataillon, CC 092, 34095 Montpellier Cedex 05, France
| | - Yannick Labreuche
- Ifremer, Unite Physiologie Fonctionnelle des Organismes Marins, ZI de la Pointe du Diable, CS 10070, F-29280 Plouzane, France; Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France.
| | - Mireille Charmantier-Daures
- Université de Montpellier, Adaptation Ecophysiologique et Ontogenèse, UMR 9190, Marbec, UM, CNRS, IRD, Ifremer, Place Eugène Bataillon, CC 092, 34095 Montpellier Cedex 05, France
| |
Collapse
|
43
|
Ituarte RB, Lignot JH, Charmantier G, Spivak E, Lorin-Nebel C. Immunolocalization and expression of Na(+)/K(+) -ATPase in embryos, early larval stages and adults of the freshwater shrimp Palaemonetes argentinus (Decapoda, Caridea, Palaemonidae). Cell Tissue Res 2016; 364:527-541. [PMID: 26796205 DOI: 10.1007/s00441-015-2351-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/15/2015] [Indexed: 11/29/2022]
Abstract
The euryhaline shrimp Palaemonetes argentinus exemplifies an evolutionary transition from brackish to freshwater habitats that requires adequate osmoregulatory capacities. Hyperosmoregulation is functional at hatching and it likely begins during the embryonic phase allowing this species to develop entirely in fresh water. Here, we investigated the Na(+)/K(+)-ATPase α-subunit gene (nka-α) expression using quantitative real-time PCR and localized Na(+)/K(+)-ATPase (NKA) in ion-transporting epithelia through immunofluorescence microscopy. We reared shrimps from spawning to juvenile stages at two salinities (1, 15 ‰) and maintained adults for 3 weeks at three salinity treatments (1, 15, 25 ‰). nka-α gene expression was measured in: (1) embryos at an early (SI), intermediate (SII) and late (SIII) stage of embryonic development; (2) newly hatched larvae (Zoea I, ZI); and (3) isolated gill tissue of adults. The nka-α expression was low in SI and SII embryos and reached maximum levels prior to hatching (SIII), which were similar to expression levels detected in the ZI. The nka-α expression in SIII and ZI was highest at 15 ‰, whereas salinity did not affect expression in earlier embryos. In SIII, in ZI and in a later zoeal stage ZIV, NKA was localized in epithelial cells of pleurae, in the inner-side epithelium of branchiostegite and in the antennal glands. Gills appeared in the ZIV but NKA immunolabeling of the cells of the gill shaft occurred in a subsequent developmental larval stage, the decapodid. Extrabranchial organs constitute the main site of osmoregulation in early ontogenetic stages of this freshwater shrimp.
Collapse
Affiliation(s)
- Romina Belén Ituarte
- Grupo Zoología Invertebrados, Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Dean Funes 3250, 7600, Mar del Plata, Argentina.
| | - Jehan-Hervé Lignot
- Groupe Fonctionnel Adaptation Ecophysiologique et Ontogenèse, UMR 9190 MARBEC, UM-CNRS-IRD-Ifremer, Université Montpellier, cc 092, Place E. Bataillon, 34095, Montpellier cedex 05, France
| | - Guy Charmantier
- Groupe Fonctionnel Adaptation Ecophysiologique et Ontogenèse, UMR 9190 MARBEC, UM-CNRS-IRD-Ifremer, Université Montpellier, cc 092, Place E. Bataillon, 34095, Montpellier cedex 05, France
| | - Eduardo Spivak
- Grupo Zoología Invertebrados, Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Dean Funes 3250, 7600, Mar del Plata, Argentina
| | - Catherine Lorin-Nebel
- Groupe Fonctionnel Adaptation Ecophysiologique et Ontogenèse, UMR 9190 MARBEC, UM-CNRS-IRD-Ifremer, Université Montpellier, cc 092, Place E. Bataillon, 34095, Montpellier cedex 05, France
| |
Collapse
|
44
|
Rivera-Ingraham GA, Barri K, Boël M, Farcy E, Charles AL, Geny B, Lignot JH. Osmoregulation and salinity-induced oxidative stress: is oxidative adaptation determined by gill function? ACTA ACUST UNITED AC 2015; 219:80-9. [PMID: 26567341 DOI: 10.1242/jeb.128595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022]
Abstract
Osmoregulating decapods such as the Mediterranean green crab Carcinus aestuarii possess two groups of spatially segregated gills: anterior gills serve mainly respiratory purposes, while posterior gills contain osmoregulatory structures. The co-existence of similar tissues serving different functions allows the study of differential adaptation, in terms of free radical metabolism, upon salinity change. Crabs were immersed for 2 weeks in seawater (SW, 37 ppt), diluted SW (dSW, 10 ppt) and concentrated SW (cSW, 45 ppt). Exposure to dSW was the most challenging condition, elevating respiration rates of whole animals and free radical formation in hemolymph (assessed fluorometrically using C-H2DFFDA). Further analyses considered anterior and posterior gills separately, and the results showed that posterior gills are the main tissues fueling osmoregulatory-related processes because their respiration rates in dSW were 3.2-fold higher than those of anterior gills, and this was accompanied by an increase in mitochondrial density (citrate synthase activity) and increased levels of reactive oxygen species (ROS) formation (1.4-fold greater, measured through electron paramagnetic resonance). Paradoxically, these posterior gills showed undisturbed caspase 3/7 activity, used here as a marker for apoptosis. This may only be due to the high antioxidant protection that posterior gills benefit from [superoxide dismutase (SOD) in posterior gills was over 6 times higher than in anterior gills]. In conclusion, osmoregulating posterior gills are better adapted to dSW exposure than respiratory anterior gills because they are capable of controlling the deleterious effects of the ROS production resulting from this salinity-induced stress.
Collapse
Affiliation(s)
- Georgina A Rivera-Ingraham
- Groupe fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), Université de Montpellier, UMR 9190 MARBEC, Place Eugène Bataillon, Montpellier 34095, France
| | - Kiam Barri
- Groupe fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), Université de Montpellier, UMR 9190 MARBEC, Place Eugène Bataillon, Montpellier 34095, France
| | - Mélanie Boël
- Groupe fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), Université de Montpellier, UMR 9190 MARBEC, Place Eugène Bataillon, Montpellier 34095, France
| | - Emilie Farcy
- Groupe fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), Université de Montpellier, UMR 9190 MARBEC, Place Eugène Bataillon, Montpellier 34095, France
| | - Anne-Laure Charles
- EA 3072, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 11 rue Humann, Strasbourg 67000, France
| | - Bernard Geny
- EA 3072, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 11 rue Humann, Strasbourg 67000, France
| | - Jehan-Hervé Lignot
- Groupe fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), Université de Montpellier, UMR 9190 MARBEC, Place Eugène Bataillon, Montpellier 34095, France
| |
Collapse
|
45
|
Madeira D, Narciso L, Diniz MS, Vinagre C. Synergy of environmental variables alters the thermal window and heat shock response: an experimental test with the crab Pachygrapsus marmoratus. MARINE ENVIRONMENTAL RESEARCH 2014; 98:21-28. [PMID: 24836643 DOI: 10.1016/j.marenvres.2014.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
The intertidal zone is an extremely variable habitat, imposing stressful conditions on its inhabiting communities. Tolerance towards extremes of temperature, salinity and pH are crucial in these habitats. Despite the vast literature on stress tolerance, few studies have focused on the synergistic effects of several variables on thermal tolerance and HSP70 (heat shock protein 70 kDa) levels. In this work, the crabs were exposed to three experimental conditions 1) thermal ramp at standard pH (8) and saline conditions (35‰) (named T), 2) thermal ramp at standard pH (8) and hyposaline conditions (15‰) (named T plus HypoS), and 3) thermal ramp at lower pH (7) and standard saline conditions (35‰) (named T plus A). Two physiological parameters (Critical Thermal Maximum - CTMax, and osmolality) and a stress biomarker (HSP70) were chosen for this analysis. These parameters were measured in all of the aforementioned conditions. CTMax for each set of conditions was reached by exposing the organisms to a rate of temperature increase of 1 °C h(-1) until loss of equilibrium. Haemolymph samples were taken every 2 °C to quantify HSP70 and osmolality. Results showed that CTMax did not differ between crabs solely exposed to T stress and crabs exposed to T plus HypoS stress. However, HSP70 production was impaired in T plus HypoS stress. When crabs were exposed to T plus A stress, they showed a significantly higher CTMax, suggesting that short-term exposure to acidified conditions may alter the thermal window of this species. Nevertheless, in T plus A conditions HSP70 production was impaired as well. Regarding osmolality it decreased according to temperature increase in all tested stress conditions. This study showed that the heat stress response is altered by the synergistic effect of variables. Physiological end-points (i.e. CTMax) may vary and the expression of stress proteins such as HSP70 may be impaired.
Collapse
Affiliation(s)
- Diana Madeira
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Luís Narciso
- Laboratório Marítimo da Guia, Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
| | - Mário Sousa Diniz
- REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Catarina Vinagre
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
46
|
Hopkins GR, Brodie ED, French SS. Developmental and evolutionary history affect survival in stressful environments. PLoS One 2014; 9:e95174. [PMID: 24748021 PMCID: PMC3991610 DOI: 10.1371/journal.pone.0095174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/24/2014] [Indexed: 11/18/2022] Open
Abstract
The world is increasingly impacted by a variety of stressors that have the potential to differentially influence life history stages of organisms. Organisms have evolved to cope with some stressors, while with others they have little capacity. It is thus important to understand the effects of both developmental and evolutionary history on survival in stressful environments. We present evidence of the effects of both developmental and evolutionary history on survival of a freshwater vertebrate, the rough-skinned newt (Taricha granulosa) in an osmotically stressful environment. We compared the survival of larvae in either NaCl or MgCl2 that were exposed to salinity either as larvae only or as embryos as well. Embryonic exposure to salinity led to greater mortality of newt larvae than larval exposure alone, and this reduced survival probability was strongly linked to the carry-over effect of stunted embryonic growth in salts. Larval survival was also dependent on the type of salt (NaCl or MgCl2) the larvae were exposed to, and was lowest in MgCl2, a widely-used chemical deicer that, unlike NaCl, amphibian larvae do not have an evolutionary history of regulating at high levels. Both developmental and evolutionary history are critical factors in determining survival in this stressful environment, a pattern that may have widespread implications for the survival of animals increasingly impacted by substances with which they have little evolutionary history.
Collapse
Affiliation(s)
- Gareth R. Hopkins
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, United States of America
| | - Edmund D. Brodie
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, United States of America
| | - Susannah S. French
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, United States of America
| |
Collapse
|
47
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Modulation by K+ Plus NH4+ of microsomal (Na+, K+)-ATPase activity in selected ontogenetic stages of the diadromous river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). PLoS One 2014; 9:e89625. [PMID: 24586919 PMCID: PMC3931822 DOI: 10.1371/journal.pone.0089625] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/21/2014] [Indexed: 12/25/2022] Open
Abstract
We investigate the synergistic stimulation by K+ plus NH4+ of (Na+, K+)-ATPase activity in microsomal preparations of whole zoea I and decapodid III, and in juvenile and adult river shrimp gills. Modulation of (Na+, K+)-ATPase activity is ontogenetic stage-specific, and particularly distinct between juveniles and adults. Although both gill enzymes exhibit two different sites for K+ and NH4+ binding, in the juvenile enzyme, these two sites are equivalent: binding by both ions results in slightly stimulated activity compared to that of a single ionic species. In the adult enzyme, the sites are not equivalent: when one ion occupies its specific binding site, (Na+, K+)-ATPase activity is stimulated synergistically by ≈50% on binding of the complementary ion. Immunolocalization reveals the enzyme to be distributed predominantly throughout the intralamellar septum in the gill lamellae of juveniles and adults. Western blot analyses demonstrate a single immunoreactive band, suggesting a single (Na+, K+)-ATPase α-subunit isoform that is distributed into different density membrane fractions, independently of ontogenetic stage. We propose a model for the modulation by K+ and NH4+ of gill (Na+, K+)-ATPase activity. These findings suggest that the gill enzyme may be regulated by NH4+ during ontogenetic development in M. amazonicum.
Collapse
|
49
|
Abstract
AbstractFor crab larvae, swimming behaviors coupled with the movement of tides suggests that larvae can normally move upstream within estuaries by avoiding ebb tides and actively swimming during flood tides (i.e., flood-tide transport [FTT]). Recently, a 1-D transport model incorporating larval behavior predicted that opposing forces of river discharge and tidal amplitude in the Pee Dee River/Winyah Bay system of South Carolina, USA, could limit dispersal within a single estuary for downstream transport as well as become a dispersal barrier to recruitment of late stage larvae to the freshwater adult habitats of Uca minax (LeConte 1855). We sequenced 394-bp of the mitochondrial cytochrome apoenzyme b for 226 adult U. minax, from four locales along a 49-km stretch of the Pee Dee River/Winyah Bay estuary, above and below the boundary of salt intrusion. Results of an analysis of molecular variance (AMOVA) and an exact test of population differentiation showed a small, but statistically significant (α=0.05) population subdivision among adults of the 4 subpopulations, as well as all subpopulations being significantly differentiated (α=0.05). This pattern fitted with model predictions, which implies that larval transport within the tidally influenced river system is limited.
Collapse
|
50
|
Jensen N, Allen RM, Marshall DJ. Adaptive maternal and paternal effects: gamete plasticity in response to parental stress. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12195] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Natasha Jensen
- School of Biological Sciences University of Queensland Brisbane Queensland 4072 Australia
| | - Richard M. Allen
- Department of Oceanography Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
- Department of Ocean Sciences Memorial University St. John's Newfoundland A1C 5S7 Canada
| | - Dustin J. Marshall
- School of Biological Sciences Monash University Melbourne Victoria 3800 Australia
| |
Collapse
|