1
|
Hanahan D, Michielin O, Pittet MJ. Convergent inducers and effectors of T cell paralysis in the tumour microenvironment. Nat Rev Cancer 2024:10.1038/s41568-024-00761-z. [PMID: 39448877 DOI: 10.1038/s41568-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Tumorigenesis embodies the formation of a heterotypic tumour microenvironment (TME) that, among its many functions, enables the evasion of T cell-mediated immune responses. Remarkably, most TME cell types, including cancer cells, fibroblasts, myeloid cells, vascular endothelial cells and pericytes, can be stimulated to deploy immunoregulatory programmes. These programmes involve regulatory inducers (signals-in) and functional effectors (signals-out) that impair CD8+ and CD4+ T cell activity through cytokines, growth factors, immune checkpoints and metabolites. Some signals target specific cell types, whereas others, such as transforming growth factor-β (TGFβ) and prostaglandin E2 (PGE2), exert broad, pleiotropic effects; as signals-in, they trigger immunosuppressive programmes in most TME cell types, and as signals-out, they directly inhibit T cells and also modulate other cells to reinforce immunosuppression. This functional diversity and redundancy pose a challenge for therapeutic targeting of the immune-evasive TME. Fundamentally, the commonality of regulatory programmes aimed at abrogating T cell activity, along with paracrine signalling between cells of the TME, suggests that many normal cell types are hard-wired with latent functions that can be triggered to prevent inappropriate immune attack. This intrinsic capability is evidently co-opted throughout the TME, enabling tumours to evade immune destruction.
Collapse
Affiliation(s)
- Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| | - Olivier Michielin
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
| | - Mikael J Pittet
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva (UNIGE), Geneva, Switzerland
| |
Collapse
|
2
|
Yan N, Wang Z, Li Z, Zheng Y, Chang N, Xu K, Wang Q, Duan X. Arsenic Exposure Induces Neuro-immune Toxicity in the Cerebral Cortex and the Hippocampus via Neuroglia and NLRP3 Inflammasome Activation in C57BL/6 Mice. Biol Trace Elem Res 2024; 202:4554-4566. [PMID: 38148432 DOI: 10.1007/s12011-023-04012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
This study aimed to examine the immuntoxic effects of arsenic in the nervous system. Our results showed that arsenic increased corticocerebral and hippocampal weights (p < 0.05). Morris water maze tests revealed that arsenic significantly increased the time spent in latency to platform on the fourth day in 50 mg/L arsenic exposure and the fifth day in 25 and 50 mg/L arsenic exposure, as well as reduced the path length in target quadrant, time spent in target quadrant, and crossing times of the platform (p < 0.05). Hematoxylin-eosin staining showed that the vacuolated degeneration and pyknosis was found in the cerebral cortex and hippocampus of arsenic-treated mice. The mRNA levels of corticocerebral and hippocampal brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) were decreased in the 50 mg/L arsenic-treated group (p < 0.05). In addition, immunofluorescence staining showed that 25 and 50 mg/L arsenic all increased the expression of CD11b and glial fibrillary acidic protein (GFAP) in the cerebral cortex and hippocampus (p < 0.05). Arsenic markedly raised antigen-presenting molecule MHCII and CD40 mRNA levels in the cerebral cortex and hippocampus and upregulated the cell chemokine receptor 5 (CCR5) and CCR7 mRNA levels in the cerebral cortex at the 50 mg/L arsenic group, and increased the CCR7 mRNA levels in the hippocampus at the 25 and 50 mg/L arsenic groups (p < 0.05). Arsenic activated the nucleotide-binding domain-like receptor protein-3 (NLRP3) inflammasome, and enhanced its upstream promoter NF-κB protein level and downstream regulators IL-18 mRNA levels. Collectively, these results provide new evidences for the neuro-immune toxicity of arsenic.
Collapse
Affiliation(s)
- Nan Yan
- Department of Medical Applied Technology, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Zhengdong Wang
- Department of Human Anatomy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Zhou Li
- Occupational and Environmental Health Monitoring Department, Dezhou Center for Disease Control and Prevention, Dezhou, 253016, China
| | - Yang Zheng
- Department of Scientific Research, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Nan Chang
- Department of Food Quality and Safety, School of Public Health, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Kangjie Xu
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Qian Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, People's Republic of China.
| |
Collapse
|
3
|
Mączka K, Stasiak O, Przybysz P, Grymowicz M, Smolarczyk R. The Impact of the Endocrine and Immunological Function of Adipose Tissue on Reproduction in Women with Obesity. Int J Mol Sci 2024; 25:9391. [PMID: 39273337 PMCID: PMC11395521 DOI: 10.3390/ijms25179391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity, which leads to metabolic dysregulation and body function impairment, emerges as one of the pressing health challenges worldwide. Excessive body fat deposits comprise a dynamic and biologically active organ possessing its own endocrine function. One of the mechanisms underlying the pathophysiology of obesity is low-grade systemic inflammation mediated by pro-inflammatory factors such as free fatty acids, lipopolysaccharides, adipokines (including leptin, resistin and visfatin) and cytokines (TNF-α, IL-1β, Il-6), which are secreted by adipose tissue. Together with obesity-induced insulin resistance and hyperandrogenism, the exacerbated immune response has a negative impact on the hypothalamic-pituitary-gonadal axis at all levels and directly affects reproduction. In women, it results in disrupted ovarian function, irregular menstrual cycles and anovulation, contributing to infertility. This review focuses on the abnormal intracellular communication, altered gene expression and signaling pathways activated in obesity, underscoring its multifactorial character and consequences at a molecular level. Extensive presentation of the complex interplay between adipokines, cytokines, immune cells and neurons may serve as a foundation for future studies in search of potential sites for more targeted treatment of reproductive disorders related to obesity.
Collapse
Affiliation(s)
- Katarzyna Mączka
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Olga Stasiak
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Paulina Przybysz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Monika Grymowicz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| |
Collapse
|
4
|
Kundapur V, Torlakovic E, Auer RN. The Story Behind the First Mini-BEAM Photon Radiation Treatment: What is the Mini-Beam and Why is it Such an Advance? Semin Radiat Oncol 2024; 34:337-343. [PMID: 38880542 DOI: 10.1016/j.semradonc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Radiation treatment has been the cornerstone in cancer management. However, long term treatment-related morbidity always accompanies tumor control which has significant impact on quality of life of the patient who has survived the cancer. Spatially fractionated radiation has the potential to achieve both cure and to avoid dreaded long term sequelae. The first ever randomized study of mini-beam radiation treatment (MBRT) of canine brain tumor has clearly shown the ability to achieve this goal. Dogs have gyrencephalic brains functionally akin to human brain. We here report long term follow-up and final outcome of the dogs, revealing both tumor control and side effects on normal brain. The results augur potential for conducting human studies with MBRT.
Collapse
Affiliation(s)
- Vijayananda Kundapur
- Saskatoon Cancer Centre, Clinical Professor, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 4H4 Canada.
| | - Emina Torlakovic
- Department of Pathology, University of Saskatchewan, Royal University Hospital, Saskatoon, SK S7N 0W8 Canada
| | - Roland N Auer
- Department of Pathology, University of Saskatchewan, Royal University Hospital, Saskatoon, SK S7N 0W8 Canada
| |
Collapse
|
5
|
Stergiopoulos GM, Concilio SC, Galanis E. An Update on the Clinical Status, Challenges, and Future Directions of Oncolytic Virotherapy for Malignant Gliomas. Curr Treat Options Oncol 2024; 25:952-991. [PMID: 38896326 DOI: 10.1007/s11864-024-01211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/21/2024]
Abstract
OPINION STATEMENT Malignant gliomas are common central nervous system tumors that pose a significant clinical challenge due to the lack of effective treatments. Glioblastoma (GBM), a grade 4 malignant glioma, is the most prevalent primary malignant brain tumor and is associated with poor prognosis. Current clinical trials are exploring various strategies to combat GBM, with oncolytic viruses (OVs) appearing particularly promising. In addition to ongoing and recently completed clinical trials, one OV (Teserpaturev, Delytact®) received provisional approval for GBM treatment in Japan. OVs are designed to selectively target and eliminate cancer cells while promoting changes in the tumor microenvironment that can trigger and support long-lasting anti-tumor immunity. OVs offer the potential to remodel the tumor microenvironment and reverse systemic immune exhaustion. Additionally, an increasing number of OVs are armed with immunomodulatory payloads or combined with immunotherapy approaches in an effort to promote anti-tumor responses in a tumor-targeted manner. Recently completed oncolytic virotherapy trials can guide the way for future treatment individualization through patient preselection, enhancing the likelihood of achieving the highest possible clinical success. These trials also offer valuable insight into the numerous challenges inherent in malignant glioma treatment, some of which OVs can help overcome.
Collapse
Affiliation(s)
| | | | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Boles J, Uriarte Huarte O, Tansey MG. Peripheral endotoxin exposure in mice activates crosstalk between phagocytes in the brain and periphery. RESEARCH SQUARE 2024:rs.3.rs-4478250. [PMID: 38883776 PMCID: PMC11177977 DOI: 10.21203/rs.3.rs-4478250/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background Inflammation is a central process of many neurological diseases, and a growing number of studies suggest that non-brain-resident immune cells may contribute to this neuroinflammation. However, the unique contributions of specific immune cell subsets to neuroinflammation are presently unknown, and it is unclear how communication between brain-resident and non-resident immune cells underlies peripheral immune cell involvement in neuroinflammation. Methods In this study, we employed the well-established model of lipopolysaccharide (LPS)-induced neuroinflammation and captured brain-resident and non-resident immune cells from the brain and its vasculature by magnetically enriching cell suspensions from the non-perfused brain for CD45 + cells. Then, we identified immune subtype-specific neuroinflammatory processes using single-cell genomics and predicted the crosstalk between immune cell subtypes by analyzing the simultaneous expression of ligands and receptors. Results We observed a greater abundance of peripheral phagocytes associated with the brain in this model of neuroinflammation, and report that these professional phagocytes activated similar transcriptional profiles to microglia during LPS-induced neuroinflammation. And, we observed that the probable crosstalk between microglia and peripheral phagocytes was activated in this model while homotypic microglial communication was likely to be decreased. Conclusions Our novel findings reveal that microglia signaling to non-brain-resident peripheral phagocytes is preferentially triggered by peripheral inflammation, which is associated with brain infiltration of peripheral cells. Overall, our study supports the involvement of peripheral immune cells in neuroinflammation and suggests several possible molecular signaling pathways between microglia and peripheral cells that may facilitate central-peripheral crosstalk during inflammation. Examining these molecular mediators in human disease and other rodent models may reveal novel targets that modify brain health, especially in comorbidities characterized by peripheral inflammation.
Collapse
|
7
|
Pu B, Zhu H, Wei L, Gu L, Zhang S, Jian Z, Xiong X. The Involvement of Immune Cells Between Ischemic Stroke and Gut Microbiota. Transl Stroke Res 2024; 15:498-517. [PMID: 37140808 DOI: 10.1007/s12975-023-01151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023]
Abstract
Ischemic stroke, a disease with high mortality and disability rate worldwide, currently has no effective treatment. The systemic inflammation response to the ischemic stroke, followed by immunosuppression in focal neurologic deficits and other inflammatory damage, reduces the circulating immune cell counts and multiorgan infectious complications such as intestinal and gut dysfunction dysbiosis. Evidence showed that microbiota dysbiosis plays a role in neuroinflammation and peripheral immune response after stroke, changing the lymphocyte populations. Multiple immune cells, including lymphocytes, engage in complex and dynamic immune responses in all stages of stroke and may be a pivotal moderator in the bidirectional immunomodulation between ischemic stroke and gut microbiota. This review discusses the role of lymphocytes and other immune cells, the immunological processes in the bidirectional immunomodulation between gut microbiota and ischemic stroke, and its potential as a therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Liang Wei
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, People's Republic of China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
8
|
Shi H, Sun X, Wu Y, Cui Q, Sun S, Ji N, Liu Y. Targeting the tumor microenvironment in primary central nervous system lymphoma: Implications for prognosis. J Clin Neurosci 2024; 124:36-46. [PMID: 38642434 DOI: 10.1016/j.jocn.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/06/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare extranodal non-Hodgkin lymphoma, and there is limited research on its tumor microenvironment (TME). Nevertheless, more and more studies have evidence that TME has essential effects on tumor cell proliferation, immune escape, and drug resistance. Thus, it is critical to elucidate the role of TME in PCNSL. The understanding of the PCNSL TME is gradually unfolding, including factors that distinguish it from systemic diffuse large B-cell lymphoma (DLBCL). The TME in PCNSL exhibits both transcriptional and spatial intratumor heterogeneity. Cellular interactions between tumor cells and stroma cells reveal immune evasion signaling. The comparative analysis between PCNSL and DLBCL suggests that PCNSL is more likely to be an immunologically deficient tumor. In PCNSL, T cell exhaustion and downregulation of macrophage immune function are accompanied by suppressive microenvironmental factors such as M2 polarized macrophages, endothelin B receptor, HLA depletion, PD-L1, and TIM-3. MMP-9, Integrin-β1, and ICAM-1/LFA-1 play crucial roles in transendothelial migration towards the CNS, while CXCL13/CXCR5, CD44, MAG, and IL-8 are essential for brain parenchymal invasion. Further, macrophages, YKL-40, CD31, CD105, PD-1/PD-L1 axis, osteopontin, galectin-3, aggregative perivascular tumor cells, and HLA deletion may contribute to poor outcomes in patients with PCNSL. This article reviews the effect of various components of TME on the progression and prognosis of PCNSL patients to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Han Shi
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Xuefei Sun
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Yuchen Wu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Qu Cui
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Shengjun Sun
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Nan Ji
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China
| | - Yuanbo Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China.
| |
Collapse
|
9
|
Duan M, Xu Y, Li Y, Feng H, Chen Y. Targeting brain-peripheral immune responses for secondary brain injury after ischemic and hemorrhagic stroke. J Neuroinflammation 2024; 21:102. [PMID: 38637850 PMCID: PMC11025216 DOI: 10.1186/s12974-024-03101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
The notion that the central nervous system is an immunologically immune-exempt organ has changed over the past two decades, with increasing evidence of strong links and interactions between the central nervous system and the peripheral immune system, both in the healthy state and after ischemic and hemorrhagic stroke. Although primary injury after stroke is certainly important, the limited therapeutic efficacy, poor neurological prognosis and high mortality have led researchers to realize that secondary injury and damage may also play important roles in influencing long-term neurological prognosis and mortality and that the neuroinflammatory process in secondary injury is one of the most important influences on disease progression. Here, we summarize the interactions of the central nervous system with the peripheral immune system after ischemic and hemorrhagic stroke, in particular, how the central nervous system activates and recruits peripheral immune components, and we review recent advances in corresponding therapeutic approaches and clinical studies, emphasizing the importance of the role of the peripheral immune system in ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Mingxu Duan
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ya Xu
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanshu Li
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
10
|
Ferreira EA, Clements JE, Veenhuis RT. HIV-1 Myeloid Reservoirs - Contributors to Viral Persistence and Pathogenesis. Curr HIV/AIDS Rep 2024; 21:62-74. [PMID: 38411842 DOI: 10.1007/s11904-024-00692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE OF REVIEW HIV reservoirs are the main barrier to cure. CD4+ T cells have been extensively studied as the primary HIV-1 reservoir. However, there is substantial evidence that HIV-1-infected myeloid cells (monocytes/macrophages) also contribute to viral persistence and pathogenesis. RECENT FINDINGS Recent studies in animal models and people with HIV-1 demonstrate that myeloid cells are cellular reservoirs of HIV-1. HIV-1 genomes and viral RNA have been reported in circulating monocytes and tissue-resident macrophages from the brain, urethra, gut, liver, and spleen. Importantly, viral outgrowth assays have quantified persistent infectious virus from monocyte-derived macrophages and tissue-resident macrophages. The myeloid cell compartment represents an important target of HIV-1 infection. While myeloid reservoirs may be more difficult to measure than CD4+ T cell reservoirs, they are long-lived, contribute to viral persistence, and, unless specifically targeted, will prevent an HIV-1 cure.
Collapse
Affiliation(s)
- Edna A Ferreira
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
| |
Collapse
|
11
|
Wang Y, Cheng W, Chen X, Cheng C, Zhang L, Huang W. Serum Proteomics Identified TAFI as a Potential Molecule Facilitating the Migration of Peripheral Monocytes to Damaged White Matter During Chronic Cerebral Hypoperfusion. Neurochem Res 2024; 49:597-616. [PMID: 37978153 DOI: 10.1007/s11064-023-04050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Neuroinflammation is assumed as the critical pathophysiologic mechanism of white matter lesions (WMLs), and infiltrated peripheral monocyte-derived macrophages are implicated in the development of neuroinflammation. This study sought to explore the blood molecules that promote the migration of peripheral monocytes to the sites of WMLs. The serum protein expression profiles of patients and Sprague-Dawley rat models with WMLs were detected by data-independent acquisition (DIA) proteomics technique. Compared with corresponding control groups, we acquired 62 and 41 differentially expressed proteins (DEPs) in the serum of patients and model rats with WMLs respectively. Bioinformatics investigations demonstrated that these DEPs were linked to various Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms involved in neuroinflammation. Afterward, we identified thrombin-activatable fibrinolysis inhibitor (TAFI) as a shared and overexpressed protein in clinical and animal serum samples, which was further verified by enzyme-linked immunosorbent assay. Additionally, an upregulation of TAFI was also observed in the white matter of rat models, and the inhibition of TAFI impeded the migration of peripheral monocytes to the area of WMLs. In vitro experiments suggested that TAFI could enhance the migration ability of RAW264.7 cells and increase the expression of Ccr2. Our study demonstrates that neuroinflammatory signals can be detected in the peripheral blood of WMLs patients and model rats. TAFI may serve as a potential protein that promotes the migration of peripheral monocytes to WMLs regions, thereby providing a novel molecular target for further investigation into the interaction between the central and peripheral immune systems.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenchao Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiuying Chen
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Chang Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Zhang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Wen Huang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China.
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China.
| |
Collapse
|
12
|
Chen J, Pan Y, Liu Q, Li G, Chen G, Li W, Zhao W, Wang Q. The Interplay between Meningeal Lymphatic Vessels and Neuroinflammation in Neurodegenerative Diseases. Curr Neuropharmacol 2024; 22:1016-1032. [PMID: 36380442 PMCID: PMC10964105 DOI: 10.2174/1570159x21666221115150253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Meningeal lymphatic vessels (MLVs) are essential for the drainage of cerebrospinal fluid, macromolecules, and immune cells in the central nervous system. They play critical roles in modulating neuroinflammation in neurodegenerative diseases. Dysfunctional MLVs have been demonstrated to increase neuroinflammation by horizontally blocking the drainage of neurotoxic proteins to the peripheral lymph nodes. Conversely, MLVs protect against neuroinflammation by preventing immune cells from becoming fully encephalitogenic. Furthermore, evidence suggests that neuroinflammation affects the structure and function of MLVs, causing vascular anomalies and angiogenesis. Although this field is still in its infancy, the strong link between MLVs and neuroinflammation has emerged as a potential target for slowing the progression of neurodegenerative diseases. This review provides a brief history of the discovery of MLVs, introduces in vivo and in vitro MLV models, highlights the molecular mechanisms through which MLVs contribute to and protect against neuroinflammation, and discusses the potential impact of neuroinflammation on MLVs, focusing on recent progress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Junmei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qihua Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Guangyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Gongcan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| |
Collapse
|
13
|
Karpenko DV. Immune Privileges as a Result of Mutual Regulation of Immune and Stem Systems. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1818-1831. [PMID: 38105201 DOI: 10.1134/s0006297923110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 12/19/2023]
Abstract
Immune privileges of cancer stem cells is a well-known and widely studied problem, as presence of such cells in tumors is associated with refractoriness, recurrence, and metastasis. Accumulating evidence also suggests presence of immune privileges in non-pathological stem cells in addition to their other defense mechanisms against damaging factors. This similarity between pathological and normal stem cells raises the question of why stem cells have such a potentially dangerous property. Regulation of vital processes of autoimmunity control and regeneration realized through interactions between immune cells, stem cells, and their microenvironment are reviewed in this work as causes of formation of the stem cell immune privilege. Deep mutual integration between regulations of stem and immune cells is noted. Considering diversity and complexity of mutual regulation of stem cells, their microenvironment, and immune system, I suggest the term "stem system".
Collapse
Affiliation(s)
- Dmitriy V Karpenko
- Laboratory of Epigenetic Regulation of Hematopoiesis, National Medical Research Center for Hematology, Moscow, 125167, Russia.
| |
Collapse
|
14
|
Faisal SM, Castro MG, Lowenstein PR. Combined cytotoxic and immune-stimulatory gene therapy using Ad-TK and Ad-Flt3L: Translational developments from rodents to glioma patients. Mol Ther 2023; 31:2839-2860. [PMID: 37574780 PMCID: PMC10556227 DOI: 10.1016/j.ymthe.2023.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023] Open
Abstract
Gliomas are the most prevalent and devastating primary malignant brain tumors in adults. Despite substantial advances in understanding glioma biology, there have been no regulatory drug approvals in the US since bevacizumab in 2009 and tumor treating fields in 2011. Recent phase III clinical trials have failed to meet their prespecified therapeutic primary endpoints, highlighting the need for novel therapies. The poor prognosis of glioma patients, resistance to chemo-radiotherapy, and the immunosuppressive tumor microenvironment underscore the need for the development of novel therapies. Gene therapy-based immunotherapeutic strategies that couple the ability of the host immune system to specifically kill glioma cells and develop immunological memory have shown remarkable progress. Two adenoviral vectors expressing Ad-HSV1-TK/GCV and Ad-Flt3L have shown promising preclinical data, leading to FDA approval of a non-randomized, phase I open-label, first in human trial to test safety, cytotoxicity, and immune-stimulatory efficiency in high-grade glioma patients (NCT01811992). This review provides a thorough overview of immune-stimulatory gene therapy highlighting recent advancements, potential drawbacks, future directions, and recommendations for future implementation of clinical trials.
Collapse
Affiliation(s)
- Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48108, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48108, USA; Rogel Cancer Centre, University of Michigan Medical School, Ann Arbor, MI 48108, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48108, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48108, USA; Rogel Cancer Centre, University of Michigan Medical School, Ann Arbor, MI 48108, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48108, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48108, USA; Rogel Cancer Centre, University of Michigan Medical School, Ann Arbor, MI 48108, USA; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI 48108, USA.
| |
Collapse
|
15
|
Bastos V, Pacheco V, Rodrigues ÉDL, Moraes CNS, Nóbile AL, Fonseca DLM, Souza KBS, do Vale FYN, Filgueiras IS, Schimke LF, Giil LM, Moll G, Cabral-Miranda G, Ochs HD, Vasconcelos PFDC, de Melo GD, Bourhy H, Casseb LMN, Cabral-Marques O. Neuroimmunology of rabies: New insights into an ancient disease. J Med Virol 2023; 95:e29042. [PMID: 37885152 DOI: 10.1002/jmv.29042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Rabies is an ancient neuroinvasive viral (genus Lyssavirus, family Rhabdoviridae) disease affecting approximately 59,000 people worldwide. The central nervous system (CNS) is targeted, and rabies has a case fatality rate of almost 100% in humans and animals. Rabies is entirely preventable through proper vaccination, and thus, the highest incidence is typically observed in developing countries, mainly in Africa and Asia. However, there are still cases in European countries and the United States. Recently, demographic, increasing income levels, and the coronavirus disease 2019 (COVID-19) pandemic have caused a massive raising in the animal population, enhancing the need for preventive measures (e.g., vaccination, surveillance, and animal control programs), postexposure prophylaxis, and a better understanding of rabies pathophysiology to identify therapeutic targets, since there is no effective treatment after the onset of clinical manifestations. Here, we review the neuroimmune biology and mechanisms of rabies. Its pathogenesis involves a complex and poorly understood modulation of immune and brain functions associated with metabolic, synaptic, and neuronal impairments, resulting in fatal outcomes without significant histopathological lesions in the CNS. In this context, the neuroimmunological and neurochemical aspects of excitatory/inhibitory signaling (e.g., GABA/glutamate crosstalk) are likely related to the clinical manifestations of rabies infection. Uncovering new links between immunopathological mechanisms and neurochemical imbalance will be essential to identify novel potential therapeutic targets to reduce rabies morbidity and mortality.
Collapse
Affiliation(s)
- Victor Bastos
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Vinicius Pacheco
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Érika D L Rodrigues
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Cássia N S Moraes
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Adriel L Nóbile
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo, São Paulo, Brazil
| | - Kamilla B S Souza
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Fernando Y N do Vale
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Igor S Filgueiras
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | | | - Hans D Ochs
- School of Medicine and Seattle Children's Research Institute, University of Washington, Seattle, Washington, USA
| | - Pedro F da Costa Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
- Department of Pathology, University of the State of Pará, Belem, Brazil
| | - Guilherme D de Melo
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Livia M N Casseb
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Otavio Cabral-Marques
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Terrabuio E, Zenaro E, Constantin G. The role of the CD8+ T cell compartment in ageing and neurodegenerative disorders. Front Immunol 2023; 14:1233870. [PMID: 37575227 PMCID: PMC10416633 DOI: 10.3389/fimmu.2023.1233870] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
CD8+ lymphocytes are adaptive immunity cells with the particular function to directly kill the target cell following antigen recognition in the context of MHC class I. In addition, CD8+ T cells may release pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and a plethora of other cytokines and chemoattractants modulating immune and inflammatory responses. A role for CD8+ T cells has been suggested in aging and several diseases of the central nervous system (CNS), including Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, limbic encephalitis-induced temporal lobe epilepsy and Susac syndrome. Here we discuss the phenotypic and functional alterations of CD8+ T cell compartment during these conditions, highlighting similarities and differences between CNS disorders. Particularly, we describe the pathological changes in CD8+ T cell memory phenotypes emphasizing the role of senescence and exhaustion in promoting neuroinflammation and neurodegeneration. We also discuss the relevance of trafficking molecules such as selectins, mucins and integrins controlling the extravasation of CD8+ T cells into the CNS and promoting disease development. Finally, we discuss how CD8+ T cells may induce CNS tissue damage leading to neurodegeneration and suggest that targeting detrimental CD8+ T cells functions may have therapeutic effect in CNS disorders.
Collapse
Affiliation(s)
- Eleonora Terrabuio
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | | |
Collapse
|
17
|
Garcia-Fabiani MB, Haase S, Banerjee K, McClellan B, Zhu Z, Mujeeb A, Li Y, Yu J, Kadiyala P, Taher A, Núñez FJ, Alghamri MS, Comba A, Mendez FM, Nicola Candia AJ, Salazar B, Koschmann C, Nunez FM, Edwards M, Qin T, Sartor MA, Lowenstein PR, Castro MG. H3.3-G34R Mutation-Mediated Epigenetic Reprogramming Leads to Enhanced Efficacy of Immune Stimulatory Gene Therapy in Pediatric High-Grade Gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544658. [PMID: 37398299 PMCID: PMC10312611 DOI: 10.1101/2023.06.13.544658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Pediatric high-grade gliomas (pHGGs) are diffuse and highly aggressive CNS tumors which remain incurable, with a 5-year overall survival of less than 20%. Within glioma, mutations in the genes encoding the histones H3.1 and H3.3 have been discovered to be age-restricted and specific of pHGGs. This work focuses on the study of pHGGs harboring the H3.3-G34R mutation. H3.3-G34R tumors represent the 9-15% of pHGGs, are restricted to the cerebral hemispheres, and are found predominantly in the adolescent population (median 15.0 years). We have utilized a genetically engineered immunocompetent mouse model for this subtype of pHGG generated via the Sleeping Beauty-transposon system. The analysis of H3.3-G34R genetically engineered brain tumors by RNA-Sequencing and ChIP-Sequencing revealed alterations in the molecular landscape associated to H3.3-G34R expression. In particular, the expression of H3.3-G34R modifies the histone marks deposited at the regulatory elements of genes belonging to the JAK/STAT pathway, leading to an increased activation of this pathway. This histone G34R-mediated epigenetic modifications lead to changes in the tumor immune microenvironment of these tumors, towards an immune-permissive phenotype, making these gliomas susceptible to TK/Flt3L immune-stimulatory gene therapy. The application of this therapeutic approach increased median survival of H3.3-G34R tumor bearing animals, while stimulating the development of anti-tumor immune response and immunological memory. Our data suggests that the proposed immune-mediated gene therapy has potential for clinical translation for the treatment of patients harboring H3.3-G34R high grade gliomas.
Collapse
Affiliation(s)
- Maria B. Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Current address: Leloir Institute Foundation, Buenos Aires, Argentina
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brandon McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anzar Mujeeb
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yingxiang Li
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jin Yu
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Current address: Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ayman Taher
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Felipe J. Núñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Flor M. Mendez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alejandro J. Nicola Candia
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brittany Salazar
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carl Koschmann
- Department of Pediatrics, Chad Carr Pediatric Brain Tumor Center, University of Michigan Medical School, MI 48109, USA
| | - Fernando M. Nunez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Marta Edwards
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Bioengineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Pawlowski KD, Duffy JT, Babak MV, Balyasnikova IV. Modeling glioblastoma complexity with organoids for personalized treatments. Trends Mol Med 2023; 29:282-296. [PMID: 36805210 PMCID: PMC11101135 DOI: 10.1016/j.molmed.2023.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023]
Abstract
Glioblastoma (GBM) remains a fatal diagnosis despite the current standard of care of maximal surgical resection, radiation, and temozolomide (TMZ) therapy. One aspect that impedes drug development is the lack of an appropriate model representative of the complexity of patient tumors. Brain organoids derived from cell culture techniques provide a robust, easily manipulatable, and high-throughput model for GBM. In this review, we highlight recent progress in developing GBM organoids (GBOs) with a focus on generating the GBM microenvironment (i.e., stem cells, vasculature, and immune cells) recapitulating human disease. Finally, we also discuss the use of organoids as a screening tool in drug development for GBM.
Collapse
Affiliation(s)
- Kristen D Pawlowski
- Rush Medical College, Rush University Medical Center, Chicago, IL 60612, USA; Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joseph T Duffy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, People's Republic of China.
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
19
|
Sun Q, Li Z, Wang Z, Wang Q, Qin F, Pan H, Lin W, Mu X, Wang Y, Jiang Y, Ji J, Lu Z. Immunosuppression by opioids: Mechanisms of action on innate and adaptive immunity. Biochem Pharmacol 2023; 209:115417. [PMID: 36682388 DOI: 10.1016/j.bcp.2023.115417] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Opioids are excellent analgesics for the clinical treatment of various types of acute and chronic pain, particularly cancer-related pain. Nevertheless, it is well known that opioids have some nasty side effects, including immunosuppression, which is commonly overlooked. As a result, the incidence of opportunistic bacterial and viral infections increases in patients with long-term opioid use. Nowadays, there are no effective medications to alleviate opioid-induced immunosuppression. Understanding the underlying molecular mechanism of opioids in immunosuppression can enable researchers to devise effective therapeutic interventions. This review comprehensively summarized the exogenous opioids-induced immunosuppressive effects and their underlying mechanisms, the regulatory roles of endogenous opioids on the immune system, the potential link between opioid immunosuppressive effect and the function of the central nervous system (CNS), and the future perspectives in this field.
Collapse
Affiliation(s)
- Qinmei Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhonghao Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zijing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qisheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fenfen Qin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haotian Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weixin Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinru Mu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuxuan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongwei Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhigang Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
20
|
Saeed Y. Title: Immunotherapy; a ground-breaking remedy for spinal cord injury with stumbling blocks: An overview. Front Pharmacol 2023; 14:1110008. [PMID: 36778022 PMCID: PMC9909832 DOI: 10.3389/fphar.2023.1110008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating disorder with no known standard and effective treatment. Despite its ability to exacerbate SCI sequel by accelerating auto-reactive immune cells, an immune response is also considered essential to the healing process. Therefore, immunotherapeutic strategies targeting spinal cord injuries may benefit from the dual nature of immune responses. An increasing body of research suggests that immunization against myelin inhibitors can promote axon remyelination after SCI. However, despite advancements in our understanding of neuroimmune responses, immunoregulation-based therapeutic strategies have yet to receive widespread acceptance. Therefore, it is a prerequisite to enhance the understanding of immune regulation to ensure the safety and efficacy of immunotherapeutic treatments. The objective of the present study was to provide an overview of previous studies regarding the advantages and limitations of immunotherapeutic strategies for functional recovery after spinal cord injury, especially in light of limiting factors related to DNA and cell-based vaccination strategies by providing a novel prospect to lay the foundation for future studies that will help devise a safe and effective treatment for spinal cord injury.
Collapse
Affiliation(s)
- Yasmeen Saeed
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resources in Northern Guangdong, 288 University Ave. Zhenjiang District, Shaoguan City, Guangdong Province, China
| |
Collapse
|
21
|
Wahl A, Al-Harthi L. HIV infection of non-classical cells in the brain. Retrovirology 2023; 20:1. [PMID: 36639783 PMCID: PMC9840342 DOI: 10.1186/s12977-023-00616-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
HIV-associated neurological disorders (HAND) affect up to 50% of people living with HIV (PLWH), even in the era of combination antiretroviral therapy (cART). HIV-DNA can be detected in the cerebral spinal fluid (CSF) of approximately half of aviremic ART-suppressed PLWH and its presence is associated with poorer neurocognitive performance. HIV DNA + and HIV RNA + cells have also been observed in postmortem brain tissue of individuals with sustained cART suppression. In this review, we provide an overview of how HIV invades the brain and HIV infection of resident brain glial cells (astrocytes and microglia). We also discuss the role of resident glial cells in persistent neuroinflammation and HAND in PLWH and their potential contribution to the HIV reservoir. HIV eradication strategies that target persistently infected glia cells will likely be needed to achieve HIV cure.
Collapse
Affiliation(s)
- Angela Wahl
- grid.10698.360000000122483208International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.10698.360000000122483208Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.10698.360000000122483208Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Lena Al-Harthi
- grid.240684.c0000 0001 0705 3621Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL USA
| |
Collapse
|
22
|
Soraci L, Gambuzza ME, Biscetti L, Laganà P, Lo Russo C, Buda A, Barresi G, Corsonello A, Lattanzio F, Lorello G, Filippelli G, Marino S. Toll-like receptors and NLRP3 inflammasome-dependent pathways in Parkinson's disease: mechanisms and therapeutic implications. J Neurol 2023; 270:1346-1360. [PMID: 36460875 PMCID: PMC9971082 DOI: 10.1007/s00415-022-11491-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder characterized by motor and non-motor disturbances as a result of a complex and not fully understood pathogenesis, probably including neuroinflammation, oxidative stress, and formation of alpha-synuclein (α-syn) aggregates. As age is the main risk factor for several neurodegenerative disorders including PD, progressive aging of the immune system leading to inflammaging and immunosenescence may contribute to neuroinflammation leading to PD onset and progression; abnormal α-syn aggregation in the context of immune dysfunction may favor activation of nucleotide-binding oligomerization domain-like receptor (NOD) family pyrin domain containing 3 (NLRP3) inflammasome within microglial cells through interaction with toll-like receptors (TLRs). This process would further lead to activation of Caspase (Cas)-1, and increased production of pro-inflammatory cytokines (PC), with subsequent impairment of mitochondria and damage to dopaminergic neurons. All these phenomena are mediated by the translocation of nuclear factor kappa-B (NF-κB) and enhanced by reactive oxygen species (ROS). To date, drugs to treat PD are mainly aimed at relieving clinical symptoms and there are no disease-modifying options to reverse or stop disease progression. This review outlines the role of the TLR/NLRP3/Cas-1 pathway in PD-related immune dysfunction, also focusing on specific therapeutic options that might be used since the early stages of the disease to counteract neuroinflammation and immune dysfunction.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Maria Elsa Gambuzza
- Territorial Office of Messina, Italian Ministry of Health, 98122 Messina, Italy
| | - Leonardo Biscetti
- Section of Neurology, Italian National Research Center on Aging (INRCA-IRCCS), 60121, Ancona, Italy.
| | - Pasqualina Laganà
- Biomedical, Dental, Morphological and Functional Imaging Department, University of Messina, 98124 Messina, Italy
| | - Carmela Lo Russo
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Annamaria Buda
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Giada Barresi
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Fabrizia Lattanzio
- Scientific Direction, Italian National Research Center on Aging (INRCA-IRCCS), 60121 Ancona, Italy
| | - Giuseppe Lorello
- Unit of Internal Medicine, Polyclinic G Martino Hospital, 98125 Messina, Italy
| | | | - Silvia Marino
- IRCCS Centro Neurolesi Bonino-Pulejo, 98124 Messina, Italy
| |
Collapse
|
23
|
Deng J, Chen C, Xue S, Su D, Poon WS, Hou H, Wang J. Microglia-mediated inflammatory destruction of neuro-cardiovascular dysfunction after stroke. Front Cell Neurosci 2023; 17:1117218. [PMID: 37025698 PMCID: PMC10070726 DOI: 10.3389/fncel.2023.1117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
Stroke, a serious systemic inflammatory disease, features neurological deficits and cardiovascular dysfunction. Neuroinflammation is characterized by the activation of microglia after stroke, which disrupts the cardiovascular-related neural network and the blood-brain barrier. Neural networks activate the autonomic nervous system to regulate the cardiac and blood vessels. Increased permeability of the blood-brain barrier and the lymphatic pathways promote the transfer of the central immune components to the peripheral immune organs and the recruitment of specific immune cells or cytokines, produced by the peripheral immune system, and thus modulate microglia in the brain. In addition, the spleen will also be stimulated by central inflammation to further mobilize the peripheral immune system. Both NK cells and Treg cells will be generated to enter the central nervous system to suppress further inflammation, while activated monocytes infiltrate the myocardium and cause cardiovascular dysfunction. In this review, we will focus on microglia-mediated inflammation in neural networks that result in cardiovascular dysfunction. Furthermore, we will discuss neuroimmune regulation in the central-peripheral crosstalk, in which the spleen is a vital part. Hopefully, this will benefit in anchoring another therapeutic target for neuro-cardiovascular dysfunction.
Collapse
Affiliation(s)
- Jiahong Deng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Chenghan Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Shuaishuai Xue
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Daoqing Su
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wai Sang Poon
- Neuro-Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Wai Sang Poon
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Honghao Hou
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
- *Correspondence: Jun Wang
| |
Collapse
|
24
|
Aliaga D, Mayorga J, Verdú-López F, Gallego JM, Castellá L, Sabater V. Primary central nervous system Hodgkin lymphoma: A case report and review of the literature. NEUROCIRUGIA (ENGLISH EDITION) 2022; 33:350-355. [PMID: 36333092 DOI: 10.1016/j.neucie.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/01/2021] [Indexed: 06/16/2023]
Abstract
Central nervous system (CNS) involvement in the context of relapsed/refractory Hodgkin lymphoma (HL) is a quite rare, but well-known complication. Nevertheless, primary CNS-HL is an exceedingly rare condition, which diagnosis is based on well-defined morphological and immunohistochemical features, in addition to isolated involvement of the CNS. In spite of limited casuistry (just over twenty cases reported in the literature), available data agree that primary and isolated CNS-HL, when treated with a combination of surgery followed by some form of adjuvant therapy (radiotherapy±chemotherapy), carries a better prognosis than those cases with CNS involvement in the context of relapsed/refractory HL or those with CNS non-Hodgkin lymphoma. We herein report a case of a 55-year-old female patient who was diagnosed with primary CNS-HL. The patient was treated with complete surgical resection followed by intrathecal chemotherapy and whole brain radiotherapy (WBRT), showing fourteen months of disease-free survival at the time of this case report. A review of the available literature is also presented.
Collapse
Affiliation(s)
- David Aliaga
- Department of Neurosurgery, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain.
| | - Juan Mayorga
- Department of Neurosurgery, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Franscisco Verdú-López
- Department of Neurosurgery, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - José María Gallego
- Department of Neurosurgery, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Laura Castellá
- Department of Diagnostic Pathology, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Vicente Sabater
- Department of Diagnostic Pathology, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain
| |
Collapse
|
25
|
Chatterjee A, Asija S, Yadav S, Purwar R, Goda JS. Clinical utility of CAR T cell therapy in brain tumors: Lessons learned from the past, current evidence and the future stakes. Int Rev Immunol 2022; 41:606-624. [PMID: 36191126 DOI: 10.1080/08830185.2022.2125963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
The unprecedented clinical success of Chimeric Antigen Receptor (CAR) T cell therapy in hematological malignancies has led researchers to study its role in solid tumors. Although, its utility in solid tumors especially in neuroblastoma has begun to emerge, preclinical studies of its efficacy in other solid tumors like osteosarcomas or gliomas has caught the attention of oncologist to be tried in clinical trials. Malignant high-grade brain tumors like glioblastomas or midline gliomas in children represent some of the most difficult malignancies to be managed with conventionally available therapeutics, while relapsed gliomas continue to have the most dismal prognosis due to limited therapeutic options. Innovative therapies such as CAR T cells could give an additional leverage to the treating oncologists by potentially improving outcomes and ameliorating the toxicity of the currently available therapies. Moreover, CAR T cell therapy has the potential to be integrated into the therapeutic paradigm for aggressive gliomas in the near future. In this review we discuss the challenges in using CAR T cell therapy in brain tumors, enumerate the completed and ongoing clinical trials of different types of CAR T cell therapy for different brain tumors with special emphasis on glioblastoma and also discuss the future role of CAR T cells in Brain tumors.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Sandhya Yadav
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
26
|
Squillace S, Salvemini D. Toll-like receptor-mediated neuroinflammation: relevance for cognitive dysfunctions. Trends Pharmacol Sci 2022; 43:726-739. [PMID: 35753845 PMCID: PMC9378500 DOI: 10.1016/j.tips.2022.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 10/17/2022]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) with a well-documented role in the innate and adaptive immune responses. Interestingly, TLR activation has also been linked to several brain functions including neurogenesis and synaptogenesis. Increasing evidence supports TLR involvement in peripheral and central inflammation underlying normal aging and the pathogenesis of clinical conditions characterized by cognitive decline. These include not only major neurodegenerative diseases but also traumatic brain injuries, surgeries, and alcohol consumption- and chemotherapy-induced cognitive impairment. We first summarize the physiological roles of TLRs in the nervous system, and then illustrate the emerging involvement of TLRs in cognitive functions, pointing to these receptors as novel enticing pharmacological targets to develop more efficient drugs for the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
| |
Collapse
|
27
|
Hu S, Lee H, Zhao H, Ding Y, Duan J. Inflammation and Severe Cerebral Venous Thrombosis. Front Neurol 2022; 13:873802. [PMID: 35937062 PMCID: PMC9353263 DOI: 10.3389/fneur.2022.873802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023] Open
Abstract
Cerebral venous thrombosis (CVT) is a rare type of venous thromboembolism (VTE). It is an important cause of stroke in young adults and children. Severe CVT, which is characterized by cerebral venous infarction or hemorrhage, seizures, or disturbance of consciousness, has more severe clinical manifestations and a worse prognosis. It is commonly believed that the onset of severe CVT gave credit to venous return disorder, with the underlying pathogenesis remaining unclear. There is increasing evidence suggesting that an inflammatory response is closely associated with the pathophysiology of severe CVT. Preclinical studies have identified the components of neuroinflammation, including microglia, astrocytes, and neutrophils. After CVT occurrence, microglia are activated and secrete cytokines (e.g., interleukin-1β and tumor necrosis factor-α), which result in a series of brain injuries, including blood-brain barrier disruption, brain edema, and cerebral venous infarction. Additionally, astrocytes are activated at the initial CVT stage and may interact with microglia to exacerbate the inflammatory response. The extent of cerebral edema and neutrophil recruitment increases temporally in the acute phase. Further, there are also changes in the morphology of inflammatory cells, expression of inflammatory mediators, and inflammatory pathway molecules with CVT progression. Lately, some clinical research suggested that some inflammation-related biomarkers are of great value in assessing the course, severity, and prognosis of severe CVT. Moreover, basic and clinical research suggested that anti-inflammatory therapy might hold promise in severe CVT. This study reviews the current literature regarding the involvement of inflammation in the pathophysiology and anti-inflammatory interventions of severe CVT, which would contribute to informing the pathophysiology mechanism and laying a foundation for exploring novel severe CVT therapeutic strategies.
Collapse
Affiliation(s)
- Shuyuan Hu
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology and Intracranial Hypertension and Cerebral Venous Disease Center, National Health Commission of the People's Republic of China, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Haiping Zhao
- Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jiangang Duan
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology and Intracranial Hypertension and Cerebral Venous Disease Center, National Health Commission of the People's Republic of China, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Gong Z, Gao X, Yang Q, Lun J, Xiao H, Zhong J, Cao H. Phosphorylation of ERK-Dependent NF-κB Triggers NLRP3 Inflammasome Mediated by Vimentin in EV71-Infected Glioblastoma Cells. Molecules 2022; 27:molecules27134190. [PMID: 35807435 PMCID: PMC9268588 DOI: 10.3390/molecules27134190] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Enterovirus 71 (EV71) is a dominant pathogenic agent that may cause severe central nervous system (CNS) diseases among infants and young children in the Asia-pacific. The inflammasome is closely implicated in EV71-induced CNS injuries through a series of signaling pathways. However, the activation pathway of NLRP3 inflammasome involved in EV71-mediated CNS injuries remains poorly defined. In the studies, EV71 infection, ERK1/2 phosphorylation, and activation of NLRP3 are abolished in glioblastoma cells with low vimentin expression by CRISPR/Cas9-mediated knockdown. PD098059, an inhibitor of p-ERK, remarkably blocks the vimentin-mediated ERK1/2 phosphorylation in EV71-infected cells. Nuclear translocation of NF-κB p65 is dependent on p-ERK in a time-dependent manner. Moreover, NLRP3 activation and caspase-1 production are limited in EV71-infected cells upon the caffeic acid phenethyl ester (CAPE) administration, an inhibitor of NF-κB, which contributes to the inflammasome regulation. In conclusion, these results suggest that EV71-mediated NLRP3 inflammasome could be activated via the VIM-ERK-NF-κB pathway, and the treatment of the dephosphorylation of ERK and NF-κB inhibitors is beneficial to host defense in EV71-infected CNS.
Collapse
Affiliation(s)
- Zelong Gong
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
| | - Xuefeng Gao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
| | - Qingqing Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
| | - Jingxian Lun
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
| | - Hansen Xiao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
| | - Jiayu Zhong
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Hong Cao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.G.); (X.G.); (Q.Y.); (J.L.); (H.X.); (J.Z.)
- Correspondence: ; Tel.: +020-61648723
| |
Collapse
|
29
|
Xuan X, Zhou G, Chen C, Shao A, Zhou Y, Li X, Zhou J. Glymphatic System: Emerging Therapeutic Target for Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6189170. [PMID: 35726332 PMCID: PMC9206554 DOI: 10.1155/2022/6189170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
The newly discovered glymphatic system acts as pseudolymphatic vessels subserving brain waste clearance and is functionally dependent on astrocytic aquaporin-4 channels. The glymphatic system primarily functions during sleep as an interchange between cerebrospinal fluid and interstitial fluid, with cerebrospinal fluid flowing into the parenchyma via the perivascular spaces and then exchanging with interstitial fluid. The discovery of meningeal lymphatics helps refine the conceptual framework of glymphatic pathway, as certain waste products collected alongside perivascular spaces ultimately drain into the cervical lymph nodes via meningeal lymphatics, whose function regulates the functioning of the glymphatic system. The glymphatic and meningeal lymphatic systems are critical for the homeostasis of central nervous system, and their malfunctions complicate cerebral dysfunction and diseases. The present review will shed light on the structure, regulation, functions, and interrelationships of the glymphatic system and meningeal lymphatics. We will also expound on their impairments and corresponding targeted intervention in neurodegenerative diseases, traumatic brain injury, stroke, and infectious/autoimmune diseases, offering valuable references for future research.
Collapse
Affiliation(s)
- Xianjun Xuan
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Guoyi Zhou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Caihong Chen
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobo Li
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Jiaqi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| |
Collapse
|
30
|
Gopinath A, Mackie P, Hashimi B, Buchanan AM, Smith AR, Bouchard R, Shaw G, Badov M, Saadatpour L, Gittis A, Ramirez-Zamora A, Okun MS, Streit WJ, Hashemi P, Khoshbouei H. DAT and TH expression marks human Parkinson's disease in peripheral immune cells. NPJ Parkinsons Dis 2022; 8:72. [PMID: 35672374 PMCID: PMC9174333 DOI: 10.1038/s41531-022-00333-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is marked by a loss of dopamine neurons, decreased dopamine transporter (DAT) and tyrosine hydroxylase (TH) expression. However, this validation approach cannot be used for diagnostic, drug effectiveness or investigational purposes in human patients because midbrain tissue is accessible postmortem. PD pathology affects both the central nervous and peripheral immune systems. Therefore, we immunophenotyped blood samples of PD patients for the presence of myeloid derived suppressor cells (MDSCs) and discovered that DAT+/TH+ monocytic MDSCs, but not granulocytic MDSCs are increased, suggesting a targeted immune response to PD. Because in peripheral immune cells DAT activity underlies an immune suppressive mechanism, we investigated whether expression levels of DAT and TH in the peripheral immune cells marks PD. We found drug naïve PD patients exhibit differential DAT+/TH+ expression in peripheral blood mononuclear cells (PBMCs) compared to aged/sex matched healthy subjects. While total PBMCs are not different between the groups, the percentage of DAT+/TH+ PBMCs was significantly higher in drug naïve PD patients compared to healthy controls irrespective of age, gender, disease duration, disease severity or treatment type. Importantly, treatment for PD negatively modulates DAT+/TH+ expressing PBMCs. Neither total nor the percentage of DAT+/TH+ PBMCs were altered in the Alzheimer's disease cohort. The mechanistic underpinning of this discovery in human PD was revealed when these findings were recapitulated in animal models of PD. The reverse translational experimental strategy revealed that alterations in dopaminergic markers in peripheral immune cells are due to the disease associated changes in the CNS. Our study demonstrates that the dopaminergic machinery on peripheral immune cells displays an association with human PD, with exciting implications in facilitating diagnosis and investigation of human PD pathophysiology.
Collapse
Affiliation(s)
- Adithya Gopinath
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| | - Phillip Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Basil Hashimi
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Aidan R Smith
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Gerry Shaw
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- EnCor Biotechnology, Inc, Gainesville, FL, USA
| | - Martin Badov
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Leila Saadatpour
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aryn Gittis
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, UF Health, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, UF Health, Gainesville, FL, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Parastoo Hashemi
- University of South Carolina, Columbia, SC, USA
- Department of Bioengineering, Imperial College, London, UK
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
31
|
Li K, Ly K, Mehta S, Braithwaite A. Importance of crosstalk between the microbiota and the neuroimmune system for tissue homeostasis. Clin Transl Immunology 2022; 11:e1394. [PMID: 35620584 PMCID: PMC9125509 DOI: 10.1002/cti2.1394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/23/2022] Open
Abstract
The principal function of inflammation is cellular defence against ‘danger signals’ such as tissue injury and pathogen infection to maintain the homeostasis of the organism. The initiation and progression of inflammation are not autonomous as there is substantial evidence that inflammation is known to be strongly influenced by ‘neuroimmune crosstalk’, involving the production and expression of soluble signalling molecules that interact with cell surface receptors. In addition, microbiota have been found to be involved in the development and function of the nervous and immune systems and play an important role in health and disease. Herein, we provide an outline of the mechanisms of neuroimmune communication in the regulation of inflammation and immune response and then provide evidence for the involvement of microbiota in the development and functions of the host nervous and immune systems. It appears that the nervous and immune systems in multicellular organisms have co‐evolved with the microbiota, such that all components are in communication to maximise the ability of the organism to adapt to a wide range of environmental stresses to maintain or restore tissue homeostasis.
Collapse
Affiliation(s)
- Kunyu Li
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| | - Kevin Ly
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| | - Sunali Mehta
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| | - Antony Braithwaite
- Department of Pathology Dunedin School of Medicine University of Otago Dunedin New Zealand
| |
Collapse
|
32
|
Eteraf-Oskouei T, Najafi M. The relationship between the serotonergic system and COVID-19 disease: A review. Heliyon 2022; 8:e09544. [PMID: 35652122 PMCID: PMC9132783 DOI: 10.1016/j.heliyon.2022.e09544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/07/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to a pandemic started in Wuhan, China, in 2019. The rapid spread of the disease in the world, unprecedented mortality rate, and lack of definitive treatment for the disease have led to a global effort to develop effective vaccines as well as new therapeutic interventions. Immune cells activation with excessive inflammation is an important pathophysiological feature of COVID-19 that may impair the various organs functions. Accordingly, these could cause dysfunction in the brain with some symptoms such as respiratory failure, headache, impaired consciousness, olfactory and taste disorders, and severe neurological disorders such as encephalitis. It was found that there is a two-way communication between the immune system and the nervous system through classical neurotransmitters, hormones, and cytokines. Among neurotransmitters, serotonin plays important roles in the immune system and in regulating inflammatory responses by central and peripheral mechanisms. This article aimed to review the two-way relationship between the immune and the nervous systems by focusing on the serotonergic system and the emerging COVID-19 disease.
Collapse
Affiliation(s)
- Tahereh Eteraf-Oskouei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moslem Najafi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Kim J, Erice C, Rohlwink UK, Tucker EW. Infections in the Developing Brain: The Role of the Neuro-Immune Axis. Front Neurol 2022; 13:805786. [PMID: 35250814 PMCID: PMC8891478 DOI: 10.3389/fneur.2022.805786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/24/2022] [Indexed: 01/02/2023] Open
Abstract
Central nervous system (CNS) infections occur more commonly in young children than in adults and pose unique challenges in the developing brain. This review builds on the distinct vulnerabilities in children's peripheral immune system (outlined in part 1 of this review series) and focuses on how the developing brain responds once a CNS infection occurs. Although the protective blood-brain barrier (BBB) matures early, pathogens enter the CNS and initiate a localized innate immune response with release of cytokines and chemokines to recruit peripheral immune cells that contribute to the inflammatory cascade. This immune response is initiated by the resident brain cells, microglia and astrocytes, which are not only integral to fighting the infection but also have important roles during normal brain development. Additionally, cytokines and other immune mediators such as matrix metalloproteinases from neurons, glia, and endothelial cells not only play a role in BBB permeability and peripheral cell recruitment, but also in brain maturation. Consequently, these immune modulators and the activation of microglia and astrocytes during infection adversely impact normal neurodevelopment. Perturbations to normal brain development manifest as neurodevelopmental and neurocognitive impairments common among children who survive CNS infections and are often permanent. In part 2 of the review series, we broadly summarize the unique challenges CNS infections create in a developing brain and explore the interaction of regulators of neurodevelopment and CNS immune response as part of the neuro-immune axis.
Collapse
Affiliation(s)
- John Kim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Clara Erice
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ursula K. Rohlwink
- Faculty of Health Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elizabeth W. Tucker
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
Carloni S, Rescigno M. Unveiling the gut-brain axis: structural and functional analogies between the gut and the choroid plexus vascular and immune barriers. Semin Immunopathol 2022; 44:869-882. [PMID: 35861857 PMCID: PMC9301898 DOI: 10.1007/s00281-022-00955-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
The vasculature plays an essential role in the development and maintenance of blood-tissue interface homeostasis. Knowledge on the morphological and functional nature of the blood vessels in every single tissue is, however, very poor, but it is becoming clear that each organ is characterized by the presence of endothelial barriers with different properties fundamental for the maintenance of tissue resident immune homeostasis and for the recruitment of blood-trafficking immune cells. The tissue specificity of the vascular unit is dependent on the presence of differentiated endothelial cells that form continues, fenestrated, or sinusoidal vessels with different grades of permeability and different immune receptors, according to how that particular tissue needs to be protected. The gut-brain axis highlights the prominent role that the vasculature plays in allowing a direct and prompt exchange of molecules between the gut, across the gut vascular barrier (GVB), and the brain. Recently, we identified a new choroid plexus vascular barrier (PVB) which receives and integrates information coming from the gut and is fundamental in the modulation of the gut-brain axis. Several pathologies are linked to functional dysregulation of either the gut or the choroid plexus vascular barriers. In this review, we unveil the structural and functional analogies between the GVB and PVB, comparing their peculiar features and highlighting the functional role of pitcher and catcher of the gut-brain axis, including their role in the establishment of immune homeostasis and response upon systemic stimuli. We propose that when the gut vascular barrier-the main protecting system of the body from the external world-is compromised, the choroid plexus gatekeeper becomes a second barrier that protects the central nervous system from systemic inflammation.
Collapse
Affiliation(s)
- Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072, Pieve Emanuele, MI, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072, Pieve Emanuele, MI, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| |
Collapse
|
35
|
Huppert LA, Green MD, Kim L, Chow C, Leyfman Y, Daud AI, Lee JC. Tissue-specific Tregs in cancer metastasis: opportunities for precision immunotherapy. Cell Mol Immunol 2022; 19:33-45. [PMID: 34417572 PMCID: PMC8752797 DOI: 10.1038/s41423-021-00742-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Decades of advancements in immuno-oncology have enabled the development of current immunotherapies, which provide long-term treatment responses in certain metastatic cancer patients. However, cures remain infrequent, and most patients ultimately succumb to treatment-refractory metastatic disease. Recent insights suggest that tumors at certain organ sites exhibit distinctive response patterns to immunotherapy and can even reduce antitumor immunity within anatomically distant tumors, suggesting the activation of tissue-specific immune tolerogenic mechanisms in some cases of therapy resistance. Specialized immune cells known as regulatory T cells (Tregs) are present within all tissues in the body and coordinate the suppression of excessive immune activation to curb autoimmunity and maintain immune homeostasis. Despite the high volume of research on Tregs, the findings have failed to reconcile tissue-specific Treg functions in organs, such as tolerance, tissue repair, and regeneration, with their suppression of local and systemic tumor immunity in the context of immunotherapy resistance. To improve the understanding of how the tissue-specific functions of Tregs impact cancer immunotherapy, we review the specialized role of Tregs in clinically common and challenging organ sites of cancer metastasis, highlight research that describes Treg impacts on tissue-specific and systemic immune regulation in the context of immunotherapy, and summarize ongoing work reporting clinically feasible strategies that combine the specific targeting of Tregs with systemic cancer immunotherapy. Improved knowledge of Tregs in the framework of their tissue-specific biology and clinical sites of organ metastasis will enable more precise targeting of immunotherapy and have profound implications for treating patients with metastatic cancer.
Collapse
Affiliation(s)
- Laura A Huppert
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael D Green
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Luke Kim
- University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Christine Chow
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yan Leyfman
- Penn State College of Medicine, Hershey, PA, USA
| | - Adil I Daud
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - James C Lee
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
36
|
Ferreras C, Fernández L, Clares-Villa L, Ibáñez-Navarro M, Martín-Cortázar C, Esteban-Rodríguez I, Saceda J, Pérez-Martínez A. Facing CAR T Cell Challenges on the Deadliest Paediatric Brain Tumours. Cells 2021; 10:2940. [PMID: 34831165 PMCID: PMC8616287 DOI: 10.3390/cells10112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Central nervous system (CNS) tumours comprise 25% of the paediatric cancer diagnoses and are the leading cause of cancer-related death in children. Current treatments for paediatric CNS tumours are far from optimal and fail for those that relapsed or are refractory to treatment. Besides, long-term sequelae in the developing brain make it mandatory to find new innovative approaches. Chimeric antigen receptor T cell (CAR T) therapy has increased survival in patients with B-cell malignancies, but the intrinsic biological characteristics of CNS tumours hamper their success. The location, heterogeneous antigen expression, limited infiltration of T cells into the tumour, the selective trafficking provided by the blood-brain barrier, and the immunosuppressive tumour microenvironment have emerged as the main hurdles that need to be overcome for the success of CAR T cell therapy. In this review, we will focus mainly on the characteristics of the deadliest high-grade CNS paediatric tumours (medulloblastoma, ependymoma, and high-grade gliomas) and the potential of CAR T cell therapy to increase survival and patients' quality of life.
Collapse
Affiliation(s)
- Cristina Ferreras
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, 28046 Madrid, Spain; (C.F.); (L.C.-V.); (C.M.-C.)
| | - Lucía Fernández
- Haematological Malignancies H12O, Clinical Research Department, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (L.F.); (M.I.-N.)
| | - Laura Clares-Villa
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, 28046 Madrid, Spain; (C.F.); (L.C.-V.); (C.M.-C.)
| | - Marta Ibáñez-Navarro
- Haematological Malignancies H12O, Clinical Research Department, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (L.F.); (M.I.-N.)
| | - Carla Martín-Cortázar
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, 28046 Madrid, Spain; (C.F.); (L.C.-V.); (C.M.-C.)
| | | | - Javier Saceda
- Department of Paediatric Neurosurgery, University Hospital La Paz, 28046 Madrid, Spain;
| | - Antonio Pérez-Martínez
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, 28046 Madrid, Spain; (C.F.); (L.C.-V.); (C.M.-C.)
- Paediatric Haemato-Oncology Department, University Hospital La Paz, 28046 Madrid, Spain
- Faculty of Medicine Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
37
|
Meena M, Van Delen M, De Laere M, Sterkens A, Costas Romero C, Berneman Z, Cools N. Transmigration across a Steady-State Blood-Brain Barrie Induces Activation of Circulating Dendritic Cells Partly Mediated by Actin Cytoskeletal Reorganization. MEMBRANES 2021; 11:membranes11090700. [PMID: 34564517 PMCID: PMC8472465 DOI: 10.3390/membranes11090700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022]
Abstract
The central nervous system (CNS) is considered to be an immunologically unique site, in large part given its extensive protection by the blood–brain barrier (BBB). As our knowledge of the complex interaction between the peripheral immune system and the CNS expands, the mechanisms of immune privilege are being refined. Here, we studied the interaction of dendritic cells (DCs) with the BBB in steady–state conditions and observed that transmigrated DCs display an activated phenotype and stronger T cell-stimulatory capacity as compared to non-migrating DCs. Next, we aimed to gain further insights in the processes underlying activation of DCs following transmigration across the BBB. We investigated the interaction of DCs with endothelial cells as well as the involvement of actin cytoskeletal reorganization. Whereas we were not able to demonstrate that DCs engulf membrane fragments from fluorescently labelled endothelial cells during transmigration across the BBB, we found that blocking actin restructuring of DCs by latrunculin-A significantly impaired in vitro migration of DC across the BBB and subsequent T cell-stimulatory capacity, albeit no effect on migration-induced phenotypic activation could be demonstrated. These observations contribute to the current understanding of the interaction between DCs and the BBB, ultimately leading to the design of targeted therapies capable to inhibit autoimmune inflammation of the CNS.
Collapse
Affiliation(s)
- Megha Meena
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
| | - Mats Van Delen
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
| | - Maxime De Laere
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Center for Cell Therapy and Regenerative Medicine, Laboratory of Experimental Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Ann Sterkens
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Department of Dermatology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Coloma Costas Romero
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Center for Cell Therapy and Regenerative Medicine, Laboratory of Experimental Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Center for Cell Therapy and Regenerative Medicine, Laboratory of Experimental Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
- Correspondence:
| |
Collapse
|
38
|
Alfaseh A, Rajeh MN, Hamed G. Primary central nervous system Hodgkin Lymphoma: A case discussion and a hypothesis on the etiology. Avicenna J Med 2021; 9:28-31. [PMID: 30697523 PMCID: PMC6335883 DOI: 10.4103/ajm.ajm_104_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hodgkin Lymphoma (HL) is a systemic disease with involvement of the cervical, supraclavicular, and mediastinal lymph nodes. It is commonly diagnosed in patients within the second and third decades of their lives. Diagnosis is usually made based on the distinct morphological and immunohistochemical characteristics, with the tissue biopsy being the cornerstone of workup. Extranodal presentation of HL is unusual and seldom encountered. Primary HL of the central nervous system (CNS) is exceedingly rare. We herein report a case of a 38-year-old male patient who was diagnosed with primary CNS-HL. The patient was treated with complete surgical resection followed by radiotherapy and chemotherapy. The patient was disease-free for 7 years postoperatively without any clinical evidence of relapse. We also discussed a possible role of CNS regulatory T-cells (Tregs) in developmental primary CNS-HL.
Collapse
Affiliation(s)
- Ahmad Alfaseh
- Department of Urology, Kidney Surgical Hospital, Damascus, Syria
| | - Mhd Nabeel Rajeh
- Division of Hematology and Medical Oncology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ghiath Hamed
- Hematogenix Laboratory Services, Tinley Park, IL, USA
| |
Collapse
|
39
|
Abstract
The appreciation of human microbiome is gaining strong grounds in biomedical research. In addition to gut-brain axis, is the lung-brain axis, which is hypothesised to link pulmonary microbes to neurodegenerative disorders and behavioural changes. There is a need for analysis based on emerging studies to map out the prospects for lung-brain axis. In this review, relevant English literature and researches in the field of 'lung-brain axis' is reported. We recommend all the highlighted prospective studies to be integrated with an interdisciplinary approach. This might require conceptual research approaches based on physiology and pathophysiology. Multimodal aspects should include experimental animal units, while exploring the research gaps and making reference to the already existing human data. The overall microbiome medicine is gaining more ground. Aetiological paths and experimental recommendations as per prospective studies in this review will be an important guideline to develop effective treatments for any lung induced neurodegenerative diseases. An in-depth knowledge of the bi-directional communication between host and microbiome in the lung could help treatment to respiratory infections, alleviate stress, anxiety and enhanced neurological effects. The timely prevention and treatment of neurodegenerative diseases requires paradigm shift of the aetiology and more innovative experimentation.Impact statementThe overall microbiome medicine is gaining more ground. An in-depth knowledge of the bi-directional communication between host and microbiome in the lung could confer treatment to respiratory infections, alleviate stress, anxiety and enhanced neurological effects. Based on this review, we recommend all the highlighted prospective studies to be integrated and be given an interdisciplinary approach. This might require conceptual research approaches based on physiology and pathophysiology. Multimodal aspects should include experimental animal units; while exploring the research gaps and making reference to the already existing human data.
Collapse
Affiliation(s)
- Ousman Bajinka
- Department of Medical Microbiology, Central South University, Changsha, Hunan Provinces, China.,China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, Gambia
| | - Lucette Simbilyabo
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan Provinces, China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University, Changsha, Hunan Provinces, China.,China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - John Jabang
- School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, Gambia
| | - Shakeel Ahmed Saleem
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan Provinces, China
| |
Collapse
|
40
|
Sterling CH, Tsai HL, Holdhoff M, Bolaños-Meade J, Luznik L, Fuchs EJ, Huff CA, Gocke CB, Ali SA, Borrello IM, Varadhan R, Jones RJ, Gladstone DE, Ambinder RF, Wagner-Johnston N, Swinnen LJ, Imus PH. Allogeneic Blood or Marrow Transplantation with Nonmyeloablative Conditioning and High-Dose Cyclophosphamide-Based Graft-versus-Host Disease Prophylaxis for Secondary Central Nervous System Lymphoma. Transplant Cell Ther 2021; 27:863.e1-863.e5. [PMID: 34293518 DOI: 10.1016/j.jtct.2021.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Secondary central nervous system (CNS) lymphoma is a rare and often fatal complication of non-Hodgkin lymphoma (NHL). Treatment options include radiation therapy, high-dose systemic chemotherapy, intrathecal chemotherapy, and high-dose chemotherapy with autologous stem cell rescue, but outcomes remain poor. Allogeneic blood or marrow transplantation (alloBMT) is widely used in patients with relapsed/refractory systemic NHL. We sought to understand whether a graft-versus-lymphoma effect could maintain remission in CNS disease. We reviewed outcomes in 20 consecutive patients with secondary CNS lymphoma who underwent alloBMT with nonmyeloablative conditioning using fludarabine, cyclophosphamide, and 200 cGy total body irradiation. For graft-versus-host disease prophylaxis, all patients received post-transplantation cyclophosphamide, mycophenolate mofetil, and a calcineurin inhibitor. With a median follow up of 4.1 years, the median overall survival for the entire cohort was not reached. Median progression-free survival was 3.8 years (95% confidence interval [CI], 5.3 months to not reached). The cumulative incidence of relapse was 25% (95% CI, 5% to 45%), and nonrelapse mortality was 30% (95% CI, 5% to 54%) at 4 years. Of the 5 patients who relapsed, 2 were CNS only, 1 was systemic only, and 2 were combined CNS/systemic. The use of alloBMT in CNS lymphoma merits further investigation.
Collapse
Affiliation(s)
- Cole H Sterling
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Hua-Ling Tsai
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthias Holdhoff
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Javier Bolaños-Meade
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leo Luznik
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ephraim J Fuchs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carol Ann Huff
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christian B Gocke
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Syed Abbas Ali
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ivan M Borrello
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ravi Varadhan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard J Jones
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas E Gladstone
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard F Ambinder
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nina Wagner-Johnston
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lode J Swinnen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Philip H Imus
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
41
|
Aliaga D, Mayorga J, Verdú-López F, Gallego JM, Castellá L, Sabater V. Primary central nervous system Hodgkin lymphoma: A case report and review of the literature. Neurocirugia (Astur) 2021. [DOI: 10.1016/j.neucir.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Intra-nasal administration of sperm head turns neutrophil into reparative mode after PGE1- and/or Ang II receptor-mediated phagocytosis followed by expression of sperm head's coding RNA. Int Immunopharmacol 2021; 98:107696. [PMID: 34147914 DOI: 10.1016/j.intimp.2021.107696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/25/2021] [Accepted: 04/18/2021] [Indexed: 01/01/2023]
Abstract
Having played homeostatic role, the immune system maintains the integrity of the body. Such a characteristic makes immune system as an attractive candidate for resolution of inflammatory disease followed by tissue repair. As first responder cells, neutrophils direct immune response playing key role in tissue remodeling. Previous studies revealed that sperm attracts neutrophils and promotes uterine remodeling suitable for fetus growth. Accordingly, sperm and more efficiently sperm head had remodeling effects on damaged brain in Alzheimer's disease (AD) model. To further reveal the mechanism, two kinds of in vivo study, including kinetic study and inhibition of neutrophil phagocytosis on AD model, as well as in vitro study using co-culture of neutrophil and sperm head were performed. Kinetic study revealed that sperm head recruited neutrophil to nasal mucosa similar to that of uterus and sperm head-phagocytizing neutrophils acquired new activation status comparing to control. In vitro study also demonstrated that sperm head-phagocytizing neutrophils acquire new activation status and express coding RNAs of sperm head. Accordingly, inhibition of neutrophil phagocytic activity abrogated therapeutic effects of sperm head. Neutrophils activation status is important in the fate of inflammatory process. Modulation but not suppression of neutrophils helps remodeling and repair of damaged tissue. Sperm head is an intelligent cell and not just a simple particle to remove by phagocytosis but instead can program neutrophils and consequently immune response into reparative mode after phagocytosis.
Collapse
|
43
|
Dymova MA, Kuligina EV, Richter VA. Molecular Mechanisms of Drug Resistance in Glioblastoma. Int J Mol Sci 2021; 22:6385. [PMID: 34203727 PMCID: PMC8232134 DOI: 10.3390/ijms22126385] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, is highly resistant to conventional radiation and chemotherapy, and is not amenable to effective surgical resection. The present review summarizes recent advances in our understanding of the molecular mechanisms of therapeutic resistance of GBM to already known drugs, the molecular characteristics of glioblastoma cells, and the barriers in the brain that underlie drug resistance. We also discuss the progress that has been made in the development of new targeted drugs for glioblastoma, as well as advances in drug delivery across the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB).
Collapse
Affiliation(s)
- Maya A. Dymova
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.K.); (V.A.R.)
| | | | | |
Collapse
|
44
|
Jaladanki SK, Elmas A, Malave GS, Huang KL. Genetic dependency of Alzheimer's disease-associated genes across cells and tissue types. Sci Rep 2021; 11:12107. [PMID: 34103633 PMCID: PMC8187448 DOI: 10.1038/s41598-021-91713-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/28/2021] [Indexed: 11/09/2022] Open
Abstract
Effective treatments targeting disease etiology are urgently needed for Alzheimer's disease (AD). Although candidate AD genes have been identified and altering their levels may serve as therapeutic strategies, the consequence of such alterations remain largely unknown. Herein, we analyzed CRISPR knockout/RNAi knockdown screen data for over 700 cell lines and evaluated cellular dependencies of 104 AD-associated genes previously identified by genome-wide association studies (GWAS) and gene expression network studies. Multiple genes showed widespread cell dependencies across tissue lineages, suggesting their inhibition may yield off-target effects. Meanwhile, several genes including SPI1, MEF2C, GAB2, ABCC11, ATCG1 were identified as genes of interest since their genetic knockouts specifically affected high-expressing cells whose tissue lineages are relevant to cell types found in AD. Overall, analyses of genetic screen data identified AD-associated genes whose knockout or knockdown selectively affected cell lines of relevant tissue lineages, prioritizing targets for potential AD treatments.
Collapse
Affiliation(s)
- Suraj K Jaladanki
- Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abdulkadir Elmas
- Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gabriel Santos Malave
- Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kuan-Lin Huang
- Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
45
|
Garcia-Fabiani MB, Haase S, Comba A, Carney S, McClellan B, Banerjee K, Alghamri MS, Syed F, Kadiyala P, Nunez FJ, Candolfi M, Asad A, Gonzalez N, Aikins ME, Schwendeman A, Moon JJ, Lowenstein PR, Castro MG. Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Front Oncol 2021; 11:631037. [PMID: 34168976 PMCID: PMC8217836 DOI: 10.3389/fonc.2021.631037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
High grade gliomas are malignant brain tumors that arise in the central nervous system, in patients of all ages. Currently, the standard of care, entailing surgery and chemo radiation, exhibits a survival rate of 14-17 months. Thus, there is an urgent need to develop new therapeutic strategies for these malignant brain tumors. Currently, immunotherapies represent an appealing approach to treat malignant gliomas, as the pre-clinical data has been encouraging. However, the translation of the discoveries from the bench to the bedside has not been as successful as with other types of cancer, and no long-lasting clinical benefits have been observed for glioma patients treated with immune-mediated therapies so far. This review aims to discuss our current knowledge about gliomas, their molecular particularities and the impact on the tumor immune microenvironment. Also, we discuss several murine models used to study these therapies pre-clinically and how the model selection can impact the outcomes of the approaches to be tested. Finally, we present different immunotherapy strategies being employed in clinical trials for glioma and the newest developments intended to harness the immune system against these incurable brain tumors.
Collapse
Affiliation(s)
- Maria B. Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology graduate program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa E. Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
46
|
Cordone I, Masi S, Giannarelli D, Pasquale A, Conti L, Telera S, Pace A, Papa E, Marino M, de Fabritiis P, Mengarelli A. Major Differences in Lymphocyte Subpopulations Between Cerebrospinal Fluid and Peripheral Blood in Non-Hodgkin Lymphoma Without Leptomeningeal Involvement: Flow Cytometry Evidence of a Cerebral Lymphatic System. Front Oncol 2021; 11:685786. [PMID: 34150651 PMCID: PMC8210665 DOI: 10.3389/fonc.2021.685786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebrospinal fluid (CSF) flow cytometry has a crucial role in the diagnosis of leptomeningeal disease in onco-hematology. This report describes the flow cytometry characterization of 138 CSF samples from patients affected by non-Hodgkin lymphoma, negative for disease infiltration. The aim was to focus on the CSF non-neoplastic population, to compare the cellular composition of the CSF with paired peripheral blood samples and to document the feasibility of flow cytometry in hypocellular samples. Despite the extremely low cell count (1 cell/µl, range 1.0-35) the study was successfully conducted in 95% of the samples. T lymphocytes were the most abundant subset in CSF (77%; range 20-100%) with a predominance of CD4-positive over CD8-positive T cells (CD4/CD8 ratio = 2) together with a minority of monocytes (15%; range 0-70%). No B cells were identified in 90% of samples. Of relevance, a normal, non-clonal B-cell population was documented in 5/7 (71%) patients with primary central nervous system lymphoma at diagnosis (p<0.0001), suggesting a possible involvement of blood-brain barrier cell permeability in the pathogenesis of cerebral B-cell lymphomas. The highly significant differences between CSF and paired peripheral blood lymphoid phenotype (p<0.0001) confirms the existence of an active mechanism of lymphoid migration through the meninges.
Collapse
Affiliation(s)
- Iole Cordone
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Serena Masi
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Diana Giannarelli
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessia Pasquale
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Conti
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Telera
- Department of Research and Clinical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Pace
- Department of Research and Clinical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Elena Papa
- Department of Research and Clinical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mirella Marino
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paolo de Fabritiis
- Hematology, S Eugenio Hospital, ASL Roma2, Tor Vergata University, Rome, Italy
| | - Andrea Mengarelli
- Department of Research and Clinical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
47
|
Peng M, Li S, Xiang H, Huang W, Mao W, Xu D. Efficacy of PD-1 or PD-L1 inhibitors and central nervous system metastases in advanced cancer: a meta-analysis. Curr Cancer Drug Targets 2021; 21:794-803. [PMID: 34077347 DOI: 10.2174/1568009621666210601111811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/27/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Little is known about the efficacy of programmed cell death protein-1 (PD-1) or programmed cell death-ligand 1 (PD-L1) inhibitors in patients with central nervous system (CNS) metastases. OBJECTIVE Assess the difference in efficacy of PD-1 or PD-L1 inhibitors in patients with and without CNS metastases. METHODS From inception to March 2020, PubMed and Embase were searched for randomized controlled trials (RCTs) about PD-1 or PD-L1 inhibitors. Only trails with available hazard ratios (HRs) for overall survival (OS) of patients with and without CNS metastases simultaneously would be included. Overall survival hazard ratios and their 95% confidence interval (CI) were calculated, and the efficacy difference between these two groups was assessed in the meantime. RESULTS 4988 patients (559 patients with CNS metastases and 4429 patients without CNS metastases) from 8 RCTs were included. In patients with CNS metastases, the pooled HR was 0.76 (95%CI, 0.62 to 0.93), while in patients without CNS metastases, the pooled HR was 0.74 (95%CI, 0.68 to 0.79). There was no significant difference in efficacy between these two groups (Χ2=0.06 P=0.80). CONCLUSION With no significant heterogeneity observed between patients with or without CNS metastases, patients with CNS metastases should not be excluded from PD-1 or PD-L1 blockade therapy. Future research should permit more patients with CNS metastases to engage in PD-1 or PD-L1 blockade therapy and explore the safety of PD-1 or PD-L1 inhibitors in patients with CNS metastases.
Collapse
Affiliation(s)
- Minyong Peng
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Xiang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Wen Huang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiling Mao
- Department of radiation oncology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Xu
- Department of gynecology and obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
Matejuk A, Vandenbark AA, Offner H. Cross-Talk of the CNS With Immune Cells and Functions in Health and Disease. Front Neurol 2021; 12:672455. [PMID: 34135852 PMCID: PMC8200536 DOI: 10.3389/fneur.2021.672455] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
The immune system's role is much more than merely recognizing self vs. non-self and involves maintaining homeostasis and integrity of the organism starting from early development to ensure proper organ function later in life. Unlike other systems, the central nervous system (CNS) is separated from the peripheral immune machinery that, for decades, has been envisioned almost entirely as detrimental to the nervous system. New research changes this view and shows that blood-borne immune cells (both adaptive and innate) can provide homeostatic support to the CNS via neuroimmune communication. Neurodegeneration is mostly viewed through the lens of the resident brain immune populations with little attention to peripheral circulation. For example, cognition declines with impairment of peripheral adaptive immunity but not with the removal of microglia. Therapeutic failures of agents targeting the neuroinflammation framework (inhibiting immune response), especially in neurodegenerative disorders, call for a reconsideration of immune response contributions. It is crucial to understand cross-talk between the CNS and the immune system in health and disease to decipher neurodestructive and neuroprotective immune mechanisms for more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
49
|
Saxena S, Kruys V, Vamecq J, Maze M. The Role of Microglia in Perioperative Neuroinflammation and Neurocognitive Disorders. Front Aging Neurosci 2021; 13:671499. [PMID: 34122048 PMCID: PMC8193130 DOI: 10.3389/fnagi.2021.671499] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
The aseptic trauma of peripheral surgery activates a systemic inflammatory response that results in neuro-inflammation; the microglia, the resident immunocompetent cells in the brain, are a key element of the neuroinflammatory response. In most settings microglia perform a surveillance role in the brain detecting and responding to “invaders” to maintain homeostasis. However, microglia have also been implicated in producing harm possibly by changing its phenotype from its beneficial, anti-inflammatory state (termed M2) into an injurious pro-inflammatory state (termed M1); it is likely that there are intermediates states between these polar phenotypes and some consider that a gradient exists with a number of intermediates, rather than a strict dichotomy between M1 and M2. In the pro-inflammatory phenotypes, microglia can disrupt synaptic plasticity such as long- term potentiation that can result in disorders of learning and memory of the type observed in Peri-operative Neurocognitive Disorders. Therefore, investigators have sought strategies to prevent microglia from provoking this adverse event in the perioperative period. In preclinical studies microglia can be depleted by removing trophic factors required for its maintenance; subsequent repopulation with a more beneficial microglial phenotype may result in memory enhancement, improved sensory motor function, as well as suppression of neuroinflammatory and oxidative stress pathways. Another approach consists of preventing microglial activation using the non-specific P38 MAP kinase blockers such as minocycline. Perhaps a more physiologic approach is the use of inhibitors of potassium (K+) channels that are required to convert the microglia into an active state. In this context the specific K+ channels that are implicated are termed Kv1.3 and KCa3.1 and high selective inhibitors for each have been developed. Data are accumulating demonstrating the utility of these K+ channel blockers in preventing Perioperative Neurocognitive Disorders.
Collapse
Affiliation(s)
- Sarah Saxena
- Department of Anesthesia, University Hospital Center (CHU de Charleroi), Charleroi, Belgium.,Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
| | - Veronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition and Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, University of North France, Lille, France
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
50
|
Fu H, Shi S, Chen L, Xu B, Huang W, Chen Y, Wu X, Shen J, Liu T. Primary central nervous system Hodgkin's lymphoma: a case report. J Int Med Res 2021; 49:300060521999533. [PMID: 33874776 PMCID: PMC8060762 DOI: 10.1177/0300060521999533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Primary central nervous system Hodgkin's lymphoma (CNS-HL) is extremely rare.
This current case report describes a 60-year-old male patient that presented
with numbness of the left lower extremity and worsening headache. After a full
range of investigations and a partial resection of the right cerebellum,
external ventricular drainage reservoir placement and cranioplasty, he was
diagnosed with primary CNS-HL. The patient was treated with 3 g/m2
methotrexate (intravenous [i.v.], once a day, day 1) and 1 g/m2
cytarabine (i.v., every 12 h, days 2 + 3), followed by anti-programmed cell
death protein 1 antibodies (200 mg sintilimab, i.v., once a day, day 1, every 3
weeks). After six courses of treatment with intrathecal injections of 50 mg
cytarabine (once a day, day 1) and 5 mg dexamethasone (once a day, day 1), there
was no residual lesion on cranial magnetic resonance imaging. No significant
drug-related adverse events were observed. The patient has been followed up
every 3 months and no relapse has occurred.
Collapse
Affiliation(s)
- Haiying Fu
- Department of Haematology, Fujian Medical University Union Hospital, Fujian Institute of Haematology, Fujian Medical Centre of Haematology, Fujian Provincial Key Laboratory on Haematology, Fuzhou, Fujian Province, China
| | - Songsheng Shi
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Lusan Chen
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Benhua Xu
- Department of Radiotherapy, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Wanling Huang
- Department of Haematology, Fujian Medical University Union Hospital, Fujian Institute of Haematology, Fujian Medical Centre of Haematology, Fujian Provincial Key Laboratory on Haematology, Fuzhou, Fujian Province, China
| | - Yi Chen
- Department of Haematology, Fujian Medical University Union Hospital, Fujian Institute of Haematology, Fujian Medical Centre of Haematology, Fujian Provincial Key Laboratory on Haematology, Fuzhou, Fujian Province, China
| | - Xuejing Wu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jianzhen Shen
- Department of Haematology, Fujian Medical University Union Hospital, Fujian Institute of Haematology, Fujian Medical Centre of Haematology, Fujian Provincial Key Laboratory on Haematology, Fuzhou, Fujian Province, China
| | - Tingbo Liu
- Department of Haematology, Fujian Medical University Union Hospital, Fujian Institute of Haematology, Fujian Medical Centre of Haematology, Fujian Provincial Key Laboratory on Haematology, Fuzhou, Fujian Province, China
| |
Collapse
|