1
|
Hamdan S, Wasling P, Lind A. High-resolution HLA sequencing and hypocretin receptor 2 autoantibodies in narcolepsy type 1 and type 2. Int J Immunogenet 2024; 51:310-318. [PMID: 38898624 DOI: 10.1111/iji.12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Narcolepsy is a sleep disorder caused by an apparent degeneration of orexin/hypocretin neurons in the lateral hypothalamic area and a subsequent decrease in orexin/hypocretin levels in the cerebrospinal fluid. Narcolepsy is classified into type 1 (NT1) and type 2 (NT2). While genetic associations in the human leukocyte antigen (HLA) region and candidate autoantibodies have been investigated in NT1 to imply an autoimmune origin, less is known about the pathogenesis in NT2. Twenty-six NT1 and 15 NT2 patients were included, together with control groups of 24 idiopathic hypersomnia (IH) patients and 778 general population participants. High-resolution sequencing was used to determine the alleles, the extended haplotypes, and the genotypes of HLA-DRB3, -DRB4, -DRB5, -DRB1, -DQA1, -DQB1, -DPA1, and -DPB1. Radiobinding assay was used to determine autoantibodies against hypocretin receptor 2 (anti-HCRTR2 autoantibodies). NT1 was associated with HLA-DRB5*01:01:01, -DRB1*15:01:01, -DQA1*01:02:01, -DQB1*06:02:01, -DRB5*01:01:01, -DRB1*15:01:01, -DQA1*01:02:01, -DQB1*06:02:01 (odds ratio [OR]: 9.15; p = 8.31 × 10-4) and HLA-DRB5*01:01:01, -DRB1*15:01:01, -DQA1*01:02:01, -DQB1*06:02:01, -DRB4*01:03:01, -DRB1*04:01:01, -DQA1*03:02//03:03:01, -DQB1*03:01:01 (OR: 23.61; p = 1.58 × 10-4) genotypes. Lower orexin/hypocretin levels were reported in the NT2 subgroup (n = 5) that was associated with the extended HLA-DQB1*06:02:01 haplotype (p = .001). Anti-HCRTR2 autoantibody levels were not different between study groups (p = .8524). We confirmed the previous association of NT1 with HLA-DQB1*06:02:01 extended genotypes. A subgroup of NT2 patients with intermediate orexin/hypocretin levels and association with HLA-DQB1*06:02:01 was identified, indicating a possible overlap between the two distinct narcolepsy subtypes, NT1 and NT2. Low anti-HCRTR2 autoantibody levels suggest that these receptors might not function as autoimmune targets in either NT1 or NT2.
Collapse
Affiliation(s)
- Samia Hamdan
- Department of Clinical Sciences, Malmö, Lund University, Malmo, Sweden
| | - Pontus Wasling
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alexander Lind
- Department of Clinical Sciences, Malmö, Lund University, Malmo, Sweden
| |
Collapse
|
2
|
Vringer M, Zhou J, Gool JK, Bijlenga D, Lammers GJ, Fronczek R, Schinkelshoek MS. Recent insights into the pathophysiology of narcolepsy type 1. Sleep Med Rev 2024; 78:101993. [PMID: 39241492 DOI: 10.1016/j.smrv.2024.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Narcolepsy type 1 (NT1) is a sleep-wake disorder in which people typically experience excessive daytime sleepiness, cataplexy and other sleep-wake disturbances impairing daily life activities. NT1 symptoms are due to hypocretin deficiency. The cause for the observed hypocretin deficiency remains unclear, even though the most likely hypothesis is that this is due to an auto-immune process. The search for autoantibodies and autoreactive T-cells has not yet produced conclusive evidence for or against the auto-immune hypothesis. Other mechanisms, such as reduced corticotrophin-releasing hormone production in the paraventricular nucleus have recently been suggested. There is no reversive treatment, and the therapeutic approach is symptomatic. Early diagnosis and appropriate NT1 treatment is essential, especially in children to prevent impaired cognitive, emotional and social development. Hypocretin receptor agonists have been designed to replace the attenuated hypocretin signalling. Pre-clinical and clinical trials have shown encouraging initial results. A better understanding of NT1 pathophysiology may contribute to faster diagnosis or treatments, which may cure or prevent it.
Collapse
Affiliation(s)
- Marieke Vringer
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jingru Zhou
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jari K Gool
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Anatomy & Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Compulsivity, Impulsivity and Attention, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Denise Bijlenga
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gert Jan Lammers
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Rolf Fronczek
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mink S Schinkelshoek
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake center, Heemstede, the Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
3
|
Lind A, Freyhult E, de Jesus Cortez F, Ramelius A, Bennet R, Robinson PV, Seftel D, Gebhart D, Tandel D, Maziarz M, Larsson HE, Lundgren M, Carlsson A, Nilsson AL, Fex M, Törn C, Agardh D, Tsai CT, Lernmark Å. Childhood screening for type 1 diabetes comparing automated multiplex Antibody Detection by Agglutination-PCR (ADAP) with single plex islet autoantibody radiobinding assays. EBioMedicine 2024; 104:105144. [PMID: 38723553 PMCID: PMC11090024 DOI: 10.1016/j.ebiom.2024.105144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Two or more autoantibodies against either insulin (IAA), glutamic acid decarboxylase (GADA), islet antigen-2 (IA-2A) or zinc transporter 8 (ZnT8A) denote stage 1 (normoglycemia) or stage 2 (dysglycemia) type 1 diabetes prior to stage 3 type 1 diabetes. Automated multiplex Antibody Detection by Agglutination-PCR (ADAP) assays in two laboratories were compared to single plex radiobinding assays (RBA) to define threshold levels for diagnostic specificity and sensitivity. METHODS IAA, GADA, IA-2A and ZnT8A were analysed in 1504 (54% females) population based controls (PBC), 456 (55% females) doctor's office controls (DOC) and 535 (41% females) blood donor controls (BDC) as well as in 2300 (48% females) patients newly diagnosed (1-10 years of age) with stage 3 type 1 diabetes. The thresholds for autoantibody positivity were computed in 100 10-fold cross-validations to separate patients from controls either by maximizing the χ2-statistics (chisq) or using the 98th percentile of specificity (Spec98). Mean and 95% CI for threshold, sensitivity and specificity are presented. FINDINGS The ADAP ROC curves of the four autoantibodies showed comparable AUC in the two ADAP laboratories and were higher than RBA. Detection of two or more autoantibodies using chisq showed 0.97 (0.95, 0.99) sensitivity and 0.94 (0.91, 0.97) specificity in ADAP compared to 0.90 (0.88, 0.95) sensitivity and 0.97 (0.94, 0.98) specificity in RBA. Using Spec98, ADAP showed 0.92 (0.89, 0.95) sensitivity and 0.99 (0.98, 1.00) specificity compared to 0.89 (0.77, 0.86) sensitivity and 1.00 (0.99, 1.00) specificity in the RBA. The diagnostic sensitivity and specificity were higher in PBC compared to DOC and BDC. INTERPRETATION ADAP was comparable in two laboratories, both comparable to or better than RBA, to define threshold levels for two or more autoantibodies to stage type 1 diabetes. FUNDING Supported by The Leona M. and Harry B. Helmsley Charitable Trust (grant number 2009-04078), the Swedish Foundation for Strategic Research (Dnr IRC15-0067) and the Swedish Research Council, Strategic Research Area (Dnr 2009-1039). AL was supported by the DiaUnion collaborative study, co-financed by EU Interreg ÖKS, Capital Region of Denmark, Region Skåne and the Novo Nordisk Foundation.
Collapse
Affiliation(s)
- Alexander Lind
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | - Eva Freyhult
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Anita Ramelius
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | - Rasmus Bennet
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | | | - David Seftel
- Enable Biosciences Inc., South San Francisco, CA, USA
| | - David Gebhart
- Enable Biosciences Inc., South San Francisco, CA, USA
| | | | - Marlena Maziarz
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | | | - Markus Lundgren
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | | | | | - Malin Fex
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | - Carina Törn
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden
| | | | - Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Malmö, Sweden.
| |
Collapse
|
4
|
Zhong X, Yuan Y, Zhan Q, Yin T, Ku C, Liu Y, Wang F, Ding Y, Deng L, Wu W, Xie L. Cell-based vs enzyme-linked immunosorbent assay for detection of anti-Tribbles homolog 2 autoantibodies in Chinese patients with narcolepsy. J Clin Sleep Med 2024; 20:941-946. [PMID: 38318919 PMCID: PMC11145039 DOI: 10.5664/jcsm.11056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
STUDY OBJECTIVES Narcolepsy type 1 is attributed to a deficiency in cerebrospinal fluid orexin and is considered linked to autoimmunity. The levels of anti-Tribbles homolog 2 (TRIB2) autoantibodies are elevated in the sera of some patients with narcolepsy with cataplexy. Additionally, injecting mice with serum immunoglobulin from patients with narcolepsy with positive anti-TRIB2 antibodies can induce hypothalamic neuron loss and alterations in sleep patterns. Consequently, we hypothesized the existence of a potential association between anti-TRIB2 antibodies and narcolepsy. To test this possibility, we used cell-based assays (CBAs) and enzyme-linked immunosorbent assays (ELISAs) to detect the presence of anti-TRIB2 antibodies in Chinese patients with narcolepsy. METHODS We included 68 patients with narcolepsy type 1, 39 patients with other central disorders of hypersomnolence, and 43 healthy controls. A CBA and a conventional ELISA were used to detect anti-TRIB2 antibody levels in patients' sera. RESULTS CBA was used to detect serum anti-TRIB2 antibodies in Chinese patients with narcolepsy, and the results were negative. However, when the ELISA was used, only 2 patients with narcolepsy type 1 had TRIB2 antibody titers higher than the mean titer plus 2 standard deviations of the healthy controls. CONCLUSIONS In our study, ELISA identified TRIB2 autoantibodies in sera of patients with narcolepsy where CBA failed to demonstrate them. Contrary to our hypothesis, this intriguing finding deserves further research to elucidate the potential association between TRIB2 and narcolepsy type 1. Exploring the implications of TRIB2 autoantibodies in narcolepsy and disparate outcomes between ELISA and CBA could provide crucial insights. CITATION Zhong X, Yuan Y, Zhan Q, et al. Cell-based vs enzyme-linked immunosorbent assay for detection of anti-Tribbles homolog 2 autoantibodies in Chinese patients with narcolepsy. J Clin Sleep Med. 2024;20(6):941-946.
Collapse
Affiliation(s)
- Xianhui Zhong
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Yuqing Yuan
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Qingqing Zhan
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Tiantian Yin
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Chengxin Ku
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Yuxin Liu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Fen Wang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| | - Yongmin Ding
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| | - Liying Deng
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| | - Wei Wu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
| |
Collapse
|
5
|
Tran TTT, Nguyen THN, Dauvilliers Y, Liblau R, Nguyen XH. Absence of specific autoantibodies in patients with narcolepsy type 1 as indicated by an unbiased random peptide-displayed phage screening. PLoS One 2024; 19:e0297625. [PMID: 38442093 PMCID: PMC10914298 DOI: 10.1371/journal.pone.0297625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/10/2024] [Indexed: 03/07/2024] Open
Abstract
Narcolepsy type 1 (NT1) is an enigmatic sleep disorder characterized by the selective loss of neurons producing orexin (also named hypocretin) in the lateral hypothalamus. Although NT1 is believed to be an autoimmune disease, the orexinergic neuron-specific antigens targeted by the pathogenic immune response remain elusive. In this study, we evaluated the differential binding capacity of various peptides to serum immunoglobin G from patients with NT1 and other hypersomnolence complaints (OHCs). These peptides were selected using an unbiased phage display technology or based on their significant presence in the serum of NT1 patients as identified from previous studies. Although the subtractive biopanning strategy successfully enriched phage clones with high reactivity against NT1 serum IgG, the 101 randomly selected individual phage clones could not differentiate the sera from NT1 and OHC. Compared to the OHC control group, serum from several NT1 patients exhibited increased reactivity to the 12-mer peptides derived from TRBV7, BCL-6, NRXN1, RXRG, HCRT, and RTN4 proteins, although not statistically significant. Collectively, employing both unbiased and targeted methodologies, we were unable to detect the presence of specific autoantibodies in our NT1 patient cohort. This further supports the hypothesis that the autoimmune response in NT1 patients likely stems primarily from T cell-mediated immunity rather than humoral immunity.
Collapse
Affiliation(s)
- Thi-Tuyet Trinh Tran
- Department of Biobank, Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Thi-Hong Nhung Nguyen
- Department of Biobank, Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Yves Dauvilliers
- Department of Neurology, Sleep-Wake Disorder Center, CHU Montpellier, Montpellier, France
| | - Roland Liblau
- Department of Inflammatory Diseases of the Central Nervous System: Mechanisms and Therapies, Toulouse Institute for Infection and Inflammatory Diseases, University of Toulouse, Toulouse, France
| | - Xuan-Hung Nguyen
- Department of Biobank, Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
- College of Health Sciences, VinUnivesity, Hanoi, Vietnam
| |
Collapse
|
6
|
Liblau RS, Latorre D, Kornum BR, Dauvilliers Y, Mignot EJ. The immunopathogenesis of narcolepsy type 1. Nat Rev Immunol 2024; 24:33-48. [PMID: 37400646 DOI: 10.1038/s41577-023-00902-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
Narcolepsy type 1 (NT1) is a chronic sleep disorder resulting from the loss of a small population of hypothalamic neurons that produce wake-promoting hypocretin (HCRT; also known as orexin) peptides. An immune-mediated pathology for NT1 has long been suspected given its exceptionally tight association with the MHC class II allele HLA-DQB1*06:02, as well as recent genetic evidence showing associations with polymorphisms of T cell receptor genes and other immune-relevant loci and the increased incidence of NT1 that has been observed after vaccination with the influenza vaccine Pandemrix. The search for both self-antigens and foreign antigens recognized by the pathogenic T cell response in NT1 is ongoing. Increased T cell reactivity against HCRT has been consistently reported in patients with NT1, but data demonstrating a primary role for T cells in neuronal destruction are currently lacking. Animal models are providing clues regarding the roles of autoreactive CD4+ and CD8+ T cells in the disease. Elucidation of the pathogenesis of NT1 will allow for the development of targeted immunotherapies at disease onset and could serve as a model for other immune-mediated neurological diseases.
Collapse
Affiliation(s)
- Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France.
- Department of Immunology, Toulouse University Hospitals, Toulouse, France.
| | | | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, Montpellier, France
- INSERM Institute for Neurosciences of Montpellier, Montpellier, France
| | - Emmanuel J Mignot
- Stanford University, Center for Narcolepsy, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA.
| |
Collapse
|
7
|
Roya Y, Farzaneh B, Mostafa A, Mahsa S, Babak Z. Narcolepsy following COVID-19: A case report and review of potential mechanisms. Clin Case Rep 2023; 11:e7370. [PMID: 37251741 PMCID: PMC10213711 DOI: 10.1002/ccr3.7370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Key Clinical Message The immune activation in COVID-19 may trigger narcolepsy in vulnerable patients. We suggest clinicians carefully evaluate patients with post-COVID fatigue and hypersomnia for primary sleep disorders, specifically narcolepsy. Abstract The patient is a 33-year-old Iranian woman without a significant past medical history with the full range of narcolepsy symptoms that started within 2 weeks after her recovery from COVID-19. Sleep studies revealed increased sleep latency and three sleep-onset rapid eye movement events, compatible with a narcolepsy-cataplexy diagnosis.
Collapse
Affiliation(s)
- Yazdani Roya
- Firoozgar Hospital, Department of Neurology, School of MedicineIran University of Medical SciencesTehranIran
| | - Barzkar Farzaneh
- Center for Educational Research in Medical Sciences(CERMS), Faculty of MedicineIran University of Medical Sciences IUMSTehranIran
| | - Almasi‐Dooghaee Mostafa
- Firoozgar Hospital, Department of Neurology, School of MedicineIran University of Medical SciencesTehranIran
| | - Shojaie Mahsa
- Firoozgar Hospital, Department of Neurology, School of MedicineIran University of Medical SciencesTehranIran
| | - Zamani Babak
- Firoozgar Hospital, Department of Neurology, School of MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
8
|
Ollila HM, Sharon E, Lin L, Sinnott-Armstrong N, Ambati A, Yogeshwar SM, Hillary RP, Jolanki O, Faraco J, Einen M, Luo G, Zhang J, Han F, Yan H, Dong XS, Li J, Zhang J, Hong SC, Kim TW, Dauvilliers Y, Barateau L, Lammers GJ, Fronczek R, Mayer G, Santamaria J, Arnulf I, Knudsen-Heier S, Bredahl MKL, Thorsby PM, Plazzi G, Pizza F, Moresco M, Crowe C, Van den Eeden SK, Lecendreux M, Bourgin P, Kanbayashi T, Martínez-Orozco FJ, Peraita-Adrados R, Benetó A, Montplaisir J, Desautels A, Huang YS, Jennum P, Nevsimalova S, Kemlink D, Iranzo A, Overeem S, Wierzbicka A, Geisler P, Sonka K, Honda M, Högl B, Stefani A, Coelho FM, Mantovani V, Feketeova E, Wadelius M, Eriksson N, Smedje H, Hallberg P, Hesla PE, Rye D, Pelin Z, Ferini-Strambi L, Bassetti CL, Mathis J, Khatami R, Aran A, Nampoothiri S, Olsson T, Kockum I, Partinen M, Perola M, Kornum BR, Rueger S, Winkelmann J, Miyagawa T, Toyoda H, Khor SS, Shimada M, Tokunaga K, Rivas M, Pritchard JK, Risch N, Kutalik Z, O'Hara R, Hallmayer J, Ye CJ, Mignot EJ. Narcolepsy risk loci outline role of T cell autoimmunity and infectious triggers in narcolepsy. Nat Commun 2023; 14:2709. [PMID: 37188663 DOI: 10.1038/s41467-023-36120-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/17/2023] [Indexed: 05/17/2023] Open
Abstract
Narcolepsy type 1 (NT1) is caused by a loss of hypocretin/orexin transmission. Risk factors include pandemic 2009 H1N1 influenza A infection and immunization with Pandemrix®. Here, we dissect disease mechanisms and interactions with environmental triggers in a multi-ethnic sample of 6,073 cases and 84,856 controls. We fine-mapped GWAS signals within HLA (DQ0602, DQB1*03:01 and DPB1*04:02) and discovered seven novel associations (CD207, NAB1, IKZF4-ERBB3, CTSC, DENND1B, SIRPG, PRF1). Significant signals at TRA and DQB1*06:02 loci were found in 245 vaccination-related cases, who also shared polygenic risk. T cell receptor associations in NT1 modulated TRAJ*24, TRAJ*28 and TRBV*4-2 chain-usage. Partitioned heritability and immune cell enrichment analyses found genetic signals to be driven by dendritic and helper T cells. Lastly comorbidity analysis using data from FinnGen, suggests shared effects between NT1 and other autoimmune diseases. NT1 genetic variants shape autoimmunity and response to environmental triggers, including influenza A infection and immunization with Pandemrix®.
Collapse
Affiliation(s)
- Hanna M Ollila
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Eilon Sharon
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Ling Lin
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
| | - Nasa Sinnott-Armstrong
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Aditya Ambati
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
| | - Selina M Yogeshwar
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
- Department of Neurology, Charité-Universitätsmedizin, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117, Berlin, Germany
| | - Ryan P Hillary
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
| | - Otto Jolanki
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Juliette Faraco
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
| | - Mali Einen
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
| | - Guo Luo
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
| | - Jing Zhang
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA
| | - Fang Han
- Division of Sleep Medicine, The Peking University People's Hospital, Beijing, China
| | - Han Yan
- Division of Sleep Medicine, The Peking University People's Hospital, Beijing, China
| | - Xiao Song Dong
- Division of Sleep Medicine, The Peking University People's Hospital, Beijing, China
| | - Jing Li
- Division of Sleep Medicine, The Peking University People's Hospital, Beijing, China
| | - Jun Zhang
- Department of Neurology, The Peking University People's Hospital, Beijing, China
| | - Seung-Chul Hong
- Department of Psychiatry, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Tae Won Kim
- Department of Psychiatry, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Yves Dauvilliers
- Sleep-Wake Disorders Center, National Reference Network for Narcolepsy, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; Institute for Neurosciences of Montpellier (INM), INSERM, Université Montpellier 1, Montpellier, France
| | - Lucie Barateau
- Sleep-Wake Disorders Center, National Reference Network for Narcolepsy, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier; Institute for Neurosciences of Montpellier (INM), INSERM, Université Montpellier 1, Montpellier, France
| | - Gert Jan Lammers
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake Centre, Heemstede, The Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Sleep-Wake Centre, Heemstede, The Netherlands
| | - Geert Mayer
- Hephata Klinik, Schimmelpfengstr. 6, 34613, Schwalmstadt, Germany
- Philipps Universität Marburg, Baldinger Str., 35043, Marburg, Germany
| | - Joan Santamaria
- Neurology Service, Institut de Neurociències Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Isabelle Arnulf
- Sleep Disorder Unit, Pitié-Salpêtrière Hospital, Assistance Publique-Hopitaux de Paris, 75013, Paris, France
| | - Stine Knudsen-Heier
- Norwegian Centre of Expertise for Neurodevelopment Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - May Kristin Lyamouri Bredahl
- Norwegian Centre of Expertise for Neurodevelopment Disorders and Hypersomnias (NevSom), Department of Rare Disorders, Oslo University Hospital and University of Oslo, Oslo, Norway
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Per Medbøe Thorsby
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Ugo Foscolo 7, 40123, Bologna, Italy
- IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Ugo Foscolo 7, 40123, Bologna, Italy
- IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Monica Moresco
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Ugo Foscolo 7, 40123, Bologna, Italy
- IRCCS Institute of Neurological Sciences, Bologna, Italy
| | | | | | - Michel Lecendreux
- Pediatric Sleep Center and National Reference Center for Narcolepsy and Idiopathic Hypersomnia Hospital Robert Debre, Paris, France
| | - Patrice Bourgin
- Department of Sleep Medicine, Strasbourg University Hospital, Strasbourg University, Strasbourg, France
| | - Takashi Kanbayashi
- Department of Neuropsychiatry, Akita University Graduate School of Medicine, Akita, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Francisco J Martínez-Orozco
- Sleep Unit. Clinical Neurophysiology Service. San Carlos University Hospital. University Complutense of Madrid, Madrid, Spain
| | - Rosa Peraita-Adrados
- Sleep and Epilepsy Unit, Clinical Neurophysiology Service, Gregorio Marañón University General Hospital and Research Institute, University Complutense of Madrid (UCM), Madrid, Spain
| | | | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur and Department of Neurosciences, University of Montréal, Montréal, QC, Canada
| | - Alex Desautels
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur and Department of Neurosciences, University of Montréal, Montréal, QC, Canada
| | - Yu-Shu Huang
- Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital and University, Taoyuan, Taiwan
| | - Poul Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, University of Copenhagen, Glostrup Hospital, Glostrup, Denmark
| | - Sona Nevsimalova
- Department of Neurology and Centre of Clinical Neurosciences, First Faculty of Medicine, Charles University and General University Hosptal, Prague, Czech Republic
| | - David Kemlink
- Department of Neurology and Centre of Clinical Neurosciences, First Faculty of Medicine, Charles University and General University Hosptal, Prague, Czech Republic
| | - Alex Iranzo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neurology, Barcelona, Spain
- Multidisciplinary Sleep Disorders Unit, Barcelona, Spain
| | - Sebastiaan Overeem
- Sleep Medicine Center Kempenhaeghe, P.O. Box 61, 5590 AB, Heeze, The Netherlands
- Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Aleksandra Wierzbicka
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Peter Geisler
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Karel Sonka
- Department of Neurology and Centre of Clinical Neurosciences, First Faculty of Medicine, Charles University and General University Hosptal, Prague, Czech Republic
| | - Makoto Honda
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Seiwa Hospital, Neuropsychiatric Research Institute, Tokyo, Japan
| | - Birgit Högl
- Department of Neurology, Medical University Innsbruck (MUI), Innsbruck, Austria
| | - Ambra Stefani
- Department of Neurology, Medical University Innsbruck (MUI), Innsbruck, Austria
| | | | - Vilma Mantovani
- Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Eva Feketeova
- Neurology Department, Medical Faculty of P. J. Safarik University, University Hospital of L. Pasteur Kosice, Kosice, Slovak Republic
| | - Mia Wadelius
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Niclas Eriksson
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala, Sweden
| | - Hans Smedje
- Division of Child and Adolescent Psychiatry, Karolinska Institutet, Stockholm, Sweden
| | - Pär Hallberg
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - David Rye
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zerrin Pelin
- Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Luigi Ferini-Strambi
- Sleep Disorders Center, Division of Neuroscience, Ospedale San Raffaele, Università Vita-Salute, Milan, Italy
| | - Claudio L Bassetti
- Neurology Department, EOC, Ospedale Regionale di Lugano, Lugano, Ticino, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Johannes Mathis
- Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Ramin Khatami
- Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
- Center for Sleep Medicine and Sleep Research, Clinic Barmelweid AG, Barmelweid, Switzerland
| | - Adi Aran
- Shaare Zedek Medical Center, Jerusalem, Israel
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Kerala, India
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Markku Partinen
- Helsinki Sleep Clinic, Vitalmed Research Centre, Helsinki, Finland
- Department of Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Markus Perola
- University of Helsinki, Institute for Molecular Medicine, Finland (FIMM) and Diabetes and Obesity Research Program. University of Tartu, Estonian Genome Center, Tartu, Estonia
| | - Birgitte R Kornum
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Sina Rueger
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Neurologische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Taku Miyagawa
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiromi Toyoda
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Seik-Soon Khor
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mihoko Shimada
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Manuel Rivas
- Department of Biomedical Data Science-Administration, Stanford University, Palo Alto, CA, USA
| | | | - Neil Risch
- Dept. Epidemiology and Biostatistics, UCSF, 513 Parnassus Avenue, San Francisco, CA, 94117, USA
| | - Zoltan Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland, Lausanne, 1010, Switzerland
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
- Mental Illness Research Education Clinical Centers (MIRECC), VA Palo Alto, Palo Alto, CA, USA
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
- Mental Illness Research Education Clinical Centers (MIRECC), VA Palo Alto, Palo Alto, CA, USA
| | - Chun Jimmie Ye
- Department of Epidemiology & Biostatistics, Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel J Mignot
- Stanford University, Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, 94304, USA.
| |
Collapse
|
9
|
Latorre D, Federica S, Bassetti CLA, Kallweit U. Narcolepsy: a model interaction between immune system, nervous system, and sleep-wake regulation. Semin Immunopathol 2022; 44:611-623. [PMID: 35445831 PMCID: PMC9519713 DOI: 10.1007/s00281-022-00933-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022]
Abstract
Narcolepsy is a rare chronic neurological disorder characterized by an irresistible excessive daytime sleepiness and cataplexy. The disease is considered to be the result of the selective disruption of neuronal cells in the lateral hypothalamus expressing the neuropeptide hypocretin, which controls the sleep-wake cycle. Diagnosis and management of narcolepsy represent still a substantial medical challenge due to the large heterogeneity in the clinical manifestation of the disease as well as to the lack of understanding of the underlying pathophysiological mechanisms. However, significant advances have been made in the last years, thus opening new perspective in the field. This review describes the current knowledge of clinical presentation and pathology of narcolepsy as well as the existing diagnostic criteria and therapeutic intervention for the disease management. Recent evidence on the potential immune-mediated mechanisms that may underpin the disease establishment and progression are also highlighted.
Collapse
Affiliation(s)
| | - Sallusto Federica
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.,Center of Medical Immunology, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | - Ulf Kallweit
- Clinical Sleep and Neuroimmunology, Institute of Immunology, University Witten/Herdecke, Witten, Germany.,Center for Biomedical Education and Research (ZBAF), University Witten/Herdecke, Witten, Germany
| |
Collapse
|
10
|
Kim Y, Hong K, Kim H, Nam J. Influenza vaccines: Past, present, and future. Rev Med Virol 2022; 32:e2243. [PMID: 33949021 PMCID: PMC8209895 DOI: 10.1002/rmv.2243] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023]
Abstract
Globally, infection by seasonal influenza viruses causes 3-5 million cases of severe illness and 290,000-650,000 respiratory deaths each year. Various influenza vaccines, including inactivated split- and subunit-type, recombinant and live attenuated vaccines, have been developed since the 1930s when it was discovered that influenza viruses could be cultivated in embryonated eggs. However, the protection rate offered by these vaccines is rather low, especially in very young children and the elderly. In this review, we describe the history of influenza vaccine development, the immune responses induced by the vaccines and the adjuvants applied. Further, we suggest future directions for improving the effectiveness of influenza vaccines in all age groups. This includes the development of an influenza vaccine that induces a balanced T helper cell type 1 and type 2 immune responses based on the understanding of the immune system, and the development of a broad-spectrum influenza vaccine that can increase effectiveness despite antigen shifts and drifts, which are characteristics of the influenza virus. A brighter future can be envisaged if the development of an adjuvant that is safe and effective is realized.
Collapse
Affiliation(s)
- Yun‐Hee Kim
- Department of Medical and Biological SciencesThe Catholic University of KoreaBucheonRepublic of Korea
- Department of R&DSK BioscienceBundang‐guRepublic of Korea
| | - Kee‐Jong Hong
- UIC FoundationKonkuk UniversitySeoulRepublic of Korea
| | - Hun Kim
- Department of R&DSK BioscienceBundang‐guRepublic of Korea
| | - Jae‐Hwan Nam
- Department of Medical and Biological SciencesThe Catholic University of KoreaBucheonRepublic of Korea
| |
Collapse
|
11
|
Vringer M, Kornum BR. Emerging therapeutic targets for narcolepsy. Expert Opin Ther Targets 2021; 25:559-572. [PMID: 34402358 DOI: 10.1080/14728222.2021.1969361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Narcolepsy type 1 (NT1) and type 2 (NT2) are chronic sleep disorders primarily characterized by excessive daytime sleepiness (EDS), disturbed sleep-wake regulation, and reduced quality of life. The precise disease mechanism is unclear, but it is certain that in NT1 the hypocretin/orexin (Hcrt) system is affected. Current treatment options are symptomatic - they improve EDS and/or reduce cataplexy. Complete symptom control is relatively rare - particularly problematic is residual daytime sleepiness. AREAS COVERED This review discusses various emerging treatment targets for narcolepsy. The focus is on the Hcrt receptors but included are also wake-promoting pathways, and sleep-stabilization through GABAergic mechanisms. Additionally, we discuss the potential of targeting the likely autoimmune basis of narcolepsy. PubMed and ClinicalTrials.gov was searched through June 2021 for relevant information. EXPERT OPINION Targeting Hcrt receptors has the potential to alleviate narcolepsy symptoms. Results from ongoing drug development programs are promising, but care needs to be taken when evaluating potential side effects. It is still largely unknown what roles Hcrt receptors play in the periphery and how these might be affected by treatment. Immunotherapies could potentially target the core pathophysiology of narcolepsy, but more work is needed to identify the best therapeutic target for this approach.
Collapse
Affiliation(s)
- Marieke Vringer
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience (Mhens), Maastricht University, Maastricht, Netherlands
| | - Birgitte Rahbek Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Luo G, Yogeshwar S, Lin L, Mignot EJM. T cell reactivity to regulatory factor X4 in type 1 narcolepsy. Sci Rep 2021; 11:7841. [PMID: 33837283 PMCID: PMC8035403 DOI: 10.1038/s41598-021-87481-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 11/11/2022] Open
Abstract
Type 1 narcolepsy is strongly (98%) associated with human leukocyte antigen (HLA) class II DQA1*01:02/DQB1*06:02 (DQ0602) and highly associated with T cell receptor (TCR) alpha locus polymorphism as well as other immune regulatory loci. Increased incidence of narcolepsy was detected following the 2009 H1N1 pandemic and linked to Pandemrix vaccination, strongly supporting that narcolepsy is an autoimmune disorder. Although recent results suggest CD4+ T cell reactivity to neuropeptide hypocretin/orexin and cross-reactive flu peptide is involved, identification of other autoantigens has remained elusive. Here we study whether autoimmunity directed against Regulatory Factor X4 (RFX4), a protein co-localized with hypocretin, is involved in some cases of narcolepsy. Studying human serum, we found that autoantibodies against RFX4 were rare. Using RFX4 peptides bound to DQ0602 tetramers, antigen RFX4-86, -95, and -60 specific human CD4+ T cells were detected in 4/10 patients and 2 unaffected siblings, but not in others. Following culture with each cognate peptide, enriched autoreactive TCRαβ clones were isolated by single-cell sorting and TCR sequenced. Homologous clones bearing TRBV4-2 and recognizing RFX4-86 in patients and one twin control of patient were identified. These results suggest the involvement of RFX4 CD4+ T cell autoreactivity in some cases of narcolepsy, but also in healthy donors.
Collapse
Affiliation(s)
- Guo Luo
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Selina Yogeshwar
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.,Division of Biosciences, Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ling Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Emmanuel Jean-Marie Mignot
- Department of Psychiatry and Behavioral Sciences, Stanford University Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
13
|
Lind A, Marzinotto I, Brigatti C, Ramelius A, Piemonti L, Lampasona V. A/H1N1 hemagglutinin antibodies show comparable affinity in vaccine-related Narcolepsy type 1 and control and are unlikely to contribute to pathogenesis. Sci Rep 2021; 11:4063. [PMID: 33603024 PMCID: PMC7893011 DOI: 10.1038/s41598-021-83543-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
An increased incidence of narcolepsy type 1 (NT1) was observed in Scandinavia following the 2009-2010 influenza Pandemrix vaccination. The association between NT1 and HLA-DQB1*06:02:01 supported the view of the vaccine as an etiological agent. A/H1N1 hemagglutinin (HA) is the main antigenic determinant of the host neutralization antibody response. Using two different immunoassays, the Luciferase Immunoprecipitation System (LIPS) and Radiobinding Assay (RBA), we investigated HA antibody levels and affinity in an exploratory and in a confirmatory cohort of Swedish NT1 patients and healthy controls vaccinated with Pandemrix. HA antibodies were increased in NT1 patients compared to controls in the exploratory (LIPS p = 0.0295, RBA p = 0.0369) but not in the confirmatory cohort (LIPS p = 0.55, RBA p = 0.625). HA antibody affinity, assessed by competition with Pandemrix vaccine, was comparable between patients and controls (LIPS: 48 vs. 39 ng/ml, p = 0.81; RBA: 472 vs. 491 ng/ml, p = 0.65). The LIPS assay also detected higher HA antibody titres as associated with HLA-DQB1*06:02:01 (p = 0.02). Our study shows that following Pandemrix vaccination, HA antibodies levels and affinity were comparable NT1 patients and controls and suggests that HA antibodies are unlikely to play a role in NT1 pathogenesis.
Collapse
Affiliation(s)
- Alexander Lind
- Department of Clinical Sciences, Clinical Research Center (CRC), Skåne University Hospital SUS, Lund University, Malmö, Sweden
| | - Ilaria Marzinotto
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Cristina Brigatti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Anita Ramelius
- Department of Clinical Sciences, Clinical Research Center (CRC), Skåne University Hospital SUS, Lund University, Malmö, Sweden
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Vito Lampasona
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
14
|
Melén K, Jalkanen P, Kukkonen JP, Partinen M, Nohynek H, Vuorela A, Vaarala O, Freitag TL, Meri S, Julkunen I. No evidence of autoimmunity to human OX 1 or OX 2 orexin receptors in Pandemrix-vaccinated narcoleptic children. J Transl Autoimmun 2020; 3:100055. [PMID: 32743535 PMCID: PMC7388359 DOI: 10.1016/j.jtauto.2020.100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Narcolepsy type 1, likely an immune-mediated disease, is characterized by excessive daytime sleepiness and cataplexy. The disease is strongly associated with human leukocyte antigen (HLA) DQB1∗06:02. A significant increase in the incidence of childhood and adolescent narcolepsy was observed after a vaccination campaign with AS03-adjuvanted Pandemrix influenza vaccine in Nordic and several other countries in 2010 and 2011. Previously, it has been suggested that a surface-exposed region of influenza A nucleoprotein, a structural component of the Pandemrix vaccine, shares amino acid residues with the first extracellular domain of the human OX2 orexin/hypocretin receptor eliciting the development of autoantibodies. Here, we analyzed, whether H1N1pdm09 infection or Pandemrix vaccination contributed to the development of autoantibodies to the orexin precursor protein or the OX1 or OX2 receptors. The analysis was based on the presence or absence of autoantibody responses against analyzed proteins. Entire OX1 and OX2 receptors or just their extracellular N-termini were transiently expressed in HuH7 cells to determine specific antibody responses in human sera. Based on our immunofluorescence analysis, none of the 56 Pandemrix-vaccinated narcoleptic patients, 28 patients who suffered from a laboratory-confirmed H1N1pdm09 infection or 19 Pandemrix-vaccinated controls showed specific autoantibody responses to prepro-orexin, orexin receptors or the isolated extracellular N-termini of orexin receptors. We also did not find any evidence for cell-mediated immunity against the N-terminal epitopes of OX2. Our findings do not support the hypothesis that the surface-exposed region of the influenza nucleoprotein A would elicit the development of an immune response against orexin receptors. No evidence of humoral immunity against human OX1 or OX2 orexin receptors. No cross-reactive antibodies between influenza virus NP and orexin receptors. No evidence for cell-mediated immunity against the N-terminal epitopes of OX2.
Collapse
Affiliation(s)
- Krister Melén
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.,Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, 00300, Helsinki, Finland
| | - Pinja Jalkanen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Jyrki P Kukkonen
- Department of Physiology and Department of Pharmacology, Institute of Biomedicine, Faculty of Medicine and Biochemistry and Cell Biology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Markku Partinen
- Helsinki Sleep Clinic, Vitalmed Research Centre Helsinki and Medicum, Faculty of Medicine, University of Helsinki, Finland
| | - Hanna Nohynek
- Infectious Disease Control and Vaccination Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Arja Vuorela
- Reseach Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki
| | - Outi Vaarala
- Reseach Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki
| | - Tobias L Freitag
- Department of Bacteriology and Immunology and Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology and Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.,Turku University Hospital, Clinical Microbiology, Kiinamyllynkatu 10, 20520, Turku, Finland
| |
Collapse
|
15
|
Lind A, Eriksson D, Akel O, Ramelius A, Palm L, Lernmark Å, Kämpe O, Elding Larsson H, Landegren N. Screening for autoantibody targets in post-vaccination narcolepsy using proteome arrays. Scand J Immunol 2020; 91:e12864. [PMID: 32056243 DOI: 10.1111/sji.12864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
Abstract
Narcolepsy type 1 (NT1) is a chronic sleep disorder caused by a specific loss of hypocretin-producing neurons. The incidence of NT1 increased in Sweden, Finland and Norway following Pandemrix®-vaccination, initiated to prevent the 2009 influenza pandemic. The pathogenesis of NT1 is poorly understood, and causal links to vaccination are yet to be clarified. The strong association with Human leukocyte antigen (HLA) DQB1*06:02 suggests an autoimmune pathogenesis, but proposed autoantigens remain controversial. We used a two-step approach to identify autoantigens in patients that acquired NT1 after Pandemrix®-vaccination. Using arrays of more than 9000 full-length human proteins, we screened the sera of 10 patients and 24 healthy subjects for autoantibodies. Identified candidate antigens were expressed in vitro to enable validation studies with radiobinding assays (RBA). The validation cohort included NT1 patients (n = 39), their first-degree relatives (FDR) (n = 66), population controls (n = 188), and disease controls representing multiple sclerosis (n = 100) and FDR to type 1 diabetes patients (n = 41). Reactivity towards previously suggested NT1 autoantigen candidates including Tribbles homolog 2, Prostaglandin D2 receptor, Hypocretin receptor 2 and α-MSH/proopiomelanocortin was not replicated in the protein array screen. By comparing case to control signals, three novel candidate autoantigens were identified in the protein array screen; LOC401464, PARP3 and FAM63B. However, the RBA did not confirm elevated reactivity towards either of these proteins. In summary, three putative autoantigens in NT1 were identified by protein array screening. Autoantibodies against these candidates could not be verified with independent methods. Further studies are warranted to identify hypothetical autoantigens related to the pathogenesis of Pandemrix®-induced NT1.
Collapse
Affiliation(s)
- Alexander Lind
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Daniel Eriksson
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Omar Akel
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Anita Ramelius
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Lars Palm
- Section for Paediatric Neurology, Department of Paediatrics, Skåne University Hospital SUS, Malmö, Sweden
| | - Åke Lernmark
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Olle Kämpe
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Nils Landegren
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,K.G. Jebsen Center for Autoimmune Disorders, Bergen, Norway
| |
Collapse
|
16
|
Affiliation(s)
- Birgitte Rahbek Kornum
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Poul Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Faculty of Health Sciences, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
17
|
Ravel JM, Mignot EJM. [Narcolepsy: From the discovery of a wake promoting peptide to autoimmune T cell biology and molecular mimicry with flu epitopes]. Biol Aujourdhui 2019; 213:87-108. [PMID: 31829930 DOI: 10.1051/jbio/2019026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 11/14/2022]
Abstract
Narcolepsy-cataplexy was first described in the late 19th century in Germany and France. Prevalence was established to be 0.05 % and a canine model was discovered in the 1970s. In 1983, a Japanese study found that all patients carried HLA-DR2, suggesting autoimmunity as the cause of the disease. Studies in the canine model established that dopaminergic stimulation underlies anti-narcoleptic action of psychostimulants, while antidepressants were found to suppress cataplexy through adrenergic reuptake inhibition. No HLA association was found in canines. A linkage study initiated in 1988 revealed in hypocretin (orexin) receptor two mutations as the cause of canine narcolepsy in 1999. In 1992, studies on African Americans showed that DQ0602 was a better marker than DR2 across all ethnic groups. In 2000, hypocretin-1/orexin A levels were measured in the cerebrospinal fluid (CSF) and found to be undetectable in most patients, establishing hypocretin deficiency as the cause of narcolepsy. Decreased CSF hypocretin-1 was then found to be secondary to the loss of the 70,000 neurons producing hypocretin in the hypothalamus, suggesting immune destruction of these cells as the cause of the disease. Additional genetic studies, notably genome wide associations (GWAS), found multiple genetic predisposing factors for narcolepsy. These were almost all involved in other autoimmune diseases, although a strong and unique association with T cell receptor (TCR) alpha and beta loci were observed. Nonetheless, all attempts to demonstrate presence of autoantibodies against hypocretin cells in narcolepsy failed, and the presumed autoimmune cause remained unproven. In 2009, association with strep throat infections were found, and narcolepsy onsets were found to occur more frequently in spring and summer, suggesting upper away infections as triggers. Following reports that narcolepsy cases were triggered by vaccinations and infections against influenza A 2009 pH1N1, a new pandemic strain that erupted in 2009, molecular mimicry with influenza A virus was suggested in 2010. This hypothesis was later confirmed by peptide screening showing higher activity of CD4+ T cell reactivity to a specific post-translationally amidated segment of hypocretin (HCRT-NH2) and cross-reactivity of specific TCRs with a pH1N1-specific segment of hemagglutinin that shares homology with HCRT-NH2. Strikingly, the most frequent TCR recognizing these antigens was found to carry sequences containing TRAJ24 or TRVB4-2, segments modulated by narcolepsy-associated genetic polymorphisms. Cross-reactive CD4+ T cells with these cross-reactive TCRs likely subsequently recruit CD8+ T cells that are then involved in hypocretin cell destruction. Additional flu mimics are also likely to be discovered since narcolepsy existed prior to 2009. The work that has been conducted over the years on narcolepsy offers a unique perspective on the conduct of research on the etiopathogeny of a specific disease.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Medicine, Stanford University, 3615 Porter Drive, Palo Alto, CA, USA
| | - Emmanuel J M Mignot
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Medicine, Stanford University, 3615 Porter Drive, Palo Alto, CA, USA
| |
Collapse
|
18
|
Lind A, Akel O, Wallenius M, Ramelius A, Maziarz M, Zhao LP, Geraghty DE, Palm L, Lernmark Å, Larsson HE. HLA high-resolution typing by next-generation sequencing in Pandemrix-induced narcolepsy. PLoS One 2019; 14:e0222882. [PMID: 31577807 PMCID: PMC6774514 DOI: 10.1371/journal.pone.0222882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
The incidence of narcolepsy type 1 (NT1) increased in Sweden following the 2009–2010 mass-vaccination with the influenza Pandemrix-vaccine. NT1 has been associated with Human leukocyte antigen (HLA) DQB1*06:02 but full high-resolution HLA-typing of all loci in vaccine-induced NT1 remains to be done. Therefore, here we performed HLA typing by sequencing HLA-DRB3, DRB4, DRB5, DRB1, DQA1, DQB1, DPA1 and DPB1 in 31 vaccine-associated NT1 patients and 66 of their first-degree relatives (FDR), and compared these data to 636 Swedish general population controls (GP). Previously reported disease-related alleles in the HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02:01-DQB1*06:02:01extended haplotype were increased in NT1 patients (34/62 haplotypes, 54.8%) compared to GP (194/1272 haplotypes, 15.3%, p = 6.17E-16). Indeed, this extended haplotype was found in 30/31 patients (96.8%) and 178/636 GP (28.0%). In total, 15 alleles, four extended haplotypes, and six genotypes were found to be increased or decreased in frequency among NT1 patients compared to GP. Among subjects with the HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02-DQB1*06:02 haplotype, a second DRB4*01:03:01-DRB1*04:01:01-DQA1*03:02//*03:03:01-DQB1*03:01:01 haplotype (p = 2.02E-2), but not homozygosity for DRB1*15:01:01-DQB1*06:02:01 (p = 7.49E-1) conferred association to NT1. Alleles with increased frequency in DQA1*01:02:01 (p = 1.07E-2) and DQA1*03:02//*03:03:01 (p = 3.26E-2), as well as with decreased frequency in DRB3*01:01:02 (p = 8.09E-3), DRB1*03:01:01 (p = 1.40E-2), and DQB1*02:01:01 (p = 1.40E-2) were found among patients compared to their FDR. High-resolution HLA sequencing in Pandemrix-associated NT1 confirmed the strong association with the DQB1*06:02:01-containing haplotype but also revealed an increased association to the not previously reported extended HLA-DRB4*01:03:01-DRB1*04:01:01-DQA1*03:02//*03:03:01-DQB1*03:01:01 haplotype. High-resolution HLA typing should prove useful in dissecting the immunological mechanisms of vaccination-associated NT1.
Collapse
Affiliation(s)
- Alexander Lind
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
- * E-mail:
| | - Omar Akel
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Madeleine Wallenius
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Anita Ramelius
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Marlena Maziarz
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Lue Ping Zhao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lars Palm
- Section for Paediatric Neurology, Department of Paediatrics, Skåne University Hospital SUS, Malmö, Sweden
| | - Åke Lernmark
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences Malmö, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden
| |
Collapse
|