1
|
Preparation and Properties of Fluorosilicone Fouling-Release Coatings. Polymers (Basel) 2022; 14:polym14183804. [PMID: 36145949 PMCID: PMC9505747 DOI: 10.3390/polym14183804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
To improve the antifouling performance of silicone fouling-release coatings, some fluorosilicone and silicone fouling-release coatings were prepared and cured at room temperature with hydroxyl-terminated fluoropolysiloxane (FPS) or hydroxy-terminated polydimethylsiloxane (PDMS) as a film-forming resin, tetraethyl orthosilicate (TEOS) as a crosslinking agent, and dibutyltin dilaurate (DBTDL) as a catalyst. The chemical structure, surface morphology and roughness, tensile properties, and antifouling properties of the coating were studied by infrared spectroscopy, a laser confocal scanning microscope, contact angle measurement, tensile tests, and marine bacteria and benthic diatom attachment tests. The results showed that the FPS coatings were not only hydrophobic but also oleophobic, and the contact angles of the FPS coatings were larger than those of the PDMS coatings. The surface free energies of the FPS coatings were much lower than those of the PDMS coatings. Generally, the fluorine groups can improve the antifouling performance of the coating. Introducing nonreactive silicone oil into PDMS or FPS coatings can improve the antifouling performance of the coating to a certain extent. The prepared fluorosilicone fouling-release coatings showed good application prospects.
Collapse
|
2
|
Benda J, Narikiyo H, Stafslien SJ, VanderWal LJ, Finlay JA, Aldred N, Clare AS, Webster DC. Studying the Effect of Pre-Polymer Composition and Incorporation of Surface-Modifying Amphiphilic Additives on the Fouling-Release Performance of Amphiphilic Siloxane-Polyurethane Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37229-37247. [PMID: 35939765 DOI: 10.1021/acsami.2c10983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Combining amphiphilic fouling-release (FR) coatings with the surface-active nature of amphiphilic additives can improve the antifouling/fouling-release (AF/FR) properties needed to offer broad-spectrum resistance to marine biofoulants. This work is focused on further tuning the amphiphilic character of a previously developed amphiphilic siloxane-polyurethane (SiPU) coating by varying the amount of PDMS and PEG in the base system. Furthermore, surface-modifying amphiphilic additives (SMAAs) were incorporated into these amphiphilic FR SiPU coatings in varying amounts. ATR-FTIR, contact angle and surface energy measurements, and AFM were performed to assess changes in surface composition, wettability, and morphology. AF/FR properties were evaluated using laboratory biological assays involving Cellulophaga lytica, Navicula incerta, Ulva linza, Amphibalanus amphitrite, and Geukensia demissa. The surfaces of these coatings varied significantly upon changes in PDMS and PEG content in the coating matrix, as well as with changes in SMAA incorporation. AF/FR properties were also significantly changed, with formulations containing the highest amounts of SMAA showing very high removal properties compared to other experimental formulations, in some cases better than that of commercial standard FR coatings.
Collapse
Affiliation(s)
- Jackson Benda
- Department of Coatings and Polymeric, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Hayato Narikiyo
- Graduate School of Engineering, Department of Polymer Chemistry, Kyoto University, Sakyo Ward, Kyoto 606-8501, Japan
| | - Shane J Stafslien
- Department of Coatings and Polymeric, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Lyndsi J VanderWal
- Department of Coatings and Polymeric, North Dakota State University, Fargo, North Dakota 58108, United States
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Dean C Webster
- Department of Coatings and Polymeric, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
3
|
Tesler AB, Prado LH, Thievessen I, Mazare A, Schmuki P, Virtanen S, Goldmann WH. Nontoxic Liquid-Infused Slippery Coating Prepared on Steel Substrates Inhibits Corrosion and Biofouling Adhesion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29386-29397. [PMID: 35696316 DOI: 10.1021/acsami.2c04960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wetting of surfaces plays a vital role in many biological and industrial processes. There are several phenomena closely related to wetting such as biofouling and corrosion that cause the deterioration of materials, while the efforts to prevent the degradation of surface functionality have spread over several millennia. Antifouling coatings have been developed to prevent/delay both corrosion and biofouling, but the problems remain unsolved, influencing the everyday life of the modern society in terms of safety and expenses. In this study, liquid-infused slippery surfaces (LISSs), a recently developed nontoxic repellent technology, that is, a flat variation of omniphobic slippery liquid-infused porous surfaces (SLIPSs), were studied for their anti-corrosion and marine anti-biofouling characteristics on metallic substrates under damaged and plain undamaged conditions. Austenitic stainless steel was chosen as a model due to its wide application in aquatic environments. Our LISS coating effectively prevents biofouling adhesion and decays corrosion of metallic surfaces even if they are severely damaged. The mechanically robust LISS reported in this study significantly extends the SLIPS technology, prompting their application in the marine environment due to the synergy between the facile fabrication process, rapid binding kinetics, nontoxic, ecofriendly, and low-cost applied materials together with excellent repellent characteristics.
Collapse
Affiliation(s)
- Alexander B Tesler
- Faculty of Engineering, Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| | - Lucia H Prado
- Faculty of Engineering, Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| | - Ingo Thievessen
- Department of Physics, Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, Erlangen 91052, Germany
| | - Anca Mazare
- Faculty of Engineering, Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| | - Patrik Schmuki
- Faculty of Engineering, Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
- Chemistry Department, Faculty of Sciences, King Abdul-Aziz University, Jeddah 80203, Saudi Arabia
- Regional Centre of Advanced Technologies and Materials, Palacky University, Listopadu 50A, Olomouc 772 07, Czech Republic
| | - Sannakaisa Virtanen
- Faculty of Engineering, Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| | - Wolfgang H Goldmann
- Department of Physics, Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, Erlangen 91052, Germany
| |
Collapse
|
4
|
Dahlgren J, Foy L, Hunsucker K, Gardner H, Swain G, Stafslien SJ, Vanderwal L, Bahr J, Webster DC. Grooming of fouling-release coatings to control marine fouling and determining how grooming affects the surface. BIOFOULING 2022; 38:384-400. [PMID: 35655420 DOI: 10.1080/08927014.2022.2084389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Grooming may be an effective technique to control marine biofouling without damaging the coating or discharging active ingredients into the environment. This study assessed the grooming performance of three experimental biocide-free siloxane polyurethane (SiPU) fouling-release coatings. Coatings were statically immersed in Port Canaveral, Florida, and groomed every two weeks for five months using three different brush types. The ungroomed panels became heavily fouled with biofilm, tubeworms, barnacles, and bryozoans. Two of the brushes were able to control the fouling with a coverage of <5%. The commercial silicone elastomer coating was damaged from grooming procedures, while the SiPU coatings were not. Laboratory biological assays were carried out and mirrored the grooming results. Through surface characterization techniques, it was concluded that the coatings were unaffected by the grooming procedures. This study shows that marine fouling on durable SiPU fouling-release coatings can be controlled via grooming without damage or changing the surface properties.
Collapse
Affiliation(s)
- Joseph Dahlgren
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, USA
| | - Lauren Foy
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Florida, USA
| | - Kelli Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Florida, USA
| | - Harrison Gardner
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Florida, USA
| | - Geoff Swain
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Florida, USA
| | - Shane J Stafslien
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, USA
| | - Lyndsi Vanderwal
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, USA
| | - James Bahr
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, USA
| | - Dean C Webster
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
5
|
Faria SI, Teixeira-Santos R, Morais J, Vasconcelos V, Mergulhão FJ. The association between initial adhesion and cyanobacterial biofilm development. FEMS Microbiol Ecol 2021; 97:6204666. [PMID: 33784393 DOI: 10.1093/femsec/fiab052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Although laboratory assays provide valuable information about the antifouling effectiveness of marine surfaces and the dynamics of biofilm formation, they may be laborious and time-consuming. This study aimed to determine the potential of short-time adhesion assays to estimate how biofilm development may proceed. The initial adhesion and cyanobacterial biofilm formation were evaluated using glass and polymer epoxy resin surfaces under different hydrodynamic conditions and were compared using linear regression models. For initial adhesion, the polymer epoxy resin surface was significantly associated with a lower number of adhered cells compared with glass (-1.27 × 105 cells.cm-2). Likewise, the number of adhered cells was significantly lower (-1.16 × 105 cells.cm-2) at 185 than at 40 rpm. This tendency was maintained during biofilm development and was supported by the biofilm wet weight, thickness, chlorophyll a content and structure. Results indicated a significant correlation between the number of adhered and biofilm cells (r = 0.800, p < 0.001). Moreover, the number of biofilm cells on day 42 was dependent on the number of adhered cells at the end of the initial adhesion and hydrodynamic conditions (R2 = 0.795, p < 0.001). These findings demonstrate the high potential of initial adhesion assays to estimate marine biofilm development.
Collapse
Affiliation(s)
- Sara I Faria
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Rita Teixeira-Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - João Morais
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Vitor Vasconcelos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.,FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007, Porto, Portugal
| | - Filipe J Mergulhão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
6
|
Rahimi A, Stafslien SJ, Vanderwal L, Bahr J, Safaripour M, Finlay JA, Clare AS, Webster DC. Critical Amphiphilic Concentration: Effect of the Extent of Amphiphilicity on Marine Fouling-Release Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2728-2739. [PMID: 33586437 DOI: 10.1021/acs.langmuir.0c03446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amphiphilic surfaces, containing both hydrophilic and hydrophobic domains, offer desirable performance for many applications such as marine coatings or anti-icing purposes. This work explores the effect of the concentration of amphiphilic moieties on converting a polyurethane (PU) system to a coating having fouling-release properties. A novel amphiphilic compound is synthesized and added at increasing amounts to a PU system, where the amount of the additive is the only variable in the study. The additive-modified surfaces are characterized by a variety of techniques including ATR-FTIR, XPS, contact angle measurements, and AFM. Surface characterizations indicate the presence of amphiphilic domains on the surface due to the introduction of the self-stratifying amphiphilic additive. The fouling-release properties of the surfaces are assessed with three biological assays using Ulva linza, Cellulophaga lytica, and Navicula Incerta as the test organisms. A change in the fouling-release performance is observed and plateaued once a certain amount of amphiphilicity is attained in the coating system, which we call the critical amphiphilic concentration (CAC).
Collapse
Affiliation(s)
- AliReza Rahimi
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Shane J Stafslien
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Lyndsi Vanderwal
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - James Bahr
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Maryam Safaripour
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Dean C Webster
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
7
|
Benda J, Stafslien S, Vanderwal L, Finlay JA, Clare AS, Webster DC. Surface modifying amphiphilic additives and their effect on the fouling-release performance of siloxane-polyurethane coatings. BIOFOULING 2021; 37:309-326. [PMID: 33761816 DOI: 10.1080/08927014.2021.1901891] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
In this work, surface-modifying amphiphilic additives (SMAAs) were synthesized via hydrosilylation using various polymethylhydrosiloxanes (PMHS) and allyl-terminated polyethylene glycol monomethyl ethers (APEG) of varying molecular weights. The additives synthesized were incorporated into a hydrophobic, self-stratifying siloxane-polyurethane (SiPU) coating system to produce an amphiphilic surface. Contact angle experiments and atomic force microscopy (AFM), in a dry and hydrated state, were performed to assess changes in surface wettability and morphology. The antifouling and fouling-release (AF/FR) performances were evaluated by performing laboratory biological assays using the marine bacterium Cellulophaga lytica, the microalga Navicula incerta, the macroalga Ulva linza, the barnacle Amphibalanus amphitrite, and the marine mussel, Geukensia demissa. Several of the formulations showed improved AF/FR performance vs the base SiPU and performed better than some of the commercial standard marine coatings. Formulations containing SMAAs with a low grafting density of relatively high molecular weight PEG chains showed the best performance overall.
Collapse
Affiliation(s)
- Jackson Benda
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
| | - Shane Stafslien
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
| | - Lyndsi Vanderwal
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dean C Webster
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
8
|
Kuliasha CA, Fedderwitz RL, Stafslien SJ, Finlay JA, Clare AS, Brennan AB. Anti-biofouling properties of poly(dimethyl siloxane) with RAFT photopolymerized acrylate/methacrylate surface grafts against model marine organisms. BIOFOULING 2021; 37:78-95. [PMID: 33491472 DOI: 10.1080/08927014.2021.1875216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Biofouling of man-made surfaces by marine organisms is a global problem with both financial and environmental consequences. However, the development of non-toxic anti-biofouling coatings is challenged by the diversity of fouling organisms. One possible solution leverages coatings composed of diverse chemical constituents. Reversible addition-fragmentation chain-transfer (RAFT) photopolymerization was used to modify poly(dimethylsiloxane) (PDMSe) surfaces with polymeric grafts composed of three successive combinations of acrylamide, acrylic acid, and hydroxyethyl methacrylate. RAFT limited conflicting variables and allowed for the effect of graft chemistry to be isolated. While all compositions enhanced the anti-biofouling performance compared with the PDMSe control, the ternary, amphiphilic copolymer was the most effective with 98% inhibition of the attachment of zoospores of the green alga Ulva linza, 94% removal of cells of the diatom Navicula incerta, and 62% removal of cells of the bacterium Cellulophaga lytica. However, none of the graft compositions tested were able to mitigate reattachment of adult barnacles, Amphibalanus amphitrite.
Collapse
Affiliation(s)
- Cary A Kuliasha
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Rebecca L Fedderwitz
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Shane J Stafslien
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Anthony B Brennan
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Cydzik-Kwiatkowska A, Zielińska M. Microbial composition of biofilm treating wastewater rich in bisphenol A. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:385-392. [PMID: 29173057 DOI: 10.1080/10934529.2017.1404326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Although microbial degradation plays a major role in the removal of bisphenol A (BPA) from water environments, there is little information on the effect of BPA on microorganisms in wastewater treatment systems. The aim of this study was to determine the dynamics of the microbial communities in biofilm growing on porous ceramic supports in a column up-flow reactor during exposure to BPA at increasing concentrations from 0 to 10 mg L-1. Independent of BPA load, the efficiency of BPA removal was about 90%. Groups of microorganisms that differ in their sensitivity to the presence of BPA in wastewater were identified. The core microbial genera in the biofilm were Acidovorax, Pseudoxanthomonas and Acinetobacter. Arenimonas sp., Thauera sp. and Acidobacterium sp. were the main components of the biofilm in the absence of BPA in wastewater. Increased abundances of Pseudomonas sp., Acidovorax sp. and Luteimonas sp. in BPA-exposed biofilm indicate that these genera may have played important roles in BPA biodegradation. A correlation between Pseudomonas sp. abundance and BPA removal efficiency indicates that BPA was used directly as a source of carbon and energy for growth. This study indicates that the use of the biofilm reactor enables effective BPA removal from wastewater and expands knowledge about the microbial structure of communities responsible for BPA degradation.
Collapse
Affiliation(s)
- Agnieszka Cydzik-Kwiatkowska
- a University of Warmia and Mazury in Olsztyn , Department of Environmental Biotechnology , Słoneczna, Olsztyn , Poland
| | - Magdalena Zielińska
- a University of Warmia and Mazury in Olsztyn , Department of Environmental Biotechnology , Słoneczna, Olsztyn , Poland
| |
Collapse
|
10
|
Galhenage TP, Hoffman D, Silbert SD, Stafslien SJ, Daniels J, Miljkovic T, Finlay JA, Franco SC, Clare AS, Nedved BT, Hadfield MG, Wendt DE, Waltz G, Brewer L, Teo SLM, Lim CS, Webster DC. Fouling-Release Performance of Silicone Oil-Modified Siloxane-Polyurethane Coatings. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29025-29036. [PMID: 27696809 DOI: 10.1021/acsami.6b09484] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effect of incorporation of silicone oils into a siloxane-polyurethane fouling-release coatings system was explored. Incorporation of phenylmethyl silicone oil has been shown to improve the fouling-release performance of silicone-based fouling-release coatings through increased interfacial slippage. The extent of improvement is highly dependent upon the type and composition of silicone oil used. The siloxane-polyurethane (SiPU) coating system is a tough fouling-release solution, which combines the mechanical durability of polyurethane while maintaining comparable fouling-release performance with regard to commercial standards. To further improve the fouling-release performance of the siloxane-PU coating system, the use of phenylmethyl silicones oils was studied. Coatings formulations were prepared incorporating phenylmethyl silicone oils having a range of compositions and viscosities. Contact angle and surface energy measurements were conducted to evaluate the surface wettability of the coatings. X-ray photoelectron spectroscopy (XPS) depth profiling experiments demonstrated self-stratification of silicone oil along with siloxane to the coating-air interface. Several coating formulations displayed improved or comparable fouling-release performance to commercial standards during laboratory biological assay tests for microalgae (Navicula incerta), macroalgae (Ulva linza), adult barnacles (Balanus amphitrite syn. Amphibalanus amphitrite), and mussels (Geukensia demissa). Selected silicone-oil-modified siloxane-PU coatings also demonstrated comparable fouling-release performance in field immersion trials. In general, modifying the siloxane-PU fouling-release coatings with a small amount (1-5 wt % basis) of phenylmethyl silicone oil resulted in improved performance in several laboratory biological assays and in long-term field immersion assessments.
Collapse
Affiliation(s)
- Teluka P Galhenage
- Department of Coatings and Polymeric Materials, North Dakota State University , Fargo North Dakota 58108, United States
| | - Dylan Hoffman
- Department of Coatings and Polymeric Materials, North Dakota State University , Fargo North Dakota 58108, United States
| | - Samantha D Silbert
- Department of Coatings and Polymeric Materials, North Dakota State University , Fargo North Dakota 58108, United States
| | - Shane J Stafslien
- Center for Nanoscale Science and Engineering, North Dakota State University , Fargo, North Dakota 58108, United States
| | - Justin Daniels
- Center for Nanoscale Science and Engineering, North Dakota State University , Fargo, North Dakota 58108, United States
| | - Tatjana Miljkovic
- Department of Statistics, Miami University , Oxford, Ohio 45056, United States
| | - John A Finlay
- School of Marine Science and Technology, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Sofia C Franco
- School of Marine Science and Technology, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Anthony S Clare
- School of Marine Science and Technology, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Brian T Nedved
- Kewalo Marine Laboratory, University of Hawaii at Manoa , Honolulu Hawaii 96813, United States
| | - Michael G Hadfield
- Kewalo Marine Laboratory, University of Hawaii at Manoa , Honolulu Hawaii 96813, United States
| | - Dean E Wendt
- Center for Coastal Marine Sciences, Biological Sciences Department, California Polytechnic State University , San Luis Obispo California 93407, United States
| | - Grant Waltz
- Center for Coastal Marine Sciences, Biological Sciences Department, California Polytechnic State University , San Luis Obispo California 93407, United States
| | - Lenora Brewer
- Center for Coastal Marine Sciences, Biological Sciences Department, California Polytechnic State University , San Luis Obispo California 93407, United States
| | - Serena L M Teo
- Tropical Marine Science Institute, National University of Singapore , Singapore 119227
| | - Chin-Sing Lim
- Tropical Marine Science Institute, National University of Singapore , Singapore 119227
| | - Dean C Webster
- Department of Coatings and Polymeric Materials, North Dakota State University , Fargo North Dakota 58108, United States
| |
Collapse
|
11
|
Stafslien SJ, Sommer S, Webster DC, Bodkhe R, Pieper R, Daniels J, Vander Wal L, Callow MC, Callow JA, Ralston E, Swain G, Brewer L, Wendt D, Dickinson GH, Lim CS, Teo SLM. Comparison of laboratory and field testing performance evaluations of siloxane-polyurethane fouling-release marine coatings. BIOFOULING 2016; 32:949-968. [PMID: 27494780 DOI: 10.1080/08927014.2016.1211269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
A series of eight novel siloxane-polyurethane fouling-release (FR) coatings were assessed for their FR performance in both the laboratory and in the field. Laboratory analysis included adhesion assessments of bacteria, microalgae, macroalgal spores, adult barnacles and pseudobarnacles using high-throughput screening techniques, while field evaluations were conducted in accordance with standardized testing methods at three different ocean testing sites over the course of six-months exposure. The data collected were subjected to statistical analysis in order to identify potential correlations. In general, there was good agreement between the laboratory screening assays and the field assessments, with both regimes clearly distinguishing the siloxane-polyurethane compositions comprising monofunctional poly(dimethyl siloxane) (PDMS) (m-PDMS) as possessing superior, broad-spectrum FR properties compared to those prepared with difunctional PDMS (d-PDMS). Of the seven laboratory screening techniques, the Cellulophaga lytica biofilm retraction and reattached barnacle (Amphibalanus amphitrite) adhesion assays were shown to be the most predictive of broad-spectrum field performance.
Collapse
Affiliation(s)
- Shane J Stafslien
- a Office of Research and Creative Activity , North Dakota State University , Fargo , ND , USA
| | - Stacy Sommer
- b Department of Coatings and Polymeric Materials , North Dakota State University , Fargo , ND , USA
| | - Dean C Webster
- b Department of Coatings and Polymeric Materials , North Dakota State University , Fargo , ND , USA
| | - Rajan Bodkhe
- b Department of Coatings and Polymeric Materials , North Dakota State University , Fargo , ND , USA
| | - Robert Pieper
- b Department of Coatings and Polymeric Materials , North Dakota State University , Fargo , ND , USA
| | - Justin Daniels
- a Office of Research and Creative Activity , North Dakota State University , Fargo , ND , USA
| | - Lyndsi Vander Wal
- a Office of Research and Creative Activity , North Dakota State University , Fargo , ND , USA
| | - Maureen C Callow
- c School of Biological Sciences, University of Birmingham , Birmingham , AL , USA
| | - James A Callow
- c School of Biological Sciences, University of Birmingham , Birmingham , AL , USA
| | - Emily Ralston
- d Center for Corrosion and Biofouling Control , Florida Institute of Technology , Melbourne , FL , USA
| | - Geoff Swain
- d Center for Corrosion and Biofouling Control , Florida Institute of Technology , Melbourne , FL , USA
| | - Lenora Brewer
- e Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo , CA , USA
| | - Dean Wendt
- e Center for Coastal Marine Sciences, California Polytechnic State University , San Luis Obispo , CA , USA
| | - Gary H Dickinson
- f National University of Singapore, Tropical Marine Science Institute , Singapore
| | - Chin-Sing Lim
- f National University of Singapore, Tropical Marine Science Institute , Singapore
| | - Serena Lay-Ming Teo
- f National University of Singapore, Tropical Marine Science Institute , Singapore
| |
Collapse
|
12
|
Imbrogno J, Williams MD, Belfort G. A new combinatorial method for synthesizing, screening, and discovering antifouling surface chemistries. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2385-2392. [PMID: 25569191 DOI: 10.1021/am508943u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A set of diverse monomers were synthesized using combinatorial chemistry and tested using our unique high-throughput screening platform. The versatility of our platform is exemplified by possible applications in reducing biological fouling on ship hulls, filtration membranes, and surgical instruments, to name a few. To demonstrate its efficacy, the novel monomers were graft-polymerized onto light sensitive poly(ether sulfone) (PES) membranes via atmospheric-pressure plasma polymerization. A diverse library was synthesized by reacting a common vinyl ester linker with a library of maleimides containing various different functional groups. This allowed us to produce a library of many different surfaces and graft them all using the same linker chemistry. The modified surfaces were then tested and screened for the best antiprotein adsorption (nonfouling) properties. Membranes, functionalized with carboxylic acid, zwitterionic, and ester groups, had the lowest protein adhesion compared with that of an unmodified control PES membrane after a static fouling test. After dynamic fouling, these same functionalities as well as a hydroxyl group exhibited the highest permeability. These monomers performed better than our best previously synthesized amide monomers as well as our best poly(ethylene glycol) monomers, which are known to have very high protein resistance. Hansen solubility parameters qualitatively predicted which monomers performed best, indicating favorable interactions with water molecules.
Collapse
Affiliation(s)
- Joseph Imbrogno
- Howard P. Isermann Department of Chemical and Biological Engineering and The Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | |
Collapse
|
13
|
Stafslien SJ, Christianson D, Daniels J, VanderWal L, Chernykh A, Chisholm BJ. Combinatorial materials research applied to the development of new surface coatings XVI: fouling-release properties of amphiphilic polysiloxane coatings. BIOFOULING 2015; 31:135-149. [PMID: 25647177 DOI: 10.1080/08927014.2014.1003295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-throughput methods were used to prepare and characterize the fouling-release (FR) properties of an array of amphiphilic polysiloxane-based coatings possessing systematic variations in composition. The coatings were derived from a silanol-terminated polydimethylsiloxane, a silanol-terminated polytrifluorpropylmethylsiloxane (CF3-PDMS), 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane (TMS-PEG), methyltriacetoxysilane and hexamethyldisilazane-treated fumed silica. The variables investigated were the concentration of TMS-PEG and the concentration of CF3-PDMS. In general, it was found that the TMS-PEG and the CF3-PDMS had a synergist effect on FR properties with these properties being enhanced by combining both compounds into the coating formulations. In addition, reattached adult barnacles removed from coatings possessing both TMS-PEG and relatively high levels of CF3-PDMS displayed atypical base-plate morphologies. The majority of the barnacles removed from these coatings exhibited a cupped or domed base-plate as compared to the flat base-plate observed for the control coating that did not contain TMS-PEG or CF3-PDMS. Coating surface analysis using water contact angle measurements indicated that the presence of CF3-PDMS facilitated migration of TMS-PEG to the coating/air interface during the film formation/curing process. In general, coatings containing both TMS-PEG and relatively high levels of CF3-PDMS possessed excellent FR properties.
Collapse
Affiliation(s)
- Shane J Stafslien
- a Center for Nanoscale Science and Engineering , North Dakota State University , Fargo , USA
| | | | | | | | | | | |
Collapse
|
14
|
Salta M, Capretto L, Carugo D, Wharton JA, Stokes KR. Life under flow: A novel microfluidic device for the assessment of anti-biofilm technologies. BIOMICROFLUIDICS 2013; 7:64118. [PMID: 24454610 PMCID: PMC3888455 DOI: 10.1063/1.4850796] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/05/2013] [Indexed: 05/15/2023]
Abstract
In the current study, we have developed and fabricated a novel lab-on-a-chip device for the investigation of biofilm responses, such as attachment kinetics and initial biofilm formation, to different hydrodynamic conditions. The microfluidic flow channels are designed using computational fluid dynamic simulations so as to have a pre-defined, homogeneous wall shear stress in the channels, ranging from 0.03 to 4.30 Pa, which are relevant to in-service conditions on a ship hull, as well as other man-made marine platforms. Temporal variations of biofilm formation in the microfluidic device were assessed using time-lapse microscopy, nucleic acid staining, and confocal laser scanning microscopy (CLSM). Differences in attachment kinetics were observed with increasing shear stress, i.e., with increasing shear stress there appeared to be a delay in bacterial attachment, i.e., at 55, 120, 150, and 155 min for 0.03, 0.60, 2.15, and 4.30 Pa, respectively. CLSM confirmed marked variations in colony architecture, i.e.,: (i) lower shear stresses resulted in biofilms with distinctive morphologies mainly characterised by mushroom-like structures, interstitial channels, and internal voids, and (ii) for the higher shear stresses compact clusters with large interspaces between them were formed. The key advantage of the developed microfluidic device is the combination of three architectural features in one device, i.e., an open-system design, channel replication, and multiple fully developed shear stresses.
Collapse
Affiliation(s)
- Maria Salta
- National Centre for Advanced Tribology at Southampton (nCATS), Engineering Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Lorenzo Capretto
- Bioengineering Sciences Group, Engineering Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Dario Carugo
- Bioengineering Sciences Group, Engineering Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Julian A Wharton
- National Centre for Advanced Tribology at Southampton (nCATS), Engineering Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Keith R Stokes
- National Centre for Advanced Tribology at Southampton (nCATS), Engineering Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom ; Physical Sciences Department, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury SP4 0JQ, United Kingdom
| |
Collapse
|
15
|
Effect of a marine bacterial biofilm on adhesion and retention of pseudo barnacle to silicone coating surface. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-013-0218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Zhang W, Fujiwara T, Taşkent H, Zheng Y, Brunson K, Gamble L, Wynne KJ. A Polyurethane Surface Modifier: Contrasting Amphiphilic and Contraphilic Surfaces Driven by block and random Soft Blocks having Trifluoroethoxymethyl and PEG Side Chains. MACROMOL CHEM PHYS 2012; 213. [PMID: 24204100 DOI: 10.1002/macp.201200075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A conventional MDI-BD-PTMO polyurethane was modified using 2 wt.% polyurethanes (U) having copolyoxetane soft blocks with hydrophobic 3F, CF3CH2OCH2- and hydrophilic MEn, CH3O(CH2CH2O)nCH2-, n = 3, 7) side chains. In contrast to neat 3F-co-MEn-U, 2 wt.% 3F-co-MEn-U compositions have physically stable morphologies and wetting behavior. Surface composition (XPS) and amphiphilic or contraphilic wetting are controlled by the 3F-co-MEn polyoxetane soft block architecture and MEn side chain length. Importantly, θrec can be tuned for 2 wt.% 3F-co-MEn-U compositions independent of swelling, which is controlled by the bulk polyurethane. AFM imaging led to a new morphological model whereby fluorous/PEG-hard block nano-aggregates combine to form near surface features culminating in micron scale texturing.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | | | | | | | | | | | | |
Collapse
|
17
|
Lejars M, Margaillan A, Bressy C. Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings. Chem Rev 2012; 112:4347-90. [DOI: 10.1021/cr200350v] [Citation(s) in RCA: 786] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marlène Lejars
- Laboratoire
MAtériaux Polymères Interfaces
Environnement Marin (MAPIEM, E.A. 4323), Université du Sud Toulon-Var, ISITV, Avenue Georges Pompidou, BP-56,
83162 La Valette-du-Var Cedex, France
| | - André Margaillan
- Laboratoire
MAtériaux Polymères Interfaces
Environnement Marin (MAPIEM, E.A. 4323), Université du Sud Toulon-Var, ISITV, Avenue Georges Pompidou, BP-56,
83162 La Valette-du-Var Cedex, France
| | - Christine Bressy
- Laboratoire
MAtériaux Polymères Interfaces
Environnement Marin (MAPIEM, E.A. 4323), Université du Sud Toulon-Var, ISITV, Avenue Georges Pompidou, BP-56,
83162 La Valette-du-Var Cedex, France
| |
Collapse
|
18
|
Potyrailo R, Rajan K, Stoewe K, Takeuchi I, Chisholm B, Lam H. Combinatorial and high-throughput screening of materials libraries: review of state of the art. ACS COMBINATORIAL SCIENCE 2011; 13:579-633. [PMID: 21644562 DOI: 10.1021/co200007w] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rational materials design based on prior knowledge is attractive because it promises to avoid time-consuming synthesis and testing of numerous materials candidates. However with the increase of complexity of materials, the scientific ability for the rational materials design becomes progressively limited. As a result of this complexity, combinatorial and high-throughput (CHT) experimentation in materials science has been recognized as a new scientific approach to generate new knowledge. This review demonstrates the broad applicability of CHT experimentation technologies in discovery and optimization of new materials. We discuss general principles of CHT materials screening, followed by the detailed discussion of high-throughput materials characterization approaches, advances in data analysis/mining, and new materials developments facilitated by CHT experimentation. We critically analyze results of materials development in the areas most impacted by the CHT approaches, such as catalysis, electronic and functional materials, polymer-based industrial coatings, sensing materials, and biomaterials.
Collapse
Affiliation(s)
- Radislav Potyrailo
- Chemistry and Chemical Engineering, GE Global Research Center, Niskayuna, New York 12309, United States
| | - Krishna Rajan
- Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, Ames, Iowa 50011, United States
| | - Klaus Stoewe
- Universität des Saarlandes, Technische Chemie, Campus C4.2, 66123, Saarbruecken, Germany
| | - Ichiro Takeuchi
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Bret Chisholm
- Center for Nanoscale Science and Engineering and Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Hubert Lam
- Chemistry and Chemical Engineering, GE Global Research Center, Niskayuna, New York 12309, United States
| |
Collapse
|
19
|
Camps M, Briand JF, Guentas-Dombrowsky L, Culioli G, Bazire A, Blache Y. Antifouling activity of commercial biocides vs. natural and natural-derived products assessed by marine bacteria adhesion bioassay. MARINE POLLUTION BULLETIN 2011; 62:1032-1040. [PMID: 21414639 DOI: 10.1016/j.marpolbul.2011.02.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 05/30/2023]
Abstract
Biofilm formation is a key step during marine biofouling, the natural colonization of immersed substrata, leading to major economic and ecological consequences. Consequently, bacteria have been used for the screening of new non-toxic antifoulants: the adhesion of five strains isolated on three French locations was monitored using a fluorescence-based assay and toxicity was also evaluated. Nine biocides including commercial, natural and natural-derived products were tested. The commercial antifoulants, TBTO and Sea Nine showed low EC(50) but high toxicity. The non-commercial products TFA-Z showed significant anti-adhesion activities and appeared to be non-toxic, suggesting a specific anti-adhesion mechanism. In addition, the strains could be classified depending on their sensitivity to the molecules used even if strain sensitivity also depended on the molecules tested. In conclusion, TFA-Z would be a promising candidate as non-toxic antifoulant and our results strengthen the need to perform antifouling bioassays with a panel of strains showing different response profiles.
Collapse
Affiliation(s)
- Mercedes Camps
- Laboratoire MAPIEM, EA 4323, Biofouling et Substances Naturelles Marines, Université du Sud Toulon-Var, 83162 La Valette-du-Var, France
| | | | | | | | | | | |
Collapse
|
20
|
Sommer S, Ekin A, Webster DC, Stafslien SJ, Daniels J, VanderWal LJ, Thompson SEM, Callow ME, Callow JA. A preliminary study on the properties and fouling-release performance of siloxane-polyurethane coatings prepared from poly(dimethylsiloxane) (PDMS) macromers. BIOFOULING 2010; 26:961-72. [PMID: 21058057 DOI: 10.1080/08927014.2010.531272] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Siloxane-polyurethane fouling-release (FR) coatings based on aminopropyl terminated poly(dimethylsiloxane) (PDMS) macromers were prepared and characterized for FR performance via laboratory biological assays. These systems rely on self-stratification, resulting in a coating with a siloxane-rich surface and polyurethane bulk. Previously, these coating systems have used PDMS with multiple functional groups which react into the polyurethane bulk. Here, aminopropyl terminated PDMS macromers were prepared, where a single amine group anchors the PDMS in the coating. Coatings were prepared with four molecular weights (1000, 5000, 10,000, and 15,000 g mol⁻¹) and two levels of PDMS (5% and 10%). High water contact angles and low surface energies were observed for the coatings before and after water immersion, along with low pseudobarnacle removal forces. Laboratory bioassays showed reduced biofilm retention of marine bacteria, good removal of diatoms from coatings with low molecular weight PDMS, high removal of algal sporelings (young plants), and low removal forces of live barnacles.
Collapse
Affiliation(s)
- Stacy Sommer
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bressy C, Hellio C, Marechal JP, Tanguy B, Margaillan A. Bioassays and field immersion tests: a comparison of the antifouling activity of copper-free poly(methacrylic)-based coatings containing tertiary amines and ammonium salt groups. BIOFOULING 2010; 26:769-777. [PMID: 20818516 DOI: 10.1080/08927014.2010.516392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper focuses on the activity spectrum of three dimethylalkyl tertiary amines as potential active molecules and the corresponding ammonium salt-based antifouling (AF) paints. Bioassays (using marine bacteria, microalgae and barnacles) and field tests were combined to assess the AF activity of coatings. Bioassay results demonstrated that the ammonium salt-based paints did not inhibit the growth of microorganisms (except the dimethyldodecylammonium-based coatings) and that the tertiary amines were potent towards bacteria, diatoms, and barnacle larvae at non-toxic concentrations (therapeutic ratio, LC50/EC50, <1). The results from field tests indicated that the ammonium salt-based coatings inhibited the settlement of macrofouling and the dimethylhexadecylammonium-based coatings provided protection against slime in comparison with PVC blank panels. Thus, results from laboratory assays did not fully concur with the AF activity of the paints in the field trial.
Collapse
Affiliation(s)
- C Bressy
- Laboratoire Matériaux Polymères-Interfaces-Environnement Marin, E.A. 4323. Université du Sud Toulon Var, La Valette du Var, France.
| | | | | | | | | |
Collapse
|
22
|
Abstract
The authors describe a novel high-throughput screening platform that provides rapid, reliable, quantitative assessment of biofilm formation and removal on engineered surfaces. Unlike traditional biofilm assays based on plate readers, this assay platform is based on high-content screening, which allows for multiplexing to simultaneously quantify the number of bacterial adhesions per unit area and the viability of adhered cells using fluorescent dye combinations. This platform is fully automated and has a throughput of more than 10,000 wells per day. The authors used this platform to examine the influence of different assay buffer systems on bacterial adhesion, viability, and removal on cross-linked polyvinyl alcohol coating films synthesized directly onto the bottoms of 384-well plates. The results indicated that water chemistry, bacteria cell type, and film chemistry combine to govern biofilm formation. In general, both reversible and irreversible bacterial adhesion increased with the extent of cross-linking in coating films, which correlates strongly with coating film cross-linking degree and hydrophobicity, which is closely related. The high-throughput platform offers a powerful tool for rapid evaluation of fouling-resistant coating films in addition to elucidation of fundamental mechanisms governing bacterial adhesion.
Collapse
Affiliation(s)
- Fubing Peng
- California NanoSystems Institute, University of California, Los Angeles, USA
| | | | | |
Collapse
|
23
|
D'Souza F, Bruin A, Biersteker R, Donnelly G, Klijnstra J, Rentrop C, Willemsen P. Bacterial assay for the rapid assessment of antifouling and fouling release properties of coatings and materials. J Ind Microbiol Biotechnol 2009; 37:363-70. [PMID: 20039190 DOI: 10.1007/s10295-009-0681-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/08/2009] [Indexed: 11/25/2022]
Abstract
An assay has been developed to accurately quantify the growth and release behaviour of bacterial biofilms on several test reference materials and coatings, using the marine bacterium Cobetia marina as a model organism. The assay can be used to investigate the inhibition of bacterial growth and release properties of many surfaces when compared to a reference. The method is based upon the staining of attached bacterial cells with the nucleic acid-binding, green fluorescent SYTO 13 stain. A strong linear correlation exists between the fluorescence of the bacterial suspension measured (RFU) using a plate reader and the total bacterial count measured with epifluorescence microscopy. This relationship allows the fluorescent technique to be used for the quantification of bacterial cells attached to surfaces. As the bacteria proliferate on the surface over a period of time, the relative fluorescence unit (RFU) measured using the plate reader also shows an increase with time. This was observed on all three test surfaces (glass, Epikote and Silastic T2) over a period of 4 h of bacterial growth, followed by a release assay, which was carried out by the application of hydrodynamic shear forces using a custom-made rotary device. Different fixed rotor speeds were tested, and based on the release analysis, 12 knots was used to provide standard shear force. The assay developed was then applied for assessing three different antifouling coatings of different surface roughness. The novel assay allows the rapid and sensitive enumeration of attached bacteria directly on the coated surface. This is the first plate reader assay technique that allows estimation of irreversibly attached bacterial cells directly on the coated surface without their removal from the surface or extraction of a stain into solution.
Collapse
Affiliation(s)
- Fraddry D'Souza
- Corrosion and Antifouling, TNO Science and Industry, Bevesierweg MML (Harssens), Den Helder, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
24
|
High-Throughput Microbial Biofilm Assay for the Rapid Discovery of Antimicrobial Coatings and Materials for Biomedical Applications. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/9780470538357.ch15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Briand JF. Marine antifouling laboratory bioassays: an overview of their diversity. BIOFOULING 2009; 25:297-311. [PMID: 19191083 DOI: 10.1080/08927010902745316] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In aquatic environments, biofouling is a natural process of colonization of submerged surfaces, either living or artificial, involving a wide range of organisms from bacteria to invertebrates. Antifouling can be defined as preventing the attachment of organisms onto surfaces. This article reviews the laboratory bioassays that have been developed for studying the control of algae and invertebrates by epibiosis (chemical ecology) and the screening of new active compounds (natural products and biocides) to inhibit settlement or adhesion, ie fouling-release coatings. The assays utilize a range of organisms (mainly marine bacteria, diatoms, algae, barnacles). The main attributes of assays for micro- and macroorganisms are described in terms of their main characteristics and depending on the biological process assessed (growth, adhesion, toxicity, behavior). The validation of bioassays is also discussed.
Collapse
Affiliation(s)
- Jean-Francois Briand
- MAPIEM, Biofouling et Substances Naturelles Marines, Universite du Sud Toulon-Var, La Valette-du-Var, France.
| |
Collapse
|
26
|
Ye S, McClelland A, Majumdar P, Stafslien SJ, Daniels J, Chisholm B, Chen Z. Detection of tethered biocide moiety segregation to silicone surface using sum frequency generation vibrational spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:9686-9694. [PMID: 18666787 DOI: 10.1021/la800769z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Polymer surface properties are controlled by the molecular surface structures. Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study polymer surface structures at the molecular level in different chemical environments. In this research, SFG has been used to study the surface segregation of biocide moieties derived from triclosan (TCS) and tetradecyldimethyl (3-trimethoxysilylpropyl) ammonium chloride (C-14 QAS) that have been covalently bound to a poly(dimethylsiloxane) (PDMS) matrix. PDMS materials are being developed as coatings to control biofouling. This SFG study indicated that TCS-moieties segregate to the surface when the bulk concentration of TCS-moieties exceeds 8.75% by weight. Surface segregation of C-14 QAS moieties was detected after 5% by weight incorporation into a PDMS matrix. SFG results were found to correlate well with antifouling activity, providing a molecular interpretation of such results. This research showed that SFG can aid in the development of coatings for controlling biofouling by elucidating the chemical structure of the coating surface.
Collapse
Affiliation(s)
- Shuji Ye
- Department of Chemistry and Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Ribeiro E, Stafslien SJ, Cassé F, Callow JA, Callow ME, Pieper RJ, Daniels JW, Bahr JA, Webster DC. Automated Image-Based Method for Laboratory Screening of Coating Libraries for Adhesion of Algae and Bacterial Biofilms. ACTA ACUST UNITED AC 2008; 10:586-94. [DOI: 10.1021/cc800047s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eraldo Ribeiro
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - Shane J. Stafslien
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - Franck Cassé
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - James A. Callow
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - Maureen E. Callow
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - Robert J. Pieper
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - Justin W. Daniels
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - James A. Bahr
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - Dean C. Webster
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
28
|
Webster DC. Combinatorial and High-Throughput Methods in Macromolecular Materials Research and Development. MACROMOL CHEM PHYS 2008. [DOI: 10.1002/macp.200700558] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Rittschof D, Orihuela B, Stafslien S, Daniels J, Christianson D, Chisholm B, Holm E. Barnacle reattachment: a tool for studying barnacle adhesion. BIOFOULING 2008; 24:1-9. [PMID: 18058300 DOI: 10.1080/08927010701784920] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Standard approaches for measuring adhesion strength of fouling organisms use barnacles, tubeworms or oysters settled and grown in the field or laboratory, to a measurable size. These approaches suffer from the vagaries of larval supply, settlement behavior, predation, disturbance and environmental stress. Procedures for reattaching barnacles to experimental surfaces are reported. When procedures are followed, adhesion strength measurements on silicone substrata after 2 weeks are comparable to those obtained using standard methods. Hydrophilic surfaces require reattachment for 2-4 weeks. The adhesion strength of barnacles in reattachment assays was positively correlated to results obtained from field testing a series of experimental polysiloxane fouling-release coatings (r = 0.89). The reattachment method allows for precise barnacle orientation, enabling the use of small surfaces and the potential for automation. The method enables down-selection of coatings from combinatorial approaches to manageable levels for definitive field testing. Reattachment can be used with coatings that combine antifouling and fouling-release technologies.
Collapse
Affiliation(s)
- D Rittschof
- Duke University Marine Laboratory, Beaufort, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Majumdar P, Lee E, Patel N, Ward K, Stafslien SJ, Daniels J, Chisholm BJ, Boudjouk P, Callow ME, Callow JA, Thompson SEM. Combinatorial materials research applied to the development of new surface coatings IX: an investigation of novel antifouling/fouling-release coatings containing quaternary ammonium salt groups. BIOFOULING 2008; 24:185-200. [PMID: 18368587 DOI: 10.1080/08927010801894660] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Polysiloxane coatings containing chemically-bound ("tethered") quaternary ammonium salt (QAS) moieties were investigated for potential application as environmental-friendly coatings to control marine biofouling. A combinatorial/high-throughput approach was applied to the investigation to enable multiple variables to be probed simultaneously and efficiently. The variables investigated for the moisture-curable coatings included QAS composition, ie alkyl chain length, and concentration as well as silanol-terminated polysiloxane molecular weight. A total of 75 compositionally unique coatings were prepared and characterized using surface characterization techniques and biological assays. Biological assays were based on two different marine microorganisms, a bacterium, Cellulophaga lytica and a diatom, Navicula incerta, as well as a macrofouling alga, Ulva. The results of the study showed that all three variables influenced coating surface properties as well as antifouling (AF) and fouling-release (FR) characteristics. The incorporation of QAS moieties into a polysiloxane matrix generally resulted in an increase in coating surface hydrophobicity. Characterization of coating surface morphology revealed a heterogeneous, two-phase morphology for many of the coatings investigated. A correlation was found between water contact angle and coating surface roughness, with the contact angle increasing with increasing surface roughness. Coatings based on the QAS moiety containing the longest alkyl chain (18 carbons) displayed the highest micro-roughness and, thus, the most hydrophobic surfaces. With regard to AF and FR properties, coatings based on the 18 carbon QAS moieties were very effective at inhibiting C. lytica biofilm formation and enabling easy removal of Ulva sporelings (young plants) while coatings based on the 14 carbon QAS moities were very effective at inhibiting biofilm growth of N. incerta.
Collapse
Affiliation(s)
- Partha Majumdar
- Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND 58105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Stafslien SJ, Bahr JA, Daniels JW, Wal LV, Nevins J, Smith J, Schiele K, Chisholm B. Combinatorial materials research applied to the development of new surface coatings VI: An automated spinning water jet apparatus for the high-throughput characterization of fouling-release marine coatings. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2007; 78:072204. [PMID: 17672735 DOI: 10.1063/1.2755965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Large numbers of coatings can be generated very quickly using a combinatorial high-throughput approach. Rapid screening assays are typically required to adequately evaluate and down select coating candidates to identify promising compositions. An automated, spinning water jet apparatus was developed to rapidly characterize the adhesion strength of marine organisms to coating surfaces. Coating arrays are cast in multiwell plates and subjected to a jet of water of controlled pressure and duration. Array plates are manipulated by a robotic arm to facilitate accurate and repeatable water jet treatments. Jet pressures of 40-688 kPa can be generated and precisely maintained by computer control. A five axis robotic arm selects plates from three plate stacking hotels yielding a total of 39 plates or 936 individual coating samples for each experimental run. All robotic instructions, process parameters, and data are stored and controlled by the computer. The large plate handling capacity offered by the robotic system enables the analysis of a wide variety of coatings for "fouling-release" properties. A brief example demonstrating the capability of the automated water jet apparatus to evaluate marine bacterial adhesion to coating surfaces is provided.
Collapse
Affiliation(s)
- Shane J Stafslien
- Center for Nanoscale Science and Engineering, North Dakota State University, 1805 NDSU Research Park Drive, Fargo, North Dakota 58102, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Cassé F, Ribeiro E, Ekin A, Webster DC, Callow JA, Callow ME. Laboratory screening of coating libraries for algal adhesion. BIOFOULING 2007; 23:267-76. [PMID: 17653936 DOI: 10.1080/08927010701288336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Coatings libraries achieved through a combinatorial chemistry approach, which may generate tens to hundreds of formulations, can be deposited in an array of 12 patches, each approximately 9 cm(2), on 10 x 20 cm primed aluminum panels. However, existing methods to quantify algal biomass on coatings are unsuitable for this type of array format. This paper describes an algorithm modelled on a probability distribution that quantifies the area of surface covered by a green alga from digital images. The method allows coatings with potential fouling-release properties to be down-selected for further evaluation. The use of the algorithm is illustrated by a set of eight siloxane-polyurethane coatings made using organofunctional poly(dimethylsiloxane) (PDMS) and poly(epsilon-caprolactone)-PDMS-poly(epsilon-caprolactone) (PCL-PDMS-PCL) triblock copolymers along with four PDMS standards which were deposited on one panel. Six replicate panels were seeded with Ulva zoospores which grew into sporelings (small plants) that completely covered the surface. The ease of removal of the Ulva sporeling biofilms was determined by automated water jetting at six different impact pressures. The coverage of the biofilm on the twelve individual formulations after jet washing was quantified from the green colour of digital images. The data are discussed in relation to the composition of the coatings.
Collapse
Affiliation(s)
- Franck Cassé
- School of Biosciences, The University of Birmingham, UK
| | | | | | | | | | | |
Collapse
|
33
|
Cassé F, Stafslien SJ, Bahr JA, Daniels J, Finlay JA, Callow JA, Callow ME. Combinatorial materials research applied to the development of new surface coatings V. Application of a spinning water-jet for the semi-high throughput assessment of the attachment strength of marine fouling algae. BIOFOULING 2007; 23:121-30. [PMID: 17453736 DOI: 10.1080/08927010701189583] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In order to facilitate a semi-high throughput approach to the evaluation of novel fouling-release coatings, a 'spinjet' apparatus has been constructed. The apparatus delivers a jet of water of controlled, variable pressure into the wells of 24-well plates in order to facilitate measurement of the strength of adhesion of algae growing on the base of the wells. Two algae, namely, sporelings (young plants) of the green macroalga Ulva and a diatom (Navicula), were selected as test organisms because of their opposing responses to silicone fouling-release coatings. The percentage removal of algal biofilm was positively correlated with the impact pressure for both organisms growing on all the coating types. Ulva sporelings were removed from silicone elastomers at low impact pressures in contrast to Navicula cells which were strongly attached to this type of coating. The data obtained for the 24-well plates correlated with those obtained for the same coatings applied to microscope slides. The data show that the 24-well plate format is suitable for semi-high throughput screening of the adhesion strength of algae.
Collapse
Affiliation(s)
- Franck Cassé
- The University of Birmingham, School of Biosciences, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Webster DC, Chisholm BJ, Stafslien SJ. Mini-review: combinatorial approaches for the design of novel coating systems. BIOFOULING 2007; 23:179-92. [PMID: 17653929 DOI: 10.1080/08927010701250948] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Combinatorial and high throughput experimental methods are being applied to the design and development of novel polymers and coatings used in a number of application areas. Methods have been developed for polymer synthesis and screening and for the development of polymer thin film and coating libraries and the screening of these libraries for key properties such as surface energy and modulus. Combinatorial and high throughput methods enable the efficient exploration of a large number of compositional variables over a wide range. In the development of coatings for use in the marine environment, the key challenge is in the development of screening methods that can predict good performance. A number of assays are under development that will permit the rapid screening of the interaction of coatings with representative marine organisms.
Collapse
Affiliation(s)
- Dean C Webster
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58105, USA.
| | | | | |
Collapse
|