1
|
Hurrell BP, Helou DG, Shafiei-Jahani P, Howard E, Painter JD, Quach C, Akbari O. Cannabinoid receptor 2 engagement promotes group 2 innate lymphoid cell expansion and enhances airway hyperreactivity. J Allergy Clin Immunol 2022; 149:1628-1642.e10. [PMID: 34673048 PMCID: PMC9013728 DOI: 10.1016/j.jaci.2021.09.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cannabinoids modulate the activation of immune cells and physiologic processes in the lungs. Group 2 innate lymphoid cells (ILC2s) are central players in type 2 asthma, but how cannabinoids modulate ILC2 activation remains to be elucidated. OBJECTIVE Our goal was to investigate the effects of cannabinoids on ILC2s and their role in asthma. METHODS A combination of cannabinoid receptor (CB)2 knockout (KO) mice, CB2 antagonist and agonist were used in the mouse models of IL-33, IL-25, and Alternaria alternata ILC2-dependent airway inflammation. RNA sequencing was performed to assess transcriptomic changes in ILC2s, and humanized mice were used to assess the role of CB2 signaling in human ILC2s. RESULTS We provide evidence that CB2 signaling in ILC2s is important for the development of ILC2-driven airway inflammation in both mice and human. We showed that both naive and activated murine pulmonary ILC2s express CB2. CB2 signaling did not affect ILC2 homeostasis at steady state, but strikingly it stimulated ILC2 proliferation and function upon activation. As a result, ILC2s lacking CB2 induced lower lung inflammation, as we made similar observations using a CB2 antagonist. Conversely, CB2 agonism remarkably exacerbated ILC2-driven airway hyperreactivity and lung inflammation. Mechanistically, transcriptomic and protein analysis revealed that CB2 signaling induced cyclic adenosine monophosphate-response element binding protein (CREB) phosphorylation in ILC2s. Human ILC2s expressed CB2, as CB2 antagonism and agonism showed opposing effects on ILC2 effector function and development of airway hyperreactivity in humanized mice. CONCLUSION Collectively, our results define CB2 signaling in ILC2s as an important modulator of airway inflammation.
Collapse
Affiliation(s)
- Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif.
| |
Collapse
|
2
|
deRoon-Cassini TA, Bergner CL, Chesney SA, Schumann NR, Lee TS, Brasel KJ, Hillard CJ. Circulating endocannabinoids and genetic polymorphisms as predictors of posttraumatic stress disorder symptom severity: heterogeneity in a community-based cohort. Transl Psychiatry 2022; 12:48. [PMID: 35105857 PMCID: PMC8807700 DOI: 10.1038/s41398-022-01808-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/28/2021] [Accepted: 01/14/2022] [Indexed: 12/29/2022] Open
Abstract
The endocannabinoid signaling system (ECSS) regulates fear and anxiety. While ECSS hypoactivity can contribute to symptoms of established post-traumatic stress disorder (PTSD), the role of the ECSS in PTSD development following trauma is unknown. A prospective, longitudinal cohort study of 170 individuals (47% non-Hispanic Caucasian and 70% male) treated at a level 1 trauma center for traumatic injury was carried out. PTSD symptom assessments and blood were obtained during hospitalization and at follow-up (6-8 months post injury). Serum concentrations of the endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) were determined at both time points and selected genetic polymorphisms in endocannabinoid genes, including rs324420 in fatty acid amide hydrolase, were assessed. For the entire sample, serum concentrations of AEA at hospitalization were significantly higher in those diagnosed with PTSD at follow-up (p = 0.030). Serum concentrations of 2-AG were significantly, positively correlated with PTSD symptom severity at follow-up only in minorities (p = 0.014). Minority participants (mostly Black/African American) also demonstrated significant, negative correlations between serum AEA concentrations and PTSD symptom severity both measured at hospitalization (p = 0.015). The A/A genotype at rs324420 was associated with significantly higher PTSD symptom severity (p = 0.025) and occurred exclusively in the Black participants. Collectively, these results are contrary to our hypothesis and find positive associations between circulating endocannabinoids and risk for PTSD. Minority status is an important modulator of the association between endocannabinoids and risk for PTSD, suggesting that the ECSS contributes to risk most significantly in these individuals and the contextual factors related to these findings should be further explored.
Collapse
Affiliation(s)
- Terri A deRoon-Cassini
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Carisa L Bergner
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | | | | | - Karen J Brasel
- Department of Surgery, Oregon Health and Science University, Milwaukee, WI, United States
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
3
|
Demir Çaltekin M, Özkut MM, Çaltekin İ, Kaymak E, Çakır M, Kara M, Yalvaç ES. The protective effect of JZL184 on ovarian ischemia reperfusion injury and ovarian reserve in rats. J Obstet Gynaecol Res 2021; 47:2692-2704. [PMID: 34008304 DOI: 10.1111/jog.14859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 11/28/2022]
Abstract
AIM Ovarian torsion is a gynecopathology that requires emergency surgery in women. However, ischemia reperfusion injury (IRI) occurs after treatment with detorsion. This study aimed to evaluate the effects of monoacylglycerol lipase inhibitor JZL184 on ovarian IRI and ovarian reserve. METHODS Forty-eight female Wistar albino rats were divided into six groups. Group 1: Sham, Group 2: Ischemia, Group 3: ischemia/reperfusion (IR), Group 4: IR + JZL184 4 mg/kg, Group 5: IR + JZL184 16 mg/kg, Group 6: IR + vehicle (dimethyl sulfoxide). Three hours of ischemia followed by 3 h of reperfusion. Two different doses of JZL184 (4 and 16 mg/kg) were administered intraperitoneally in Group 4 and 5, 30 min before reperfusion. Ovarian IRI and ovarian reserve were evaluated in serum and tissue by using histopathological and biochemical parameters. RESULTS Treatment with JZL184 was associated with a significant increase in ovarian 2-arachidonoylglycerol and improved serum anti-Mullerian hormone, İnhibin B, primordial follicle count, and ovarian histopathological damage score (p < 0.05). JZL184 treatment significantly decreased the level of malondialdehyde, and increased superoxide dismutase enzyme activity and glutathione (GSH) levels (p < 0.05). The increased phosphorile nuclear factor-κB (Phospho-NF-κB-p65), tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), transforming growth factor beta 1 (TGF-β1), and TUNEL assay immunopositivity scores in ovarian I/R injury were decreased after treatment with JZL184 (p < 0.05). CONCLUSIONS JZL184 showed significant ameliorative effects on ovarian IRI and ovarian reserve caused by IR through acting as an antioxidant, anti-inflammatory, and antiapoptotic agent. Thus, JZL184 may be a novel therapeutic agent for ovarian IRI.
Collapse
Affiliation(s)
- Melike Demir Çaltekin
- Department of Obstetrics and Gynecology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Mahmud Mustafa Özkut
- Department of Histology and Embryology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - İbrahim Çaltekin
- Department of Emergency Medicine, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Emin Kaymak
- Department of Histology and Embryology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Murat Çakır
- Department of Physiology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Mustafa Kara
- Department of Obstetrics and Gynecology, Kırşehir Ahi Evran University Faculty of Medicine, Kırşehir, Turkey
| | - Ethem Serdar Yalvaç
- Department of Obstetrics and Gynecology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| |
Collapse
|
4
|
Bozkurt TE. Endocannabinoid System in the Airways. Molecules 2019; 24:E4626. [PMID: 31861200 PMCID: PMC6943521 DOI: 10.3390/molecules24244626] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
Cannabinoids and the mammalian endocannabinoid system is an important research area of interest and attracted many researchers because of their widespread biological effects. The significant immune-modulatory role of cannabinoids has suggested their therapeutic use in several inflammatory conditions. Airways are prone to environmental irritants and stimulants, and increased inflammation is an important process in most of the respiratory diseases. Therefore, the main strategies for treating airway diseases are suppression of inflammation and producing bronchodilation. The ability of cannabinoids to induce bronchodilation and modify inflammation indicates their importance for airway physiology and pathologies. In this review, the contribution of cannabinoids and the endocannabinoid system in the airways are discussed, and the existing data for their therapeutic use in airway diseases are presented.
Collapse
Affiliation(s)
- Turgut Emrah Bozkurt
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
5
|
Baggelaar MP, Maccarrone M, van der Stelt M. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog Lipid Res 2018; 71:1-17. [PMID: 29751000 DOI: 10.1016/j.plipres.2018.05.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 11/19/2022]
Abstract
2-Arachidonoylglycerol (2-AG) is a signaling lipid in the central nervous system that is a key regulator of neurotransmitter release. 2-AG is an endocannabinoid that activates the cannabinoid CB1 receptor. It is involved in a wide array of (patho)physiological functions, such as emotion, cognition, energy balance, pain sensation and neuroinflammation. In this review, we describe the biosynthetic and metabolic pathways of 2-AG and how chemical and genetic perturbation of these pathways has led to insight in the biological role of this signaling lipid. Finally, we discuss the potential therapeutic benefits of modulating 2-AG levels in the brain.
Collapse
Affiliation(s)
- Marc P Baggelaar
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; European Centre for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, 00143 Rome, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands..
| |
Collapse
|
6
|
Circulating Endocannabinoids: From Whence Do They Come and Where are They Going? Neuropsychopharmacology 2018; 43:155-172. [PMID: 28653665 PMCID: PMC5719092 DOI: 10.1038/npp.2017.130] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022]
Abstract
The goal of this review is to summarize studies in which concentrations of circulating endocannabinoids in humans have been examined in relationship to physiological measurements and pathological status. The roles of endocannabinoids in the regulation of energy intake and storage have been well studied and the data obtained consistently support the hypothesis that endocannabinoid signaling is associated with increased consumption and storage of energy. Physical exercise mobilizes endocannabinoids, which could contribute to refilling of energy stores and also to the analgesic and mood-elevating effects of exercise. Circulating concentrations of 2-arachidonoylglycerol are very significantly circadian and dysregulated when sleep is disrupted. Other conditions under which circulating endocannabinoids are altered include inflammation and pain. A second important role for endocannabinoid signaling is to restore homeostasis following stress. Circulating endocannabinoids are stress-responsive and there is evidence that their concentrations are altered in disorders associated with excessive stress, including post-traumatic stress disorder. Although determination of circulating endocannabinoids can provide important information about the state of endocannabinoid signaling and thus allow for hypotheses to be defined and tested, the large number of physiological factors that contribute to their circulating concentrations makes it difficult to use them in isolation as a biomarker for a specific disorder.
Collapse
|
7
|
Sido JM, Nagarkatti PS, Nagarkatti M. Production of endocannabinoids by activated T cells and B cells modulates inflammation associated with delayed-type hypersensitivity. Eur J Immunol 2017; 46:1472-9. [PMID: 27064137 DOI: 10.1002/eji.201546181] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/29/2016] [Accepted: 04/05/2016] [Indexed: 11/07/2022]
Abstract
Endocannabinoids are endogenous ligands for the cannabinoid (CB) receptors which include anandamide (AEA) and 2-arachidonyl glycerol (2-AG). 2-AG has been linked to inflammation due to its elevated expression in animal models of autoimmunity and hypersensitivity. However, administration of exogenous 2-AG has been shown to suppress inflammation making its precise role unclear. In the current study, we investigated the role of 2-AG following immunization of C57BL/6 (BL6) mice with methylated BSA (mBSA) antigen, which triggers both delayed-type hypersensitivity (DTH) and antibody response. We found that while naïve T cells and B cells expressed low levels of 2-AG, expression significantly increased upon activation. Furthermore, mBSA-immunized mice exhibited higher 2-AG concentration than naïve mice. Exogenous 2-AG treatment (40 mg/kg) in mBSA-immunized mice led to reduced DTH response, and decreased Th1 and Th17-associated cytokines including IL-6, IL-2, TNF-α, and the IgG response. Addition of 2-AG to activated popliteal lymph node (PopLN) cell cultures also inhibited lymphocyte proliferation. Together, these data show for the first time that activated T and B cells produce 2-AG, which plays a negative regulatory role to decrease DTH via inhibition of T-cell activation and proliferation. Moreover, these findings suggest that exogenous 2-AG treatment can be used therapeutically in Th1- or Th17-driven disease.
Collapse
Affiliation(s)
- Jessica M Sido
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| |
Collapse
|
8
|
Moradi H, Oveisi F, Khanifar E, Moreno-Sanz G, Vaziri ND, Piomelli D. Increased Renal 2-Arachidonoylglycerol Level Is Associated with Improved Renal Function in a Mouse Model of Acute Kidney Injury. Cannabis Cannabinoid Res 2016; 1:218-228. [PMID: 28861493 PMCID: PMC5531066 DOI: 10.1089/can.2016.0013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Acute kidney injury (AKI) is associated with a significantly increased risk of morbidity and mortality. Ischemia-reperfusion injury (IRI) is a major cause of AKI. In this study, we investigated the role of the endocannabinoid (EC) system in renal IRI using a well-established mouse model. Materials and Methods: Renal ischemia was induced in male C57BL/6 mice by clamping both kidney pedicles for 30 min followed by 24 h of reperfusion. To increase renal 2-arachidonoylglycerol (2-AG) levels, mice were pretreated with JZL184 (16 mg/kg), 30 min before IRI. Serum creatinine and blood urea nitrogen (BUN), renal tubular damage, renal content of ECs and renal expression of markers of inflammation and oxidative stress were measured. Results: Renal IRI was associated with significantly increased serum BUN and creatinine, increased tubular damage score, increased expression of renal markers of inflammation and oxidative stress and elevated renal 2-AG content. Pretreatment with JZL184 was associated with a significant increase in renal 2-AG content and there was also improved serum BUN, creatinine and tubular damage score. However, renal expression of inflammation and oxidative stress markers remained unchanged. Conclusions: This is the first report documenting that renal IRI is associated with an increase in kidney 2-AG content. Further enhancement of 2-AG levels using JZL184 improved indices of renal function and histology, but did not lower renal expression of markers of inflammation and oxidative stress. Further studies are needed to determine the mechanisms responsible for the effects observed and the potential value of 2-AG as a therapeutic target in renal IRI.
Collapse
Affiliation(s)
- Hamid Moradi
- Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, Orange, California.,Nephrology Section, Long Beach VA Healthcare System, Long Beach, California
| | - Fariba Oveisi
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Elham Khanifar
- Long Beach Memorial Pathology Group, Long Beach, California
| | - Guillermo Moreno-Sanz
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, Orange, California
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, California
| |
Collapse
|
9
|
Turcotte C, Chouinard F, Lefebvre JS, Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. J Leukoc Biol 2015; 97:1049-70. [PMID: 25877930 DOI: 10.1189/jlb.3ru0115-021r] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/28/2015] [Indexed: 12/26/2022] Open
Abstract
2-Arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA) are endocannabinoids that have been implicated in many physiologic disorders, including obesity, metabolic syndromes, hepatic diseases, pain, neurologic disorders, and inflammation. Their immunomodulatory effects are numerous and are not always mediated by cannabinoid receptors, reflecting the presence of an arachidonic acid (AA) molecule in their structure, the latter being the precursor of numerous bioactive lipids that are pro- or anti-inflammatory. 2-AG and AEA can thus serve as a source of AA but can also be metabolized by most eicosanoid biosynthetic enzymes, yielding additional lipids. In this regard, enhancing endocannabinoid levels by using endocannabinoid hydrolysis inhibitors is likely to augment the levels of these lipids that could regulate inflammatory cell functions. This review summarizes the metabolic pathways involved in the biosynthesis and metabolism of AEA and 2-AG, as well as the biologic effects of the 2-AG and AEA lipidomes in the regulation of inflammation.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - François Chouinard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Julie S Lefebvre
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
10
|
Endocannabinoid system as a potential mechanism for n-3 long-chain polyunsaturated fatty acid mediated cardiovascular protection. Proc Nutr Soc 2013; 72:460-9. [PMID: 24020800 DOI: 10.1017/s0029665113003406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The presence of an active and functioning endocannabinoid (EC) system within cardiovascular tissues implies that this system has either a physiological or pathophysiological role (or both), and there is a substantial literature to support the notion that, in the main, they are protective in the setting of various CVD states. Moreover, there is an equally extensive literature to demonstrate the cardio- and vasculo-protective effects of n-3 long-chain (LC)-PUFA. It is now becoming evident that there appears to be a close relationship between dietary intervention with n-3 LC-PUFA and changes in tissue levels of EC, raising the question as to whether or not EC may, at least in part, play a role in mediating the cardio-and vasculo-protective effects of n-3 LC-PUFA. This brief review summarises the current understanding of how both EC and n-3 LC-PUFA exert their protective effects in three major cardiovascular disorders (hypertension, atherosclerosis and acute myocardial infarction) and attempts to identify the similarities and differences that may indicate common or integrated mechanisms. From the data available, it is unlikely that in hypertension EC mediate any beneficial effects of n-3 LC-PUFA, since they do not share common mechanisms of blood pressure reduction. However, inhibition of inflammation is an effect shared by EC and n-3 LC-PUFA in the setting of both atherosclerosis and myocardial reperfusion injury, while blockade of L-type Ca2+ channels is one of the possible common mechanisms for their antiarrhythmic effects. Although both EC and n-3 LC-PUFA demonstrate vasculo- and cardio-protection, the literature overwhelmingly shows that n-3 LC-PUFA decrease tissue levels of EC through formation of EC–n-3 LC-PUFA conjugates, which is counter-intuitive to an argument that EC may mediate the effects of n-3 LC-PUFA. However, the discovery that these conjugates have a greater affinity for cannabinoid receptors than the native EC provides a fascinating avenue for further research into novel approaches for the treatment and prevention of atherosclerosis and myocardial injury following ischaemia/reperfusion.
Collapse
|
11
|
Pacher P, Kunos G. Modulating the endocannabinoid system in human health and disease--successes and failures. FEBS J 2013; 280:1918-43. [PMID: 23551849 PMCID: PMC3684164 DOI: 10.1111/febs.12260] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 12/20/2022]
Abstract
The discovery of the endocannabinoid system, comprising the G-protein coupled cannabinoid 1 and 2 receptors (CB1/2), their endogenous lipid ligands or endocannabinoids, and synthetic and metabolizing enzymes, has triggered an avalanche of experimental studies implicating the endocannabinoid system in a growing number of physiological/pathological functions. These studies have also suggested that modulating the activity of the endocannabinoid system holds therapeutic promise for a broad range of diseases, including neurodegenerative, cardiovascular and inflammatory disorders; obesity/metabolic syndrome; cachexia; chemotherapy-induced nausea and vomiting; and tissue injury and pain, amongst others. However, clinical trials with globally acting CB1 antagonists in obesity/metabolic syndrome, and other studies with peripherally-restricted CB1/2 agonists and inhibitors of the endocannabinoid metabolizing enzyme in pain, have introduced unexpected complexities, suggesting that a better understanding of the pathophysiological role of the endocannabinoid system is required to devise clinically successful treatment strategies.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9413, USA.
| | | |
Collapse
|
12
|
Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog Lipid Res 2011; 50:193-211. [PMID: 21295074 DOI: 10.1016/j.plipres.2011.01.001] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/26/2011] [Accepted: 01/26/2011] [Indexed: 12/19/2022]
Abstract
The mammalian body has a highly developed immune system which guards against continuous invading protein attacks and aims at preventing, attenuating or repairing the inflicted damage. It is conceivable that through evolution analogous biological protective systems have been evolved against non-protein attacks. There is emerging evidence that lipid endocannabinoid signaling through cannabinoid 2 (CB₂) receptors may represent an example/part of such a protective system/armamentarium. Inflammation/tissue injury triggers rapid elevations in local endocannabinoid levels, which in turn regulate signaling responses in immune and other cells modulating their critical functions. Changes in endocannabinoid levels and/or CB₂ receptor expressions have been reported in almost all diseases affecting humans, ranging from cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, autoimmune, lung disorders to pain and cancer, and modulating CB₂ receptor activity holds tremendous therapeutic potential in these pathologies. While CB₂ receptor activation in general mediates immunosuppressive effects, which limit inflammation and associated tissue injury in large number of pathological conditions, in some disease states activation of the CB₂ receptor may enhance or even trigger tissue damage, which will also be discussed alongside the protective actions of the CB₂ receptor stimulation with endocannabinoids or synthetic agonists, and the possible biological mechanisms involved in these effects.
Collapse
|
13
|
Lane JR, Beukers MW, Mulder-Krieger T, Ijzerman AP. The endocannabinoid 2-arachidonylglycerol is a negative allosteric modulator of the human A3 adenosine receptor. Biochem Pharmacol 2009; 79:48-56. [PMID: 19665453 DOI: 10.1016/j.bcp.2009.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/16/2009] [Accepted: 07/31/2009] [Indexed: 12/24/2022]
Abstract
Studies of endogenous cannabinoid agonists, such as 2-arachidonylglycerol (2-AG), have revealed their potential to exert modulatory actions on other receptor systems in addition to their ability to activate cannabinoid receptors. This study investigated the effect of cannabinoid ligands on the human adenosine A(3) (hA(3)R) receptor. The endocannabinoid 2-AG was able to inhibit agonist ([125I]N(6)-(4-amino-3-iodobenzyl) adenosine-5'-(N-methyluronamide)--[125I] AB MECA) binding at the hA(3)R. This inhibition occurred over a narrow range of ligand concentration and was characterized by high Hill coefficients suggesting a non-competitive interaction. Furthermore, in the presence of 2-AG, the rate of [125I] AB MECA dissociation was increased, consistent with an action as a negative allosteric modulator of the hA(3)R. Moreover, by measuring intracellular cAMP levels, we demonstrate that 2-AG decreases both the potency of an agonist at the hA(3)R and the basal signalling of this receptor. Since the hA(3)R has been shown to be expressed in astrocytes and microglia, these findings may be particularly relevant in certain pathological states such as cerebral ischemia where levels of 2-AG and anandamide are raised.
Collapse
Affiliation(s)
- J Robert Lane
- Division of Medicinal Chemistry, Leiden/Amsterdam Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
14
|
Caraceni P, Domenicali M, Giannone F, Bernardi M. The role of the endocannabinoid system in liver diseases. Best Pract Res Clin Endocrinol Metab 2009; 23:65-77. [PMID: 19285261 DOI: 10.1016/j.beem.2008.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Endogenous cannabinoids (ECs) are ubiquitous lipid signaling molecules provided by a number of central and peripheral effects, which are mediated mainly by the specific receptors CB1 and CB2. In the last decade a considerable number of studies has shown that ECs and their receptors play an important role in the pathophysiology of liver diseases. The EC system is strongly up-regulated during chronic liver diseases. Until now it has been implicated in the pathogenesis of fatty liver disease associated with obesity, alcohol abuse, and hepatitis C, in the progression of fibrosis to cirrhosis, and in the development of portal hypertension, hyperdynamic circulatory syndrome and its complications, and cirrhotic cardiomyopathy. Furthermore, the EC system can participate in the pathogenesis of acute liver injury by modulating the mechanisms responsible for cell injury and inflammatory response. Thus, targeting the CB1 and CB2 receptors represents a potential therapeutic goal for the treatment of liver diseases.
Collapse
MESH Headings
- Cannabinoid Receptor Modulators/physiology
- Endocannabinoids
- Fatty Liver/physiopathology
- Fatty Liver, Alcoholic/physiopathology
- Hepatitis C, Chronic/physiopathology
- Liver Cirrhosis/etiology
- Liver Diseases/physiopathology
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/physiology
- Reperfusion Injury/physiopathology
Collapse
Affiliation(s)
- Paolo Caraceni
- Department of Clinical Medicine, Center for Applied Biomedical Research (C.R.B.A.), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | | | | | | |
Collapse
|
15
|
Abstract
Endogenous cannabinoids (EC) are ubiquitous lipid signalling molecules provided by a number of central and peripheral effects, which are mainly mediated by the specific cannabinoid receptors CB(1) and CB(2). Although the expression of these receptors is very low or even absent in the healthy liver, a considerable series of experimental studies and some clinical observations have recognised the EC system as an important player in the pathophysiology of liver diseases. The EC system is highly up-regulated during chronic liver diseases and, to date, it has been implicated in the pathogenesis of non-alcoholic fatty liver disease, progression of fibrosis to cirrhosis and the development of the cardiovascular abnormalities of cirrhosis, such as the hyperdynamic circulatory syndrome and cirrhotic cardiomiopathy. Furthermore, the EC system influences the mechanisms responsible for cell damage and the inflammatory response during acute liver injury, such as that resulting from ischaemia-reperfusion. Thus, molecules targeting the CB(1) and CB(2) receptors may represent potential therapeutic agents for the treatment of liver diseases. At present, the CB(1) antagonists represent the most attractive pharmaceutical tool to resolve fat accumulation in patients with non-alcoholic fatty liver disease and to treat patients with cirrhosis, as they may slow the progression of fibrosis and attenuate the cardiovascular alterations associated with the advanced stage of the disease.
Collapse
Affiliation(s)
- P Caraceni
- Department of Internal Medicine, Cardioangiology, Hepatology, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | | | | |
Collapse
|
16
|
Endocannabinoids and cannabinoid receptors in ischaemia-reperfusion injury and preconditioning. Br J Pharmacol 2007; 153:252-62. [PMID: 18026124 DOI: 10.1038/sj.bjp.0707582] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischaemia-reperfusion (I/R) is a pivotal mechanism of organ injury during stroke, myocardial infarction, organ transplantation and vascular surgeries. Ischaemic preconditioning (IPC) is a potent endogenous form of tissue protection against I/R injury. On the one hand, endocannabinoids have been implicated in the protective effects of IPC through cannabinoid CB1/CB2 receptor-dependent and -independent mechanisms. However, there is evidence suggesting that endocannabinoids are overproduced during various forms of I/R, such as myocardial infarction or whole body I/R associated with circulatory shock, and may contribute to the cardiovascular depressive state associated with these pathologies. Previous studies using synthetic CB1 receptor agonists or knockout mice demonstrated CB1 receptor-dependent protection against cerebral I/R injury in various animal models. In contrast, several follow-up reports have shown protection afforded by CB1 receptor antagonists, but not agonists. Excitedly, emerging studies using potent CB2 receptor agonists and/or knockout mice have provided compelling evidence that CB2 receptor activation is protective against myocardial, cerebral and hepatic I/R injuries by decreasing the endothelial cell activation/inflammatory response (for example, expression of adhesion molecules, secretion of chemokines, and so on), and by attenuating the leukocyte chemotaxis, rolling, adhesion to endothelium, activation and transendothelial migration, and interrelated oxidative/nitrosative damage. This review is aimed to discuss the role of endocannabinoids and CB receptors in various forms of I/R injury (myocardial, cerebral, hepatic and circulatory shock) and preconditioning, and to delineate the evidence supporting the therapeutic utility of selective CB2 receptor agonists, which are devoid of psychoactive effects, as a promising new approach to limit I/R-induced tissue damage.
Collapse
|
17
|
Mukhopadhyay S, Tulis DA. Endocannabinoid regulation of matrix metalloproteinases: implications in ischemic stroke. Cardiovasc Hematol Agents Med Chem 2007; 5:311-8. [PMID: 17979695 PMCID: PMC3638791 DOI: 10.2174/187152507782109917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stroke is a major cause of morbidity and mortality and follows heart disease and cancer as the third leading cause of death in Western societies [1]. Despite many advances in stroke research and pharmacotherapy, clinical treatment of this debilitating disorder is still inadequate. Recent findings from several laboratories have identified the endocannabinoid signaling pathway, comprised of the endocannabinoid agonist anandamide and its pharmacological targets, CB1 and CB2 cannabinoid receptors and associated anandamide receptors, as a physiological system with capacity to mitigate cardiovascular and cerebrovascular disorders through neuronal and endothelial actions. Variability in experimental stroke models and modes of outcome evaluation, however, have provoked controversy regarding the precise roles of endocannabinoid signals in mediating neural and/or vascular protection versus neurovascular damage. Clinical trials of the CB1 antagonist rimonabant demonstrate that modulation of endocannabinoid signaling during metabolic regulation of vascular disorders can significantly impact clinical outcomes, thus providing strong argument for therapeutic utility of endocannabinoids and/or cannabinoid receptors as targets for therapeutic intervention in cases of stroke and associated vascular disorders. The purpose of this review is to provide updated information from basic science and clinical perspectives on endocannabinoid ligands and their effects in the pathophysiologic genesis of stroke. Particular emphasis will be placed on the endocannabinoids anandamide and 2-arachidonylglycerol and CB1 receptor-mediated mechanisms in the neurovascular unit during stroke pathogenesis. Deficiencies in our knowledge of endocannabinoids in the etiology and pathogenesis of stroke, caveats and limitations of existing studies, and future directions for investigation will be addressed.
Collapse
|
18
|
Rajesh M, Pan H, Mukhopadhyay P, Bátkai S, Osei-Hyiaman D, Haskó G, Liaudet L, Gao B, Pacher P. Cannabinoid-2 receptor agonist HU-308 protects against hepatic ischemia/reperfusion injury by attenuating oxidative stress, inflammatory response, and apoptosis. J Leukoc Biol 2007; 82:1382-9. [PMID: 17652447 PMCID: PMC2225476 DOI: 10.1189/jlb.0307180] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this study, we have investigated the role of the cannabinoid CB(2) (CB(2)) receptor in an in vivo mouse model of hepatic ischemia/reperfusion (I/R) injury. In addition, we have assessed the role of the CB(2) receptor in TNF-alpha-induced ICAM-1 and VCAM-1 expression in human liver sinusoidal endothelial cells (HLSECs) and in the adhesion of human neutrophils to HLSECs in vitro. The potent CB(2) receptor agonist HU-308, given prior to the induction of I/R, significantly attenuated the extent of liver damage (measured by serum alanine aminotransferase and lactate dehydrogenase) and decreased serum and tissue TNF-alpha, MIP-1alpha, and MIP-2 levels, tissue lipid peroxidation, neutrophil infiltration, DNA fragmentation, and caspase 3 activity. The protective effect of HU-308 against liver damage was also preserved when given right after the ischemic episode. HU-308 also attenuated the TNF-alpha-induced ICAM-1 and VCAM-1 expression in HLSECs, which expressed CB(2) receptors, and the adhesion of human neutrophils to HLSECs in vitro. These findings suggest that selective CB(2) receptor agonists may represent a novel, protective strategy against I/R injury by attenuating oxidative stress, inflammatory response, and apoptosis.
Collapse
Affiliation(s)
- Mohanraj Rajesh
- Section on Oxidative Stress Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Hao Pan
- Section on Oxidative Stress Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Partha Mukhopadhyay
- Section on Oxidative Stress Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Sándor Bátkai
- Section on Oxidative Stress Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Douglas Osei-Hyiaman
- Section on Oxidative Stress Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - György Haskó
- Department of Surgery, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine, University Hospital, Lausanne, Switzerland
| | - Bin Gao
- Section on Liver Biology, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Pál Pacher
- Section on Oxidative Stress Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
- Correspondence: Section on Oxidative Stress and Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda, MD 20892-9413, USA. E-mail:
| |
Collapse
|
19
|
Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006; 58:389-462. [PMID: 16968947 PMCID: PMC2241751 DOI: 10.1124/pr.58.3.2] [Citation(s) in RCA: 1503] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson's and Huntington's disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB(1) receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB(1) receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB(2) receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The growing number of preclinical studies and clinical trials with compounds that modulate the endocannabinoid system will probably result in novel therapeutic approaches in a number of diseases for which current treatments do not fully address the patients' need. Here, we provide a comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiological Studies, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 2S-24, Bethesda, MD 20892-9413, USA
| | | | | |
Collapse
|
20
|
Howlett AC, Mukhopadhyay S, Norford DC. Endocannabinoids and reactive nitrogen and oxygen species in neuropathologies. J Neuroimmune Pharmacol 2006; 1:305-16. [PMID: 18040807 DOI: 10.1007/s11481-006-9022-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 05/16/2006] [Indexed: 01/25/2023]
Abstract
Neuropathologies that affect our population include ischemic stroke and neurodegenerative diseases of immune origin, including multiple sclerosis. The endocannabinoid system in the brain, including agonists anandamide (arachidonyl ethanolamide) and 2-arachidonoylglycerol, and the CB1 and CB2 cannabinoid receptors, has been implicated in the pathophysiology of these disease states, and can be a target for therapeutic interventions. This review concentrates on cellular signal transduction pathways believed to be involved in the cellular damage.
Collapse
Affiliation(s)
- Allyn C Howlett
- Neuroscience of Drug Abuse Research Program, 208 Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA.
| | | | | |
Collapse
|
21
|
Pertwee RG. The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids. AAPS J 2005; 7:E625-54. [PMID: 16353941 PMCID: PMC2751266 DOI: 10.1208/aapsj070364] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 07/21/2005] [Indexed: 12/24/2022] Open
Abstract
There are at least 2 types of cannabinoid receptor, CB(1) and CB(2), both G protein coupled. CB(1) receptors are expressed predominantly at nerve terminals and mediate inhibition of transmitter release, whereas CB(2) receptors are found mainly on immune cells, their roles including the modulation of cytokine release and of immune cell migration. Endogenous agonists for cannabinoid receptors also exist. These "endocannabinoids" are synthesized on demand and removed from their sites of action by cellular uptake and intracellular enzymic hydrolysis. Endocannabinoids and their receptors together constitute the endocannabinoid system. This review summarizes evidence that there are certain central and peripheral disorders in which increases take place in the release of endocannabinoids onto their receptors and/or in the density or coupling efficiency of these receptors and that this upregulation is protective in some disorders but can have undesirable consequences in others. It also considers therapeutic strategies by which this upregulation might be modulated to clinical advantage. These strategies include the administration of (1) a CB(1) and/or CB(2) receptor agonist or antagonist that does or does not readily cross the blood brain barrier; (2) a CB(1) and/or CB(2) receptor agonist intrathecally or directly to some other site outside the brain; (3) a partial CB(1) and/or CB(2) receptor agonist rather than a full agonist; (4) a CB(1) and/or CB(2) receptor agonist together with a noncannabinoid, for example, morphine or codeine; (5) an inhibitor or activator of endocannabinoid biosynthesis, cellular uptake, or metabolism; (6) an allosteric modulator of the CB(1) receptor; and (7) a CB(2) receptor inverse agonist.
Collapse
Affiliation(s)
- Roger G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|