1
|
Michelini S, Mawas S, Kurešepi E, Barbero F, Šimunović K, Miremont D, Devineau S, Schicht M, Ganin V, Haugen ØP, Afanou AK, Izabelle C, Zienolddiny-Narui S, Jüngert K, Repar N, Fenoglio I, Šetina Batić B, Paulsen F, Mandić-Mulec I, Boland S, Erman A, Drobne D. Pulmonary hazards of nanoplastic particles: a study using polystyrene in in vitro models of the alveolar and bronchial epithelium. J Nanobiotechnology 2025; 23:388. [PMID: 40426130 PMCID: PMC12117733 DOI: 10.1186/s12951-025-03419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Nanoplastics (NPs) are released into the environment through the degradation of plastic objects, leading to human exposure. Due to their small size, concerns have been raised about the potential hazards to the respiratory tract, as ultrafine and nanoparticles are known to penetrate till the alveolar regions of the lungs, potentially impairing their functions. Thus, in the present study, we used model polystyrene nanoparticles doped with the fluorescent metal europium (PS-Eu) to enhance the understanding of NPs hazard and investigate adverse outcomes associated with exposure in human lungs using alveolar (A549) and bronchial (Calu-3) cell models grown in 2D and 3D submerged conditions or quasi air-liquid interface (ALI) conditions (3D). RESULTS Briefly, after in-dept physicochemical characterization of the particles, we assessed their impact on ROS production, cell viability (AlamarBlue and lactate dehydrogenase assays) and barrier integrity (lucifer yellow assay and TEER measurement), finding no negative effects in either model. However, in alveolar cells, particles increased acidic organelle activity. Transmission electron microscopy and Raman microscopy showed, in both models, a dose- and cell-dependent particle uptake with PS-Eu accumulating in numerous and large endo-lysosomes, which, in transwells-grown A549 cells, often contained also lamellar bodies (LBs), organelles involved in surfactants storage and secretion. After extensively quantifying surfactant proteins (SP) in the pellet and supernatant fractions of treated A549 cells, we observed a significant reduction in several members of this family, including surfactant protein B, which is crucial for lamellar body formation and surface tension regulation in the lungs. In quasi-ALI Calu-3 cultures instead, PS-Eu significantly upregulated interleukin 6 (IL-6) and increased transforming growth factor beta β (TGF-β), zonula occludens 1 (ZO-1), and mucin (MUC) 5B mRNA expressions causing a moderate proinflammatory response. CONCLUSION Our results show that PS-Eu exposure does not induce acute cytotoxicity in these models, but affects cell-specific functions like surfactant, mucin, and cytokine production. This underscores the limitations of relying solely on standard cytotoxicity tests for particle hazard assessment and highlights the importance of investigating cell function-specific signaling pathways. To support researchers in hazard assessment, we propose specific classes of biomarkers to test in in vitro lung models.
Collapse
Affiliation(s)
- Sara Michelini
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Safaa Mawas
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Ema Kurešepi
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Francesco Barbero
- Department of Chemistry, Laboratory of Toxicity and Biocompatibility of Materials, University of Torino, Torino, Italy
| | - Katarina Šimunović
- Biotechnical Faculty, Department of Microbiology, University of Ljubljana, Ljubljana, Slovenia
| | - Dorian Miremont
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Stéphanie Devineau
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Victor Ganin
- Institute of Metals and Technology, Ljubljana, Slovenia
| | | | | | - Charlotte Izabelle
- Université Paris Cité, CNRS UAR612, Inserm US25, Cellular and Molecular Imaging Facility, Paris, France
| | | | - Katharina Jüngert
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Neža Repar
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ivana Fenoglio
- Department of Chemistry, Laboratory of Toxicity and Biocompatibility of Materials, University of Torino, Torino, Italy
| | | | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ines Mandić-Mulec
- Biotechnical Faculty, Department of Microbiology, University of Ljubljana, Ljubljana, Slovenia
| | - Sonja Boland
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Andreja Erman
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Drobne
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Okus F, Yuzbasioglu D, Unal F. Green synthesized metal nanoparticles appear to meet expectations of low ecotoxicity: what about genotoxicity? Toxicol Mech Methods 2025:1-15. [PMID: 40197171 DOI: 10.1080/15376516.2025.2487806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/03/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Advancements in technology and industry have made the use of nanomaterials indispensable. Due to concerns about the environmental damage caused by classical synthesis methods (Classical Synthesis, CS), the alternative 'Green Synthesis Method' (GS) has been developed, which aims to reduce toxicity by using environmentally friendly materials. This study examines whether nanoparticles synthesized through GS exhibit lower genotoxicity. To this end, research articles published between 2005 and 2025 on nanoparticle synthesis using the GS method were reviewed, and 551 studies were analyzed. The evaluation focused on gold, silver, platinum, copper, iron, and cobalt nanoparticles, which are widely used in various applications. The findings suggest that the GS method offers advantages in terms of genotoxicity. Additionally, this paper provides an in-depth analysis of how the GS method influences the properties of nanoparticles and explores the genotoxic mechanisms of nanoparticles synthesized through this approach.
Collapse
Affiliation(s)
- Fatma Okus
- Genetic Toxicology Laboratory, Department of Biology, Graduate School of Natural and Applied Sciences, Gazi University, Teknikokullar/Ankara, Turkey
| | - Deniz Yuzbasioglu
- Genetic Toxicology Laboratory, Department of Biology, Gazi University, Teknikokullar/Ankara, Turkey
| | - Fatma Unal
- Genetic Toxicology Laboratory, Department of Biology, Gazi University, Teknikokullar/Ankara, Turkey
| |
Collapse
|
3
|
Khan J, Shah N, Dawar F, Irfan I, Jan A, Khan MI, Khisroon M. Comet Assay and Micronucleus Test in Circulating Erythrocytes of Ctenopharyngodon idella Exposed to Nickel Oxide Nanoparticles. Biol Trace Elem Res 2025; 203:1064-1074. [PMID: 38714633 DOI: 10.1007/s12011-024-04208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/10/2024]
Abstract
The number of pollutants released into freshwater and marine environments has increased due to the widespread use of nanoparticles. Nickel oxide nanoparticles (NiO-NPs) were tested for genotoxicity in fish fingerlings of the species Ctenopharyngodon idella. For 7, 14, and 21 days, fingerlings were exposed to NiO-NPs with each increasing concentrations of 2.25 mg/L, 4.50 mg/L, and 6.75 mg/L, respectively. The micronuclei assay and comet assay were used to evaluate the DNA damage. The experiment revealed that with the increase in nanoparticle concentration and exposure duration, the level of DNA damage also increased. The experiment resulted to be time and dose dependent, and the damage was found as follows: 6.75 mg/L > 4.50 mg/L > 2.25 mg/L against each exposure period. In terms of comet assay, the results showed that after 7 days, the level of DNA damage in all the concentrations was highly significant (P < 0.001). Increased DNA damage was calculated at the higher administered dose of 6.75 mg/L for 21 days of exposition, followed by 14 and 7 days, respectively. The second high toxic effect was observed in the fish blood at the exposure concentration of 4.50 mg/L for 21 days, followed by 14 and 7 days, respectively. The micronuclei induction in the nanoparticle's administered blood could be detected only for a 7-day exposition period. Whereas for the exposed duration of 14 and 21 days, the entire red blood cells of the grass carp were completely destroyed demonstrating the ability of the nanoparticles to cause anomalies in aquatic life.
Collapse
Affiliation(s)
- Jamshid Khan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Nazish Shah
- Department of Zoology, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan.
| | - Farmanullah Dawar
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Iqra Irfan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Adil Jan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ismail Khan
- Department of Zoology, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Khisroon
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
4
|
Vasanthakumaran M, Ramesh M, Murugan K, Hema T, Rajaganesh R, Hwang JS. Developmental toxicity, biochemical and biomarker in the zebrafish (Danio rerio) embryo exposed to biosynthesized cadmium oxide nanoparticles. CHEMOSPHERE 2024; 369:143851. [PMID: 39622455 DOI: 10.1016/j.chemosphere.2024.143851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/22/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Cadmium oxide nanoparticles (CdO-NPs) play an important role in health applications due to their antibacterial properties. However, ecotoxicological investigations of these NPs and their adverse effects on aquatic organisms are necessary to protect the environment. Zebrafish is widely used as a model organism to explore toxic effects at multiple levels of integration. Hence, the objective of this work was to pursue possible harmful impacts of CdO -NPs that have been produced through biosynthesis, utilizing extract from the lily plant Gloriosa superba leaves, on the growth and biochemical changes in zebrafish (Danio rerio) embryos and larvae. UV, SEM, TEM, FTIR, EDAX, DLS, and ZETA-potential techniques were employed to examine the structure and morphology of the biosynthesized CdO-NPs. The identification of bioactive chemicals from the leaf extract of G. superba was conducted using GC-MS. To study the in vivo toxicity of CdO-NPs, zebrafish embryos and larvae were treated with two different concentrations of G. superba leave extract (0.5 and 1.0 mg/mL) at 96 h after fertilization (hpf). Bended tail, pericardial edema, shortened yolk sac extension, scoliosis, and damaged eyes were observed in the CdO-NPs treated groups. In addition, there was a considerable decrease in the levels of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferases (GST), and lipid peroxidation (LPO). The CdO-NPs treated groups showed significant alterations in biochemical markers, including protein levels, glucose levels, and acetylcholinesterase (AChE) activity. Overall, our findings indicated that CdO-NPs induced a dose-dependent toxicity in zebrafish embryos. The investigated parameters serve as reliable biomarkers for the surveillance of CdO-NPs in aquatic ecosystems and their impact on living animals.
Collapse
Affiliation(s)
- Murugan Vasanthakumaran
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India; Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Tamilselvan Hema
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Rajapandian Rajaganesh
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
5
|
Shareef N, Abid S, Amir A, Ismail A, Ullah A, Ahmad A, Ibenmoussa S, Bin Jardan YA, Bourhia M, Ibrahim A, Iqbal F. Toxicological evaluation of copper oxide nanoparticles following their intraperitoneal injection to Wistar rats. Toxicol Res (Camb) 2024; 13:tfae125. [PMID: 39132193 PMCID: PMC11306316 DOI: 10.1093/toxres/tfae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Background Copper oxide (Cu2O) nanoparticles (CO NPs) are in extensive use during our everyday life as antimicrobial agent, lubricant, in manufacturing electrodes of lithium ion batteries as well as for photo catalytic degradation of organic pollutants. Due to extensive and diverse use Cu2O NPs, they are likely to accumulate in the environment and to affect the live forms. Present investigation was aimed to report the biocompatibility of CO NPs in Wistar rats in sex specific manner. CO NPs, having average diameter of 14.06 nm, were synthesized by co-precipitation method and scanning electron microscopy and X ray diffraction were used for their characterization. Methods For 14 consecutive days, Wistar rats (6 weeks old) of both sexes were intraperitoneally injected with 10 mg/mL saline/Kg body weight of CO NPs, while the control groups intraperitoneally received saline solution for same duration. Behavioral tests (open field and novel object recognition), complete blood count, selected biomarkers of oxidative stress and Copper concentration in brain and liver were determined in all subjects. Results High mortality rates [male 40% and female 60%] were observed in rats exposed to CO NPs. A sever decrease in body weight was also observed in both male and female rats exposed to CO NPs. Female rats treated with CO NPs spent significantly more time with novel object as compared to control [P = 0.05] during second trial of novel object test. CO NPs treated female rats had higher mean corpuscular hemoglobin [P < 0.001] levels and Copper concentration in liver [P = 0.04] than control. Male rats exposed to CO NPs had significantly higher mean corpuscular volume [P = 0.02] and superoxide dismutase [SOD] [P = 0.04] in lungs than their control group. All other studied parameters non significantly varied upon comparison between CO NPs treated and untreated rats of both sex. Conclusion In conclusion, we are reporting that intraperitoneal injections of CO NPs for 14 days can disturb complete blood count and biomarkers of oxidative stress in lungs of Wistar rats.
Collapse
Affiliation(s)
- Nisha Shareef
- Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shairyar Abid
- Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Aqsa Amir
- Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Amir Ismail
- Institute of Food Sciences and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Abd Ullah
- Department of Zoology, Shaheed Benazir Butto University, Upper Dir 18050, Pakistan
| | - Adnan Ahmad
- Department of Zoology, Shaheed Benazir Butto University, Upper Dir 18050, Pakistan
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier 34000, France
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh 11451, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Ather Ibrahim
- Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Metallurgical and Materials Engineering, University of Engineering and Technology Lahore, 05422, Pakistan
| | - Furhan Iqbal
- Institute of Zoology, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
6
|
Mansour HM, Muralidharan P, Hayes D. Inhaled Nanoparticulate Systems: Composition, Manufacture and Aerosol Delivery. J Aerosol Med Pulm Drug Deliv 2024; 37:202-218. [PMID: 39172256 PMCID: PMC11465844 DOI: 10.1089/jamp.2024.29117.mk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/15/2024] [Indexed: 08/23/2024] Open
Abstract
An increasing growth in nanotechnology is evident from the growing number of products approved in the past decade. Nanotechnology can be used in the effective treatment of several pulmonary diseases by developing therapies that are delivered in a targeted manner to select lung regions based on the disease state. Acute or chronic pulmonary disorders can benefit from this type of therapy, including respiratory distress syndrome (RDS), chronic obstructive pulmonary disease (COPD), asthma, pulmonary infections (e.g. tuberculosis, Yersinia pestis infection, fungal infections, bacterial infections, and viral infections), lung cancer, cystic fibrosis (CF), pulmonary fibrosis, and pulmonary arterial hypertension. Modification of size and surface property renders nanoparticles to be targeted to specific sites, which can serve a vital role in innovative pulmonary drug delivery. The nanocarrier type chosen depends on the intended purpose of the formulation and intended physiological target. Liquid nanocarriers and solid-state nanocarriers can carry hydrophilic and hydrophobic drugs (e.g. small molecular weight drug molecules, large molecular weight drugs, peptide drugs, and macromolecular biological drugs), while surface modification with polymer can provide cellular targeting, controlled drug release, and/or evasion of phagocytosis by immune cells, depending on the polymer type. Polymeric nanocarriers have versatile architectures, such as linear, branched, and dendritic forms. In addition to the colloidal dispersion liquid state, the various types of nanoparticles can be formulated into the solid state, offering important unique advantages in formulation versatility and enhanced stability of the final product. This chapter describes the different types of nanocarriers, types of inhalation aerosol device platforms, liquid aerosols, respirable powders, and particle engineering design technologies for inhalation aerosols.
Collapse
Affiliation(s)
- Heidi M. Mansour
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, Arizona, USA
- The BIO5 Research Institute, The University of Arizona, Tucson, Arizona, USA
- Institute of the Environment, The University of Arizona, Tucson, Arizona, USA
- National Cancer Institute Comprehensive Cancer Center, The University of Arizona, Tucson, Arizona, USA
| | - Priya Muralidharan
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, Arizona, USA
| | - Don Hayes
- Departments of Pediatrics and Internal Medicine, Lung and Heart-Lung Transplant Programs, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
7
|
Du XY, Yang JY. Biomimetic microfluidic chips for toxicity assessment of environmental pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170745. [PMID: 38340832 DOI: 10.1016/j.scitotenv.2024.170745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Various types of pollutants widely present in environmental media, including synthetic and natural chemicals, physical pollutants such as radioactive substances, ultraviolet rays, and noise, as well as biological organisms, pose a huge threat to public health. Therefore, it is crucial to accurately and effectively explore the human physiological responses and toxicity mechanisms of pollutants to prevent diseases caused by pollutants. The emerging toxicological testing method biomimetic microfluidic chips (BMCs) exhibit great potential in environmental pollutant toxicity assessment due to their superior biomimetic properties. The BMCs are divided into cell-on-chips and organ-on-chips based on the distinctions in bionic simulation levels. Herein, we first summarize the characteristics, emergence and development history, composition and structure, and application fields of BMCs. Then, with a focus on the toxicity mechanisms of pollutants, we review the applications and advances of the BMCs in the toxicity assessment of physical, chemical, and biological pollutants, respectively, highlighting its potential and development prospects in environmental toxicology testing. Finally, the opportunities and challenges for further use of BMCs are discussed.
Collapse
Affiliation(s)
- Xin-Yue Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China..
| |
Collapse
|
8
|
Dhir S, Bhatt S, Chauhan M, Garg V, Dutt R, Verma R. An Overview of Metallic Nanoparticles: Classification, Synthesis, Applications, and their Patents. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:415-432. [PMID: 37680162 DOI: 10.2174/1872210517666230901114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Nanotechnology has gained enormous attention in pharmaceutical research. Nanotechnology is used in the development of nanoparticles with sizes ranging from 1-100 nm, with several extraordinary features. Metallic nanoparticles (MNPs) are used in various areas, such as molecular biology, biosensors, bio imaging, biomedical devices, diagnosis, pharmaceuticals, etc., for their specific applications. METHODOLOGY For this study, we have performed a systematic search and screening of the literature and identified the articles and patents focusing on various physical, chemical, and biological methods for the synthesis of metal nanoparticles and their pharmaceutical applications. RESULTS A total of 174 references have been included in this present review, of which 23 references for recent patents were included. Then, 29 papers were shortlisted to describe the advantages, disadvantages, and physical and chemical methods for their synthesis, and 28 articles were selected to provide the data for biological methods for the formulation of metal NPs from bacteria, algae, fungi, and plants with their extensive synthetic procedures. Moreover, 27 articles outlined various clinical applications of metal NPs due to their antimicrobial and anticancer activities and their use in drug delivery. CONCLUSION Several reviews are available on the synthesis of metal nanoparticles and their pharmaceutical applications. However, this review provides updated research data along with the various methods employed for their development. It also summarizes their various advantages and clinical applications (anticancer, antimicrobial drug delivery, and many others) for various phytoconstituents. The overview of earlier patents by several scientists in the arena of metallic nanoparticle preparation and formulation is also presented. This review will be helpful in increasing the current knowledge and will also inspire to innovation of nanoparticles for the precise and targeted delivery of phytoconstituents for the treatment of several diseases.
Collapse
Affiliation(s)
- Sarika Dhir
- B.S. Anangpuria Institute of Pharmacy, Faridabad, 121004, India
| | - Shailendra Bhatt
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, Haryana, India
| | - Mahima Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rohit Dutt
- Gandhi Memorial National College, Ambala Cantt, 133001, India
| | - Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| |
Collapse
|
9
|
P SV, Sundari SK, Jeyachandran S, Nagesh S. Green Synthesis and Characterization of Xanthium strumarium-Mediated Titanium Dioxide Nanoparticles. Cureus 2023; 15:e51012. [PMID: 38264379 PMCID: PMC10804215 DOI: 10.7759/cureus.51012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/23/2023] [Indexed: 01/25/2024] Open
Abstract
Background Green synthesis of nanoparticles is a growing trend. The annual plant Xanthium strumarium L. (X. strumarium) belongs to the Asteraceae family. The herb has traditionally been used to treat a variety of ailments, including leucoderma, dangerous insect bites, epilepsy, salivation, allergic rhinitis, sinusitis, etc. Inorganic, biocompatible, and non-toxic titanium is a substance employed in the pharmaceutical and biomedical industries as well as in fields like bone tissue engineering. The aim of the study is to characterize titanium dioxide nanoparticles (TiO₂NPs), which were synthesized from X.strumarium. Also, this study aims to assess the cytotoxic properties of the synthesized leaf extract and the TiO₂NPs. Materials and methods In this study, the biosynthesis of TiO₂NPs was made from X. strumarium leaf extract. The characterization of the green-synthesized TiO₂NPs was done using the spectral analysis of an ultraviolet (UV)-visible spectrophotometer, scanning electron microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR). The advantage of using TiO₂NPs is that they possess antimicrobial, antibacterial, chemical stability, and catalytic properties. The leaf extract and the biosynthesized nanoparticles were tested against human fibroblast cell lines for biocompatibility using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results SEM investigation showed that TiO₂NPs were crystalline in nature. FTIR confirms the presence of alkyne and amine functional groups, and the pointed vertices in the X-ray diffraction (XRD) pattern show the crystalline nature of TiO2NPs. The study found that the cell viability of TiO₂NPs was 110%. Conclusion TiO₂NPs were synthesized from X. strumarium leaf extract and characterized using SEM, FTIR, and XRD. The TiO₂NPs were found to be crystalline in nature with various functional groups. MTT assay shows that the synthesized nanoparticles are promising biocompatible agents that can be used in future research in the medical field.
Collapse
Affiliation(s)
- Shravani V P
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Shantha K Sundari
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sivakamavalli Jeyachandran
- Laboratory in Biotechnology and Biosignal Transduction, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Shweta Nagesh
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
10
|
Al-Zahaby SA, Farag MR, Alagawany M, Taha HSA, Varoni MV, Crescenzo G, Mawed SA. Zinc Oxide Nanoparticles (ZnO-NPs) Induce Cytotoxicity in the Zebrafish Olfactory Organs via Activating Oxidative Stress and Apoptosis at the Ultrastructure and Genetic Levels. Animals (Basel) 2023; 13:2867. [PMID: 37760268 PMCID: PMC10525688 DOI: 10.3390/ani13182867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology has gained tremendous attention because of its crucial characteristics and wide biomedical applications. Although zinc oxide nanoparticles (ZnO-NPs) are involved in many industrial applications, researchers pay more attention to their toxic effects on living organisms. Since the olfactory epithelium is exposed to the external environment, it is considered the first organ affected by ZnO-NPs. Herein, we demonstrated the cytotoxic effect of ZnO-NPs on the olfactory organ of adult zebrafish after 60 days post-treatment. We opted for this period when fishes stop eating their diet from the aquarium, appear feeble, and cannot swim freely. Our study demonstrated that ZnO-NPs induced significant malformations of the olfactory rosettes at histological, ultrastructural, and genetic levels. At the ultrastructure level, the olfactory lamellae appeared collapsed, malformed, and twisted with signs of degeneration and loss of intercellular connections. In addition, ZnO-NPs harmed sensory receptor and ciliated cells, microvilli, rodlet, crypt, and Kappe cells, with hyper-activity of mucous secretion from goblet cells. At the genetic level, ZnO-NPs could activate the reactive oxygen species (ROS) synthesis expected by the down-regulation of mRNA expression for the antioxidant-related genes and up-regulation of DNA damage, cell growth arrest, and apoptosis. Interestingly, ZnO-NPs affected the odor sensation at 60 days post-treatment (60-dpt) more than at 30-dpt, severely damaging the olfactory epithelium and irreparably affecting the cellular repairing mechanisms. This induced a dramatically adverse effect on the cellular endoplasmic reticulum (ER), revealed by higher CHOP protein expression, that suppresses the antioxidant effect of Nrf2 and is followed by the induction of apoptosis via the up-regulation of Bax expression and down-regulation of Bcl-2 protein.
Collapse
Affiliation(s)
- Sheren A. Al-Zahaby
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.A.-Z.); (S.A.M.)
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Heba S. A. Taha
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | | | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
| | - Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (S.A.A.-Z.); (S.A.M.)
| |
Collapse
|
11
|
Sajjad H, Sajjad A, Haya RT, Khan MM, Zia M. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology. Comp Biochem Physiol C Toxicol Pharmacol 2023; 271:109682. [PMID: 37328134 DOI: 10.1016/j.cbpc.2023.109682] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/21/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have received increasing interest due to their distinctive properties, including small particle size, high surface area, and reactivity. Due to these properties, their applications have been expanded rapidly in various areas such as biomedical properties, industrial catalysts, gas sensors, electronic materials, and environmental remediation. However, because of these widespread uses, there is now an increased risk of human exposure, which could lead to short- and long-term toxicity. This review addresses the underlying toxicity mechanisms of CuO NPs in cells which include reactive oxygen species generation, leaching of Cu ion, coordination effects, non-homeostasis effect, autophagy, and inflammation. In addition, different key factors responsible for toxicity, characterization, surface modification, dissolution, NPs dose, exposure pathways and environment are discussed to understand the toxicological impact of CuO NPs. In vitro and in vivo studies have shown that CuO NPs cause oxidative stress, cytotoxicity, genotoxicity, immunotoxicity, neurotoxicity, and inflammation in bacterial, algal, fish, rodents, and human cell lines. Therefore, to make CuO NPs a more suitable candidate for various applications, it is essential to address their potential toxic effects, and hence, more studies should be done on the long-term and chronic impacts of CuO NPs at different concentrations to assure the safe usage of CuO NPs.
Collapse
Affiliation(s)
- Humna Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rida Tul Haya
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
12
|
Hadinejad F, Morad H, Jahanshahi M, Zarrabi A, Pazoki-Toroudi H, Mostafavi E. A Novel Vision of Reinforcing Nanofibrous Masks with Metal Nanoparticles: Antiviral Mechanisms Investigation. ADVANCED FIBER MATERIALS 2023; 5:1-45. [PMID: 37361103 PMCID: PMC10088653 DOI: 10.1007/s42765-023-00275-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/13/2023] [Indexed: 06/28/2023]
Abstract
Prevention of spreading viral respiratory disease, especially in case of a pandemic such as coronavirus disease of 2019 (COVID-19), has been proved impossible without considering obligatory face mask-wearing protocols for both healthy and contaminated populations. The widespread application of face masks for long hours and almost everywhere increases the risks of bacterial growth in the warm and humid environment inside the mask. On the other hand, in the absence of antiviral agents on the surface of the mask, the virus may have a chance to stay alive and be carried to different places or even put the wearers at risk of contamination when touching or disposing the masks. In this article, the antiviral activity and mechanism of action of some of the potent metal and metal oxide nanoparticles in the role of promising virucidal agents have been reviewed, and incorporation of them in an electrospun nanofibrous structure has been considered an applicable method for the fabrication of innovative respiratory protecting materials with upgraded safety levels. Graphical Abstract
Collapse
Affiliation(s)
- Farinaz Hadinejad
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Hamed Morad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, 1475886973 Iran
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, 4691710001 Iran
| | - Mohsen Jahanshahi
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396 Turkey
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
13
|
Parvin A, Hossain MK, Shahjadee UF, Lisa SA, Uddin MN, Shaikh MAA, Parvin A, Moniruzzaman M, Saha B, Suchi PD. Trace metal exposure and human health consequences through consumption of market-available Oreochromis niloticus (L.) in Bangladesh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45398-45413. [PMID: 36705833 DOI: 10.1007/s11356-023-25414-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Using Oreochromis niloticus (L.), commonly known as tilapia, as a model, this study evaluated the exposure of trace metal and their risk assessment on human health. In addition, the status of amino acids, fatty acids, vital elements, and their benefits is also studied. Estimating the nutrient composition of fish muscle is necessary to ensure that it meets the requirements for human health, food regulations, and commercial specifications. The species examined contained appreciable concentrations of amino acids, fatty acid content, and minerals, suggesting that the fish species could be a good source of protein, fat, and minerals. Hazardous heavy metals were found to be lower compared to their corresponding maximum tolerable limits. The order of trace metals is Zn (22,709 µg/kg) > Fe (19,878 µg/kg) > Cu (1261 µg /kg) > Mn (1228 µg/kg) > Cr (474 µg/kg) > Ni (152 µg/kg) As (318 µg /kg) > Pb (281 µg/kg) > Co (24 µg /kg) > Cd (13 µg/kg) > Hg (5 µg/kg); a number of health-related indices, including estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI), as well as carcinogenic risk (CR) indices for adult and children, were calculated to evaluate the human health hazard of the heavy metals. The THQ and HI of heavy metals for tilapia are lower than 1, posing a non-carcinogenic threat to human health due to the biomagnifications of these deadly poisonous metals. Principal component, cluster, and correlation analyses delineated the common probabilistic sources of metal contamination origin and significant inter-parameter associations. Although no human health risks for the consumption of tilapia was found, more attention must be paid for the monitoring of Oreochromis niloticus before entering the market.
Collapse
Affiliation(s)
- Afroza Parvin
- Soil and Environment Research Section, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research, Dr Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Kamal Hossain
- Soil and Environment Research Section, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research, Dr Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Umme Fatema Shahjadee
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dr Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Sharmin Akter Lisa
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dr Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Mohammad Nashir Uddin
- Planning and Development Department, Bangladesh Council of Scientific and Industrial Research, Dr Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research and Department of Chemistry, Dhaka University, Dhaka, Bangladesh
| | - Afsana Parvin
- Soil and Environment Research Section, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research, Dr Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Mohammad Moniruzzaman
- Soil and Environment Research Section, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research, Dr Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Badhan Saha
- Soil and Environment Research Section, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research, Dr Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Priyanka Dey Suchi
- Soil and Environment Research Section, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research, Dr Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| |
Collapse
|
14
|
Xin X, Qi C, Xu L, Gao Q, Liu X. Green synthesis of silver nanoparticles and their antibacterial effects. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.941240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antibacterial resistance is by far one of the greatest challenges to global health. Many pharmaceutical or material strategies have been explored to overcome this dilemma. Of these, silver nanoparticles (AgNPs) are known to have a non-specific antibacterial mechanism that renders it difficult to engender silver-resistant bacteria, enabling them to be more powerful antibacterial agents than conventional antibiotics. AgNPs have shown promising antibacterial effects in both Gram-positive and Gram-negative bacteria. The aim of this review is to summarize the green synthesis of AgNPs as antibacterial agents, while other AgNPs-related insights (e.g., antibacterial mechanisms, potential toxicity, and medical applications) are also reviewed.
Collapse
|
15
|
Grover A, Sinha R, Jyoti D, Faggio C. Imperative role of electron microscopy in toxicity assessment: A review. Microsc Res Tech 2022; 85:1976-1989. [PMID: 34904321 DOI: 10.1002/jemt.24029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Electron microscope (EM) was developed in 1931 and since then microscopical examination of both the biological and non-biological samples has been revolutionized. Modifications in electron microscopy techniques, such as scanning EM and transmission EM, have widened their applicability in the various sectors such as understanding of drug toxicity, development of mechanism, criminal site investigation, and characterization of the nano-molecule. The present review summarizes its role in important aspects such as toxicity assessment and disease diagnosis in special reference to SARS-COV2. In the biological system, EM studies have elucidated the impact of toxicants at the ultra-structural level in various tissue in conformity to physiological alterations. Thus, EM can be concluded as an important tool in toxicity assessment and disease prognosis.
Collapse
Affiliation(s)
- Aseem Grover
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, India
| | - Reshma Sinha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, India
| | - Divya Jyoti
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
16
|
Zakhireh S, Barar J, Adibkia K, Beygi-Khosrowshahi Y, Fathi M, Omidain H, Omidi Y. Bioactive Chitosan-Based Organometallic Scaffolds for Tissue Engineering and Regeneration. Top Curr Chem (Cham) 2022; 380:13. [PMID: 35149879 DOI: 10.1007/s41061-022-00364-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Captivating achievements in developing advanced hybrid biostructures through integrating natural biopolymers with inorganic materials (e.g., metals and metalloids) have paved the way towards the application of bioactive organometallic scaffolds (OMSs) in tissue engineering and regenerative medicine (TERM). Of various biopolymers, chitosan (CS) has been used widely for the development of bioactive OMSs, in large part due to its unique characteristics (e.g., biocompatibility, biodegradability, surface chemistry, and functionalization potential). In integration with inorganic elements, CS has been used to engineer advanced biomimetic matrices to accommodate both embedded cells and drug molecules and serve as scaffolds in TERM. The use of the CS-based OMSs is envisioned to provide a new pragmatic potential in TERM and even in precision medicine. In this review, we aim to elaborate on recent achievements in a variety of CS/metal, CS/metalloid hybrid scaffolds, and discuss their applications in TERM. We also provide comprehensive insights into the formulation, surface modification, characterization, biocompatibility, and cytotoxicity of different types of CS-based OMSs.
Collapse
Affiliation(s)
- Solmaz Zakhireh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Beygi-Khosrowshahi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Omidain
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
17
|
Fatahi Dehpahni M, Chehri K, Azadbakht M. Effect of Silver Nanoparticles and L-Carnitine Supplement on Mixed Vaginitis Caused by Candida albicans/ Staphylococcus aureus in Mouse Models: An Experimental Study. Curr Microbiol 2021; 78:3945-3956. [PMID: 34542662 DOI: 10.1007/s00284-021-02652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
The evolution of antimicrobial-resistant pathogens is a global health and development threat. Nanomedicine is rapidly becoming the main driving force behind ongoing changes in antimicrobial studies. Among nanoparticles, silver (AgNPs) have attracted attention due to their versatile properties. The study aimed to investigate the effects of AgNPs and L-carnitine (LC) on mixed Candida albicans and Staphylococcus aureus in the mice vaginitis model. Study of antimicrobial activity of AgNPs evaluated by Minimum Inhibitory Concentration (MIC) and Minimum Biocidal Concentration (MBC) assays. AgNPs inhibited biofilm formation of microbial strains, which was tested by using crystal violet staining. In the current study, we evaluated the effects of AgNPs and LC in NMRI mice infected intravaginally with C. albicans/ S. aureus for two weeks. The proportion of mice in each stage of the estrous cycle (proestrus, estrus, metestrus, and diestrus) was examined. Histological properties were assessed by hematoxylin/ eosin (H&E) staining of formalin-fixed, paraffin-embedded vaginal tissue sections. Based on the results, MICs of AgNPs against S. aureus, C. albicans, and their combination were 252.3, 124.8, and 501.8 ppm, and their minimum biofilm inhibitory concentration (MBIC) was 500, 250, and 1000 ppm, respectively. The estrous cycle in the treated group was similar to the control. Vaginal histology and cytology showed that LC can improve tissue damages caused by vaginitis and AgNPs. This study demonstrates the promising use of AgNPs as antimicrobial agents and the combination of AgNPs/ LC could be a great future alternative in the control of vaginitis.
Collapse
Affiliation(s)
| | - Khosrow Chehri
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| | - Mehri Azadbakht
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
18
|
Wang Y, Chang W, Li X, Jiang Z, Zhou D, Feng Y, Li B, Chen G, Li N. Apigenin exerts chemopreventive effects on lung injury induced by SiO 2 nanoparticles through the activation of Nrf2. J Nat Med 2021; 76:119-131. [PMID: 34480707 DOI: 10.1007/s11418-021-01561-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023]
Abstract
Apigenin (APG) is a flavonoid widely distributed in fruits, vegetables, and herbs, with comprehensive pharmacological effects. In this paper, we report that APG can elicit a protective effect, which is comparable to those induced by gymnoside II/n-BuOH extracts of Bletilla striata, on SiO2-induced lung injury in vitro and in vivo. In vitro experiments showed that APG (25 μM) could restore the SiO2-decreased A549 cell viability and lower the apoptotic rate and the production of intracellular reactive oxygen species (ROS) in A549 cells treated with nm SiO2. Western blot results showed that APG (25 μM) could increase the level of Nuclear factor E2-related factor 2 (Nrf2) and its downstream proteins. In vivo experiments showed that APG (20 mg/kg) could potently alleviate the SiO2-elicited lung injury by enhancing the Nrf2 expression and thereby suppressing Bax/Bcl-2 pathway. The present study suggests that APG can significantly alleviate the SiO2-induced lung injury both in vitro and in vivo through, at least partially, activating Nrf2 expression.
Collapse
Affiliation(s)
- Yajun Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Wenhui Chang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Xuezheng Li
- Department of PIVAS, Yanbian University Hospital, Yanji, China
| | - Zhe Jiang
- Department of PIVAS, Yanbian University Hospital, Yanji, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Bingxin Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- Sate Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guangxi, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
| |
Collapse
|
19
|
Kang S, Park SE, Huh DD. Organ-on-a-chip technology for nanoparticle research. NANO CONVERGENCE 2021; 8:20. [PMID: 34236537 PMCID: PMC8266951 DOI: 10.1186/s40580-021-00270-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/11/2021] [Indexed: 05/02/2023]
Abstract
The last two decades have witnessed explosive growth in the field of nanoengineering and nanomedicine. In particular, engineered nanoparticles have garnered great attention due to their potential to enable new capabilities such as controlled and targeted drug delivery for treatment of various diseases. With rapid progress in nanoparticle research, increasing efforts are being made to develop new technologies for in vitro modeling and analysis of the efficacy and safety of nanotherapeutics in human physiological systems. Organ-on-a-chip technology represents the most recent advance in this effort that provides a promising approach to address the limitations of conventional preclinical models. In this paper, we present a concise review of recent studies demonstrating how this emerging technology can be applied to in vitro studies of nanoparticles. The specific focus of this review is to examine the use of organ-on-a-chip models for toxicity and efficacy assessment of nanoparticles used in therapeutic applications. We also discuss challenges and future opportunities for implementing organ-on-a-chip technology for nanoparticle research.
Collapse
Affiliation(s)
- Shawn Kang
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104 USA
| | - Sunghee Estelle Park
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104 USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Dan Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA 19104 USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104 USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
20
|
Wrońska N, Katir N, Miłowska K, Hammi N, Nowak M, Kędzierska M, Anouar A, Zawadzka K, Bryszewska M, El Kadib A, Lisowska K. Antimicrobial Effect of Chitosan Films on Food Spoilage Bacteria. Int J Mol Sci 2021; 22:5839. [PMID: 34072512 PMCID: PMC8198402 DOI: 10.3390/ijms22115839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Synthetic materials commonly used in the packaging industry generate a considerable amount of waste each year. Chitosan is a promising feedstock for the production of functional biomaterials. From a biological point of view, chitosan is very attractive for food packaging. The purposes of this study were to evaluate the antibacterial activity of a set of chitosan-metal oxide films and different chitosan-modified graphene (oxide) films against two foodborne pathogens: Campylobacter jejuni ATCC 33560 and Listeria monocytogenes 19115. Moreover, we wanted to check whether the incorporation of antimicrobial constituents such as TiO2, ZnO, Fe2O3, Ag, and graphene oxide (GO) into the polymer matrices can improve the antibacterial properties of these nanocomposite films. Finally, this research helps elucidate the interactions of these materials with eukaryotic cells. All chitosan-metal oxide films and chitosan-modified graphene (oxide) films displayed improved antibacterial (C. jejuni ATCC 33560 and L. monocytogenes 19115) properties compared to native chitosan films. The CS-ZnO films had excellent antibacterial activity towards L. monocytogenes (90% growth inhibition). Moreover, graphene-based chitosan films caused high inhibition of both tested strains. Chitosan films with graphene (GO, GOP, GOP-HMDS, rGO, GO-HMDS, rGOP), titanium dioxide (CS-TiO2 20:1a, CS-TiO2 20:1b, CS-TiO2 2:1, CS-TiO2 1:1a, CS-TiO2 1:1b) and zinc oxide (CS-ZnO 20:1a, CS-ZnO 20:1b) may be considered as a safe, non-cytotoxic packaging materials in the future.
Collapse
Affiliation(s)
- Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| | - Nadia Katir
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (K.M.); (M.K.); (M.B.)
| | - Nisrine Hammi
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Marta Nowak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| | - Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (K.M.); (M.K.); (M.B.)
| | - Aicha Anouar
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Katarzyna Zawadzka
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (K.M.); (M.K.); (M.B.)
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division (Center Is Part of the Division), Euro-Med University of Fes (UEMF), Route de Meknes, Rond-Point de Bensouda, Fès 30070, Morocco; (N.K.); (N.H.); (A.A.); (A.E.K.)
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (M.N.); (K.Z.)
| |
Collapse
|
21
|
Shreyash N, Sonker M, Bajpai S, Tiwary SK. Review of the Mechanism of Nanocarriers and Technological Developments in the Field of Nanoparticles for Applications in Cancer Theragnostics. ACS APPLIED BIO MATERIALS 2021; 4:2307-2334. [PMID: 35014353 DOI: 10.1021/acsabm.1c00020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer cannot be controlled by the usage of drugs alone, and thus, nanotechnology is an important technique that can provide the drug with an impetus to act more effectively. There is adequate availability of anticancer drugs that are classified as alkylating agents, hormones, or antimetabolites. Nanoparticle (NP) carriers increase the residence time of the drug, thereby enhancing the survival rate of the drug, which otherwise gets washed off owing to the small size of the drug particles by the excretory system. For example, for enhancing the circulation, a coating of nonfouling polymers like PEG and dextran is done. Famous drugs such as doxorubicin (DOX) are commonly encapsulated inside the nanocomposite. The various classes of nanoparticles are used to enhance drug delivery by aiding it to fight against the tumor. Targeted therapy aims to attack the cells with features common to the cancer cells while minimizing damage to the normal cell, and these therapies work in one in four ways. Some block the cancer cells from reproducing newer cells, others release toxic substances to kill the cancer cells, some stimulate the immune system to destroy the cancer cells, and some block the growth of more blood vessels around cancer cells, which starve the cells of the nutrients, which is needed for their growth. This review aims to testify the advancements nanotechnology has brought in cancer therapy, and its statements are supported with recent research findings and clinical trial results.
Collapse
|
22
|
Asadi S, Bianchi L, De Landro M, Korganbayev S, Schena E, Saccomandi P. Laser-induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application. JOURNAL OF BIOPHOTONICS 2021; 14:e202000161. [PMID: 32761778 DOI: 10.1002/jbio.202000161] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Gold nanoparticles (GNPs)-based photothermal therapy (PTT) is a promising minimally invasive thermal therapy for the treatment of focal malignancies. Although GNPs-based PTT has been known for over two decades and GNPs possess unique properties as therapeutic agents, the delivery of a safe and effective therapy is still an open question. This review aims at providing relevant and recent information on the usage of GNPs in combination with the laser to treat cancers, pointing out the practical aspects that bear on the therapy outcome. Emphasis is given to the assessment of the GNPs' properties and the physical mechanisms underlying the laser-induced heat generation in GNPs-loaded tissues. The main techniques available for temperature measurement and the current theoretical simulation approaches predicting the therapeutic outcome are reviewed. Topical challenges in delivering safe thermal dosage are also presented with the aim to discuss the state-of-the-art and the future perspective in the field of GNPs-mediated PTT.
Collapse
Affiliation(s)
- Somayeh Asadi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Martina De Landro
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | | | - Emiliano Schena
- Laboratory of Measurement and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
23
|
Gao Y, Zhai H, She X, Si H. Quantitative Structure-activity Relationships; Studying the Toxicity of Metal Nanoparticles. Curr Top Med Chem 2020; 20:2506-2517. [DOI: 10.2174/1568026620666200722112113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/25/2019] [Accepted: 01/10/2020] [Indexed: 02/04/2023]
Abstract
Background:
Metal nanomaterials are widely used in various fields, including targeted therapy
and diagnosis. They are extensively used in targeted drug delivery and local treatments. However,
the toxicity associated with these materials could lead to severe adverse health effects.
Methods:
In this study, we investigated the relationships between the toxicity and structures of metal
nanoparticles by using theoretical calculations and quantitative structure-activity relationships. Twenty
four physicochemical descriptors and toxicity data of 23 types of metal nanoparticles were selected as
samples, and a multiple linear regression model was established to obtain a toxicity prediction equation
with 5 descriptors with an R2
of 0.910. Structures of copper nanoparticles were designed based on the
model, and the structure with low toxicity was searched. The multiple nonlinear regression model was
used to further improve the prediction accuracy.
Results:
The R2 values were 0.995 in the training set and 0.988 in the test set, which indicated that the
prediction accuracy improved. Based on the result of multiple linear regression, we designed copper
nanoparticles with low toxicity.
Conclusion:
The study confirmed that the quantitative structure-activity relationship was a reasonable
method for predicting the toxicity and designing the structures with low toxicity of metal nanoparticles.
Collapse
Affiliation(s)
- Yuting Gao
- School of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Honglin Zhai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Xilin She
- School of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Hongzong Si
- Institute for Computational Science and Engineering, Laboratory of New Fibrous Materials and Modern Textile, Key Laboratory of Marine Functional Fiber New Materials, Qingdao University, Qingdao, Shandong 266071, China
| |
Collapse
|
24
|
Abstract
Copper oxide nanoparticles (CuO NPs) use has exponentially increased in various applications (such as industrial catalyst, gas sensors, electronic materials, biomedicines, environmental remediation) due to their flexible properties, i.e. large surface area to volume ratio. These broad applications, however, have increased human exposure and thus the potential risk related to their short- and long-term toxicity. Their release in environment has drawn considerable attention which has become an eminent area of research and development. To understand the toxicological impact of CuO NPs, this review summarises the in-vitro and in-vivo toxicity of CuO NPs subjected to species (bacterial, algae, fish, rats, human cell lines) used for toxicological hazard assessment. The key factors that influence the toxicity of CuO NPs such as particle shape, size, surface functionalisation, time-dose interaction and animal and cell models are elaborated. The literature evidences that the CuO NPs exposure to the living systems results in reactive oxygen species generation, oxidative stress, inflammation, cytotoxicity, genotoxicity and immunotoxicity. However, the physio-chemical characteristics of CuO NPs, concentration, mode of exposure, animal model and assessment characteristics are the main perspectives that define toxicology of CuO NPs.
Collapse
Affiliation(s)
- Sania Naz
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Gul
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
25
|
Kusumoputro S, Tseng S, Tse J, Au C, Lau C, Wang X, Xia T. Potential nanoparticle applications for prevention, diagnosis, and treatment of COVID‐19. VIEW 2020. [DOI: 10.1002/viw.20200105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sydney Kusumoputro
- Department of Ecology and Evolutionary Biology University of California Los Angeles California USA
| | - Shannon Tseng
- Department of Ecology and Evolutionary Biology University of California Los Angeles California USA
| | - Jonathan Tse
- Department of Integrative Biology and Physiology University of California Los Angeles California USA
| | - Christian Au
- Department of Bioengineering University of California Los Angeles California USA
| | - Candice Lau
- Department of Molecular, Cell and Developmental Biology University of California Los Angeles California USA
| | - Xiang Wang
- Division of NanoMedicine Department of Medicine University of California Los Angeles California USA
| | - Tian Xia
- Division of NanoMedicine Department of Medicine University of California Los Angeles California USA
| |
Collapse
|
26
|
Kose O, Tomatis M, Leclerc L, Belblidia NB, Hochepied JF, Turci F, Pourchez J, Forest V. Impact of the Physicochemical Features of TiO 2 Nanoparticles on Their In Vitro Toxicity. Chem Res Toxicol 2020; 33:2324-2337. [PMID: 32786542 DOI: 10.1021/acs.chemrestox.0c00106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The concern about titanium dioxide nanoparticles (TiO2-NPs) toxicity and their possible harmful effects on human health has increased. Their biological impact is related to some key physicochemical properties, that is, particle size, charge, crystallinity, shape, and agglomeration state. However, the understanding of the influence of such features on TiO2-NP toxicity remains quite limited. In this study, cytotoxicity, proinflammatory response, and oxidative stress caused by five types of TiO2-NPs with different physicochemical properties were investigated on A549 cells used either as monoculture or in co-culture with macrophages differentiated from the human monocytic THP-1 cells. We tailored bulk and surface TiO2 physicochemical properties and differentiated NPs for size/specific surface area, shape, agglomeration state, and surface functionalization/charge (aminopropyltriethoxysilane). An impact on the cytotoxicity and to a lesser extent on the proinflammatory responses depending on cell type was observed, namely, smaller, large-agglomerated TiO2-NPs were shown to be less toxic than P25, whereas rod-shaped TiO2-NPs were found to be more toxic. Besides, the positively charged particle was slightly more toxic than the negatively charged one. Contrarily, TiO2-NPs, whatever their physicochemical properties, did not induce significant ROS production in both cell systems compared to nontreated control groups. These results may contribute to a better understanding of TiO2-NPs toxicity in relation with their physicochemical features.
Collapse
Affiliation(s)
- Ozge Kose
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Maura Tomatis
- Dipartimento di Chimica and G. Scansetti Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, Università degli Studi di Torino, 10125 Torino, Italy
| | - Lara Leclerc
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Naila-Besma Belblidia
- Mines ParisTech, PSL Research University, MAT - Centre des matériaux, CNRS UMR 7633, BP 87, 91003 Evry, France.,ENSTA ParisTech UCP, Institut Polytechnique Paris, 828 bd des Maréchaux, 91762 Palaiseau cedex, France
| | - Jean-François Hochepied
- Mines ParisTech, PSL Research University, MAT - Centre des matériaux, CNRS UMR 7633, BP 87, 91003 Evry, France.,ENSTA ParisTech UCP, Institut Polytechnique Paris, 828 bd des Maréchaux, 91762 Palaiseau cedex, France
| | - Francesco Turci
- Dipartimento di Chimica and G. Scansetti Interdepartmental Center for Studies on Asbestos and other Toxic Particulates, Università degli Studi di Torino, 10125 Torino, Italy
| | - Jérémie Pourchez
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Valérie Forest
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| |
Collapse
|
27
|
Hufnagel M, Schoch S, Wall J, Strauch BM, Hartwig A. Toxicity and Gene Expression Profiling of Copper- and Titanium-Based Nanoparticles Using Air-Liquid Interface Exposure. Chem Res Toxicol 2020; 33:1237-1249. [PMID: 32285662 DOI: 10.1021/acs.chemrestox.9b00489] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To assess the toxicity of nanomaterials, most in vitro studies have been performed under submerged conditions, which do not reflect physiological conditions upon inhalation. An air-liquid interface (ALI) exposure may provide more reliable data on dosimetry and prevent interactions with cell culture media components. Therefore, an ALI exposure was combined with a high-throughput RT-qPCR approach to evaluate the toxicological potential of CuO and TiO2 nanoparticles (NP) in A549 cells. While TiO2 NP did not show any cytotoxicity or other effects compromising genomic stability up to 25.8 μg/cm2, CuO NP revealed a dose-dependent cytotoxicity, starting at 4.9 μg/cm2. Furthermore, CuO NP altered distinct gene expression patterns indicative for disturbed metal homeostasis, stress response, and DNA damage induction. Thus, induction of metal homeostasis associated genes (MT1X, MT2A) at 0.4 μg/cm2 and higher suggested uptake and intracellular dissolution of CuO NP, which was verified by a dose-dependent increase in intracellular copper concentration. Starting at 4.9 μg/cm2, oxidative stress markers (HMOX1, HSPA1A) were induced dose-dependently, supported by elevated ROS levels. Furthermore, a dose-dependent induction of genes associated with DNA damage response (DDIT3, GADD45A) was observed, in concordance with an increase in DNA strand breaks. Finally, transcriptional data suggested the induction of apoptosis at high doses, while flow cytometric analysis revealed increased numbers of either late apoptotic or necrotic cells and clearly necrotic cells at the highest concentrations. Thus, an ALI cell culture system was successfully combined with a comprehensive high-throughput RT-qPCR system, allowing the quantification of NP deposition and their impact on genomic stability. For CuO NP, in principle the data confirm observations made under submerged conditions with respect to intracellular copper ion release, as well as oxidative and genotoxic stress response. However, the results derived from ALI exposure allow the assessment of dose-response-relationships as well as the comparison of relative toxic potencies of different NP.
Collapse
Affiliation(s)
- Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Sarah Schoch
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Johanna Wall
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Bettina Maria Strauch
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| |
Collapse
|
28
|
Chen L, Wu M, Jiang S, Zhang Y, Li R, Lu Y, Liu L, Wu G, Liu Y, Xie L, Xu L. Skin Toxicity Assessment of Silver Nanoparticles in a 3D Epidermal Model Compared to 2D Keratinocytes. Int J Nanomedicine 2019; 14:9707-9719. [PMID: 31849463 PMCID: PMC6910103 DOI: 10.2147/ijn.s225451] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction Increased use of silver nanoparticles (AgNPs) has raised concerns that AgNPs may induce toxic effects. In vitro studies of cell monolayers and in vivo studies have produced conflicting results. The inconsistency of these results has been mainly due to limitations of two-dimensional (2D) monolayer cell systems. Methods A three-dimensional (3D) epidermal model called EpiKutis®, which exhibits good tissue viability and barrier function was developed. The cytotoxicity of AgNPs against EpiKutis was compared to that against 2D keratinocytes at equivalent AgNPs doses (0.035, 0.07, 0.14, 0.28, and 0.56 ng per cell). The amount and distribution of AgNPs in the 3D EpiKutis and 2D keratinocytes after exposure were determined. The toxic mechanisms of AgNPs, such as oxidative stress and production of pro-inflammatory cytokines, were investigated. Results The results demonstrated that cell viability was greater than 80% and lactate dehydrogenase (LDH) release did not increase even at the highest dose of AgNPs in EpiKutis. In contrast, treatment of 2D keratinocytes with AgNPs resulted in dose-dependent decrease in cell viability from 63% to 11%, and a dose-dependent increase in LDH release from 8% to 16%. Cytotoxicity of AgNPs in 2D keratinocytes was related to oxidative damage and inflammation, as evidenced by increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), IL-1α, IL-6, and IL-8. In addition, levels of superoxide dismutase (SOD) were decreased. EpiKutis treated with AgNPs did not exhibit increased oxidative damage or inflammation, which may have been due to the barrier properties of the 3D structure, resulting in reduced penetration of AgNPs. At equivalent per cell doses, total silver penetration into EpiKutis was 0.9 ± 0.1%, and total silver penetration into 2D keratinocytes was 8.8 ± 0.6% detected by ICP-MS. The penetration and distribution of AgNPs in 2D keratinocytes were confirmed by the TEM-EDS analysis, which was not found in the 3D EpiKutis. These results showed that AgNPs penetrated EpiKutis to a lesser degree than they penetrated 2D keratinocytes, which suggested that EpiKutis exhibited significant barrier function. Discussion The results of this study showed that AgNP toxicity should be evaluated using 3D epidermal models, which may provide better estimates of in vivo conditions than 2D models. The EpiKutis model may be an ideal model for assessment of nanotoxicity.
Collapse
Affiliation(s)
- Liang Chen
- NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials in Medical Applications, National Institutes for Food and Drug Control, Beijing 102629, People's Republic of China
| | - Meiyu Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials in Medical Applications, Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Shan Jiang
- NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials in Medical Applications, National Institutes for Food and Drug Control, Beijing 102629, People's Republic of China.,Department of Preclinical Medicine and Forensic, Baotou Medical College, Baotou 014040, People's Republic of China
| | - Yanyun Zhang
- Guangdong Biocell Biotechnology Co. Ltd, Dongguan, 523808, Guangdong, People's Republic of China
| | - Runzhi Li
- Guangdong Biocell Biotechnology Co. Ltd, Dongguan, 523808, Guangdong, People's Republic of China
| | - Yongbo Lu
- Guangdong Biocell Biotechnology Co. Ltd, Dongguan, 523808, Guangdong, People's Republic of China
| | - Lin Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials in Medical Applications, Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Gang Wu
- Department of Preclinical Medicine and Forensic, Baotou Medical College, Baotou 014040, People's Republic of China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials in Medical Applications, Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials in Medical Applications, Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Liming Xu
- NCNST-NIFDC Joint Laboratory for Measurement and Evaluation of Nanomaterials in Medical Applications, National Institutes for Food and Drug Control, Beijing 102629, People's Republic of China
| |
Collapse
|
29
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
30
|
Alhusaini A, Fadda LM, Ali HM, Hasan IH, Ali RA, Zakaria EA. Mitigation of acetamiprid - induced renotoxicity by natural antioxidants via the regulation of ICAM, NF-kB and TLR 4 pathways. Pharmacol Rep 2019; 71:1088-1094. [PMID: 31629938 DOI: 10.1016/j.pharep.2019.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/28/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Acetamiprid (ACMP) is a member of the neonicotinoid group of insecticides. It is extensively used worldwide. The misuse of ACMP creates danger hazards to human and animal. METHODS ACMP induced renal damage evidenced by an increase in kidney injury biomarkers. So the goal of this work is to clarify the reno protective effect of Quercetin (Qrctn) and/or Nano-glutathione (N-Gluta) solely or in combination to counterbalance the danger effect of ACMP. All treatments with the previous agents were coadministered orally with ACMP for one month. RESULTS ACMP ingestion caused a significant rise in serum creatinin, urea, and uric acid, TNF α along with renal cystatin C, lipid peroxidation and nitric oxide with the concomitant decline in the levels of reduced glutathione and IL-10 levels. Protein expression of ICAM was upregulated as well as mRNA expression of NF-κB while mRNA expression of Nrf2 was down-regulated. Immune histochemistry of TLR 4 revealed strong immune reaction. The administration of Qrctn or N-Gluta either individually or together modulated all the preceding aforementioned parameters. CONCLUSION Fascinatingly Qrctn and N-Gluta combination was the most powerful regimen to frustrate ACMP reno-toxicity and may be deliberate as a hopeful applicant for renal therapy.
Collapse
Affiliation(s)
- Ahlam Alhusaini
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila M Fadda
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanaa M Ali
- Genetic and Cytology Department, National Research Center, Dokki, Egypt; Common First Year Deanship, King Saud University, Riyadh, Saudi Arabia.
| | - Iman H Hasan
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rehab A Ali
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Enas A Zakaria
- Pharmaceutics Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Jafarirad S, Taghizadeh PM, Divband B. Biosynthesis, Characterization and Structural Properties of a Novel Kind of Ag/ZnO Nanocomposites In Order to Increase Its Biocompatibility Across Human A549 Cell Line. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00685-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Prasath S, Palaniappan K. Is using nanosilver mattresses/pillows safe? A review of potential health implications of silver nanoparticles on human health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2295-2313. [PMID: 30671691 DOI: 10.1007/s10653-019-00240-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Human exposure to engineered nanoparticles has become inevitable in today's extensive commercial use and large-scale production of engineered nanoparticles. Even though several studies have characterised the exposure to nanomaterials during wakeful state (related to occupational exposures and exposures from commercially available particles), very few studies on human exposure during sleep exist. As the study of exposure to all possible nanomaterials during sleep is extensive, this study focuses on exposure to specifically silver nanoparticles which are present in beddings and mattresses. The reasoning behind the use of silver nanoparticles in bedding and related materials, possible routes of entry to various population groups in several sleep positions, exposure characterisation and toxicity potential of such silver nanoparticles are reviewed in this study. The toxicity potential of silver nanoparticles in vivo tests with relation to mammals and in vitro tests on human cells has been tabulated to understand the risks associated during oral, dermal and inhalation exposure to silver nanoparticles. The exposure to humans with regard to dermal absorption and oral intake has been summarised. Although potential inhalation exposure to silver nanoparticles is increasing, only a few studies address the possible toxic effect of inhaled silver particles. Determination of exposure to silver nanoparticles in beddings is a topic that has been less researched, and this review aims to provide background information for future research and help establish a comprehensive risk assessment during sleep in the times of increasing usage of nanoparticles in our daily activities. Despite the current limitations of our understanding, risk assessments must utilise the available data and apply extrapolation procedures in the face of uncertainty, in order to address the needs of regulatory programs. This would enable safe use of the antimicrobial properties of silver nanoparticles without negatively impacting human health. Until then, it would be better to adopt a conservative approach on the usage of silver nanoparticles in daily used commercial items.
Collapse
Affiliation(s)
| | - Kavitha Palaniappan
- University of Newcastle, Callahan, Australia
- University of Newcastle, Singapore, Singapore
| |
Collapse
|
33
|
Fu L, Lu X, Niu K, Tan J, Chen J. Bioaccumulation and human health implications of essential and toxic metals in freshwater products of Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:768-776. [PMID: 31003105 DOI: 10.1016/j.scitotenv.2019.04.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 05/22/2023]
Abstract
Bioaccumulation and human health risks of essential and toxic metals in ten species of freshwater products from Northeast China were investigated in this study. The concentrations (mg/kg wet weight) of target metals in aquatic products were: Fe (4.6-165.4), Zn (4.1-33.4), Mn (0.28-80.0), Cu (0.24-15.8), Cr (0.074-0.80), As (0.0068-0.72), Hg (0.016-0.58), Ni (0.019-0.58), Pb (0.017-0.27) and Cd (0.0004-0.058). There was no significant regional difference of target metal levels in fish samples between Liaoning province and Inner Mongolia Autonomous Region according to matched sample t-test. Every daily intakes (EDI) of target metals from freshwater products were far below their corresponding limits. However, health risk assessment of individual metal in freshwater products showed methyl mercury (MeHg) and Mn could pose potential noncarcinogenic risk to human, and inorganic arsenic (iAs) would cause potential carcinogenic risk to consumers at the level of 1 in 100,000. Furthermore, freshwater product species-specific bioaccumulation characteristics for different metals are quite different. The total hazard quotients of target metals in different aquatic product species demonstrated that co-exposure of target metals by consumption of these six species (C. auratus, E. sinensis, C. erythropterus, C. carpio, M. anguillicaudatus and O. cantor) from Northeast China could cause potential noncarcinogenic risk to human, and the pollution of toxic metals in E. sinensis and C. auratus were most serious among all investigated aquatic species.
Collapse
Affiliation(s)
- Lei Fu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Kai Niu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Tan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
34
|
Ali SA, Rizk MZ, Hamed MA, Aboul-Ela EI, El-Rigal NS, Aly HF, Abdel-Hamid AHZ. Assessment of titanium dioxide nanoparticles toxicity via oral exposure in mice: effect of dose and particle size. Biomarkers 2019; 24:492-498. [PMID: 31099265 DOI: 10.1080/1354750x.2019.1620336] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/05/2019] [Accepted: 05/02/2019] [Indexed: 01/23/2023]
Abstract
Objective: The aim of the present work is to evaluate the toxicity of titanium dioxide nanoparticles (TiO2NPs) according to their doses and particle sizes. Materials and methods: The effect of five days oral administration of TiO2NPs (21 and 80 nm) with different doses (50, 250 and 500 mg/kg body weight) was assessed in mice via measurement of oxidative stress markers; glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and nitric oxide (NO), liver function indices; aspartate and alanine aminotransferases (AST and ALT), chromosomal aberrations and liver histopathological pattern. Results: The results revealed drastic alterations in all the measured parameters and showed positive correlation with the gradual dose increment. In addition, the smaller particle size of TiO2NPS (21 nm) had more adverse effect in all the selected biochemical parameters, genetic aberrations and histological investigations. Conclusions: Toxicity of TiO2NPs increases in a dose-dependent manner and vice versa with particles size. The evaluated biomarkers are good indicators for TiO2NPs toxicity. More detailed studies are required before the recommendation of TiO2NPS as food additives.
Collapse
Affiliation(s)
- Sanaa A Ali
- a Department of Therapeutic Chemistry , National Research Centre , Giza , Egypt
| | - Maha Z Rizk
- a Department of Therapeutic Chemistry , National Research Centre , Giza , Egypt
| | - Manal A Hamed
- a Department of Therapeutic Chemistry , National Research Centre , Giza , Egypt
| | - Ezzat I Aboul-Ela
- b Genetics and Cytology Department , National Research Centre , Giza , Egypt
| | - Nagy S El-Rigal
- a Department of Therapeutic Chemistry , National Research Centre , Giza , Egypt
| | - Hanan F Aly
- a Department of Therapeutic Chemistry , National Research Centre , Giza , Egypt
| | | |
Collapse
|
35
|
Zhou Y, Fu Y, Bai Z, Li P, Zhao B, Han Y, Xu T, Zhang N, Lin L, Cheng J, Zhang J, Zhang J. Neural Differentiation of Mouse Neural Stem Cells as a Tool to Assess Developmental Neurotoxicity of Drinking Water in Taihu Lake. Biol Trace Elem Res 2019; 190:172-186. [PMID: 30465171 DOI: 10.1007/s12011-018-1533-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/24/2018] [Indexed: 10/27/2022]
Abstract
In this study, we used neural stem cells (NSCs) as a toxicology tool to assess the potential developmental neurotoxicity of drinking water from Taihu Lake. We found that the condensed drinking water could inhibit the proliferation and differentiation of NSCs, especially the tap water. Inductively coupled plasma mass spectrometry and high-performance liquid chromatography analysis showed that nickel was detected in the tap water with a high concentration. Our study revealed that nickel could inhibit NSCs proliferation and differentiation, which is induced not only by the intracellular reactive oxygen species generation, but also by the protein levels upregulation of p-c-Raf, p-MEK1/2 and p-Erk1/2 through the axon guidance signal pathways. These findings will provide a new way of research insight for investigation of nickel-induced neurotoxicity. Meanwhile, our test method confirmed the feasibility and reliability of stem cell assays for developmental neurotoxicity testing.
Collapse
Affiliation(s)
- Yang Zhou
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Yu Fu
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Zhendong Bai
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Peixin Li
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Bo Zhao
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Yuehua Han
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Ting Xu
- College of Environmental Science and Engineering, Tongji University, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai, 200092, People's Republic of China
| | - Ningyan Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Lin Lin
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Jian Cheng
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Jun Zhang
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| | - Jing Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China.
- Tongji Hospital, School of Life Science and Technology, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China.
| |
Collapse
|
36
|
Antibacterial and cytotoxic assessment of poly (methyl methacrylate) based hybrid nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:886-896. [PMID: 30948126 DOI: 10.1016/j.msec.2019.03.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022]
Abstract
Poly (methyl methacrylate) (PMMA) is an extensively used implant material in biomedical devices. Biofilm formation creates issues in PMMA-based biomedical implants, while emergence of drug resistant pathogens poses an additional complication. Hence development of surfaces that resist bacterial colonisation is extremely desirable. In this context, nanomaterials are among the potential choices. In the present work, nanocomposites (NCs) were developed by incorporation of chemically synthesized nanoparticles of CuO, cetyl trimethyl ammonium bromide (CTAB) capped CuO and ZnO (singly and in combination) in PMMA. The efficacy of these NCs was assessed against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria which are prevalent in many implant-associated infections. Results revealed species-specific response of the bacteria towards nanomaterials. CuO NC (0.1% (w/v)) was more effective against E. coli, while CTAB capped CuO NC and ZnO NC were very effective against S. aureus. Furthermore, combination of nanoparticles improved efficacy of nanocomposites against both the bacterial species. In vitro cytotoxicity assay using L6 myoblast cell line showed that all NCs at 0.1% (w/v) were biocompatible, showing >85% cell viability. The present study suggests that combination of NPs is a promising option to combat implant infection by multiple organisms.
Collapse
|
37
|
Bilgili MS, Agamuthu P. A new issue in waste management: Nanowaste. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:197-198. [PMID: 30744533 DOI: 10.1177/0734242x19830044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
38
|
Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Appl Microbiol Biotechnol 2019; 103:2913-2935. [PMID: 30778643 DOI: 10.1007/s00253-019-09675-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 12/13/2022]
Abstract
Metallic nanoparticles (MNPs) with their diverse physical and chemical properties have been applied in various biomedical domains. The increasing demand for MNPs has attracted researchers to develop straightforward, inexpensive, simple, and eco-friendly processes for the enhanced production of MNPs. To discover new biomedical applications first requires knowledge of the interactions of MNPs with target cells. This review focuses on plant and microbial synthesis of biological MNPs, their cellular uptake, biocompatibility, any biological consequences such as cytotoxicity, and biomedical applications. We highlighted the involvement of biomolecules in capping and stabilization of MNPs and the effect of physicochemical parameters particularly the pH on the synthesis of MNPs. Recently achieved milestones to understand the role of synthetic biology (SynBiol) in the synthesis of tailored MNPs are also discussed.
Collapse
|
39
|
Li X, Han L, Guo Y, Chang Y, Yan J, Wang Y, Li N, Ding Y, Cai J. Rapid detection and cellular fluorescence imaging of the TBI biomarker Let-7i using a DNA–AgNC nanoprobe. NEW J CHEM 2019. [DOI: 10.1039/c9nj00489k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rapid fluorescence detection of Let-7i for TBI diagnosis and intracellular imaging have been studied using the multifunctional DNA–AgNCs.
Collapse
Affiliation(s)
- Xingmei Li
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Leiming Han
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Yadong Guo
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Yunfeng Chang
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Jie Yan
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Yong Wang
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Na Li
- Department of Radiology
- The Third Xiangya Hospital
- Central South University
- Changsha 410013
- China
| | - Yanjun Ding
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| | - Jifeng Cai
- Department of Forensic Science
- School of Basic Medical Sciences
- Central South University
- Changsha 410013
- China
| |
Collapse
|
40
|
Heidai-Moghadam A, Khorsandi L, Jozi Z. Curcumin attenuates nephrotoxicity induced by zinc oxide nanoparticles in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:179-187. [PMID: 30387060 DOI: 10.1007/s11356-018-3514-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Curcumin (Cur) effects on renal injury induced by zinc oxide nanoparticles (NZnO) in rats were investigated. NZnO at a dose of 50 mg/kg for 14 days was administered to rats as intoxicated group. In protection group, Cur at a dose of 200 mg/kg was administered for 7 days prior to NZnO treatment and followed by concomitant administration of NZnO for 14 days. Plasma concentrations of uric acid, creatinine (Cr), and blood urea nitrogen (BUN) were detected to evaluate renal injury. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were determined for evaluation oxidative stress. TUNEL staining and histological changes were also performed. Administration of NZnO caused a significant elevation in the uric acid, Cr, and BUN levels. Oxidative stress was increased in the kidney by NZnO through enhancing MDA contents and reducing activities of SOD and GPx enzymes. According to histological examinations, treatment with NZnO caused proximal tubule damages, which was accompanied by the accumulation of red blood cells, infiltration of inflammatory cells, and reducing glomerular diameters. Significant increase was observed in the apoptotic index of the renal tubules in NZnO-treated rats. In present work, pretreatment of Cur reduced the histological changes, decreased biomarker levels, attenuated apoptotic index, and ameliorated oxidative stress by decreasing the MDA contents and increasing the activities of SOD and GPx enzymes. These findings indicate that Cur effectively protects against NZnO-induced nephrotoxicity in the rats.
Collapse
Affiliation(s)
- Abbas Heidai-Moghadam
- Student Research committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Zahra Jozi
- Student Research committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
41
|
Carvalho I, Ferdov S, Mansilla C, Marques S, Cerqueira M, Pastrana L, Henriques M, Gaidau C, Ferreira P, Carvalho S. Development of antimicrobial leather modified with Ag–TiO2 nanoparticles for footwear industry. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.stmat.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Alharbi B, Fadda L, Ali HM. Evaluation of the renoprotective effect of nano turmeric against toxic dose of copper sulfate: Role of vascular cell adhesion molecule-1, kidney injury molecule-1, and signal transducer and activator of transcription 3 protein expressions. J Biochem Mol Toxicol 2018; 33:e22243. [DOI: 10.1002/jbt.22243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Bshayer Alharbi
- Student at Faculty of Pharmacy, King Saud University; Riyadh Kingdom of Saudi Arabia
| | - Laila Fadda
- Pharmacology Department; Faculty of Pharmacy, King Saud University; Riyadh Kingdom of Saudi Arabia
| | - Hanaa M Ali
- First Common Year Deanship, King Saud University; Riyadh Kingdom of Saudi Arabia
- Department of Genetics and Cytology; National Research Centre; Dokki Egypt
| |
Collapse
|
43
|
Zhang M, Xu C, Jiang L, Qin J. A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicol Res (Camb) 2018; 7:1048-1060. [PMID: 30510678 PMCID: PMC6220735 DOI: 10.1039/c8tx00156a] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
The prevalent application of nanoparticles (NPs) has drawn intense concerns about their impact on the environment and human health. Inhalation of NPs is the major route of NP exposure and has led to adverse effects on the lung. It is of great concern to evaluate the potential hazards of nanoparticles for human health during pulmonary exposure. Here, we proposed a novel 3D human lung-on-a-chip model to recreate the organ-level structure and functions of the human lung that allow to us evaluate the pulmonary toxicity of nanoparticles. The lung-on-a-chip consists of three parallel channels for the co-culture of human vascular endothelial cells and human alveolar epithelial cells sandwiching a layer of Matrigel membrane, which recapitulate the key features of the alveolar capillary barrier in the human lung. Cell-cell interaction, cell-matrix interaction and vascular mechanical cues work synergistically to promote the barrier function of the lung-on-a-chip model. TiO2 nanoparticles and ZnO nanoparticles were applied on the lung-on-a-chip to assay their nanotoxicity on both epithelial cells and endothelial cells. Junction protein expression, increased permeability to macromolecules, dose dependent cytotoxicity, ROS production and apoptosis were assayed and compared on the chip. This lung-on-a-chip model indicated its versatile application in human pulmonary health and safety assessment for nanoparticles, environment, food and drugs.
Collapse
Affiliation(s)
- Min Zhang
- Division of Biotechnology , CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China .
| | - Cong Xu
- Division of Biotechnology , CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China .
- University of Chinese Academy of Sciences , Beijing , China
| | - Lei Jiang
- Division of Biotechnology , CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China .
| | - Jianhua Qin
- Division of Biotechnology , CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian , China .
- University of Chinese Academy of Sciences , Beijing , China
- CAS Centre for Excellence in Brain Science and Intelligence Technology , Chinese Academy of Sciences , Shanghai , China
- Institute for Stem Cell and Regeneration , Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
44
|
Rahmani Kukia N, Rasmi Y, Abbasi A, Koshoridze N, Shirpoor A, Burjanadze G, Saboory E. Bio-Effects of TiO2 Nanoparticles on Human Colorectal Cancer and Umbilical Vein Endothelial Cell Lines. Asian Pac J Cancer Prev 2018; 19:2821-2829. [PMID: 30361551 PMCID: PMC6291037 DOI: 10.22034/apjcp.2018.19.10.2821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Due to the possible biomedical potential of nanoparticles, titanium dioxide nanoparticles (TiO2 NPs)
have received great attention in cancer research. Although selectivity of cytotoxicity with TiO2 NPs in various cells is
clinically significant comparisons of cancer and non-cancer cells have been limited. Therefore, we here studied exposure
to TiO2 NPs in colorectal cancer cells (CRCs) and human umbilical vein endothelial cells (HUVECs). Methods: After
characterization of TiO2 NPs, culture and treatment of cells (HCT116, HT29 and HUVEC), viability was assessed by
MTT assay and in terms of morphological features. Acridine orange (AO) and propidium iodide (PI) assays were carried
out to estimate the incidence of apoptosis. The RT-PCR method was also employed to evaluate the expression of P53,
Bax, Bcl-2 and Caspase 3. Results: Exposure to increasing concentrations of TiO2 NPs enhanced overall cell survival
of HCT116 cells and reduced the Bcl-2 and Caspase 3 expression while the ratio of Bax/Bcl-2 was down-regulated.
TiO2 NPs at 400 and 50 μg/ml concentrations suppressed cell proliferation and induced apoptosis of HT29 cells and
also up-regulated P53 and Bax at the mRNA level, enhanced the Bax/Bcl-2 ratio and eventually up-regulated Caspase
3 mRNA. Although, inhibition of cell proliferation in HUVECs was seen at 200 and 400 μg/ml TiO2 NPs, it was not
marked. Conclusion: TiO2 NPs have selective bio-effects on exposed cells with dose- and cell-dependent influence on
viability. Cell proliferation in HCT116 as a metastatic colorectal cancer cell line appeared to be stimulated via multiple
signaling pathways, with promotion of apoptosis in less metastatic cells at 50 and 400 μg/ml concentrations. This was
associated with elevated P53, Bax and Caspase 3 mRNA and reduced Bcl-2 expression. However, TiO2 NPs did not
exert any apparent significant effects on HUVECs as hyperproliferative angiogenic cells.
Collapse
Affiliation(s)
- Nasim Rahmani Kukia
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | | | | | | | | | | | | |
Collapse
|
45
|
Rageh MM, El-Gebaly RH, Afifi MM. Antitumor activity of silver nanoparticles in Ehrlich carcinoma-bearing mice. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1421-1430. [DOI: 10.1007/s00210-018-1558-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
|
46
|
Hou J, Liu H, Wang L, Duan L, Li S, Wang X. Molecular Toxicity of Metal Oxide Nanoparticles in Danio rerio. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7996-8004. [PMID: 29944347 DOI: 10.1021/acs.est.8b01464] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal oxide nanoparticles can exert adverse effects on humans and aquatic organisms; however, their toxic mechanisms are still unclear. We investigated the toxic effects and mechanisms of copper oxide, zinc oxide, and nickel oxide nanoparticles in Danio rerio using microarray analysis and the comet assay. Copper oxide nanoparticles were more lethal than the other metal oxide nanoparticles. Gene ontology analysis of genes that were differentially expressed following exposure to all three metal oxide nanoparticles showed that the nanoparticles mainly affected nucleic acid metabolism in the nucleus via alterations in nucleic acid binding. KEGG analysis classified the differentially expressed genes to the genotoxicity-related pathways "cell cycle", "Fanconi anemia", "DNA replication", and "homologous recombination". The toxicity of metal oxide nanoparticles may be related to impairments in DNA synthesis and repair, as well as to increased production of reactive oxygen species.
Collapse
Affiliation(s)
- Jing Hou
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Haiqiang Liu
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Luyao Wang
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Linshuai Duan
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences , Chinese Academy of Science , Beijing 100085 , China
| | - Xiangke Wang
- College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , China
| |
Collapse
|
47
|
Elnagar AMB, Ibrahim A, Soliman AM. Histopathological Effects of Titanium Dioxide Nanoparticles and The Possible Protective Role of N-Acetylcysteine on The Testes of Male Albino Rats. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2018; 12:249-256. [PMID: 29935072 PMCID: PMC6018179 DOI: 10.22074/ijfs.2018.5389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/17/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Titanium dioxide (TiO2) is a white pigment which is used in paints, plastics, etc. It is reported that TiO2 induces oxidative stress and DNA damage. N-acetylcysteine (NAC) has been used to fight oxidative stress-induced damage in different tissues. The objective of this study was to evaluate the toxic effects of orally administered TiO2 nanoparticles and the possible protective effect of NAC on the testes of adult male albino rats. MATERIALS AND METHODS In this experimental study, 50 adult male albino rats were classified into five groups. Group I was the negative control, group II was treated with gum acacia solution , group III was treated with NAC, group IV was treated with TiO2 nanoparticles, and group V was treated with 100 mg/kg of NAC and 1200 mg/kg TiO2 nanoparticles. Total testosterone, glutathione (GSH), and serum malondialdehyde (MDA) levels were estimated. The testes were subjected to histopathological, electron microscopic examinations, and immunohistochemical detection for tumor necrosis factor (TNF)-α. Cells from the left testis were examined to detect the degree of DNA impairment by using the comet assay. RESULTS TiO2 nanoparticles induced histopathological and ultrastructure changes in the testes as well as positive TNF-α immunoreaction in the testicular tissue. Moreover, there was an increase in serum MDA while a decrease in testosterone and GSH levels in TiO2 nanoparticles-treated group. TiO2 resulted in DNA damage. Administration of NAC to TiO2- treated rats led to improvement of the previous parameters with modest protective effects against DNA damage. CONCLUSION TiO2-induced damage to the testes was mediated by oxidative stress. Notably, administration of NAC protected against TiO2's damaging effects.
Collapse
Affiliation(s)
- Amir M Bassam Elnagar
- Department of Histology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt.,Department of Pathology, Insaniah University, Kuala Ketil Kedah, Darul Aman, Malaysia
| | - Abdelnasser Ibrahim
- Forensic Unit, Department of Pathology, National University of Malaysia Medical Centre, Jalan Yaakob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia.,Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Amro Mohamed Soliman
- Department of Anatomy, National University of Malaysia Medical Centre, Jalan Yaakob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia. Electronic Address:
| |
Collapse
|
48
|
Rad MM, Najafzadeh N, Tata N, Jafari A. Ag – ZnO Nanocomposites Cause Cytotoxicity and Induce Cell Cycle Arrest in Human Gastric and Melanoma Cancer Cells. Pharm Chem J 2018; 52:112-116. [DOI: 10.1007/s11094-018-1774-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 12/17/2022]
|
49
|
Ebrahimi A, Daryalal Y, Mahzounieh M, Lotfalian S. Effects of Sub-Minimum Inhibitory Concentrations of Silver Nanoparticles on Some Virulence Factors of Staphylococcus aureus. MEDICAL LABORATORY JOURNAL 2018. [DOI: 10.29252/mlj.12.4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
50
|
Selvakumar P, Sithara R, Viveka K, Sivashanmugam P. Green synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in blood compatibility. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 182:52-61. [DOI: 10.1016/j.jphotobiol.2018.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/13/2018] [Accepted: 03/22/2018] [Indexed: 02/02/2023]
|