1
|
Li J, Deng Z, Soerensen SJC, Kachuri L, Cardenas A, Graff RE, Leppert JT, Langston ME, Chung BI. Ambient air pollution and urological cancer risk: A systematic review and meta-analysis of epidemiological evidence. Nat Commun 2024; 15:5116. [PMID: 38879581 PMCID: PMC11180144 DOI: 10.1038/s41467-024-48857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/13/2024] [Indexed: 06/19/2024] Open
Abstract
Exposure to ambient air pollution has significant adverse health effects; however, whether air pollution is associated with urological cancer is largely unknown. We conduct a systematic review and meta-analysis with epidemiological studies, showing that a 5 μg/m3 increase in PM2.5 exposure is associated with a 6%, 7%, and 9%, increased risk of overall urological, bladder, and kidney cancer, respectively; and a 10 μg/m3 increase in NO2 is linked to a 3%, 4%, and 4% higher risk of overall urological, bladder, and prostate cancer, respectively. Were these associations to reflect causal relationships, lowering PM2.5 levels to 5.8 μg/m3 could reduce the age-standardized rate of urological cancer by 1.5 ~ 27/100,000 across the 15 countries with the highest PM2.5 level from the top 30 countries with the highest urological cancer burden. Implementing global health policies that can improve air quality could potentially reduce the risk of urologic cancer and alleviate its burden.
Collapse
Affiliation(s)
- Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA.
| | - Zhengyi Deng
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
| | - Simon John Christoph Soerensen
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Linda Kachuri
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Andres Cardenas
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - John T Leppert
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Urology, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Marvin E Langston
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin I Chung
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
| |
Collapse
|
2
|
Sathitsamitphong L, Chitapanarux I, Srikummoon P, Thongsak N, Nakharutai N, Thumronglaohapun S, Supasri T, Hemwan P, Traisathit P. Ambient air pollution as a time-varying covariate in the survival probability of childhood cancer patients in the upper Northern Thailand. PLoS One 2024; 19:e0303182. [PMID: 38728338 PMCID: PMC11086912 DOI: 10.1371/journal.pone.0303182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
The objective of this study is to determine the possible association between exposure to air pollution and the risk of death from cancer during childhood in upper northern Thailand. Data were collected on children aged 0-15 years old diagnosed with cancer between January 2003 and December 2018 from the Chiang Mai Cancer Registry. Survival rates were determined by using Kaplan-Meier curves. Cox proportional hazard models were used to investigate associations of potential risk factors with the time-varying air pollution level on the risk of death. Of the 540 children with hematologic cancer, 199 died from any cause (overall mortality rate = 5.3 per 100 Person-Years of Follow-Up (PYFU); 95%CI = 4.6-6.0). Those aged less than one year old (adjusted hazard ratio [aHR] = 2.07; 95%CI = 1.25-3.45) or ten years old or more (aHR = 1.41; 95%CI = 1.04-1.91) at the time of diagnosis had a higher risk of death than those aged one to ten years old. Those diagnosed between 2003 and 2013 had an increased risk of death (aHR = 1.65; 95%CI = 1.13-2.42). Of the 499 children with solid tumors, 214 died from any cause (5.9 per 100 PYFU; 95%CI = 5.1-6.7). Only the cancer stage remained in the final model, with the metastatic cancer stage (HR = 2.26; 95%CI = 1.60-3.21) and the regional cancer stage (HR = 1.53; 95%CI = 1.07-2.19) both associated with an increased risk of death. No association was found between air pollution exposure and all-cause mortality for either type of cancer. A larger-scale analytical study might uncover such relationships.
Collapse
Affiliation(s)
| | - Imjai Chitapanarux
- Northern Thai Research Group of Therapeutic Radiology and Oncology (NTRG-TRO), Divisions of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimwarat Srikummoon
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Natthapat Thongsak
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nawapon Nakharutai
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Titaporn Supasri
- Atmospheric Research Unit of National Astronomical Research Institute of Thailand, Chiang Mai, Thailand
| | - Phonpat Hemwan
- Geo-Informatics and Space Technology Centre (Northern Region), Department of Geography, Faculty of Social Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Patrinee Traisathit
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Ramamoorthy T, Nath A, Singh S, Mathew S, Pant A, Sheela S, Kaur G, Sathishkumar K, Mathur P. Assessing the Global Impact of Ambient Air Pollution on Cancer Incidence and Mortality: A Comprehensive Meta-Analysis. JCO Glob Oncol 2024; 10:e2300427. [PMID: 38513187 DOI: 10.1200/go.23.00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024] Open
Abstract
PURPOSE This study aims to examine the association between exposure to major ambient air pollutants and the incidence and mortality of lung cancer and some nonlung cancers. METHODS This meta-analysis used PubMed and EMBASE databases to access published studies that met the eligibility criteria. Primary analysis investigated the association between exposure to air pollutants and cancer incidence and mortality. Study quality was assessed using the Newcastle Ottawa Scale. Meta-analysis was conducted using R software. RESULTS The meta-analysis included 61 studies, of which 53 were cohort studies and eight were case-control studies. Particulate matter 2.5 mm or less in diameter (PM2.5) was the exposure pollutant in half (55.5%), and lung cancer was the most frequently studied cancer in 59% of the studies. A pooled analysis of exposure reported in cohort and case-control studies and cancer incidence demonstrated a significant relationship (relative risk [RR], 1.04 [95% CI, 1.02 to 1.05]; I2, 88.93%; P < .05). A significant association was observed between exposure to pollutants such as PM2.5 (RR, 1.08 [95% CI, 1.04 to 1.12]; I2, 68.52%) and nitrogen dioxide (NO2) (RR, 1.03 [95% CI, 1.01 to 1.05]; I2, 73.52%) and lung cancer incidence. The relationship between exposure to the air pollutants and cancer mortality demonstrated a significant relationship (RR, 1.08 [95% CI, 1.07 to 1.10]; I2, 94.77%; P < .001). Among the four pollutants, PM2.5 (RR, 1.15 [95% CI, 1.08 to 1.22]; I2, 95.33%) and NO2 (RR, 1.05 [95% CI, 1.02 to 1.08]; I2, 89.98%) were associated with lung cancer mortality. CONCLUSION The study confirms the association between air pollution exposure and lung cancer incidence and mortality. The meta-analysis results could contribute to community cancer prevention and diagnosis and help inform stakeholders and policymakers in decision making.
Collapse
Affiliation(s)
- Thilagavathi Ramamoorthy
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Anita Nath
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Shubhra Singh
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Stany Mathew
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Apourv Pant
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Samvedana Sheela
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Gurpreet Kaur
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Krishnan Sathishkumar
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Prashant Mathur
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| |
Collapse
|
4
|
Lu TY, Wu CD, Huang YT, Chen YC, Chen CJ, Yang HI, Pan WC. Exposure to PM 2.5 Metal Constituents and Liver Cancer Risk in REVEAL-HBV. J Epidemiol 2024; 34:87-93. [PMID: 36908115 PMCID: PMC10751193 DOI: 10.2188/jea.je20220262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/05/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Ambient particulate matter is classified as a human Class 1 carcinogen, and recent studies found a positive relationship between fine particulate matter (PM2.5) and liver cancer. Nevertheless, little is known about which specific metal constituent contributes to the development of liver cancer. OBJECTIVE To evaluate the association of long-term exposure to metal constituents in PM2.5 with the risk of liver cancer using a Taiwanese cohort study. METHODS A total of 13,511 Taiwanese participants were recruited from the REVEAL-HBV in 1991-1992. Participants' long-term exposure to eight metal constituents (Ba, Cu, Mn, Sb, Zn, Pb, Ni, and Cd) in PM2.5 was based on ambient measurement in 2002-2006 followed by a land-use regression model for spatial interpolation. We ascertained newly developed liver cancer (ie, hepatocellular carcinoma [HCC]) through data linkage with the Taiwan Cancer Registry and national health death certification in 1991-2014. A Cox proportional hazards model was utilized to assess the association between exposure to PM2.5 metal component and HCC. RESULTS We identified 322 newly developed HCC with a median follow-up of 23.1 years. Long-term exposure to PM2.5 Cu was positively associated with a risk of liver cancer. The adjusted hazard ratio (HR) was 1.13 (95% confidence interval [CI], 1.02-1.25; P = 0.023) with one unit increment on Cu normalized by PM2.5 mass concentration in the logarithmic scale. The PM2.5 Cu-HCC association remained statistically significant with adjustment for co-exposures to other metal constituents in PM2.5. CONCLUSION Our findings suggest PM2.5 containing Cu may attribute to the association of PM2.5 exposure with liver cancer.
Collapse
Affiliation(s)
- Tzu-Yi Lu
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Chiayi, Taiwan
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Yen-Tsung Huang
- Institue of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yu-Cheng Chen
- National Institution of Environmental Health Sciences, National Health Research Institute, Mioli, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Chi Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
5
|
Liu H, Zhang X, Sun Z, Chen Y. Ambient Fine Particulate Matter and Cancer: Current Evidence and Future Perspectives. Chem Res Toxicol 2023; 36:141-156. [PMID: 36688945 DOI: 10.1021/acs.chemrestox.2c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The high incidence of cancer has placed an enormous health and economic burden on countries around the world. In addition to evidence of epidemiological studies, conclusive evidence from animal experiments and mechanistic studies have also shown that morbidity and mortality of some cancers can be attributed to ambient fine particulate matter (PM2.5) exposure, especially in lung cancer. However, the underlying carcinogenetic mechanisms of PM2.5 remain unclear. Furthermore, in terms of risks of other types of cancer, both epidemiological and mechanistic evidence are more limited and scattered, and the results are also inconsistent. In order to sort out the carcinogenic effect of PM2.5, this paper reviews the association of cancers with PM2.5 based on epidemiological and biological evidence including genetic, epigenetic, and molecular mechanisms. The limitations of existing researches and the prospects for the future are also well clarified in this paper to provide insights for future studies.
Collapse
Affiliation(s)
- Hanrui Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
6
|
Cazzolla Gatti R, Di Paola A, Monaco A, Velichevskaya A, Amoroso N, Bellotti R. The spatial association between environmental pollution and long-term cancer mortality in Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158439. [PMID: 36113788 DOI: 10.1016/j.scitotenv.2022.158439] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Tumours are nowadays the second world‑leading cause of death after cardiovascular diseases. During the last decades of cancer research, lifestyle and random/genetic factors have been blamed for cancer mortality, with obesity, sedentary habits, alcoholism, and smoking contributing as supposed major causes. However, there is an emerging consensus that environmental pollution should be considered one of the main triggers. Unfortunately, all this preliminary scientific evidence has not always been followed by governments and institutions, which still fail to pursue research on cancer's environmental connections. In this unprecedented national-scale detailed study, we analyzed the links between cancer mortality, socio-economic factors, and sources of environmental pollution in Italy, both at wider regional and finer provincial scales, with an artificial intelligence approach. Overall, we found that cancer mortality does not have a random or spatial distribution and exceeds the national average mainly when environmental pollution is also higher, despite healthier lifestyle habits. Our machine learning analysis of 35 environmental sources of pollution showed that air quality ranks first for importance concerning the average cancer mortality rate, followed by sites to be reclaimed, urban areas, and motor vehicle density. Moreover, other environmental sources of pollution proved to be relevant for the mortality of some specific cancer types. Given these alarming results, we call for a rearrangement of the priority of cancer research and care that sees the reduction and prevention of environmental contamination as a priority action to put in place in the tough struggle against cancer.
Collapse
Affiliation(s)
- Roberto Cazzolla Gatti
- Department of Biological Sciences, Geological and Environmental (BiGeA), Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Arianna Di Paola
- Institute for BioEconomy, National Research Council of Italy (IBE-CNR), 00100 Rome, Italy
| | - Alfonso Monaco
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "A. Moro", 70126 Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy.
| | | | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy; Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro", 70125 Bari, Italy
| | - Roberto Bellotti
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "A. Moro", 70126 Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| |
Collapse
|
7
|
Liu H, Gu J, Huang Z, Han Z, Xin J, Yuan L, Du M, Chu H, Wang M, Zhang Z. Fine particulate matter induces METTL3-mediated m 6A modification of BIRC5 mRNA in bladder cancer. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129310. [PMID: 35749893 DOI: 10.1016/j.jhazmat.2022.129310] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Long-term exposure to fine particulate matter (PM2.5) is reportedly related to a variety of cancers including bladder cancer. However, little is known about the biological mechanism underlying this association. In the present study, PM2.5 exposure was significantly associated with increased levels of m6A modification in bladder cancer patients and bladder cells. METTL3 expression was aberrantly upregulated after PM2.5 exposure, and METTL3 was involved in PM2.5-induced m6A methylation. Higher METTL3 expression was observed in bladder cancer tissues and METTL3 knockdown dramatically inhibited bladder cancer cell proliferation, colony formation, migration and invasion, inducing apoptosis and disrupting the cell cycle. Mechanistically, PM2.5 enhanced the expression of METTL3 by inducing the promoter hypomethylation of its promoter and increasing the binding affinity of the transcription factor HIF1A. BIRC5 was identified as the target of METTL3 through m6A sequencing (m6A-Seq) and KEGG analysis. The methylated BIRC5 transcript was subsequently recognized by IGF2BP3, which increased its mRNA stability. In particular, PM2.5 exposure promoted the m6A modification of BIRC5 and its recognition by IGF2BP3. In addition, BIRC5 was involved in bladder cancer proliferation and metastasis, as well as VEGFA-regulated angiogenesis. This comprehensive study revealed that PM2.5 exposure exerts epigenetic regulatory effects on bladder cancer via the HIF1A/METTL3/IGF2BP3/BIRC5/VEGFA network.
Collapse
Affiliation(s)
- Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jingjing Gu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhengkai Huang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhichao Han
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lin Yuan
- Department of Urology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
8
|
Smith N, Luethcke KR, Craun K, Trepanier L. Risk of bladder cancer and lymphoma in dogs is associated with pollution indices by county of residence. Vet Comp Oncol 2022; 20:246-255. [PMID: 34480391 PMCID: PMC9969847 DOI: 10.1111/vco.12771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Human urothelial cell carcinoma (UCC) and non-Hodgkin lymphoma are considered environmental cancers in people, but less is known about environment risk for UCC and lymphoma in dogs. The objective of this study was to determine whether dogs with these cancers, compared to unaffected control dogs, live in counties with higher tap water contaminants or higher levels of air pollution as measured by the Environmental Protection Agency (EPA) and by National Air Toxics Assessment chemical exposure risk estimates. Dogs with available home addresses from two previously published case-control populations were included: 66 dogs with UCC and 70 unaffected controls; and 56 boxer dogs with lymphoma and 84 unaffected boxer controls. Tap water total trihalomethanes, which are water disinfection by-products, were more than threefold higher in UCC case counties of residence compared to controls (p < .0001), and a higher proportion of dogs with UCC lived in counties exceeding EPA ozone limits (41.8%) compared to controls (13.6% p = .0008). More boxers with lymphoma lived in counties exceeding EPA ozone limits (52.1%) compared to controls (29.0%; p = .018), with higher exposure risk estimates for airborne 1,3-butadiene and formaldehyde (p = .004-.005). These data support the hypothesis that tap water contaminants and airborne environmental pollutants contribute to the risk of both urothelial carcinoma and lymphoma in dogs. If these findings reflect causal relationships, then it is possible that tap water filtration units and more effective air pollution controls could decrease the overall incidence of these cancers in dogs.
Collapse
Affiliation(s)
- Natalie Smith
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristofer Ross Luethcke
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kaitlyn Craun
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Trepanier
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Yu P, Guo S, Xu R, Ye T, Li S, Sim MR, Abramson MJ, Guo Y. Cohort studies of long-term exposure to outdoor particulate matter and risks of cancer: A systematic review and meta-analysis. Innovation (N Y) 2021; 2:100143. [PMID: 34557780 PMCID: PMC8454739 DOI: 10.1016/j.xinn.2021.100143] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/11/2021] [Indexed: 11/11/2022] Open
Abstract
Robust evidence is needed for the hazardous effects of outdoor particulate matter (PM) on mortality and morbidity from all types of cancers. To summarize and meta-analyze the association between PM and cancer, published articles reporting associations between outdoor PM exposure and any type of cancer with individual outcome assessment that provided a risk estimate in cohort studies were identified via systematic searches. Of 3,256 records, 47 studies covering 13 cancer sites (30 for lung cancer, 12 for breast cancer, 11 for other cancers) were included in the quantitative evaluation. The pooled relative risks (RRs) for lung cancer incidence or mortality associated with every 10-μg/m3 PM2.5 or PM10 were 1.16 (95% confidence interval [CI], 1.10–1.23; I2 = 81%) or 1.22 (95% CI, 1.02–1.45; I2 = 96%), respectively. Increased but non-significant risks were found for breast cancer. Other cancers were shown to be associated with PM exposure in some studies but not consistently and thus warrant further investigation. Updated evidence for the association between PM and lung cancer risk has been provided Associations between PM and cancer risks from 13 sites were summarized Further studies should be conducted to fill the research gaps
Collapse
Affiliation(s)
- Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Suying Guo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai 200025, China
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Tingting Ye
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Malcolm R Sim
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
10
|
Cazzolla Gatti R. Why We Will Continue to Lose Our Battle with Cancers If We Do Not Stop Their Triggers from Environmental Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6107. [PMID: 34198930 PMCID: PMC8201328 DOI: 10.3390/ijerph18116107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Besides our current health concerns due to COVID-19, cancer is a longer-lasting and even more dramatic pandemic that affects almost a third of the human population worldwide. Most of the emphasis on its causes has been posed on genetic predisposition, chance, and wrong lifestyles (mainly, obesity and smoking). Moreover, our medical weapons against cancers have not improved too much during the last century, although research is in progress. Once diagnosed with a malignant tumour, we still rely on surgery, radiotherapy, and chemotherapy. The main problem is that we have focused on fighting a difficult battle instead of preventing it by controlling its triggers. Quite the opposite, our knowledge of the links between environmental pollution and cancer has surged from the 1980s. Carcinogens in water, air, and soil have continued to accumulate disproportionally and grow in number and dose, bringing us to today's carnage. Here, a synthesis and critical review of the state of the knowledge of the links between cancer and environmental pollution in the three environmental compartments is provided, research gaps are briefly discussed, and some future directions are indicated. New evidence suggests that it is relevant to take into account not only the dose but also the time when we are exposed to carcinogens. The review ends by stressing that more dedication should be put into studying the environmental causes of cancers to prevent and avoid curing them, that the precautionary approach towards environmental pollutants must be much more reactionary, and that there is an urgent need to leave behind the outdated petrochemical-based industry and goods production.
Collapse
Affiliation(s)
- Roberto Cazzolla Gatti
- Konrad Lorenz Institute for Evolution and Cognition Research, 3400 Klosterneuburg, Austria;
- Biological Institute, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
11
|
Zare Sakhvidi MJ, Lequy E, Goldberg M, Jacquemin B. Air pollution exposure and bladder, kidney and urinary tract cancer risk: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115328. [PMID: 32871482 DOI: 10.1016/j.envpol.2020.115328] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Exposure to outdoor air pollution has been linked to lung cancer, and suspicion arose regarding bladder, kidney, and urinary tract cancer (urological cancers). However, most of evidence comes from occupational studies; therefore, little is known about the effect of exposure to air pollution on the risk of urological cancers in the general population. METHOD We systematically searched Medline, Scopus, and Web of Science for articles investigating the associations between long-term exposure to air pollution and the risk of urological cancer (incidence or mortality). We included articles using a specific air pollutant (PM10, PM2.5, …) or proxies (traffic, proximity index …). We assessed each study's quality with the Newcastle-Ottawa scale and rated the quality of the body of evidence for each pollutant-outcome with the GRADE approach. The different study methodologies regarding exposure or outcome prevented us to perform a meta-analysis. RESULTS twenty articles (four case-control, nine cohort, and seven ecologic) met our inclusion criteria and were included in this review: eighteen reported bladder, six kidney, and two urinary tract. Modeling air pollutants was the most common exposure assessment method. Most of the included studies reported positive associations between air pollution and urological cancer risk. However, only a few reached statistical significance (e.g. for bladder cancer mortality, adjusted odds-ratio of 1.13 (1.03-1.23) for an increase of 4.4 μg.m-3 of PM2.5). Most studies inadequately addressed confounding, and cohort studies had an insufficient follow-up. DISCUSSION Overall, studies suggested positive (even though mostly non-significant) associations between air pollution exposure and bladder cancer mortality and kidney cancer incidence. We need more studies with better confounding control and longer follow-ups.
Collapse
Affiliation(s)
- Mohammad Javad Zare Sakhvidi
- University Rennes 1, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France; Occupational Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Emeline Lequy
- INSERM, UMS 011, F-94807, Villejuif, France; Université de Montréal Hospital Research Centre (CRCHUM), Montreal, QC, Canada
| | - Marcel Goldberg
- INSERM, UMS 011, F-94807, Villejuif, France; Université Paris Descartes, 12, Rue de L'école de Médecine, F-75006, Paris, France
| | - Bénédicte Jacquemin
- University Rennes 1, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
12
|
Pourvakhshoori N, Khankeh HR, Stueck M, Farrokhi M. The association between air pollution and cancers: controversial evidence of a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38491-38500. [PMID: 32767014 DOI: 10.1007/s11356-020-10377-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
There are inconsistent reports on the association between air pollution and cancers. This systematic review was, therefore, conducted to ascertain the relationship between air pollution and some cancers. This is a systematic review study, which all articles published in this area were extracted from January 1, 1950 to December 31, 2018 from Web of Science, PubMed, Scopus, Cochrane Library, MEDLINE, EMBASE, Science Direct, Google scholar. Searching was performed independently by two search-method experts. The required data were extracted from the articles by an author-made questionnaire. Forty-eight articles were investigated. Evidence linking air pollution to some cancers is limited. Leukemia had the highest association with exposure to various air pollutants and bladder cancer had the lowest association. It is noteworthy that the specific type of pollutants in all studies was not specified. Based on the findings, the results are contradictory, and the role of air pollution in some cancers cannot be supported. Accordingly, studies are recommended to be performed at the individual level or multifactorial studies to specifically investigate the relationship between air pollution and these types of cancers. In this way, the role of air pollution in the incidence of these cancers can be determined more accurately.
Collapse
Affiliation(s)
- Negar Pourvakhshoori
- Health in Emergency and Disaster Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Department of Nursing, School of Nursing and Midwifery, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamid Reza Khankeh
- Department of Clinical Science and Education, Karolinska Institute, Stockholm, Sweden
| | - Marcus Stueck
- DFPA Academy of Work and Health, Leipzig, Germany
- International Research Academy BIONET, Leipzig, Germany
| | - Mehrdad Farrokhi
- Health in Emergency and Disaster Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Turner MC, Gracia‐Lavedan E, Cirac M, Castaño‐Vinyals G, Malats N, Tardon A, Garcia‐Closas R, Serra C, Carrato A, Jones RR, Rothman N, Silverman DT, Kogevinas M. Ambient air pollution and incident bladder cancer risk: Updated analysis of the Spanish Bladder Cancer Study. Int J Cancer 2019; 145:894-900. [DOI: 10.1002/ijc.32136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Michelle C. Turner
- Barcelona Institute for Global Health (ISGlobal) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) Madrid Spain
- McLaughlin Centre for Population Health Risk AssessmentUniversity of Ottawa Ottawa Canada
| | - Esther Gracia‐Lavedan
- Barcelona Institute for Global Health (ISGlobal) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) Madrid Spain
| | - Marta Cirac
- Barcelona Institute for Global Health (ISGlobal) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) Madrid Spain
| | - Gemma Castaño‐Vinyals
- Barcelona Institute for Global Health (ISGlobal) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) Madrid Spain
- IMIM (Hospital del Mar Medical Research Institute) Barcelona Spain
| | - Núria Malats
- Spanish National Cancer Research Centre (CNIO) and CIBERONC Madrid Spain
| | - Adonina Tardon
- CIBER Epidemiología y Salud Pública (CIBERESP) Madrid Spain
- IUOPA, Universidad de Oviedo Oviedo Spain
| | | | - Consol Serra
- Universitat Pompeu Fabra (UPF) Barcelona Spain
- Consorci Hospitalari Parc Tauli Sabadell Spain
| | - Alfredo Carrato
- Ramón y Cajal University Hospital, Alcalá University, IRYCIS, CIBERONC Madrid Spain
| | - Rena R. Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute Bethesda MD
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute Bethesda MD
| | - Debra T. Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute Bethesda MD
| | - Manolis Kogevinas
- Barcelona Institute for Global Health (ISGlobal) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) Madrid Spain
- IMIM (Hospital del Mar Medical Research Institute) Barcelona Spain
| |
Collapse
|
14
|
Kim KJ, Shin J, Choi J. Cancer Risk from Exposure to Particulate Matter and Ozone According to Obesity and Health-Related Behaviors: A Nationwide Population-Based Cross-Sectional Study. Cancer Epidemiol Biomarkers Prev 2018; 28:357-362. [PMID: 30420440 DOI: 10.1158/1055-9965.epi-18-0508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/10/2018] [Accepted: 11/02/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND There is little evidence of an association between cancer risk and long-term exposure to ambient particulate matter <10 μm (PM10) and ozone (O3), according to obesity and health-related behaviors. METHODS In the 2012 Korean Community Health Survey, survey data on socioeconomic characteristics, health-related behaviors, and previous cancer history were collected from 100,867 participants. Daily average concentrations of PM10 and O3 (2003-2012) were obtained from the Korean Air Pollutants Emission Service. The cancer risks for interquartile increases in PM10 and O3 were evaluated using multiple logistic regression and were stratified by age, sex, obesity, and health-related behaviors. RESULTS Increased cancer risk was found among obese subjects aged ≥50 years after adjusting for confounding factors [PM10: ≥60 years: OR 1.34, 95% confidence interval (CI) 1.03-1.74; 50-60 years: OR 1.40, CI 1.01-1.96; O3: ≥60 years: OR 1.12, CI 1.04-1.20; 50-60 years: OR 1.20, CI 1.08-1.33]. However, we did not observe similar trends in the nonobese subjects. Among obese subjects aged ≥50 who had been exposed to PM10, men, ever smokers, and inactive subjects were at increased cancer risk. Regarding O3, the cancer risk was significantly higher among obese adults >50 years old, regardless of sex or health-related behaviors. CONCLUSIONS Long-term exposure to PM10 and O3 was found to increase cancer risk. In particular, the risk differed according to obesity status, age, sex, and health-related behaviors. IMPACT The effect of air pollution on cancer risk was compounded by obesity, smoking, and physical inactivity among subjects over 50 years old.
Collapse
Affiliation(s)
- Kyoung Jin Kim
- Department of Family Medicine, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul, South Korea
| | - Jinyoung Shin
- Department of Family Medicine, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul, South Korea.
| | - Jaekyung Choi
- Department of Family Medicine, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul, South Korea
| |
Collapse
|
15
|
Pedersen M, Stafoggia M, Weinmayr G, Andersen ZJ, Galassi C, Sommar J, Forsberg B, Olsson D, Oftedal B, Krog NH, Aamodt G, Pyko A, Pershagen G, Korek M, De Faire U, Pedersen NL, Östenson CG, Fratiglioni L, Sørensen M, Eriksen KT, Tjønneland A, Peeters PH, Bueno-de-Mesquita B, Vermeulen R, Eeftens M, Plusquin M, Key TJ, Jaensch A, Nagel G, Concin H, Wang M, Tsai MY, Grioni S, Marcon A, Krogh V, Ricceri F, Sacerdote C, Ranzi A, Cesaroni G, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Stayner LT, Kogevinas M, Nieuwenhuijsen MJ, Sokhi R, de Hoogh K, Beelen R, Vineis P, Brunekreef B, Hoek G, Raaschou-Nielsen O. Is There an Association Between Ambient Air Pollution and Bladder Cancer Incidence? Analysis of 15 European Cohorts. Eur Urol Focus 2018; 4:113-120. [PMID: 28753823 DOI: 10.1016/j.euf.2016.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/01/2016] [Accepted: 11/16/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Ambient air pollution contains low concentrations of carcinogens implicated in the etiology of urinary bladder cancer (BC). Little is known about whether exposure to air pollution influences BC in the general population. OBJECTIVE To evaluate the association between long-term exposure to ambient air pollution and BC incidence. DESIGN, SETTING, AND PARTICIPANTS We obtained data from 15 population-based cohorts enrolled between 1985 and 2005 in eight European countries (N=303431; mean follow-up 14.1 yr). We estimated exposure to nitrogen oxides (NO2 and NOx), particulate matter (PM) with diameter <10μm (PM10), <2.5μm (PM2.5), between 2.5 and 10μm (PM2.5-10), PM2.5absorbance (soot), elemental constituents of PM, organic carbon, and traffic density at baseline home addresses using standardized land-use regression models from the European Study of Cohorts for Air Pollution Effects project. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We used Cox proportional-hazards models with adjustment for potential confounders for cohort-specific analyses and meta-analyses to estimate summary hazard ratios (HRs) for BC incidence. RESULTS AND LIMITATIONS During follow-up, 943 incident BC cases were diagnosed. In the meta-analysis, none of the exposures were associated with BC risk. The summary HRs associated with a 10-μg/m3 increase in NO2 and 5-μg/m3 increase in PM2.5 were 0.98 (95% confidence interval [CI] 0.89-1.08) and 0.86 (95% CI 0.63-1.18), respectively. Limitations include the lack of information about lifetime exposure. CONCLUSIONS There was no evidence of an association between exposure to outdoor air pollution levels at place of residence and risk of BC. PATIENT SUMMARY We assessed the link between outdoor air pollution at place of residence and bladder cancer using the largest study population to date and extensive assessment of exposure and comprehensive data on personal risk factors such as smoking. We found no association between the levels of outdoor air pollution at place of residence and bladder cancer risk.
Collapse
Affiliation(s)
- Marie Pedersen
- The Danish Cancer Society Research Center, Copenhagen, Denmark; Centre for Epidemiology and Screening, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy; Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Zorana J Andersen
- Centre for Epidemiology and Screening, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Galassi
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University Hospital and Center for Cancer Prevention, Turin, Italy
| | - Johan Sommar
- Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| | - Bertil Forsberg
- Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| | - David Olsson
- Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| | | | - Norun H Krog
- Norwegian Institute of Public Health, Oslo, Norway
| | - Geir Aamodt
- Department of Landscape Architecture and Spatial Planning, Norwegian University of Life Sciences, Ås, Norway
| | - Andrei Pyko
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Michal Korek
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ulf De Faire
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Laura Fratiglioni
- Aging Research Center, Department of Neurobiology Care Science and Society, Karolinska Institute, Stockholm, Sweden
| | - Mette Sørensen
- The Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Anne Tjønneland
- The Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Petra H Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, The Netherlands; MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Bas Bueno-de-Mesquita
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK; Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, Bilthoven, The Netherlands; Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Roel Vermeulen
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marloes Eeftens
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands; Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Michelle Plusquin
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Andrea Jaensch
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Gabriele Nagel
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Agency for Preventive and Social Medicine, Bregenz, Austria
| | - Hans Concin
- Agency for Preventive and Social Medicine, Bregenz, Austria
| | - Meng Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Ming-Yi Tsai
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sara Grioni
- Epidemiology and Prevention Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Marcon
- Unit of Epidemiology & Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Fulvio Ricceri
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany; Unit of Epidemiology, Regional Health Service, Grugliasco, Italy
| | - Carlotta Sacerdote
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Andrea Ranzi
- Environmental Health Reference Centre, Regional Agency for Environmental Prevention of Emilia-Romagna, Modena, Italy
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | | | - Ibon Tamayo
- Institute de Salut Global Barcelona, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Pilar Amiano
- Public Health Department of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Miren Dorronsoro
- Public Health Department of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Leslie T Stayner
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Manolis Kogevinas
- Institute de Salut Global Barcelona, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Mark J Nieuwenhuijsen
- Institute de Salut Global Barcelona, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Ranjeet Sokhi
- Centre for Atmospheric and Instrumentation Research, University of Hertfordshire, Hatfield, UK
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Rob Beelen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands; National Institute for Public Health (RIVM), Bilthoven, The Netherlands
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK; Molecular and Epidemiology Unit, Human Genetics Foundation, Turin, Italy
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ole Raaschou-Nielsen
- The Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
16
|
Yuan TH, Shen YC, Shie RH, Hung SH, Chen CF, Chan CC. Increased cancers among residents living in the neighborhood of a petrochemical complex: A 12-year retrospective cohort study. Int J Hyg Environ Health 2017; 221:308-314. [PMID: 29287935 DOI: 10.1016/j.ijheh.2017.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 12/07/2017] [Accepted: 12/10/2017] [Indexed: 02/06/2023]
Abstract
This study investigates whether cancers are increased for residents living in the vicinity of a petrochemical complex with coal power plants and refineries. We recruited a residential cohort of 2388 long-term residents aged above 35 years in 2009-2012 who lived within a 40 km radius of the complex. We measured their internal exposure biomarkers of urinary carcinogenic metals and retrospectively compared cancer incidences between those who lived fewer than 10 km from the complex (high exposure, HE) and those who lived more than 10 km from the complex (low exposure, LE). Residents had lived in their respective areas for 12 years, since the complex began operating in mid-1999. This included two periods of operation: 0-9 years and 10-12 years. Crude cumulative incident rates (CIRs) of all cancers were calculated for new cancer cases (ICD-9: 140-165, 170-176, 179-208) recorded in the Taiwan Health Insurance Database over total person-years at risk in each study period. Poisson regression was applied to estimate relative risks for the CIRs of all cancers between HE and LE areas during the 10-12 years since the beginning of the complex's operation, adjusting for age, gender, body mass index, smoking, hepatitis C, and occupational exposure. We found that our study subjects in HE areas had higher urinary carcinogenic metal levels, including As, Cd, Hg, Pb, and V, and higher prevalence rates of hepatitis C than those in LE areas. After the complex had been operating for 10-12 years, SIRs per 1000 person-years for all cancers in HE and LE areas were 4.44 vs. 2.48 for all subjects, 15.2 vs. 4.86 for elder subjects aged above 60 years, and 2.94 vs. 2.71 for female subjects. Correspondingly, the adjusted relative risks of CIRs for all cancers between HE and LE areas were 1.29 (95% CI: 0.99-1.68) for all subjects, 1.52 (1.04-2.22) for elder subjects, 1.41 (1.00-1.97) for female subjects, and 1.91 (1.15-3.19) for female elderly subjects. We conclude that elder and female residents living within 10 km of a petrochemical complex had higher carcinogenic exposure and cancers than those living farther away from the complex after the complex had been operating for 10 years.
Collapse
Affiliation(s)
- Tzu-Hsuen Yuan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Shen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ruei-Hao Shie
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan; Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shou-Hung Hung
- Department of Community and Family Medicine, National Taiwan University Hospital Yun-Lin Branch, Douliou City, Taiwan
| | - Chen-Fang Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chang-Chuan Chan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
17
|
Fetterman JL, Sammy MJ, Ballinger SW. Mitochondrial toxicity of tobacco smoke and air pollution. Toxicology 2017; 391:18-33. [PMID: 28838641 PMCID: PMC5681398 DOI: 10.1016/j.tox.2017.08.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Melissa J Sammy
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, AL, United States
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, AL, United States.
| |
Collapse
|
18
|
Kim EA. Particulate Matter (Fine Particle) and Urologic Diseases. Int Neurourol J 2017; 21:155-162. [PMID: 28954465 PMCID: PMC5636961 DOI: 10.5213/inj.1734954.477] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/08/2017] [Indexed: 12/28/2022] Open
Abstract
Particulate matter (PM) has been found to damage vital body organs, including the lungs and heart, through vascular damage and oxidative stress. Recently, renal function and chronic urologic diseases have also been found to be related to PM. To investigate this, we reviewed the characteristics of PM related to renal toxicity, including recent studies on the associations of urologic diseases with PM. PM can include constituents that cause renal toxicity, such as lead, cadmium, arsenic, and crystalline silica, which result in renal tubular or interstitial damage. Since 2008, 7 studies have evaluated the renal effects of PM. Two prospective cohort studies and a quantitative study of consecutive patients showed that PM may be related to decreased renal function, as shown by the estimated glomerular filtration rate of diseased or aged participants. Two cross-sectional studies found an association between PM and chronic kidney disease. One of those studies identified the specific renal diseases of immunoglobulin A nephropathy and membranous nephropathy. Two studies that analyzed renal cancer and PM showed no evidence that renal cancer is related to PM. Nine studies were evaluated regarding the relationship of bladder and prostate cancer with PM. The evidence for an association of PM with bladder and prostate cancer is still inconclusive. Although some recently published studies have shown a significant relationship, the causal relationship is not clear. Further well-designed studies on specific renal diseases are required.
Collapse
Affiliation(s)
- Eun-A Kim
- Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Ulsan, Korea
| |
Collapse
|
19
|
Turner MC, Krewski D, Diver WR, Pope CA, Burnett RT, Jerrett M, Marshall JD, Gapstur SM. Ambient Air Pollution and Cancer Mortality in the Cancer Prevention Study II. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:087013. [PMID: 28886601 PMCID: PMC5783657 DOI: 10.1289/ehp1249] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The International Agency for Research on Cancer classified both outdoor air pollution and airborne particulate matter as carcinogenic to humans (Group 1) for lung cancer. There may be associations with cancer at other sites; however, the epidemiological evidence is limited. OBJECTIVE The aim of this study was to clarify whether ambient air pollution is associated with specific types of cancer other than lung cancer by examining associations of ambient air pollution with nonlung cancer death in the Cancer Prevention Study II (CPS-II). METHODS Analysis included 623,048 CPS-II participants who were followed for 22 y (1982-2004). Modeled estimates of particulate matter with aerodynamic diameter <2.5µm (PM2.5) (1999-2004), nitrogen dioxide (NO2) (2006), and ozone (O3) (2002-2004) concentrations were linked to the participant residence at enrollment. Cox proportional hazards models were used to estimate associations per each fifth percentile-mean increment with cancer mortality at 29 anatomic sites, adjusted for individual and ecological covariates. RESULTS We observed 43,320 nonlung cancer deaths. PM2.5 was significantly positively associated with death from cancers of the kidney {adjusted hazard ratio (HR) per 4.4 μg/m3=1.14 [95% confidence interval (CI): 1.03, 1.27]} and bladder [HR=1.13 (95% CI: 1.03, 1.23)]. NO2 was positively associated with colorectal cancer mortality [HR per 6.5 ppb=1.06 (95% CI: 1.02, 1.10). The results were similar in two-pollutant models including PM2.5 and NO2 and in three-pollutant models with O3. We observed no statistically significant positive associations with death from other types of cancer based on results from adjusted models. CONCLUSIONS The results from this large prospective study suggest that ambient air pollution was not associated with death from most nonlung cancers, but associations with kidney, bladder, and colorectal cancer death warrant further investigation. https://doi.org/10.1289/EHP1249.
Collapse
Affiliation(s)
- Michelle C Turner
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa , Ottawa, Canada
- Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) , Madrid, Spain
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa , Ottawa, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa , Ottawa, Canada
| | - W Ryan Diver
- Epidemiology Research Program, American Cancer Society , Atlanta, Georgia, USA
| | - C Arden Pope
- Department of Economics, Brigham Young University , Provo, Utah, USA
| | | | - Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles , Los Angeles, California, USA
| | - Julian D Marshall
- Department of Civil and Environmental Engineering, University of Washington , Seattle, Washington, USA
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society , Atlanta, Georgia, USA
| |
Collapse
|
20
|
Yeh HL, Hsu SW, Chang YC, Chan TC, Tsou HC, Chang YC, Chiang PH. Spatial Analysis of Ambient PM 2.5 Exposure and Bladder Cancer Mortality in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14050508. [PMID: 28489042 PMCID: PMC5451959 DOI: 10.3390/ijerph14050508] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022]
Abstract
Fine particulate matter (PM2.5) is an air pollutant that is receiving intense regulatory attention in Taiwan. In previous studies, the effect of air pollution on bladder cancer has been explored. This study was conducted to elucidate the effect of atmospheric PM2.5 and other local risk factors on bladder cancer mortality based on available 13-year mortality data. Geographically weighted regression (GWR) was applied to estimate and interpret the spatial variability of the relationships between bladder cancer mortality and ambient PM2.5 concentrations, and other variables were covariates used to adjust for the effect of PM2.5. After applying a GWR model, the concentration of ambient PM2.5 showed a positive correlation with bladder cancer mortality in males in northern Taiwan and females in most of the townships in Taiwan. This is the first time PM2.5 has been identified as a risk factor for bladder cancer based on the statistical evidence provided by GWR analysis.
Collapse
Affiliation(s)
- Hsin-Ling Yeh
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Shang-Wei Hsu
- Department of Healthcare Administration, Asia University, Taichung 413, Taiwan.
| | - Yu-Chia Chang
- Department of Healthcare Administration, Asia University, Taichung 413, Taiwan.
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Hui-Chen Tsou
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Yen-Chen Chang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Po-Huang Chiang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan 350, Taiwan.
- Department of Public Health, China Medical University, Taichung 400, Taiwan.
| |
Collapse
|
21
|
Cohen G, Levy I, Yuval, Kark JD, Levin N, Broday DM, Steinberg DM, Gerber Y. Long-term exposure to traffic-related air pollution and cancer among survivors of myocardial infarction: A 20-year follow-up study. Eur J Prev Cardiol 2016; 24:92-102. [PMID: 27625155 DOI: 10.1177/2047487316669415] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Previous studies suggested a carcinogenic effect of exposure to traffic-related air pollution. Recently, higher rates of cancer incidence were observed among myocardial infarction survivors compared with the general population. We examined the association between chronic exposure to nitrogen oxides, a proxy measure for traffic-related air pollution, and cancer incidence and mortality in a cohort of myocardial infarction patients. METHODS Patients aged ≤65 years admitted to hospital in central Israel with a first myocardial infarction in 1992-1993 were followed to 2013 for cancer incidence and cause-specific mortality. Data on sociodemographic and cancer risk factors were obtained, including time-varying information on smoking. Using land use regression models, annual averages of nitrogen oxides during follow-up were estimated individually according to home addresses. Cox proportional hazards models were constructed to study the relationships with cancer outcomes. RESULTS During a mean follow-up of 16 (SD 7) years, 262 incident cancers and 105 cancer deaths were identified among 1393 cancer-free patients at baseline (mean age 54 years; 81% men). In adjusted models, a 10 ppb increase in mean nitrogen oxide exposure was associated with a hazard ratio (HR) of 1.06 (95% confidence interval (CI) 0.96-1.18) for cancer incidence and HR of 1.08 (95% CI 0.93-1.26) for cancer mortality. The association with lung, bladder, kidney or prostate cancer (previously linked to air pollution) was stronger (HR 1.16; 95% CI 1.00-1.33). CONCLUSIONS Chronic exposure to traffic-related air pollution may constitute an environmental risk factor for cancer post-myocardial infarction. Variation in the strength of association between specific cancers needs to be explored further.
Collapse
Affiliation(s)
- Gali Cohen
- Department of Epidemiology and Preventive Medicine, Tel Aviv University, Israel
| | - Ilan Levy
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - Yuval
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - Jeremy D Kark
- Epidemiology Unit, Braun School of Public Health and Community Medicine, Hebrew University and Hadassah Medical Organization, Israel
| | - Noam Levin
- Department of Geography, Hebrew University of Jerusalem, Israel
| | - David M Broday
- Technion Center of Excellence in Exposure Science and Environmental Health, Technion Israel Institute of Technology, Israel
| | - David M Steinberg
- Department of Statistics and Operations Research, Tel Aviv University, Israel
| | - Yariv Gerber
- Department of Epidemiology and Preventive Medicine, Tel Aviv University, Israel
| |
Collapse
|
22
|
Al-Ahmadi K, Al-Zahrani A. NO(2) and cancer incidence in Saudi Arabia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:5844-62. [PMID: 24192792 PMCID: PMC3863874 DOI: 10.3390/ijerph10115844] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 11/22/2022]
Abstract
Air pollution exposure has been shown to be associated with an increased risk of specific cancers. This study investigated whether the number and incidence of the most common cancers in Saudi Arabia were associated with urban air pollution exposure, specifically NO2. Overall, high model goodness of fit (GOF) was observed in the Eastern, Riyadh and Makkah regions. The significant coefficients of determination (r2) were higher at the regional level (r2 = 0.32-0.71), weaker at the governorate level (r2 = 0.03-0.43), and declined slightly at the city level (r2 = 0.17-0.33), suggesting that an increased aggregated spatial level increased the explained variability and the model GOF. However, the low GOF at the lowest spatial level suggests that additional variation remains unexplained. At different spatial levels, associations between NO2 concentration and the most common cancers were marginally improved in geographically weighted regression (GWR) analysis, which explained both global and local heterogeneity and variations in cancer incidence. High coefficients of determination were observed between NO2 concentration and lung and breast cancer incidences, followed by prostate, bladder, cervical and ovarian cancers, confirming results from other studies. These results could be improved using individual explanatory variables such as environmental, demographic, behavioral, socio-economic, and genetic risk factors.
Collapse
Affiliation(s)
- Khalid Al-Ahmadi
- King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Ali Al-Zahrani
- King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; E-Mail:
| |
Collapse
|
23
|
Fajersztajn L, Veras M, Barrozo LV, Saldiva P. Air pollution: a potentially modifiable risk factor for lung cancer. Nat Rev Cancer 2013; 13:674-8. [PMID: 23924644 DOI: 10.1038/nrc3572] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Economic growth and increased urbanization pose a new risk for cancer development: the exposure of high numbers of people to ambient air pollution. Epidemiological evidence that links air pollution to mortality from lung cancer is robust. An ability to produce high-quality scientific research that addresses these risks and the ability of local health authorities to understand and respond to these risks are basic requirements to solve the conflict between economic development and the preservation of human health. However, this is currently far from being achieved. Thus, this Science and Society article addresses the possibilities of expanding scientific networking to increase awareness of the risk of lung cancer that is promoted by air pollution.
Collapse
Affiliation(s)
- Laís Fajersztajn
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo 01246-903, São Paulo State, Brazil
| | | | | | | |
Collapse
|
24
|
Raaschou-Nielsen O, Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Sørensen M, Hansen J, Loft S, Overvad K, Tjønneland A. Air pollution from traffic and cancer incidence: a Danish cohort study. Environ Health 2011; 10:67. [PMID: 21771295 PMCID: PMC3157417 DOI: 10.1186/1476-069x-10-67] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/19/2011] [Indexed: 04/14/2023]
Abstract
BACKGROUND Vehicle engine exhaust includes ultrafine particles with a large surface area and containing absorbed polycyclic aromatic hydrocarbons, transition metals and other substances. Ultrafine particles and soluble chemicals can be transported from the airways to other organs, such as the liver, kidneys, and brain. Our aim was to investigate whether air pollution from traffic is associated with risk for other cancers than lung cancer. METHODS We followed up 54,304 participants in the Danish Diet Cancer and Health cohort for 20 selected cancers in the Danish Cancer Registry, from enrolment in 1993-1997 until 2006, and traced their residential addresses from 1971 onwards in the Central Population Registry. We used modeled concentration of nitrogen oxides (NO(x)) and amount of traffic at the residence as indicators of traffic-related air pollution and used Cox models to estimate incidence rate ratios (IRRs) after adjustment for potential confounders. RESULTS NO(x) at the residence was significantly associated with risks for cervical cancer (IRR, 2.45; 95% confidence interval [CI], 1.01;5.93, per 100 μg/m(3) NO(x)) and brain cancer (IRR, 2.28; 95% CI, 1.25;4.19, per 100 μg/m(3) NO(x)). CONCLUSIONS This hypothesis-generating study indicates that traffic-related air pollution might increase the risks for cervical and brain cancer, which should be tested in future studies.
Collapse
Affiliation(s)
- Ole Raaschou-Nielsen
- Institute of Cancer Epidemiology, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Zorana J Andersen
- Institute of Cancer Epidemiology, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Martin Hvidberg
- Department for Atmospheric Environment, National Environmental Research Institute, Aarhus University, Denmark
| | - Steen S Jensen
- Department for Atmospheric Environment, National Environmental Research Institute, Aarhus University, Denmark
| | - Matthias Ketzel
- Department for Atmospheric Environment, National Environmental Research Institute, Aarhus University, Denmark
| | - Mette Sørensen
- Institute of Cancer Epidemiology, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Johnni Hansen
- Institute of Cancer Epidemiology, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Denmark
| | - Kim Overvad
- Department of Epidemiology, Institute of Public Health, Aarhus University, Denmark
| | - Anne Tjønneland
- Institute of Cancer Epidemiology, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen, Denmark
| |
Collapse
|
25
|
Population densities in relation to bladder cancer mortality rates in America from 1950 to 1994. Int Urol Nephrol 2011; 44:443-9. [DOI: 10.1007/s11255-011-0018-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
|
26
|
Ho CK, Peng CY, Yang CY. Traffic air pollution and risk of death from bladder cancer in Taiwan using petrol station density as a pollutant indicator. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:23-32. [PMID: 19953417 DOI: 10.1080/15287390903248869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To investigate the relationship between air pollution and risk of death from bladder cancer, a matched cancer case-control study was conducted using deaths that occurred in Taiwan from 1997 through 2006. Data for all eligible bladder cancer deaths were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. The control group consisted of individuals who died from causes other than cancer or diseases associated with genitourinary problems. The controls were pair matched to the cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each case. Data for the number of petrol stations in study municipalities were collected from the two major petroleum supply companies, Chinese Petroleum Corporation (CPC) and Formosa Petrochemical Corporation (FPCC). The petrol station density (per square kilometer) (PSD) for study municipalities was used as an indicator of a subject's exposure to benzene and other hydrocarbons present in ambient evaporative losses of petrol or to air emissions from motor vehicles. The subjects were divided into tertiles according to PSD in their residential municipality. The present study showed that individuals who resided in municipalities with high PSD levels were at an increased risk of death from bladder cancer compared to subjects living in municipalities with a low PSD level; however, the differences are not statistically significant. The findings of this study warrant further investigation of the role of vehicular air pollutant emissions in the etiology of bladder cancer development.
Collapse
Affiliation(s)
- Chi-Kung Ho
- Institute of Occupational Safety and Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
27
|
Xu X, Kherada N, Hong X, Quan C, Zheng L, Wang A, Wold LE, Lippmann M, Chen LC, Rajagopalan S, Sun Q. Diesel exhaust exposure induces angiogenesis. Toxicol Lett 2009; 191:57-68. [PMID: 19683567 DOI: 10.1016/j.toxlet.2009.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 11/16/2022]
Abstract
Our aim was to test the hypothesis that exposure to whole diesel exhaust (WDE) would enhance angiogenesis/vasculogenesis. Male apolipoprotein E-deficient mice, with either scaffold implantation subcutaneously or hindlimb ischemia, were exposed to either WDE (containing diesel exhaust particle [DEP] at a concentration of about 1mg/m(3)) or filtered air 6 h/day, 5 days/week in a whole body exposure chamber for 2, 5, or 8 weeks, respectively. WDE exposure significantly increased total cell counts in the scaffolds, aortic, and perivascular fat tissues. Macrophage infiltration was enhanced and CD31 expression increased in the scaffolds, which was coupled by increased alpha-smooth muscle actin (alpha-SMA) expression. WDE exposure led to increased CD31 expression, while decreasing endothelial nitric oxide synthase in the aortic wall. The vessel volume measured by micro-CT was increased in ischemic and non-ischemic hindlimbs in response to WDE exposure. DEP exposure induced capillary-like tube formation in endothelial cells in vitro, and caused capillary sprouting from aortic rings ex vivo. In addition, WDE exposure significantly increased mRNA expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1alpha, while decreasing prolylhydroxylase (PHD) 2 expression. WDE exposure increases inflammatory cell infiltration, enhances the vessel volume/flow, and increases capillary tube formation and sprouting, thereby inducing angiogenesis and vasculogenesis. The angiogenic effects may occur through increasing HIF-1alpha and VEGF while decreasing PHD2 expression.
Collapse
Affiliation(s)
- Xiaohua Xu
- Division of Environmental Health Sciences, Colleges of Medicine and Public Health, The Ohio State University, Columbus, OH 43210-1240, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|