1
|
Khan AD, Singh MK, Lavhale PM, Yasir M, Singh L. Exploring the wound healing activity of phytosomal gel of Annona squamosa and Cinnamomum tamala leaves ethanolic extracts with antioxidant and antimicrobial activities in S aureus infected excision wound model. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2447-2468. [PMID: 39067021 DOI: 10.1080/09205063.2024.2382540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Wound healing is a natural process but it is impaired in certain conditions like age, stress, health, immunity status and microbial infection. Particularly in cases of chronic wounds, infection is nearly often the main and unavoidable obstacle to wound healing. For this purpose, leaves of Annona squamosa and Cinnamomum tamala were selected based on their ethnopharmacological uses and reported pharmacological activities. The ethanolic extracts of both plant parts i.e. ethanolic extracts of Annona squamosa (ASEE) and Cinnamomum tamala (CTEE) were evaluated for their antioxidant and antimicrobial activities individually as well as in 1:1 combination as Polyherbal Ethanolic extract (PHEE). In our previous work both these ethanolic extracts were combined and phytosomes were prepared by thin layer hydration method and optimized for vesicle size and entrapment efficiency. The phytosomes were then incorporated into Carbopol gel matrix. In this present study the selected phytosomal gel was tested in two different concentrations (2% and 5%) for in vivo wound healing activity using S. aureus infected excision wound model. The various parameters examined were percentage wound contraction, epithelization period, bacteriological quantification, biochemical parameters like Superoxide dismutase (SOD), Catalase and hydroxyproline. The PHEE exhibited synergistic antioxidant activity. The PHEE also showed enhanced antimicrobial activity against bacteria namely gram-positive S. aureus, gram-negative E. Coli. The phytosomal gel showed increased wound contraction, reduced time of epithelization, increased hydroxyproline content, increased levels of SOD and Catalase enzymes and reduced bacterial load when compared with Povidone iodine ointment as standard in S. aureus infected excision wound model.
Collapse
Affiliation(s)
- Azhar Danish Khan
- Faculty of Pharmacy, IFTM University Moradabad, Uttar Pradesh, India
- Ram-Eesh Institute of Vocational and Technical Education, Uttar Pradesh India
| | - Mukesh Kr Singh
- School of Pharmaceutical Sciences, Faculty of Pharmacy, IFTM University Moradabad, Uttar Pradesh, India
| | | | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Lubhan Singh
- Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, India
| |
Collapse
|
2
|
Kaur P, Muskan, Kriplani P. Quality by design for Niosome-Based nanocarriers to improve transdermal drug delivery from lab to industry. Int J Pharm 2024; 666:124747. [PMID: 39326474 DOI: 10.1016/j.ijpharm.2024.124747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Niosomes are essentially multilamellar or unilamellar vesicles based on non-ionic surfactants. They consist of surfactant macromolecules arranged in a bilayer, which surrounds an aqueous solute solution. Amphiphilic, biodegradable, biocompatible, and environmentally friendly materials are utilized for encapsulating the drugs in vesicles that enhance the bioavailability, therapeutic efficacy, penetration of drug via the skin, and drug release in a controlled or sustained manner, and are employed to target the anticipated area via modifying composition that acts to minimize undesirable effects. With cholesterol as the lipid, Tween 20, Span 60, and Tween 60 are mostly employed as surfactants. Many medications, including Glibenclamide for diabetic kidney disease and anti-cancer medications including gemcitabine, cisplatin, and nintedanib, have been effectively encapsulated into niosomes. The traditional approach for creating niosomes at the lab scale is a thin film hydration process. The ideal ratio between primary components as well as critical manufacturing process parameters is key component in creating the best niosomal formulations with substantial drug loading and nanometric form. Utilizing the Design of Experiments (DoE) and Response Surface Methodology (RSM) in conjunction with Quality by design (QbD) is essential for comprehending how these variables interact both during lab preparation and during the scale-up process. Research on the development of anti-aging cosmetics is being done by Loreal. Niosomal preparations like Lancome are sold in stores. An overview of niosomes, penetration mechanisms, and quality by design from laboratory to industrial scale is provided in this article.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India
| | - Muskan
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India
| | - Priyanka Kriplani
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India.
| |
Collapse
|
3
|
Dewi MK, Muhaimin M, Joni IM, Hermanto F, Chaerunisaa AY. Fabrication of Phytosome with Enhanced Activity of Sonneratia alba: Formulation Modeling and in vivo Antimalarial Study. Int J Nanomedicine 2024; 19:9411-9435. [PMID: 39282578 PMCID: PMC11402348 DOI: 10.2147/ijn.s467811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Sonneratia alba extract exhibits antimalarial activity, mainly due to its secondary metabolites-naphthoquinones, flavonoids, tannins, and saponins-where naphthoquinone is the primary active component. However, its low bioavailability limits its effectiveness. To improve this, a phytosome-based vesicular system was proposed. This study focused on formulating a phytosome with S. alba and developing a predictive model to enhance its antimalarial activity. Methods Phytosomes were produced using antisolvent precipitation and optimized with 3-factor, 3-level Box-behnken model. Particle size, zeta potential, and entrapment efficiency were assessed. The optimized phytosomes were characterized by their physical properties and release profiles. Their antimalarial activity was tested in white BALB/c mice infected with Plasmodium berghei using Peter's 4-day suppressive test. Results The optimal phytosome formulation used a phospholipid-to-extract ratio of 1:3, reflux temperature of 50°C, and a duration of 2.62 hours. The phytosomes had a particle size of 471.8 nm, a zeta potential of -54.1 mV, and an entrapment efficiency (EE) of 82.4%. In contrast, the phytosome-fraction showed a particle size of 233.4 nm, a zeta potential of -61.5 mV, and an EE of 87.08%. TEM analysis confirmed both had a spherical shape. In vitro release rates at 24 hours were 86.2 for the phytosome-extract and 95.9% for the phytosome-fraction, compared to 46.9% and 37.7% for the extract and fraction alone. Overall, the phytosome formulation demonstrated good stability. The actual experimental values closely matched the predicted values from the Box-Behnken model, indicating a high degree of accuracy in the model. Additionally, the phytosomes exhibited significantly greater antimalarial activity than the S. alba extract and fraction alone. Conclusion The findings indicated that the vesicular formulation in phytosomes can enhance the antimalarial activity of S. alba extract and fraction.
Collapse
Affiliation(s)
- Mayang Kusuma Dewi
- Doctoral Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muhaimin Muhaimin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Faizal Hermanto
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Cimahi, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
4
|
Amisha, Das Gupta G, Singh H, Singh S, Singh A. QbD-assisted optimisation of liposomes in chitosan gel for dermal delivery of aceclofenac as synergistic approach to combat pain and inflammation. Drug Deliv Transl Res 2024; 14:2403-2416. [PMID: 38291224 DOI: 10.1007/s13346-024-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Aceclofenac (ACE) is a drug that was precisely devised to circumvent the shortcomings associated with diclofenac. However, ACE too corresponds to nonsteroidal anti-inflammatory drug (NSAID)-related adverse effects, but with a lower amplitude. The present investigation seeks to develop liposomes loaded with ACE adopting a central composite design (CCD) and formulate a chitosan-based hydrogel for synergistic anti-inflammatory efficacy and improved ACE dermal administration. On the basis of preliminary vesicle size, Poly Dispersity Index (PDI), and drug entrapment, the composition of lipid, cholesterol, and vitamin E TPGS were chosen as independent variables. The formulation composition met the specifications for an optimum liposomal formulation, with total lipid concentration (13.5% w/w), cholesterol concentration (10% w/w), and surfactant concentration (2% w/w). With particle size and PDI of 174.22 ± 5.46 nm and 0.285 ± 0.01 respectively, the optimised formulation achieved an entrapment effectiveness of 92.08 ± 3.56%. Based on the CCD design, the optimised formulation Acec-Lipo opt was chosen and was subsequently transformed to a chitosan-based gel formulation for in vitro drug release, penetration through the skin, in vivo analgesic therapeutic activity, and skin irritation testing. % age oedema inhibition was found to be greatest with the Acec-Lipo opt gel formulation, followed by Acec gel. These results reinforce the notion that the inclusion of chitosan resulted in a synergistic effect despite the same strength of the drug. The findings suggested that Acec-Lipo incorporated in chitosan gel for skin targeting might be an effective formulation for topical ACE administration in clinical subjects.
Collapse
Affiliation(s)
- Amisha
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India
| | | | - Harmanpreet Singh
- GEM Lab, Department of Pathology, Augusta University, Augusta, GA, USA
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
5
|
Laxane N, Yadav KS. QbD-based co-loading of paclitaxel and imatinib mesylate by protamine-coated PLGA nanoparticles effective on breast cancer cells. Nanomedicine (Lond) 2024; 19:2211-2227. [PMID: 38934510 PMCID: PMC11486237 DOI: 10.1080/17435889.2024.2353557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024] Open
Abstract
Aim: Paclitaxel and imatinib mesylate are drugs used in the treatment of breast cancer. Conventional drug-delivery systems have limitations in the effective treatment of breast cancer using the drugs.Materials & methods: Combination index studies were used to identify the optimum ratio of both drugs showing maximum synergistic effect. Using a systematic quality-by-design approach, protamine-coated PLGA nanoparticles co-loaded with paclitaxel and imatinib mesylate were formulated. Further characterization and cell line evaluations were performed.Results: Encapsulation efficiency obtained was 92.54% for paclitaxel and 75.12% for imatinib mesylate. A sustained (24 h) and controlled zero-order drug release was obtained.Conclusion: Formulated nanoparticles had a low IC50 value and enhanced cellular uptake.
Collapse
Affiliation(s)
- Neha Laxane
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's, NMIMS Deemed to be University, Mumbai, 400056, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's, NMIMS Deemed to be University, Mumbai, 400056, India
| |
Collapse
|
6
|
Pal S, Sharma D, Yadav NP. Plant leads for mitigation of oral submucous fibrosis: Current scenario and future prospect. Oral Dis 2024; 30:80-99. [PMID: 36565439 DOI: 10.1111/odi.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
The aim of this review is to enumerate medicinal plants and their bioactive compounds that may become potential leads in the mitigation of oral submucous fibrosis (OSMF) in the forthcoming future. It is focused on pathophysiology, risk factors, current treatment regimen, potential plant leads, and future therapies for OSMF. Data were extracted from a vast literature survey by using SciFinder, Web of Science, Google Scholar, and PubMed search engines with relevant keywords. Upon literature survey, we found that the phytochemical 'arecoline' present in the areca nut is the main causative agent of OSMF condition. Currently, OSMF is treated by immunomodulatory and anti-inflammatory agents such as corticosteroids, enzymes (hyaluronidase, chymotrypsin, and collagenase), anti-inflammatory mediators (isoxsuprine and pentoxifylline), dietary supplements (vitamins, antioxidants, and micronutrients), and anti-fibrotic cytokines like interferon-gamma that provides short-term symptomatic relief to OSMF patients. However, some plant leads have been proven effective in alleviating symptoms and mitigating OSMF, which ultimately improves the quality of OSMF patients' life. We concluded that plant drugs like lycopene, curcumin, Aloe vera, colchicine, and Glycyrrhiza glabra are effective against OSMF in various in vitro and/or clinical studies and are being used by modern and traditional practitioners.
Collapse
Affiliation(s)
- Sarita Pal
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Disha Sharma
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Narayan Prasad Yadav
- Bioprospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
7
|
Jain P, Mirza MA, Reyaz E, Beg MA, Selvapandiyan A, Hasan N, Naqvi A, Punnoth Poonkuzhi N, Kuruniyan MS, Yadav HN, Ahmad FJ, Iqbal Z. QbD-Assisted Development and Optimization of Doxycycline Hyclate- and Hydroxyapatite-Loaded Nanoparticles for Periodontal Delivery. ACS OMEGA 2024; 9:4455-4465. [PMID: 38313517 PMCID: PMC10831838 DOI: 10.1021/acsomega.3c07092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
The current research aims to develop a carrier system for the delivery of a matrix metalloproteinase (MMP) inhibitor along with a bioceramic agent to the periodontal pocket. It is proposed that the present system, if given along with a systemic antibiotic, would be a fruitful approach for periodontitis amelioration. To fulfill the aforementioned objective, a doxycycline hyclate- and hydroxyapatite-adsorbed composite was prepared by a physical adsorption method and successfully loaded inside sodium alginate-chitosan nanoparticles and optimized based on particle size and drug content. Optimized formulation was then subjected to different evaluation parameters like encapsulation efficiency, hydroxyapatite content, ζ potential, surface morphology, in vitro drug release, cell line studies, and stability studies. For the optimized formulation, particle size, polydispersity index (PDI), entrapment efficiency, ζ potential, and drug content were found to be 336.50 nm, 0.23, 41.77%, -13.85 mV, and 14.00%, respectively. The surface morphology of the placebo and adsorbed composite-loaded nanoparticles as observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the spherical shape and rough surface of the particles. In gingival crevicular fluid (GCF) 7.6, a sustained drug release profile was obtained up to 36 h. In vitro % viability studies performed on murine fibroblast cells (NIH3T3) and human periodontal ligament (hPDL) cell lines confirmed the proliferative nature of the formulation. Also, when subjected to stability studies for 4 weeks, particle size, PDI, and drug content did not vary considerably, thereby ensuring the stable nature of nanoparticles. Henceforth, sodium alginate-chitosan nanoparticles appeared to be a good carrier system for doxycycline hyclate and hydroxyapatite for periodontal therapy. If given along with a system antibiotic, the system will serve as a fruitful tool for infection-mediated periodontal regeneration and healing.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Enam Reyaz
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Mirza Adil Beg
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | | | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Akbar Naqvi
- Department of Dentistry, HIMSR, New Delhi 110062, India
| | | | | | | | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, SPER, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
8
|
Dadwal N, Amisha, Singh D, Singh A. Quality-by-Design Approach for Investigating the Efficacy of Tacrolimus and Hyaluronic Acid-Loaded Ethosomal Gel in Dermal Management of Psoriasis: In Vitro, Ex Vivo, and In Vivo Evaluation. AAPS PharmSciTech 2023; 24:220. [PMID: 37914839 DOI: 10.1208/s12249-023-02678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Psoriasis is an auto-immune condition with high keratinocyte hyperproliferation due to lower p53 and p22 levels. Tacrolimus, an immune suppressor, is considered one of the most effective drugs in suppressing psoriasis. Systematic administration of tacrolimus often leads to challenging side effects, namely increased infection risk, renal toxicity, neurological symptoms such as tremors and headaches, gastrointestinal disturbances, hypertension, skin-related problems, etc. To address this, a nanocarrier-based formulation of tacrolimus along with inclusion of hyaluronic acid was developed. The optimization and formulation of ethosomes via the ethanol injection technique were done based on the Box-Behnken experimental design. The results revealed hyaluronic acid-based tacrolimus ethosomes (HA-TAC-ETH) had nanometric vesicle size (315.7 ± 2.2 nm), polydispersity index (PDI) (0.472 ± 0.07), and high entrapment efficiency (88.3 ± 2.52%). The findings of drug release and skin permeation showed sustained drug release with increased dermal flux and enhancement ratio. The effectiveness of HA-TAC-ETH was confirmed in an imiquimod (5%)-prompted psoriasis model. The skin irritation score and Psoriasis Area and Severity Index (PASI) score indicated that HA-TAC-ETH gel has validated a decline in the entire factors (erythema, edema, and thickness) in the imiquimod-induced psoriasis model in contrast with TAC-ETH gel and TAC ointment. The fabricated HA-TAC-ETH opt gel proved to be safe and effective in in vivo studies and could be employed to treat psoriasis further.
Collapse
Affiliation(s)
- Nikhil Dadwal
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India
| | - Amisha
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India
- University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, 140413, Mohali, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
9
|
Zheng L, Wang L. Comprehensive information management system for a medical research cohort biobank based on quality by design. BMC Med Inform Decis Mak 2023; 23:222. [PMID: 37845654 PMCID: PMC10580628 DOI: 10.1186/s12911-023-02318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/30/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND With the development of big health and big data, cohort research has become a medical research hotspot. As an important repository of human genetic resources, biobanks must adapt to the requirements of large-scale and efficient operation. Thus, biobanks urgently need to design and build a legal, convenient, and efficient information management system. METHODS This study applies the concept of "quality by design" to build a comprehensive biobank information management system based on the analysis of user requirements, legal and regulatory risks, and industry-standard requirements. The system integrates the management of scientific research projects, biological specimens, clinical information, quality control, and multi-dimensional information query and development. After 10 months of its operation, the comprehensive management system was evaluated through statistical analysis of the efficiency of the construction of the pregnancy-birth cohort and the quality of genetic resources. RESULTS Since the system's launch, the statistics on cohort construction efficiency show that the enrollment rate of eligible pregnant women has increased, and the rate of missing volunteers has dropped. The time needed to establish a 1000-person cohort (with complete biological samples and clinical information in early, middle, and late pregnancy) was reduced, and the effective tracking rate of the samples was 77.42%. The error rate of the deep cryogenic refrigerator decreased, with a clinical information integrity rate of 96.47%. CONCLUSIONS The comprehensive biobank information management system constructed with the "quality by design" concept is well suited to meet the requirements of medical research. This study provides a solution for designing a comprehensive information system for medical institutions' biobanks.
Collapse
Affiliation(s)
- Lianshuai Zheng
- Biobank of Lianyungang Maternal and Child Health Hospital, Lianyungang Maternal and Child Health Hospital, Jiangsu, China
| | - Leilei Wang
- Biobank of Lianyungang Maternal and Child Health Hospital, Lianyungang Maternal and Child Health Hospital, Jiangsu, China.
| |
Collapse
|
10
|
Tafish AM, El-Sherbiny M, Al‐Karmalawy AA, Soliman OAEA, Saleh NM. Carvacrol-Loaded Phytosomes for Enhanced Wound Healing: Molecular Docking, Formulation, DoE-Aided Optimization, and in vitro/in vivo Evaluation. Int J Nanomedicine 2023; 18:5749-5780. [PMID: 37849641 PMCID: PMC10578319 DOI: 10.2147/ijn.s421617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023] Open
Abstract
Background Despite recent advances in wound healing products, phytochemicals have been considered promising and attractive alternatives. Carvacrol (CAR), a natural phenolic compound, has been reported to be effective in wound healing. Purpose This work endeavored to develop novel CAR-loaded phytosomes for the enhancement of the wound healing process. Methods Molecular docking was performed to compare the affinities of the different types of phospholipids to CAR. Phytosomes were prepared by three methods (thin-film hydration, cosolvency, and salting out) using Lipoid S100 and Phospholipon 90H with three levels of saturation percent (0%, 50%, and 100%), and three levels of phospholipid molar percent (66.67%, 75%, and 80%). The optimization was performed using Design Expert where particle size, polydispersity index, and zeta potential were chosen as dependent variables. The optimized formula (F1) was further investigated regarding entrapment efficiency, TEM, 1H-NMR, FT-IR, DSC, X-RD, in vitro release, ex vivo permeation, and stability. Furthermore, it was incorporated into a hydrogel formulation, and an in vivo study was conducted to investigate the wound-healing properties of F1. Results F1 was chosen as the optimized formula prepared via the thin-film hydration method with a saturation percent and a phospholipid molar percent of zero and 66.67, respectively. TEM revealed the spherical shape of phytosomal vesicles with uniform size, while the results of 1H-NMR, FT-IR, DSC, and X-RD confirmed the formation of the phytosomal complex. F1 demonstrated a higher in vitro release and a slower permeation than free CAR. The wound area of F1-treated animals showed a marked reduction associated with a high degree of collagen fiber deposition and enhanced cellular proliferation. Conclusion F1 can be considered as a promising remedy for the enhancement of wound healing and hence it would be hoped to undergo further investigation.
Collapse
Affiliation(s)
- Ahmed Mowafy Tafish
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed A Al‐Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | | | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
11
|
Alshehri SA, Wahab S, Khalid M, Almoyad MAA. Optimization of chromatographic conditions via Box‒Behnken design in RP-HPLC-PDA method development for the estimation of folic acid and methotrexate in bulk and tablets. Heliyon 2023; 9:e20282. [PMID: 37771532 PMCID: PMC10522955 DOI: 10.1016/j.heliyon.2023.e20282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Simultaneous estimation of folic acid and methotrexate in bulk and tablet dosage form by RP-HPLC-PDA was conducted via Box‒Behnken design application. Three-factor numerical values were finalized from the graphical and numerical optimization with built-in ANOVA in BBD. Sharp and symmetric peaks were observed at 4.138 and 6.929 min for folic acid and methotrexate, respectively. The mobile phase composition was methanol and 0.1% formic acid in water with a ratio of 31:69 and a flow rate of 1.1 ml/min. Both drugs were detected at a wavelength of 291 nm. The developed method was validated according to ICH guidelines. The results of the validation parameters were within acceptable limits. Stress stability studies have been performed under acidic, alkali, oxidation, neutral and photolytic conditions. Three different brand-marketed tablets were assessed with the developed method (MGXT, FOLTNAX and TRUXOFOL). In the tablet formulations, chromatogram percentages of folic acid and methotrexate were calculated at 99.13% and 99.50 in MGXT, 99.17% and 99.47 in FOLTNAX, and 99.91 and 100.05 in TRUXOFOL.
Collapse
Affiliation(s)
- Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Khamis Mushyt, PO Box. 4536, ZIP., 61412, Saudi Arabia
| |
Collapse
|
12
|
Quintero-Rincón P, Mesa-Arango AC, Flórez-Acosta OA, Zapata-Zapata C, Stashenko EE, Pino-Benítez N. Exploring the Potential of Extracts from Sloanea medusula and S. calva: Formulating Two Skincare Gels with Antioxidant, Sun Protective Factor, and Anti- Candida albicans Activities. Pharmaceuticals (Basel) 2023; 16:990. [PMID: 37513902 PMCID: PMC10384365 DOI: 10.3390/ph16070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Sloanea is a plant genus, native to tropical regions, used in medicinal practices for its anti-inflammatory properties. This study aimed to determine the antioxidant activity, sun protective factor (SPF), and antifungal of extracts obtained from two species of Sloanea and to develop extract-based gels with antioxidants, photoprotective, and anti-Candida albicans effects. Ethanolic extracts from S. medusula and S. calva collected in Chocó, Colombia, were used for antioxidant activity and SPF determination using the DPPH assay and the Mansur equation, respectively. Extracts were characterized using HPLC-MS and used to prepare the gels. The viscosity of the extract-based gels was evaluated using an MCR92 rheometer. In addition, the anti-Candida activity of extracts against five yeasts and anti-C. albicans of gels were evaluated following the Clinical and Laboratory Standards Institute M27, 4th Edition. High DPPH radical scavenging activity (42.4% and 44.7%) and a high SPF value (32.5 and 35.4) were obtained for the extracts of S. medusula and S. calva, respectively. Similarly, extract-based gels showed significant DPPH radical scavenging activity of 54.5% and 53.0% and maximum SPF values of 60 and 57. Extract from S. medusula showed an important antifungal activity against C. albicans (minimal inhibitory concentration (MIC) of 2 µg/mL). In contrast, S. calva extract was active against C. krusei, C. albicans (MIC of 2 µg/mL) and C. tropicalis (MIC of 4 µg/mL). Sloanea medusula gel (0.15%) exhibited an important C. albicans growth inhibition (98%), while with S. calva gel (0.3%) growth inhibition was slightly lower (76%). Polyphenolic and triterpenoid compounds were tentatively identified for S. medusula and S. calva, respectively. Both extracts can be considered promising sources for developing photoprotective gels to treat skin infections caused by C. albicans.
Collapse
Affiliation(s)
- Patricia Quintero-Rincón
- Natural Products Group, Technological University of Chocó, Quibdó 270002, Colombia
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín 050010, Colombia
| | - Ana C Mesa-Arango
- Academic Group of Clinical Epidemiology, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| | - Oscar A Flórez-Acosta
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín 050010, Colombia
| | - Carolina Zapata-Zapata
- Academic Group of Clinical Epidemiology, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia
| | - Elena E Stashenko
- Center for Chromatography and Mass Spectrometry, CROM-MASS, CIBIMOL-CENIVAM, Industrial University of Santander, Bucaramanga 680002, Colombia
| | - Nayive Pino-Benítez
- Natural Products Group, Technological University of Chocó, Quibdó 270002, Colombia
| |
Collapse
|
13
|
Noor A, Jamil S, Sadeq TW, Mohammed Ameen MS, Kohli K. Development and Evaluation of Nanoformulations Containing Timur Oil and Rosemary Oil for Treatment of Topical Fungal Infections. Gels 2023; 9:516. [PMID: 37504395 PMCID: PMC10378787 DOI: 10.3390/gels9070516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
The pervasiveness of fungal infections is an issue for skin health globally, and there are a reported 40 million cases in developed and developing countries. Novel drug delivery systems provide better therapeutic efficacy over conventional drug therapy due to their lower side effects and toxicity. Furthermore, combinations of essential oils can represent alternative therapies for fungal infections that are resistant to synthetic drugs. This study is aimed at developing Timur oil into a nanoemulgel and evaluating its antifungal effects. The development of the formulation involved the preparation of a nanoemulsion by the titration method, followed by its evaluation for various physicochemical properties. The antifungal activity of the nanoemulgel against Candida albicans was evaluated. The zone of inhibition was determined using the disk diffusion method. The results show that the developed nanoemulgel has a particle size of 139 ± 6.11 nm, a PDI of 0.309, and a zeta potential of -19.12 ± 2.73 mV. An in vitro drug release study showed a sustained release of 70 ± 0.289% of the drug over a period of 24 h. The % drug permeation across the skin was found to be 79.11 ± 0.319% over 24 h. However, the amount of drug retained in the skin was 56.45 µg/g. The flux for the nanoemulgel was found to be 94.947 µg/cm2/h, indicating a better permeability profile. The nanoemulgel formulation showed a zone of inhibition of 15 ± 2.45 mm, whereas the 1% ketoconazole cream (marketed preparation) exhibited a zone of inhibition of 13 ± 2.13 mm. The results of this study suggest that developed nanoemulgel containing Timur oil and rosemary oil has the potential to be used for treating topical fungal infections caused by Candida albicans.
Collapse
Affiliation(s)
- Afeefa Noor
- Lloyd Institute of Management and Technology, Greater Noida 201306, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, India
| | - Shahid Jamil
- Department of Pharmacy, College of Pharmacy, Knowledge University, Kirkuk Road, Erbil 44001, Iraq
| | - Tariq Waece Sadeq
- Department of Pharmacy, College of Pharmacy, Knowledge University, Kirkuk Road, Erbil 44001, Iraq
- Pharmacy Department, Erbil Medical Technical Institute, Erbil Polytechnic University, Ebril 44001, Iraq
| | | | - Kanchan Kohli
- Lloyd Institute of Management and Technology, Greater Noida 201306, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, India
| |
Collapse
|
14
|
Gaikwad SS, Morade YY, Kothule AM, Kshirsagar SJ, Laddha UD, Salunkhe KS. Overview of phytosomes in treating cancer: Advancement, challenges, and future outlook. Heliyon 2023; 9:e16561. [PMID: 37260890 PMCID: PMC10227328 DOI: 10.1016/j.heliyon.2023.e16561] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
One of the major causes of death on the globe is cancer. It has remained a significant obstacle for current therapies and has not yet been effectively treated. Conventional treatment strategies available for cancer such as surgery, chemotherapy, radiation therapy etc. have severe adverse effects. The use of herbal active constituents in cancer treatment has tremendous potential to increase the effectiveness of conventional cancer therapy. Natural plant active components have been reported to have strong in vitro pharmacological activity but narrow in vivo absorption. In order to increase their bioavailability and absorption and get around the drawbacks and negative effects of traditional herbal extracts, Phytosomes are one of the growing nanotechnologies that can be used to improve the miscibility of bioactive phytoconstituents in lipid-rich barriers and overcome their poor bioavailability. Many novel drug delivery carriers are employed for targeted delivery of phytoconstituent at the site of action. Phytosomes are well-known biocompatible nanocarriers that can be employed to increase the solubility and permeability of phytopharmaceuticals among various novel drug delivery systems (NDDS). This review mainly focused on various conventional as well as novel approaches and various Nano carrier used in cancer therapies. Also comprising summary of the most recent research on the development and use of phytosomes as a better carrier for herbal constituents in the treatment of cancer. Additionally provides information about the formulation, characterization technique and mechanism of drug release from phytosome. Some of the major herbal active constituents made of phytosome which have shown proven anticancer activity are also studied. Finally, challenges and future perspective related to phytosome in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Sachin S. Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
- Department of Pharmaceutics, MET’s Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Yogita Y. Morade
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Akshada M. Kothule
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Sanjay J. Kshirsagar
- Department of Pharmaceutics, MET’s Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Umesh D. Laddha
- Department of Pharmaceutics, MET’s Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Kishor S. Salunkhe
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| |
Collapse
|
15
|
Box–Behnken Design Used to Optimize the Simultaneous Quantification of Amitriptyline and Propranolol in Tablet Dosages by RP-HPLC-DAD Method and Their Stability Tests. SEPARATIONS 2022. [DOI: 10.3390/separations9120421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study’s goal is to use a Box–Behnken design [BBD] methodology to create a new reverse-phase high-performance liquid chromatography diode-array detection [RP-HPLC-DAD] method for the simultaneous quantification of Amitriptyline and Propranolol in tablet dosages. The amitriptyline and propranolol standard drug peaks were obtained using a C-18 column with a dimension of 4.6 × 100 mm and a particle size packing of 2.5 µm at the retention time of 5.328 and 7.48 min, respectively. The mobile phase composition was a 75:25 mixture of methanol and 0.1 percent orthophosphoric acid, flowing at 1.0 mL/min at 26 °C. The peaks were identified at 257 nm after injecting 20 µL of the sample. An assay of the marketed tablets was performed, and the result was 101.33 and 99.4% for amitriptyline and propranolol, respectively, when compared to the standard calibration curve. Forced degradation investigations, such as acid, base, H2O2, and neutral condition, were performed. The results for both medications in term of % degradation were as follows: amitriptyline (16.07, 91.92, 26.98, and 0.64) and propranolol (15.84, 11.52, 9.09, and 3.62). According to the ICH criteria, the findings of the validation parameters were within an acceptable range. The new RP-HPLC-DAD method with BBD application is easy, accurate, and time-saving.
Collapse
|
16
|
Central Composite Design (CCD) for the Optimisation of Ethosomal Gel Formulation of Punica granatum Extract: In Vitro and In Vivo Evaluations. Gels 2022; 8:gels8080511. [PMID: 36005111 PMCID: PMC9407133 DOI: 10.3390/gels8080511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
This research manuscript’s objective was to develop the Punica granatum extract ethosome gel. The use of nanotechnology can improve transdermal drug delivery permeation of its major bioactive compound β-sitosterol. The optimised and developed formulations were further studied in vitro and in vivo. The assessment of the anti-inflammatory activity of the gel was performed in Albino rats. Methanolic extract was prepared and developed into an ethosome suspension and an ethosome gel. To optimise the formulation’s response in terms of particle size (nm) and entrapment efficiency (%), the central composite design (CCD) was used in 22 levels. The effects of factors such as lecithin (%) and ethanol (mL) in nine formulations were observed. Characterisation of ethosome gel was performed and the results showed the particle size (516.4 nm) and mean zeta potential (−45.4 mV). Evaluations of the gel formulation were performed. The results were good in terms of pH (7.1), viscosity (32,158 cps), spreadability (31.55 g cm/s), and no grittiness. In an in vitro study, the percentages of β-sitosterol release of ethosome gel (91.83%), suspension (82.74%), and extracts (68.15%) at 279 nm were recorded. The effects of the formulated gel on formalin-induced oedema in Albino rats showed good results in terms of anti-inflammatory activity. The comparative anti-inflammatory activity of Punica granatum extract and gel showed that the gel action was good for their topical application.
Collapse
|
17
|
Design and evaluation of sustained release mucoadhesive film of sumatriptan succinate containing grafted co-polymer as the platform. Saudi Pharm J 2022; 30:1527-1537. [DOI: 10.1016/j.jsps.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/23/2022] [Indexed: 11/23/2022] Open
|
18
|
A Narrative Review of the Potential Roles of Lipid-Based Vesicles (Vesiculosomes) in Burn Management. Sci Pharm 2022. [DOI: 10.3390/scipharm90030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Burn injuries can have a lasting effect on people’s quality of life, as they negatively impact their physical and mental health. Then, they are likely to suffer psychological problems as a result. A serious problem is that deep burns are more challenging to treat due to their slow healing rate and susceptibility to microbial infection. Conventional topical medications used for burn treatment are sometimes ineffective because they cannot optimize their ability of transcutaneous absorption at the targeted site and accelerate healing. However, nanotechnology offers excellent prospects for developing current medical wound therapies and is capable of addressing issues such as low drug stability, water solubility, permeability, and bioavailability. The current review focuses on lipid-based vesicles (vesiculosomes) as an example of advanced delivery systems, showing their potential clinical applications in burn wound management. Vesiculosomes may help overcome impediments including the low bioavailability of active agents, offering the controlled release of drugs, increased drug stability, fewer side effects, and reduced dosing frequency, which will ultimately improve therapeutic efficacy and patient compliance. We discuss the application of various types of vesiculosomes such as liposomes, niosomes, ethosomes, cubosomes, transfersomes, and phytosomes in burn healing therapy, as these demonstrate superior skin penetration compared to conventional burn topical treatment. We also highlight their noteworthy uses in the formulation of natural products and discuss the current status as well as future perspectives of these carriers in burn management. Furthermore, the burn treatment options currently available in the market are also summarized.
Collapse
|
19
|
Box-Behnken Design (BBD) Application for Optimization of Chromatographic Conditions in RP-HPLC Method Development for the Estimation of Thymoquinone in Nigella sativa Seed Powder. Processes (Basel) 2022. [DOI: 10.3390/pr10061082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Thymoquinone (THY) is a bioactive compound present in the seed powder of Nigella sativa (NS). This research aims to precisely and accurately estimate THY using high-performance liquid chromatography (HPLC) with a Quality by Design (QbD) application. Box-Behnken design (BBD) was employed to optimize the chromatographic conditions for HPLC method development, taking mobile phase flow rate, pH of the buffer, and λmax as independent variables and retention time and tailing factor as the measured responses. The mobile phase composition was methanol: acetonitrile: buffer (2.2 mM ammonium formate) at the ratio of 35:50:15 v/v/v on a Symmetry® C18 (5 μm, 3.9 × 150 mm) column. In isocratic mode, it had a flow rate 0.9 mL min−1 and eluted analyte was detected at 249 nm. Validation parameters followed the International Council for Harmonization (ICH) guidelines for the new HPLC method. The method was linear over the range 6.25–100 µg mL−1 with a coefficient of determination (r2) of 0.9957. The limit of detection (LOD) and limit of quantification (LOQ) were 2.05 and 6.25 µg mL−1, respectively. The %RSD of system suitability for retention time was 1.42% and for the tailing factor it was 0.695%. In addition, the developed method was precise, accurate, and robust according to ICH criteria. The developed HPLC method is simple, accurate, quick, and robust, and it could be used for the routine analysis of THY in different kinds of formulations.
Collapse
|
20
|
Kaur J, Anwer MK, Sartaj A, Panda BP, Ali A, Zafar A, Kumar V, Gilani SJ, Kala C, Taleuzzaman M. ZnO Nanoparticles of Rubia cordifolia Extract Formulation Developed and Optimized with QbD Application, Considering Ex Vivo Skin Permeation, Antimicrobial and Antioxidant Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041450. [PMID: 35209242 PMCID: PMC8878222 DOI: 10.3390/molecules27041450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
Abstract
The objective of the current research is to develop ZnO-Manjistha extract (ZnO-MJE) nanoparticles (NPs) and to investigate their transdermal delivery as well as antimicrobial and antioxidant activity. The optimized formulation was further evaluated based on different parameters. The ZnO-MJE-NPs were prepared by mixing 10 mM ZnSO4·7H2O and 0.8% w/v NaOH in distilled water. To the above, a solution of 10 mL MJE (10 mg) in 50 mL of zinc sulfate was added. Box-Behnken design (Design-Expert software 12.0.1.0) was used for the optimization of ZnO-MJE-NP formulations. The ZnO-MJE-NPs were evaluated for their physicochemical characterization, in vitro release activity, ex vivo permeation across rat skin, antimicrobial activity using sterilized agar media, and antioxidant activity by the DPPH free radical method. The optimized ZnO-MJE-NP formulation (F13) showed a particle size of 257.1 ± 0.76 nm, PDI value of 0.289 ± 0.003, and entrapment efficiency of 79 ± 0.33%. Drug release kinetic models showed that the formulation followed the Korsmeyer-Peppas model with a drug release of 34.50 ± 2.56 at pH 7.4 in 24 h. In ex vivo studies ZnO-MJE-NPs-opt permeation was 63.26%. The antibacterial activity was found to be enhanced in ZnO-MJE-NPs-opt and antioxidant activity was found to be highest (93.14 ± 4.05%) at 100 µg/mL concentrations. The ZnO-MJE-NPs-opt formulation showed prolonged release of the MJE and intensified permeation. Moreover, the formulation was found to show significantly (p < 0.05) better antimicrobial and antioxidant activity as compared to conventional suspension formulations.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Ali Sartaj
- Department of Pharmaceutics, Faculty of Pharmacy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Bibhu Prasad Panda
- Microbial and Pharmaceutical Biotechnology Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, P.O. Box 11099, Taif-21944, Saudi Arabia;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al-Jouf 72341, Saudi Arabia; or
| | - Vinay Kumar
- Department of Pharmacology, KIET School of Pharmacy, Delhi-NCR, Meerut Road (NH-58), Ghaziabad 201206, India;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Chandra Kala
- Department of Pharmacology, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur 342802, India;
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur 342802, India
- Correspondence: ; Tel.: +91-725-1892-850
| |
Collapse
|
21
|
In Silico Drug Screening Based Development of Novel Formulations for Onychomycosis Management. Gels 2021; 7:gels7040221. [PMID: 34842710 PMCID: PMC8628710 DOI: 10.3390/gels7040221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 12/13/2022] Open
Abstract
Onychomycosis is a prominent fungal infection that causes discoloration, thickening, and mutilation leading to the separation of the nail from the nail bed. Treatment modalities for onychomycosis may include oral, topical, or combination therapy with antifungals and at times may require chemical or surgical intervention. The burden of side effects of antifungals is enormous, and therefore using molecular docking-based drug selection in context with the target keratin protein would ensure better disease management. Ciclopirox, Amorolfine HCl, Efinaconazole, Tioconazole, and Tavaborole were submitted for assessment, revealing that Amorolfine HCl is the best fit. Consequently, two formulations (Nail lacquer and nanoemulgel) were developed from Amorolfine HCl to validate the in silico screening outcomes. The formulations were further fortified with over-the-counter ingredients vis-a-vis with vitamin E in nail lacquer and undecylenic acid in nanoemulgel for their prominent roles in improving nail health. Both the formulations were systematically designed, optimized, and characterized. Amorolfine HCl containing nanoemulgel (NEG) was developed using undecylenic acid as an oil phase and thioglycolic acid as a penetration enhancer. The quality parameters evaluated were particle size, the zeta potential for nanoemulsion (NE) (78.04 ± 4.724 nm and −0.7mV, respectively), in vitro cumulative drug release (96.74% for NE and 88.54% for NEG), and transungual permeation (about 73.49% for NEG and 54.81% for NE). Nail lacquer was evaluated for the drying time, non-volatile content, and blush test. In vitro cumulative drug release of the developed nail lacquer and comparator marketed formulations were around 81.5% and 75%, respectively. Similarly, the transungual drug permeation was 6.32 μg/cm2 and 5.89 μg/cm2, respectively, in 24 h. The in silico guided preparation of both formulations containing Amorolfine HCl and over the counter ingredients is amenable for therapeutic use against onychomycosis and will be evaluated in the in vivo model.
Collapse
|
22
|
Taleuzzaman M, Sartaj A, Kumar Gupta D, Gilani SJ, Mirza MA. Phytosomal gel of Manjistha extract (MJE) formulated and optimized with central composite design of Quality by Design (QbD). J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1942036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Jodhpur, Rajasthan, India
| | - Ali Sartaj
- Department of Pharmaceutics, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Dipak Kumar Gupta
- Department of Pharmaceutics, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohd. Aamir Mirza
- Department of Pharmaceutics, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
23
|
Jain P, Garg A, Farooq U, Panda AK, Mirza MA, Noureldeen A, Darwish H, Iqbal Z. Preparation and quality by design assisted (Qb-d) optimization of bioceramic loaded microspheres for periodontal delivery of doxycycline hyclate. Saudi J Biol Sci 2021; 28:2677-2685. [PMID: 34025152 PMCID: PMC8117247 DOI: 10.1016/j.sjbs.2021.03.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 11/27/2022] Open
Abstract
PLGA (Lactic- co-glycolic acid) coated chitosan microspheres loaded with hydroxyapatite and doxycycline hyclate complex were developed in the present study for periodontal delivery. A modified single emulsion method was adopted for the development of microspheres. Formulation was optimized on the basis of particle size, drug loading and encapsulation efficiency with the central composite design using 23 factorial design. Microspheres were optimized and electron microscopy revealed their spherical shape and porous nature. In-vitro study showed initial burst and then sustained release behavior of the formulation for 14 days. Further, in-vitro antibacterial study performed on E. coli (ATCC-25922) and S. aureus (ATCC-29213) revealed concentration dependent activity. Also, in-vitro cyto-toxicity assessment ensures biocompatibility of the formulation with the fibroblast's cells. Overall, the quality by design assisted PLGA microspheres, demonstrated the desired attributes and were found suitable for periodontal drug delivery.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Abhinav Garg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Uzma Farooq
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amulya K. Panda
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Mohd. Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|