1
|
Kaenying W, Choengpanya K, Tagami T, Wattana-Amorn P, Lang W, Okuyama M, Li YK, Kimura A, Kongsaeree PT. Crystal structure and identification of amino acid residues for catalysis and binding of GH3 AnBX β-xylosidase from Aspergillus niger. Appl Microbiol Biotechnol 2023; 107:2335-2349. [PMID: 36877249 DOI: 10.1007/s00253-023-12445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
β-Xylosidases catalyze the hydrolysis of xylooligosaccharides to xylose in the final step of hemicellulose degradation. AnBX, which is a GH3 β-xylosidase from Aspergillus niger, has a high catalytic efficiency toward xyloside substrates. In this study, we report the three-dimensional structure and the identification of catalytic and substrate binding residues of AnBX by performing site-directed mutagenesis, kinetic analysis, and NMR spectroscopy-associated analysis of the azide rescue reaction. The structure of the E88A mutant of AnBX, determined at 2.5-Å resolution, contains two molecules in the asymmetric unit, each of which is composed of three domains, namely an N-terminal (β/α)8 TIM-barrel-like domain, an (α/β)6 sandwich domain, and a C-terminal fibronectin type III domain. Asp288 and Glu500 of AnBX were experimentally confirmed to act as the catalytic nucleophile and acid/base catalyst, respectively. The crystal structure revealed that Trp86, Glu88 and Cys289, which formed a disulfide bond with Cys321, were located at subsite -1. Although the E88D and C289W mutations reduced catalytic efficiency toward all four substrates tested, the substitution of Trp86 with Ala, Asp and Ser increased the substrate preference for glucoside relative to xyloside substrates, indicating that Trp86 is responsible for the xyloside specificity of AnBX. The structural and biochemical information of AnBX obtained in this study provides invaluable insight into modulating the enzymatic properties for the hydrolysis of lignocellulosic biomass. KEY POINTS: • Asp288 and Glu500 of AnBX are the nucleophile and acid/base catalyst, respectively • Glu88 and the Cys289-Cys321 disulfide bond are crucial for the catalytic activity of AnBX • The W86A and W86S mutations in AnBX increased the preference for glucoside substrates.
Collapse
Affiliation(s)
- Wilaiwan Kaenying
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Khuanjarat Choengpanya
- Interdisciplinary Graduate Program in Genetic Engineering, Faculty of Graduate School, Kasetsart University, Bangkok, 10900, Thailand
- Program in Basic Science, Maejo University Phrae Campus, Phrae, 54140, Thailand
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Pakorn Wattana-Amorn
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Weeranuch Lang
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yaw-Kuen Li
- Department of Applied Chemistry, College of Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Prachumporn T Kongsaeree
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Interdisciplinary Graduate Program in Genetic Engineering, Faculty of Graduate School, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
SUN Y, CUI X, WANG Z. Characterization of a rutin-hydrolyzing enzyme with β-glucosidase activity from tartary buckwheat (Fagopyrum tartaricum) seeds. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.42822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Yao SUN
- Shanxi University, China; Taiyuan Institute of Technology, China
| | | | | |
Collapse
|
3
|
Identification of an intracellular β-glucosidase in Aspergillus niger with transglycosylation activity. Appl Microbiol Biotechnol 2020; 104:8367-8380. [DOI: 10.1007/s00253-020-10840-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
|
4
|
Ariaeenejad S, Nooshi-Nedamani S, Rahban M, Kavousi K, Pirbalooti AG, Mirghaderi S, Mohammadi M, Mirzaei M, Salekdeh GH. A Novel High Glucose-Tolerant β-Glucosidase: Targeted Computational Approach for Metagenomic Screening. Front Bioeng Biotechnol 2020; 8:813. [PMID: 32850705 PMCID: PMC7406677 DOI: 10.3389/fbioe.2020.00813] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/24/2020] [Indexed: 11/24/2022] Open
Abstract
The rate-limiting component of cellulase for efficient degradation of lignocellulosic biomass through the enzymatic route depends on glucosidase’s sensitivity to the end product (glucose). Therefore, there is still a keen interest in finding glucose-tolerant β-glucosidase (BGL) that is active at high glucose concentrations. The main objective of this study was to identify, isolate, and characterize novel highly glucose-tolerant and halotolerant β-glucosidase gene (PersiBGL1) from the mixed genome DNA of sheep rumen metagenome as a suitable environment for efficient cellulase by computationally guided experiments instead of costly functional screening. At first, an in silico screening approach was utilized to find primary candidate enzymes with superior properties. The structure-dependent mechanism of glucose tolerance was investigated for candidate enzymes. Among the computationally selected candidates, PersiBGL1 was cloned, isolated, and structurally characterized, which achieved very high activity in relatively high temperatures and alkaline pH and was successfully used for the hydrolysis of cellobiose. This enzyme exhibits a very high glucose tolerance, with the highest inhibition constant Ki (8.8 M) among BGLs reported so far and retained 75% of its initial activity in the presence of 10 M glucose. Furthermore, a group of multivalent metal, including Mg2+, Mn2+, and Ca2+, as a cofactor, could improve the catalytic efficiency of PersiBGL1. Our results demonstrated the power of computational selected candidates to discover novel glucose tolerance BGL, effective for the bioconversion of lignocellulosic biomass.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Safura Nooshi-Nedamani
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mahdie Rahban
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Atefeh Ghasemi Pirbalooti
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - SeyedSoheil Mirghaderi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mahsa Mohammadi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
5
|
Mariano D, Pantuza N, Santos LH, Rocha REO, de Lima LHF, Bleicher L, de Melo-Minardi RC. Glutantβase: a database for improving the rational design of glucose-tolerant β-glucosidases. BMC Mol Cell Biol 2020; 21:50. [PMID: 32611314 PMCID: PMC7329481 DOI: 10.1186/s12860-020-00293-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/22/2020] [Indexed: 11/22/2022] Open
Abstract
Β-glucosidases are key enzymes used in second-generation biofuel production. They act in the last step of the lignocellulose saccharification, converting cellobiose in glucose. However, most of the β-glucosidases are inhibited by high glucose concentrations, which turns it a limiting step for industrial production. Thus, β-glucosidases have been targeted by several studies aiming to understand the mechanism of glucose tolerance, pH and thermal resistance for constructing more efficient enzymes. In this paper, we present a database of β-glucosidase structures, called Glutantβase. Our database includes 3842 GH1 β-glucosidase sequences collected from UniProt. We modeled the sequences by comparison and predicted important features in the 3D-structure of each enzyme. Glutantβase provides information about catalytic and conserved amino acids, residues of the coevolution network, protein secondary structure, and residues located in the channel that guides to the active site. We also analyzed the impact of beneficial mutations reported in the literature, predicted in analogous positions, for similar enzymes. We suggested these mutations based on six previously described mutants that showed high catalytic activity, glucose tolerance, or thermostability (A404V, E96K, H184F, H228T, L441F, and V174C). Then, we used molecular docking to verify the impact of the suggested mutations in the affinity of protein and ligands (substrate and product). Our results suggest that only mutations based on the H228T mutant can reduce the affinity for glucose (product) and increase affinity for cellobiose (substrate), which indicates an increment in the resistance to product inhibition and agrees with computational and experimental results previously reported in the literature. More resistant β-glucosidases are essential to saccharification in industrial applications. However, thermostable and glucose-tolerant β-glucosidases are rare, and their glucose tolerance mechanisms appear to be related to multiple and complex factors. We gather here, a set of information, and made predictions aiming to provide a tool for supporting the rational design of more efficient β-glucosidases. We hope that Glutantβase can help improve second-generation biofuel production. Glutantβase is available at http://bioinfo.dcc.ufmg.br/glutantbase .
Collapse
Affiliation(s)
- Diego Mariano
- Laboratory of Bioinformatics and Systems. Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Naiara Pantuza
- Laboratory of Bioinformatics and Systems. Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Lucianna H Santos
- Laboratory of Bioinformatics and Systems. Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Rafael E O Rocha
- Laboratory of Bioinformatics and Systems. Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Leonardo H F de Lima
- Laboratory of Molecular Modelling and Bioinformatics (LAMMB), Department of Physical and Biological Sciences, Universidade Federal de São João Del-Rei, Campus Sete Lagoas, Sete Lagoas, 35701-970, Brazil
| | - Lucas Bleicher
- Protein Computational Biology Laboratory, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Raquel Cardoso de Melo-Minardi
- Laboratory of Bioinformatics and Systems. Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
6
|
Cao H, Zhang Y, Shi P, Ma R, Yang H, Xia W, Cui Y, Luo H, Bai Y, Yao B. A highly glucose-tolerant GH1 β-glucosidase with greater conversion rate of soybean isoflavones in monogastric animals. J Ind Microbiol Biotechnol 2018; 45:369-378. [PMID: 29744673 PMCID: PMC6028883 DOI: 10.1007/s10295-018-2040-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
In the feed industry, β-glucosidase has been widely used in the conversion of inactive and bounded soybean isoflavones into active aglycones. However, the conversion is frequently inhibited by the high concentration of intestinal glucose in monogastric animals. In this study, a GH1 β-glucosidase (AsBG1) with high specific activity, thermostability and glucose tolerance (IC50 = 800 mM) was identified. It showed great glucose tolerance against substrates with hydrophobic aryl ligands (such as pNPG and soy isoflavones). Using soybean meal as the substrate, AsBG1 exhibited higher hydrolysis efficiency than the GH3 counterpart Bgl3A with or without the presence of glucose in the reaction system. Furthermore, it is the first time to find that the endogenous β-glucosidase of soybean meal, mostly belonging to GH3, plays a role in the hydrolysis of soybean isoflavones and is highly sensitive to glucose. These findings lead to a conclusion that the GH1 rather than GH3 β-glucosidase has prosperous application advantages in the conversion of soybean isoflavones in the feed industry.
Collapse
Affiliation(s)
- Huifang Cao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yueqi Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Pengjun Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Hong Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Wei Xia
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
- College of Animal Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ying Cui
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
| |
Collapse
|
7
|
Molecular Characterization and Potential Synthetic Applications of GH1 β-Glucosidase from Higher Termite Microcerotermes annandalei. Appl Biochem Biotechnol 2018; 186:877-894. [PMID: 29779183 DOI: 10.1007/s12010-018-2781-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
Abstract
A novel β-glucosidase from higher termite Microcerotermes annandalei (MaBG) was obtained via a screening method targeting β-glucosidases with increased activities in the presence of glucose. The purified natural MaBG showed a subunit molecular weight of 55 kDa and existed in a native form as a dimer without any glycosylation. Gene-specific primers designed from its partial amino acid sequences were used to amplify the corresponding 1,419-bp coding sequence of MaBG which encodes a 472-amino acid glycoside hydrolase family 1 (GH1) β-glucosidase. When expressed in Komagataella pastoris, the recombinant MaBG appeared as a ~ 55-kDa protein without glycosylation modifications. Kinetic parameters as well as the lack of secretion signal suggested that MaBG is an intracellular enzyme and not involved in cellulolysis. The hydrolytic activities of MaBG were enhanced in the presence of up to 3.5-4.5 M glucose, partly due to its strong transglucosylation activity, which suggests its applicability in biosynthetic processes. The potential synthetic activities of the recombinant MaBG were demonstrated in the synthesis of para-nitrophenyl-β-D-gentiobioside via transglucosylation and octyl glucoside via reverse hydrolysis. The information obtained from this study has broadened our insight into the functional characteristics of this variant of termite GH1 β-glucosidase and its applications in bioconversion and biotechnology.
Collapse
|
8
|
Oh JM, Lee JP, Baek SC, Kim SG, Jo YD, Kim J, Kim H. Characterization of two extracellular β-glucosidases produced from the cellulolytic fungus Aspergillus sp. YDJ216 and their potential applications for the hydrolysis of flavone glycosides. Int J Biol Macromol 2018; 111:595-603. [PMID: 29339289 DOI: 10.1016/j.ijbiomac.2018.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/29/2017] [Accepted: 01/12/2018] [Indexed: 01/12/2023]
Abstract
A cellulolytic fungus YDJ216 was isolated from a compost and identified as an Aspergillus sp. strain. Two extracellular β-glucosidases, BGL1 and BGL2, were purified using ultrafiltration, ammonium sulfate fractionation, and High-Q chromatography. Molecular masses of BGL1 and BGL2 were estimated to be 97 and 45 kDa, respectively, by SDS-PAGE. The two enzymes eluted as one peak at 87 kDa by Sephacryl S-200 chromatography, and located at similar positions in a zymogram after intact gel electrophoresis, suggesting BGL1 and BGL2 might be monomeric and dimeric, respectively. Both enzymes showed similar enzymatic properties; they were optimally active at pH 4.0-4.5 and 60 °C, and had similar half-lives at 70 °C. Two enzymes also preferred p-nitrophenyl glucose (pNPG) with the same Km and hardly hydrolyzed cellobiose, suggesting both enzymes are aryl β-glucosidases. However, Vmax for pNPG of BGL1 (953.2 U/mg) was much higher than those of BGL2 (66.5U/mg) and other β-glucosidases reported. When tilianin (a flavone glycoside of acacetin) was reacted with both enzymes, inhibitory activity for monoamine oxidase, relating to oxidation of neurotransmitter amines, was increased closely to the degree obtained by acacetin. These results suggest that BGL1 and BGL2 could be used to hydrolyze flavone glycosides to improve their inhibitory activities.
Collapse
Affiliation(s)
- Jong Min Oh
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jae Pil Lee
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seung Cheol Baek
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seul Gi Kim
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yang Do Jo
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jungho Kim
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hoon Kim
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea; Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
9
|
Vervoort Y, Herrera-Malaver B, Mertens S, Guadalupe Medina V, Duitama J, Michiels L, Derdelinckx G, Voordeckers K, Verstrepen KJ. Characterization of the recombinant Brettanomyces anomalus β-glucosidase and its potential for bioflavouring. J Appl Microbiol 2016; 121:721-33. [PMID: 27277532 PMCID: PMC6680314 DOI: 10.1111/jam.13200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/11/2016] [Accepted: 06/03/2016] [Indexed: 01/20/2023]
Abstract
AIM Plant materials used in the food industry contain up to five times more aromas bound to glucose (glucosides) than free, unbound aromas, making these bound aromas an unused flavouring potential. The aim of this study was to identify and purify a novel β-glucosidase from Brettanomyces yeasts that are capable of releasing bound aromas present in various food products. METHODS AND RESULTS We screened 428 different yeast strains for β-glucosidase activity and are the first to sequence the whole genome of two Brettanomyces yeasts (Brettanomyces anomalus and Brettanomyces bruxellensis) with exceptionally high β-glucosidase activity. Heterologous expression and purification of the identified B. anomalus β-glucosidase showed that it has an optimal activity at a higher pH (5·75) and lower temperature (37°C) than commercial β-glucosidases. Adding this B. anomalus β-glucosidase to cherry beers and forest fruit milks resulted in increased amounts of benzyl alcohol, eugenol, linalool and methyl salicylate compared to Aspergillus niger and Almond glucosidase. CONCLUSIONS The newly identified B. anomalus β-glucosidase offers new possibilities for food bioflavouring. SIGNIFICANCE AND IMPACT OF THE STUDY This study is the first to sequence the B. anomalus genome and to identify the β-glucosidase-encoding genes of two Brettanomyces species, and reports a new bioflavouring enzyme.
Collapse
Affiliation(s)
- Y Vervoort
- VIB Laboratory of Systems Biology, Leuven, Belgium.,CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - B Herrera-Malaver
- VIB Laboratory of Systems Biology, Leuven, Belgium.,CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - S Mertens
- VIB Laboratory of Systems Biology, Leuven, Belgium.,CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - V Guadalupe Medina
- VIB Laboratory of Systems Biology, Leuven, Belgium.,CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - J Duitama
- VIB Laboratory of Systems Biology, Leuven, Belgium.,CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - L Michiels
- VIB Laboratory of Systems Biology, Leuven, Belgium.,CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - G Derdelinckx
- Leuven Food Science and Nutrition Research Centre, Leuven, Belgium
| | - K Voordeckers
- VIB Laboratory of Systems Biology, Leuven, Belgium.,CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| | - K J Verstrepen
- VIB Laboratory of Systems Biology, Leuven, Belgium.,CMPG Laboratory for Genetics and Genomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Choengpanya K, Arthornthurasuk S, Wattana-amorn P, Huang WT, Plengmuankhae W, Li YK, Kongsaeree PT. Cloning, expression and characterization of β-xylosidase from Aspergillus niger ASKU28. Protein Expr Purif 2015; 115:132-40. [DOI: 10.1016/j.pep.2015.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
|
11
|
Xie L, Zhao J, Wu J, Gao M, Zhao Z, Lei X, Zhao Y, Yang W, Gao X, Ma C, Liu H, Wu F, Wang X, Zhang F, Guo P, Dai G. Efficient hydrolysis of corncob residue through cellulolytic enzymes from Trichoderma strain G26 and L-lactic acid preparation with the hydrolysate. BIORESOURCE TECHNOLOGY 2015; 193:331-336. [PMID: 26143000 DOI: 10.1016/j.biortech.2015.06.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
To prepare fermentable hydrolysate from corncob residue (CCR), Trichoderma strain G26 was cultured on medium containing CCR for production of cellulolytic enzymes through solid-state fermentation (SSF), resulting in 71.3 IU/g (FPA), 136.2 IU/g (CMCase), 85.1 IU/g (β-glucosidase) and 11,344 IU/g (xylanase), respectively. Through a three-stage saccharification strategy, CCR was hydrolyzed by the enzymatic solution (6.5 FPU/ml) into fermentable hydrolysate containing 60.1g/l glucose (81.2% cellulose was converted at solid loading of 12.5%), 21.4% higher than that by the one-stage method. And then the hydrolysate was used to produce L-lactic acid by a previous screened strain Bacillus coagulans ZX25 in the submerged fermentation. 52.0 g/l L-lactic acid was obtained after fermentation for 44 h, with 86.5% glucose being converted to L-lactic acid. The results indicate that the strains and the hydrolysis strategy are promising for commercial production of L-lactic acid from CCR and other biomass.
Collapse
Affiliation(s)
- Lulu Xie
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jin Zhao
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jian Wu
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Mingfu Gao
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Zhewei Zhao
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Xiangyun Lei
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Yi Zhao
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Wei Yang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Xiaoxue Gao
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Cuiyun Ma
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Huanfei Liu
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Fengjuan Wu
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Xingxing Wang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Fengwei Zhang
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Pengyuan Guo
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Guifu Dai
- School of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China.
| |
Collapse
|
12
|
Weiss PHE, Álvares ACM, Gomes AA, Miletti LC, Skoronski E, da Silva GF, de Freitas SM, Magalhães MLB. Beta glucosidase from Bacillus polymyxa is activated by glucose-6-phosphate. Arch Biochem Biophys 2015; 580:50-6. [PMID: 26116788 DOI: 10.1016/j.abb.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 01/10/2023]
Abstract
Optimization of cellulose enzymatic hydrolysis is crucial for cost effective bioethanol production from lignocellulosic biomass. Enzymes involved in cellulose hydrolysis are often inhibited by their end-products, cellobiose and glucose. Efforts have been made to produce more efficient enzyme variants that are highly tolerant to product accumulation; however, further improvements are still necessary. Based on an alternative approach we initially investigated whether recently formed glucose could be phosphorylated into glucose-6-phosphate to circumvent glucose accumulation and avoid inhibition of beta-glucosidase from Bacillus polymyxa (BGLA). The kinetic properties and structural analysis of BGLA in the presence of glucose-6-phosphate (G6P) were investigated. Kinetic studies demonstrated that enzyme was not inhibited by G6P. In contrast, the presence of G6P activated the enzyme, prevented beta glucosidase feedback inhibition by glucose accumulation and improved protein stability. G6P binding was investigated by fluorescence quenching experiments and the respective association constant indicated high affinity binding of G6P to BGLA. Data reported here are of great impact for future design strategies for second-generation bioethanol production.
Collapse
Affiliation(s)
- Paulo H E Weiss
- Biochemistry Laboratory, Department of Food and Animal Production, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina 88520-000, Brazil
| | - Alice C M Álvares
- Biophysics Laboratory, Department of Cellular Biology, University of Brasília, Brasília 70910-900, Brazil
| | - Anderson A Gomes
- Water Treatment Laboratory, Department of Environmental Engineering, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina 88520-000, Brazil
| | - Luiz C Miletti
- Biochemistry Laboratory, Department of Food and Animal Production, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina 88520-000, Brazil
| | - Everton Skoronski
- Water Treatment Laboratory, Department of Environmental Engineering, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina 88520-000, Brazil
| | - Gustavo F da Silva
- Biochemistry Laboratory, Department of Food and Animal Production, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina 88520-000, Brazil
| | - Sonia M de Freitas
- Biophysics Laboratory, Department of Cellular Biology, University of Brasília, Brasília 70910-900, Brazil
| | - Maria L B Magalhães
- Biochemistry Laboratory, Department of Food and Animal Production, Center of Agroveterinary Sciences, State University of Santa Catarina, Lages, Santa Catarina 88520-000, Brazil.
| |
Collapse
|