1
|
Pandey K, Saharan BS, Kumar R, Jabborova D, Duhan JS. Modern-Day Green Strategies for the Removal of Chromium from Wastewater. J Xenobiot 2024; 14:1670-1696. [PMID: 39584954 PMCID: PMC11587030 DOI: 10.3390/jox14040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/11/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Chromium is an essential element in various industrial processes, including stainless steel production, electroplating, metal finishing, leather tanning, photography, and textile manufacturing. However, it is also a well-documented contaminant of aquatic systems and agricultural land, posing significant economic and health challenges. The hexavalent form of chromium [Cr(VI)] is particularly toxic and carcinogenic, linked to severe health issues such as cancer, kidney disorders, liver failure, and environmental biomagnification. Due to the high risks associated with chromium contamination in potable water, researchers have focused on developing effective removal strategies. Among these strategies, biosorption has emerged as a promising, cost-effective, and energy-efficient method for eliminating toxic metals, especially chromium. This process utilizes agricultural waste, plants, algae, bacteria, fungi, and other biomass as adsorbents, demonstrating substantial potential for the remediation of heavy metals from contaminated environments at minimal cost. This review paper provides a comprehensive analysis of various strategies, materials, and mechanisms involved in the bioremediation of chromium, along with their commercial viability. It also highlights the advantages of biosorption over traditional chemical and physical methods, offering a thorough understanding of its applications and effectiveness.
Collapse
Affiliation(s)
- Komal Pandey
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India;
| | - Baljeet Singh Saharan
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125 004, India;
- Department of Microbiology, Kurukshetra University, Kurukshetra 136 119, India
- USDA-ARS Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA 99164-6430, USA
- Helmholtz Centre for Environmental Research—UFZ, Department of Environmental Biotechnology, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125 055, India;
| | - Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Qibray 111 208, Uzbekistan;
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125 055, India;
| |
Collapse
|
2
|
Muñoz-Muñoz PLA, Terán-Ramírez C, Mares-Alejandre RE, Márquez-González AB, Madero-Ayala PA, Meléndez-López SG, Ramos-Ibarra MA. Surface Engineering of Escherichia coli to Display Its Phytase (AppA) and Functional Analysis of Enzyme Activities. Curr Issues Mol Biol 2024; 46:3424-3437. [PMID: 38666945 PMCID: PMC11048855 DOI: 10.3390/cimb46040215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Escherichia coli phytase (AppA) is widely used as an exogenous enzyme in monogastric animal feed mainly because of its ability to degrade phytic acid or its salt (phytate), a natural source of phosphorus. Currently, successful recombinant production of soluble AppA has been achieved by gene overexpression using both bacterial and yeast systems. However, some methods for the biomembrane immobilization of phytases (including AppA), such as surface display on yeast cells and bacterial spores, have been investigated to avoid expensive enzyme purification processes. This study explored a homologous protein production approach for displaying AppA on the cell surface of E. coli by engineering its outer membrane (OM) for extracellular expression. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of total bacterial lysates and immunofluorescence microscopy of non-permeabilized cells revealed protein expression, whereas activity assays using whole cells or OM fractions indicated functional enzyme display, as evidenced by consistent hydrolytic rates on typical substrates (i.e., p-nitrophenyl phosphate and phytic acid). Furthermore, the in vitro results obtained using a simple method to simulate the gastrointestinal tract of poultry suggest that the whole-cell biocatalyst has potential as a feed additive. Overall, our findings support the notion that biomembrane-immobilized enzymes are reliable for the hydrolysis of poorly digestible substrates relevant to animal nutrition.
Collapse
Affiliation(s)
- Patricia L. A. Muñoz-Muñoz
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
| | - Celina Terán-Ramírez
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
- Biochemical Sciences Graduate Program (Doctorate Studies), National Autonomous University of Mexico, Cuernavaca 62210, MOR, Mexico
| | - Rosa E. Mares-Alejandre
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
| | - Ariana B. Márquez-González
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
- Biological and Biomedical Sciences Graduate Program (Doctorate Studies), University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pablo A. Madero-Ayala
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
- Science and Engineering Graduate Program (Doctorate Studies), Autonomous University of Baja California, Tijuana 22390, BCN, Mexico
| | - Samuel G. Meléndez-López
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
| | - Marco A. Ramos-Ibarra
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico; (P.L.A.M.-M.); (C.T.-R.); (R.E.M.-A.); (A.B.M.-G.); (P.A.M.-A.); (S.G.M.-L.)
| |
Collapse
|
3
|
Yang MX, Liang JH, Luo S, Zhang SB, Zhou QJ, Lu JF, Chen J. Oral vaccination with recombinant Saccharomyces cerevisiae expressing Micropterus salmoides rhabdovirus G protein elicits protective immunity in largemouth bass. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109364. [PMID: 38199264 DOI: 10.1016/j.fsi.2024.109364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Micropterus salmoides rhabdovirus (MSRV) is one of the main pathogens of largemouth bass, leading to serious economic losses. The G protein, as the only envelope protein present on the surface of MSRV virion, contains immune-related antigenic determinants, thereby becoming the primary target for the design of MSRV vaccines. Here, we displayed the G protein on the surface of yeast cells (named EBY100/pYD1-G) and conducted a preliminary assessment of the protective efficacy of the recombinant yeast vaccine. Upon oral vaccination, a robust immune response was observed in systemic and mucosal tissue. Remarkably, following the MSRV challenge, the relative percent survival of EBY100/pYD1-G treated largemouth bass significantly increased to 66.7 %. In addition, oral administration inhibited viral replication and alleviated the pathological symptoms of MSRV-infected largemouth bass. These results suggest that EBY100/pYD1-G could be used as a potential oral vaccine against MSRV infection.
Collapse
Affiliation(s)
- Mao-Xia Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315211, China
| | - Jia-Hui Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315211, China
| | - Sheng Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315211, China
| | - Shi-Bo Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315211, China
| | - Qian-Jin Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Lee JW, Choi J, Kim EH, Choi J, Kim SH, Yang Y. Design of siRNA Bioconjugates for Efficient Control of Cancer-Associated Membrane Receptors. ACS OMEGA 2023; 8:36435-36448. [PMID: 37810687 PMCID: PMC10552107 DOI: 10.1021/acsomega.3c05395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
Research on siRNA delivery has seen tremendous growth over the past few decades. As one of the major delivery strategies, siRNA bioconjugates offer the potential to enhance and extend the pharmacological properties of siRNAs while minimizing toxicity. In this paper, we suggest the development of a siRNA conjugate platform with peptides and proteins that are ligands of target receptors for cancer treatment. The siRNA bioconjugates target and block the receptor membrane proteins, enter the cells through receptor-mediated endocytosis, and inhibit the expression of that same target membrane receptor, thereby doubly controlling the function of the membrane proteins. The three kinds of bioconjugates targeting CD47, PD-L1, and EGFR were synthesized via two different copper-free click chemistry reactions. Results showed the cellular uptake of each conjugate, reduction of target gene expression, and efficient functional control of receptor proteins. This platform provides an effective approach for regulating membrane proteins in various diseases beyond cancer.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Medicinal
Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jiwoong Choi
- Medicinal
Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eun Hye Kim
- Medicinal
Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department
of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jiwon Choi
- Medicinal
Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department
of Bioengineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sun Hwa Kim
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Medicinal
Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yoosoo Yang
- Medicinal
Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
5
|
Martinić Cezar T, Lozančić M, Novačić A, Matičević A, Matijević D, Vallée B, Mrša V, Teparić R, Žunar B. Streamlining N-terminally anchored yeast surface display via structural insights into S. cerevisiae Pir proteins. Microb Cell Fact 2023; 22:174. [PMID: 37679759 PMCID: PMC10483737 DOI: 10.1186/s12934-023-02183-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Surface display co-opts yeast's innate ability to embellish its cell wall with mannoproteins, thus converting the yeast's outer surface into a growing and self-sustaining catalyst. However, the efficient toolbox for converting the enzyme of interest into its surface-displayed isoform is currently lacking, especially if the isoform needs to be anchored to the cell wall near the isoform's N-terminus, e.g., through a short GPI-independent protein anchor. Aiming to advance such N-terminally anchored surface display, we employed in silico and machine-learning strategies to study the 3D structure, function, genomic organisation, and evolution of the Pir protein family, whose members evolved to covalently attach themselves near their N-terminus to the β-1,3-glucan of the cell wall. Through the newly-gained insights, we rationally engineered 14 S. cerevisiae Hsp150 (Pir2)-based fusion proteins. We quantified their performance, uncovering guidelines for efficient yeast surface display while developing a construct that promoted a 2.5-fold more efficient display of a reporter protein than the full-length Hsp150. Moreover, we developed a Pir-tag, i.e., a peptide spanning only 4.5 kDa but promoting as efficient surface display of a reporter protein as the full-length Hsp150. These constructs fortify the existing surface display toolbox, allowing for a prompt and routine refitting of intracellular proteins into their N-terminally anchored isoforms.
Collapse
Affiliation(s)
- Tea Martinić Cezar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Mateja Lozančić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Ana Novačić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Ana Matičević
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Dominik Matijević
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire (CBM), CNRS, University of Orléans and INSERM, Orléans Cedex 2, UPR, 4301, 45071, France
| | - Vladimir Mrša
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Renata Teparić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Bojan Žunar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia.
| |
Collapse
|
6
|
Shibasaki S, Ueda M. Utilization of Macroalgae for the Production of Bioactive Compounds and Bioprocesses Using Microbial Biotechnology. Microorganisms 2023; 11:1499. [PMID: 37375001 DOI: 10.3390/microorganisms11061499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
To achieve sustainable development, alternative resources should replace conventional resources such as fossil fuels. In marine ecosystems, many macroalgae grow faster than terrestrial plants. Macroalgae are roughly classified as green, red, or brown algae based on their photosynthetic pigments. Brown algae are considered to be a source of physiologically active substances such as polyphenols. Furthermore, some macroalgae can capture approximately 10 times more carbon dioxide from the atmosphere than terrestrial plants. Therefore, they have immense potential for use in the environment. Recently, macroalgae have emerged as a biomass feedstock for bioethanol production owing to their low lignin content and applicability to biorefinery processes. Herein, we provided an overview of the bioconversion of macroalgae into bioactive substances and biofuels using microbial biotechnology, including engineered yeast designed using molecular display technology.
Collapse
Affiliation(s)
- Seiji Shibasaki
- Laboratory of Natural Science, Faculty of Economics, Toyo University, Hakusan Bunkyo-ku, Tokyo 112-8606, Japan
| | - Mitsuyoshi Ueda
- Office of Society-Academia Collaboration for Innovation (SACI), Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Adeniyi A, Bello I, Mukaila T, Sarker NC, Hammed A. Trends in Biological Ammonia Production. BIOTECH 2023; 12:41. [PMID: 37218758 PMCID: PMC10204498 DOI: 10.3390/biotech12020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Food production heavily depends on ammonia-containing fertilizers to improve crop yield and profitability. However, ammonia production is challenged by huge energy demands and the release of ~2% of global CO2. To mitigate this challenge, many research efforts have been made to develop bioprocessing technologies to make biological ammonia. This review presents three different biological approaches that drive the biochemical mechanisms to convert nitrogen gas, bioresources, or waste to bio-ammonia. The use of advanced technologies-enzyme immobilization and microbial bioengineering-enhanced bio-ammonia production. This review also highlighted some challenges and research gaps that require researchers' attention for bio-ammonia to be industrially pragmatic.
Collapse
Affiliation(s)
- Adewale Adeniyi
- Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Ibrahim Bello
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA
| | - Taofeek Mukaila
- Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Niloy Chandra Sarker
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA
| | - Ademola Hammed
- Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
8
|
Progress of Molecular Display Technology Using Saccharomyces cerevisiae to Achieve Sustainable Development Goals. Microorganisms 2023; 11:microorganisms11010125. [PMID: 36677416 PMCID: PMC9864768 DOI: 10.3390/microorganisms11010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
In the long history of microorganism use, yeasts have been developed as hosts for producing biologically active compounds or for conventional fermentation. Since the introduction of genetic engineering, recombinant proteins have been designed and produced using yeast or bacterial cells. Yeasts have the unique property of expressing genes derived from both prokaryotes and eukaryotes. Saccharomyces cerevisiae is one of the well-studied yeasts in genetic engineering. Recently, molecular display technology, which involves a protein-producing system on the yeast cell surface, has been established. Using this technology, designed proteins can be displayed on the cell surface, and novel abilities are endowed to the host yeast strain. This review summarizes various molecular yeast display technologies and their principles and applications. Moreover, S. cerevisiae laboratory strains generated using molecular display technology for sustainable development are described. Each application of a molecular displayed yeast cell is also associated with the corresponding Sustainable Development Goals of the United Nations.
Collapse
|
9
|
Šuchová K, Fehér C, Ravn JL, Bedő S, Biely P, Geijer C. Cellulose- and xylan-degrading yeasts: Enzymes, applications and biotechnological potential. Biotechnol Adv 2022; 59:107981. [DOI: 10.1016/j.biotechadv.2022.107981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 01/23/2023]
|
10
|
Bacterial Biosorbents, an Efficient Heavy Metals Green Clean-Up Strategy: Prospects, Challenges, and Opportunities. Microorganisms 2022; 10:microorganisms10030610. [PMID: 35336185 PMCID: PMC8953973 DOI: 10.3390/microorganisms10030610] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/17/2022] Open
Abstract
Rapid industrialization has led to the pollution of soil and water by various types of contaminants. Heavy metals (HMs) are considered the most reactive toxic contaminants, even at low concentrations, which cause health problems through accumulation in the food chain and water. Remediation using conventional methods, including physical and chemical techniques, is a costly treatment process and generates toxic by-products, which may negatively affect the surrounding environment. Therefore, biosorption has attracted significant research interest in the recent decades. In contrast to existing methods, bacterial biomass offers a potential alternative for recovering toxic/persistent HMs from the environment through different mechanisms for metal ion uptake. This review provides an outlook of the advantages and disadvantages of the current bioremediation technologies and describes bacterial groups, especially extremophiles with biosorbent potential for heavy metal removal with relevant examples and perspectives.
Collapse
|
11
|
Teymennet-Ramírez KV, Martínez-Morales F, Trejo-Hernández MR. Yeast Surface Display System: Strategies for Improvement and Biotechnological Applications. Front Bioeng Biotechnol 2022; 9:794742. [PMID: 35083204 PMCID: PMC8784408 DOI: 10.3389/fbioe.2021.794742] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Yeast surface display (YSD) is a “whole-cell” platform used for the heterologous expression of proteins immobilized on the yeast’s cell surface. YSD combines the advantages eukaryotic systems offer such as post-translational modifications, correct folding and glycosylation of proteins, with ease of cell culturing and genetic manipulation, and allows of protein immobilization and recovery. Additionally, proteins displayed on the surface of yeast cells may show enhanced stability against changes in temperature, pH, organic solvents, and proteases. This platform has been used to study protein-protein interactions, antibody design and protein engineering. Other applications for YSD include library screening, whole-proteome studies, bioremediation, vaccine and antibiotics development, production of biosensors, ethanol production and biocatalysis. YSD is a promising technology that is not yet optimized for biotechnological applications. This mini review is focused on recent strategies to improve the efficiency and selection of displayed proteins. YSD is presented as a cutting-edge technology for the vectorial expression of proteins and peptides. Finally, recent biotechnological applications are summarized. The different approaches described herein could allow for a better strategy cascade for increasing protein/peptide interaction and production.
Collapse
Affiliation(s)
- Karla V Teymennet-Ramírez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mėxico
| | - Fernando Martínez-Morales
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mėxico
| | - María R Trejo-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mėxico
| |
Collapse
|
12
|
Luo B, Jin MM, Li X, Makunga NP, Hu X. Yeast Surface Display for In Vitro Biosynthetic Pathway Reconstruction. ACS Synth Biol 2021; 10:2938-2946. [PMID: 34724381 DOI: 10.1021/acssynbio.1c00175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzymes immobilized through yeast surface display (YSD) can be used in in vitro metabolic pathway reconstruction as alternatives to the enzymes isolated or purified through conventional biochemistry methods. They can be easily prepared by growing and collecting yeast cells harboring display constructs. This may provide an economical method for enriching certain enzymes for biochemistry characterization and application. Herein, we took the advantage of one-pot cascade reactions catalyzed by YSD-immobilized enzymes in the mevalonate pathway to produce geraniol in vitro. YSD-immobilized enzymes of 10 cascade reactions for geraniol production, together with optimization of catalytic components, cofactor regeneration, and byproduct removal, achieved a final yield of 7.55 mg L-1 after seven cycles. This study demonstrated that it is feasible to reconstitute a complex multi-enzymatic system for the chemical biosynthesis in vitro by exploiting YSD-immobilized cascade enzymes.
Collapse
Affiliation(s)
- Biaobiao Luo
- Laboratory of Natural Medicine and Molecular Engineering, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National & Local Joint Engineering Research Center for Medicinal Plant Breeding and Cultivation, Wuhan 430070, China
- Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan 430070, China
| | - Moonsoo M. Jin
- Department of Radiology and Surgery, Weill Cornell Medicine, New York, New York 10065, United States
| | - Xiaohua Li
- Laboratory of Natural Medicine and Molecular Engineering, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National & Local Joint Engineering Research Center for Medicinal Plant Breeding and Cultivation, Wuhan 430070, China
- Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan 430070, China
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7600, South Africa
| | - Xuebo Hu
- Laboratory of Natural Medicine and Molecular Engineering, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National & Local Joint Engineering Research Center for Medicinal Plant Breeding and Cultivation, Wuhan 430070, China
- Hubei Provincial Engineering Research Center for Medicinal Plants, Wuhan 430070, China
| |
Collapse
|
13
|
Sustainable Biological Ammonia Production towards a Carbon-Free Society. SUSTAINABILITY 2021. [DOI: 10.3390/su13179496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A sustainable society was proposed more than 50 years ago. However, it is yet to be realised. For example, the production of ammonia, an important chemical widely used in the agriculture, steel, chemical, textile, and pharmaceutical industries, still depends on fossil fuels. Recently, biological approaches to achieve sustainable ammonia production have been gaining attention. Moreover, unlike chemical methods, biological approaches have a lesser environmental impact because ammonia can be produced under mild conditions of normal temperature and pressure. Therefore, in previous studies, nitrogen fixation by nitrogenase, including enzymatic ammonia production using food waste, has been attempted. Additionally, the production of crops using nitrogen-fixing bacteria has been implemented in the industry as one of the most promising approaches to achieving a sustainable ammonia economy. Thus, in this review, we described previous studies on biological ammonia production and showed the prospects for realising a sustainable society.
Collapse
|
14
|
Sharma P, Sirohi R, Tong YW, Kim SH, Pandey A. Metal and metal(loids) removal efficiency using genetically engineered microbes: Applications and challenges. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125855. [PMID: 34492804 DOI: 10.1016/j.jhazmat.2021.125855] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
The environment is being polluted in different many with metal and metalloid pollution, mostly due to anthropogenic activity, which is directly affecting human and environmental health. Metals and metalloids are highly toxic at low concentrations and contribute primarily to the survival equilibrium of activities in the environment. However, because of non-degradable, they persist in nature and these metal and metalloids bioaccumulate in the food chain. Genetically engineered microorganisms (GEMs) mediated techniques for the removal of metals and metalloids are considered an environmentally safe and economically feasible strategy. Various forms of GEMs, including fungi, algae, and bacteria have been produced by recombinant DNA and RNA technologies, which have been used to eliminate metal and metalloids compounds from the polluted areas. Besides, GEMs have the potentiality to produce enzymes and other metabolites that are capable of tolerating metals stress and detoxify the pollutants. Thus, the aim of this review is to discuss the use of GEMs as advanced tools to produce metabolites, signaling molecules, proteins through genetic expression during metal and metalloids interaction, which help in the breakdown of persistent pollutants in the environment.
Collapse
Affiliation(s)
- Pooja Sharma
- Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Sang Hyoun Kim
- Department of Chemical and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
15
|
Recent applications of bio-engineering principles to modulate the functionality of proteins in food systems. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Piraine REA, Gonçalves VS, Dos Santos Junior AG, Cunha RC, de Albuquerque PMM, Conrad NL, Leite FPL. Expression cassette and plasmid construction for Yeast Surface Display in Saccharomyces cerevisiae. Biotechnol Lett 2021; 43:1649-1657. [PMID: 33934257 DOI: 10.1007/s10529-021-03142-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Develop a Cell Surface Display system in Saccharomyces cerevisiae, based on the construction of an expression cassette for pYES2 plasmid. RESULTS The construction of an expression cassette containing the α-factor signal peptide and the C-terminal portion of the α-agglutinin protein was made and its sequence inserted into a plasmid named pYES2/gDαAgglutinin. The construction allows surface display of bovine herpesvirus type 5 (BoHV-5) glycoprotein D (gD) on S. cerevisiae BY4741 strain. Recombinant protein expression was confirmed by dot blot, and indirect immunofluorescence using monoclonal anti-histidine antibodies and polyclonal antibodies from mice experimentally vaccinated with a recombinant gD. CONCLUSIONS These results demonstrate that the approach and plasmid used represent not only an effective system for immobilizing proteins on the yeast cell surface, as well as a platform for immunobiologicals development.
Collapse
Affiliation(s)
- Renan Eugênio Araujo Piraine
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vitória Sequeira Gonçalves
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Rodrigo Casquero Cunha
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.,Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Neida Lucia Conrad
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fábio Pereira Leivas Leite
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil. .,Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
17
|
Ye M, Ye Y, Du Z, Chen G. Cell-surface engineering of yeasts for whole-cell biocatalysts. Bioprocess Biosyst Eng 2021; 44:1003-1019. [PMID: 33389168 DOI: 10.1007/s00449-020-02484-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/16/2020] [Indexed: 01/23/2023]
Abstract
Due to the unique advantages comparing with traditional free enzymes and chemical catalysis, whole-cell biocatalysts have been widely used to catalyze reactions effectively, simply and environment friendly. Cell-surface display technology provides a novel and effective approach for improved whole-cell biocatalysts expressing heterologous enzymes on the cell surface. They can overcome the substrate transport limitation of the intracellular expression and provide the enzymes with enhanced properties. Among all the host surface-displaying microorganisms, yeast is ideally suitable for constructing whole cell-surface-displaying biocatalyst, because of the large cell size, the generally regarded as safe (GRAS) status, and the perfect post-translational processing of secreted proteins. Yeast cell-surface display system has been a promising and powerful method for development of novel and improved engineered biocatalysts. In this review, the characterization and principles of yeast cell-surface display and the applications of yeast cell-surface display in engineered whole-cell biocatalysts as well as the improvement of the enzyme efficiency are summarized and discussed.
Collapse
Affiliation(s)
- Mengqi Ye
- Marine College, Shandong University, Weihai, 264209, China
| | - Yuqi Ye
- Marine College, Shandong University, Weihai, 264209, China
| | - Zongjun Du
- Marine College, Shandong University, Weihai, 264209, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Guanjun Chen
- Marine College, Shandong University, Weihai, 264209, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
18
|
Mahmoud GAE. Microbial Scavenging of Heavy Metals Using Bioremediation Strategies. RHIZOBIONT IN BIOREMEDIATION OF HAZARDOUS WASTE 2021:265-289. [DOI: 10.1007/978-981-16-0602-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Puentes PR, Henao MC, Torres CE, Gómez SC, Gómez LA, Burgos JC, Arbeláez P, Osma JF, Muñoz-Camargo C, Reyes LH, Cruz JC. Design, Screening, and Testing of Non-Rational Peptide Libraries with Antimicrobial Activity: In Silico and Experimental Approaches. Antibiotics (Basel) 2020; 9:E854. [PMID: 33265897 PMCID: PMC7759991 DOI: 10.3390/antibiotics9120854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
One of the challenges of modern biotechnology is to find new routes to mitigate the resistance to conventional antibiotics. Antimicrobial peptides (AMPs) are an alternative type of biomolecules, naturally present in a wide variety of organisms, with the capacity to overcome the current microorganism resistance threat. Here, we reviewed our recent efforts to develop a new library of non-rationally produced AMPs that relies on bacterial genome inherent diversity and compared it with rationally designed libraries. Our approach is based on a four-stage workflow process that incorporates the interplay of recent developments in four major emerging technologies: artificial intelligence, molecular dynamics, surface-display in microorganisms, and microfluidics. Implementing this framework is challenging because to obtain reliable results, the in silico algorithms to search for candidate AMPs need to overcome issues of the state-of-the-art approaches that limit the possibilities for multi-space data distribution analyses in extremely large databases. We expect to tackle this challenge by using a recently developed classification algorithm based on deep learning models that rely on convolutional layers and gated recurrent units. This will be complemented by carefully tailored molecular dynamics simulations to elucidate specific interactions with lipid bilayers. Candidate AMPs will be recombinantly-expressed on the surface of microorganisms for further screening via different droplet-based microfluidic-based strategies to identify AMPs with the desired lytic abilities. We believe that the proposed approach opens opportunities for searching and screening bioactive peptides for other applications.
Collapse
Affiliation(s)
- Paola Ruiz Puentes
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogota DC 111711, Colombia; (P.R.P.); (P.A.)
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - María C. Henao
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Carlos E. Torres
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Saúl C. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Laura A. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Juan C. Burgos
- Chemical Engineering Program, Universidad de Cartagena, Cartagena 130015, Colombia;
| | - Pablo Arbeláez
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogota DC 111711, Colombia; (P.R.P.); (P.A.)
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Johann F. Osma
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
20
|
Watanabe Y, Kuroda K, Tatemichi Y, Nakahara T, Aoki W, Ueda M. Construction of engineered yeast producing ammonia from glutamine and soybean residues (okara). AMB Express 2020; 10:70. [PMID: 32296960 PMCID: PMC7158961 DOI: 10.1186/s13568-020-01011-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/07/2020] [Indexed: 11/10/2022] Open
Abstract
Ammonia is an essential substance for agriculture and the chemical industry. The intracellular production of ammonia in yeast (Saccharomyces cerevisiae) by metabolic engineering is difficult because yeast strongly assimilates ammonia, and the knockout of genes enabling this assimilation is lethal. Therefore, we attempted to produce ammonia outside the yeast cells by displaying a glutaminase (YbaS) from Escherichia coli on the yeast cell surface. YbaS-displaying yeast successfully produced 3.34 g/L ammonia from 32.6 g/L glutamine (83.2% conversion rate), providing it at a higher yield than in previous studies. Next, using YbaS-displaying yeast, we also succeeded in producing ammonia from glutamine in soybean residues (okara) produced as food waste from tofu production. Therefore, ammonia production outside cells by displaying ammonia-lyase on the cell surface is a promising strategy for producing ammonia from food waste as a novel energy resource, thereby preventing food loss.
Collapse
|
21
|
Pimviriyakul P, Wongnate T, Tinikul R, Chaiyen P. Microbial degradation of halogenated aromatics: molecular mechanisms and enzymatic reactions. Microb Biotechnol 2020; 13:67-86. [PMID: 31565852 PMCID: PMC6922536 DOI: 10.1111/1751-7915.13488] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Halogenated aromatics are used widely in various industrial, agricultural and household applications. However, due to their stability, most of these compounds persist for a long time, leading to accumulation in the environment. Biological degradation of halogenated aromatics provides sustainable, low-cost and environmentally friendly technologies for removing these toxicants from the environment. This minireview discusses the molecular mechanisms of the enzymatic reactions for degrading halogenated aromatics which naturally occur in various microorganisms. In general, the biodegradation process (especially for aerobic degradation) can be divided into three main steps: upper, middle and lower metabolic pathways which successively convert the toxic halogenated aromatics to common metabolites in cells. The most difficult step in the degradation of halogenated aromatics is the dehalogenation step in the middle pathway. Although a variety of enzymes are involved in the degradation of halogenated aromatics, these various pathways all share the common feature of eventually generating metabolites for utilizing in the energy-producing metabolic pathways in cells. An in-depth understanding of how microbes employ various enzymes in biodegradation can lead to the development of new biotechnologies via enzyme/cell/metabolic engineering or synthetic biology for sustainable biodegradation processes.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- Department of BiotechnologyFaculty of Engineering and Industrial TechnologySilpakorn UniversityNakhon Pathom73000Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Wangchan ValleyRayong21210Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme TechnologyFaculty of ScienceMahidol UniversityBangkok10400Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Wangchan ValleyRayong21210Thailand
| |
Collapse
|
22
|
Prompt and Convenient Preparation of Oral Vaccines Using Yeast Cell Surface Display. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Mo F, Cai D, He P, Yang F, Chen Y, Ma X, Chen S. Enhanced production of heterologous proteins via engineering the cell surface of Bacillus licheniformis. ACTA ACUST UNITED AC 2019; 46:1745-1755. [DOI: 10.1007/s10295-019-02229-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Abstract
Cell surface engineering was proven as the efficient strategy for enhanced production of target metabolites. In this study, we want to improve the yield of target protein by engineering cell surface in Bacillus licheniformis. First, our results confirmed that deletions of d-alanyl-lipoteichoic acid synthetase gene dltD, cardiolipin synthase gene clsA and CDP-diacylglycerol-serine O-phosphatidyltransferase gene pssA were not conducive to cell growth, and the biomass of gene deletion strains were, respectively, decreased by 10.54 ± 1.43%, 14.17 ± 1.51%, and 17.55 ± 1.28%, while the concentrations of total extracellular proteins were improved, due to the increases of cell surface net negative charge and cell membrane permeability. In addition, the activities of target proteins, nattokinase, and α-amylase were also improved significantly in gene deletion strains. Furthermore, the triplicate gene (dltD, clsA, and pssA) deletion strain was constructed, which further led to the 45.71 ± 2.43% increase of cell surface net negative charge and 26.45 ± 2.31% increase of cell membrane permeability, and the activities of nattokinase and α-amylase reached 37.15 ± 0.89 FU/mL and 305.3 ± 8.4 U/mL, increased by 46.09 ± 3.51% and 96.34 ± 7.24%, respectively. Taken together, our results confirmed that cell surface engineering via deleting dltD, clsA, and pssA is an efficient strategy for enhanced production of target proteins, and this research provided a promising host strain of B. licheniformis for efficient protein expression.
Collapse
Affiliation(s)
- Fei Mo
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Dongbo Cai
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Penghui He
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Fan Yang
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Yaozhong Chen
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Xin Ma
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Shouwen Chen
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| |
Collapse
|
24
|
Hao Y, Zheng X, Zhang X, Zhang K, Lin Y, Liang S. Combined strategies for engineering a novel whole-cell biocatalyst of Candida rugosa lipase with improved characteristics. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Ellis GA, Klein WP, Lasarte-Aragonés G, Thakur M, Walper SA, Medintz IL. Artificial Multienzyme Scaffolds: Pursuing in Vitro Substrate Channeling with an Overview of Current Progress. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02413] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gregory A. Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - William P. Klein
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20001, United States
| | - Guillermo Lasarte-Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
26
|
Tasumi S, Kobayashi K, Takanashi S, Asakawa S, Nakamura O, Kikuchi K, Suzuki Y. Expression and presentation of immune-related membrane proteins of fish by a cell surface display platform using insect cells. Mol Immunol 2019; 114:553-560. [PMID: 31521019 DOI: 10.1016/j.molimm.2019.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/26/2019] [Accepted: 07/21/2019] [Indexed: 01/12/2023]
Abstract
Cell surface display is a useful platform to examine the interactions between two proteins of interest, such as immune receptors and ligands. This technique is also useful for studies on the immune receptors of lower vertebrates and invertebrates. However, in many cases, the commonly used cell culture temperature is relatively high for proteins from such organisms. Since insect cells can be cultured at lower temperatures than many other cells, and since they are equipped with "quality control" system, which is advantageous for the presentation of properly folded proteins, we anticipated that the insect cell surface display system could be more suitable for that type of research. In the present study, multiple cloning site of the commercially available expression vector pIB/V5-His was modified, and whether this vector could be useful to present fish immune-related membrane proteins was investigated. Using this plasmid, fugu's CD8α and CC chemokine receptor 7 could be presented on the cell surface. The clones of the lamprey variable lymphocyte receptors obtained previously by the yeast surface display (YSD) system as hen's egg lysozyme (HEL) binders also could be presented on the cell surface and bound to HEL. These results suggest that functional immune-related membrane proteins can be presented on the insect cell surface, indicating that this system is useful for immunological studies on exothermal animals.
Collapse
Affiliation(s)
- Satoshi Tasumi
- Fisheries Laboratory, The University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan.
| | - Keisuke Kobayashi
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Shihori Takanashi
- Fisheries Laboratory, The University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan.
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| | - Osamu Nakamura
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, The University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan.
| | - Yuzuru Suzuki
- Fisheries Laboratory, The University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan.
| |
Collapse
|
27
|
Kim W, Kim D, Back S, Lee YS, Abari AH, Kim J. Removal of Ni2+ and Cd2+ by Surface Display of Polyhistidine on Bacillus subtilis Spore Using CotE Anchor Protein. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0467-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Diep P, Mahadevan R, Yakunin AF. Heavy Metal Removal by Bioaccumulation Using Genetically Engineered Microorganisms. Front Bioeng Biotechnol 2018; 6:157. [PMID: 30420950 PMCID: PMC6215804 DOI: 10.3389/fbioe.2018.00157] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/09/2018] [Indexed: 11/25/2022] Open
Abstract
Wastewater effluents from mines and metal refineries are often contaminated with heavy metal ions, so they pose hazards to human and environmental health. Conventional technologies to remove heavy metal ions are well-established, but the most popular methods have drawbacks: chemical precipitation generates sludge waste, and activated carbon and ion exchange resins are made from unsustainable non-renewable resources. Using microbial biomass as the platform for heavy metal ion removal is an alternative method. Specifically, bioaccumulation is a natural biological phenomenon where microorganisms use proteins to uptake and sequester metal ions in the intracellular space to utilize in cellular processes (e.g., enzyme catalysis, signaling, stabilizing charges on biomolecules). Recombinant expression of these import-storage systems in genetically engineered microorganisms allows for enhanced uptake and sequestration of heavy metal ions. This has been studied for over two decades for bioremediative applications, but successful translation to industrial-scale processes is virtually non-existent. Meanwhile, demands for metal resources are increasing while discovery rates to supply primary grade ores are not. This review re-thinks how bioaccumulation can be used and proposes that it can be developed for bioextractive applications-the removal and recovery of heavy metal ions for downstream purification and refining, rather than disposal. This review consolidates previously tested import-storage systems into a biochemical framework and highlights efforts to overcome obstacles that limit industrial feasibility, thereby identifying gaps in knowledge and potential avenues of research in bioaccumulation.
Collapse
Affiliation(s)
| | | | - Alexander F. Yakunin
- BioZone - Centre for Applied Biosciences and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Zhang Y, Dong W, Lv Z, Liu J, Zhang W, Zhou J, Xin F, Ma J, Jiang M. Surface Display of Bacterial Laccase CotA on Escherichia coli Cells and its Application in Industrial Dye Decolorization. Mol Biotechnol 2018; 60:681-689. [PMID: 30030754 DOI: 10.1007/s12033-018-0103-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Laccase CotA from Bacillus subtilis 168 was successfully displayed on the membrane of Escherichia coli cells using poly-γ-glutamate synthetase A protein (PgsA) from B. subtilis as an anchoring matrix. Further analyses demonstrated that the fusion protein PgsA/CotA efficiently translocates to the cell surface of E. coli with an enzymatic activity of 65 U/108 cells. Surface-displayed CotA was shown to possess improved enzymatic properties compared with those of the wild-type CotA, including higher thermal stability (above 90% activity at 70 °C and nearly 40% activity at 90 °C after 5-h incubation) and stronger inhibitor tolerance (approximately 80 and 65% activity when incubated with 200 and 400 mM NaCl, respectively). Furthermore, the whole-cell system was demonstrated to have high enzymatic activity against anthraquinone dye, Acid Blue 62, triphenylmethane dye, Malachite Green, and azo dye, Methyl Orange with the decolorization percentages of 91, 45, and 75%, after 5-h incubation, respectively.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Ziyao Lv
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Jiawei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wenmin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| |
Collapse
|
30
|
Chen Y, Cai D, He P, Mo F, Zhang Q, Ma X, Chen S. Enhanced production of heterologous proteins by Bacillus licheniformis with defective d-alanylation of lipoteichoic acid. World J Microbiol Biotechnol 2018; 34:135. [DOI: 10.1007/s11274-018-2520-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/16/2018] [Indexed: 11/25/2022]
|
31
|
Tabañag IDF, Chu IM, Wei YH, Tsai SL. Ethanol production from hemicellulose by a consortium of different genetically-modified sacharomyces cerevisiae. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
32
|
The Role of Yeast-Surface-Display Techniques in Creating Biocatalysts for Consolidated BioProcessing. Catalysts 2018. [DOI: 10.3390/catal8030094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Climate change is directly linked to the rapid depletion of our non-renewable fossil resources and has posed concerns on sustainability. Thus, imploring the need for us to shift from our fossil based economy to a sustainable bioeconomy centered on biomass utilization. The efficient bioconversion of lignocellulosic biomass (an ideal feedstock) to a platform chemical, such as bioethanol, can be achieved via the consolidated bioprocessing technology, termed yeast surface engineering, to produce yeasts that are capable of this feat. This approach has various strategies that involve the display of enzymes on the surface of yeast to degrade the lignocellulosic biomass, then metabolically convert the degraded sugars directly into ethanol, thus elevating the status of yeast from an immobilization material to a whole-cell biocatalyst. The performance of the engineered strains developed from these strategies are presented, visualized, and compared in this article to highlight the role of this technology in moving forward to our quest against climate change. Furthermore, the qualitative assessment synthesized in this work can serve as a reference material on addressing the areas of improvement of the field and on assessing the capability and potential of the different yeast surface display strategies on the efficient degradation, utilization, and ethanol production from lignocellulosic biomass.
Collapse
|
33
|
Recent advances in the selection and identification of antigen-specific nanobodies. Mol Immunol 2018; 96:37-47. [PMID: 29477934 DOI: 10.1016/j.molimm.2018.02.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 01/21/2023]
Abstract
Nanobodies represent the next-generation antibody-derived biologics with significant advances over conventional antibodies. Several rapid and robust techniques for isolating highly specific nanobodies have been developed. Antigen specific nanobodies are selected from constructed nanobody libraries, which can be classified into 3 main types: immune library, naïve library, and semisynthetic/synthetic library. The immune library is the most widely used strategy for nanobody screening. Target specific nanobodies are highly enriched in immune libraries than in non-immune libraries; however, it is largely limited by the natural antigenicity of antigens. The naïve library is thus developed. Despite the lack of somatic maturation, protein engineering can be employed to significantly increase the affinities of selected binders. However, a substantial amount of blood samples collected from a large number of individual animals is a prerequisite to ensure the diversity of the naïve library. With this issue considered, the semisynthetic/synthetic library may be a promising path toward obtaining a limitless source of nanobodies against a variety of antigens without the need of animals. In this review, we summarize the state-of-the-art screening technologies with different libraries. The approaches presented here can further boost the diverse applications of nanobodies in biomedicine and biotechnology.
Collapse
|
34
|
Andreu C, Del Olmo ML. Yeast arming systems: pros and cons of different protein anchors and other elements required for display. Appl Microbiol Biotechnol 2018; 102:2543-2561. [PMID: 29435617 DOI: 10.1007/s00253-018-8827-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Yeast display is a powerful strategy that consists in exposing peptides or proteins of interest on the cell surface of this microorganism. Ever since initial experiments with this methodology were carried out, its scope has extended and many applications have been successfully developed in different science and technology fields. Several yeast display systems have been designed, which all involve introducting into yeast cells the gene fusions that contain the coding regions of a signal peptide, an anchor protein, to properly attach the target to the cell surface, and the protein of interest to be exposed, all of which are controlled by a strong promoter. In this work, we report the description of such elements for the alternative systems introduced by focusing particularly on anchor proteins. The comparisons made between them are included whenever possible, and the main advantages and inconveniences of each one are discussed. Despite the huge number of publications on yeast surface display and the revisions published to date, this topic has not yet been widely considered. Finally, given the growing interest in developing systems for non-Saccharomyces yeasts, the main strategies reported for some are also summarized.
Collapse
Affiliation(s)
- Cecilia Andreu
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Vicent Andrés Estellés s/n. 46100 Burjassot, València, Spain
| | - Marcel Lí Del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de València, Dr. Moliner 50, E-46100 Burjassot, València, Spain.
| |
Collapse
|
35
|
Han L, Liang B, Song J, Liu A. Rational design of engineered microbial cell surface multi-enzyme co-display system for sustainable NADH regeneration from low-cost biomass. J Ind Microbiol Biotechnol 2018; 45:111-121. [PMID: 29322283 DOI: 10.1007/s10295-018-2002-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/22/2017] [Indexed: 12/28/2022]
Abstract
As an important cofactor, NADH is essential for most redox reactions and biofuel cells. However, supply of exogenous NADH is challenged, due to the low production efficiency and high cost of NADH regeneration system, as well as low stability of NADH. Here, we constructed a novel cell surface multi-enzyme co-display system with ratio- and space-controllable manner as exogenous NADH regeneration system for the sustainable NADH production from low-cost biomass. Dockerin-fused glucoamylase (GA) and glucose dehydrogenase (GDH) were expressed and assembled on the engineered bacterial surfaces, which displayed protein scaffolds with various combinations of different cohesins. When the ratio of GA and GDH was 3:1, the NADH production rate of the whole-cell biocatalyst reached the highest level using starch as substrate, which was three times higher than that of mixture of free enzymes, indicating that the highly ordered spatial organization of enzymes would promote reactions, due to the ratio of enzymes and proximity effect. To confirm performance of the established NADH regeneration system, the highly efficient synthesis of L-lactic acid (L-LA) was conducted by the system and the yield of L-LA (16 g/L) was twice higher than that of the mixture of free enzymes. The multi-enzyme co-display system showed good stability in the cyclic utilization. In conclusion, the novel sustainable NADH system would provide a cost-effective strategy to regenerate cofactor from low-cost biomass.
Collapse
Affiliation(s)
- Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China.
| | - Bo Liang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| | - Jianxia Song
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| | | |
Collapse
|
36
|
Redesigning of Microbial Cell Surface and Its Application to Whole-Cell Biocatalysis and Biosensors. Appl Biochem Biotechnol 2017; 185:396-418. [PMID: 29168153 DOI: 10.1007/s12010-017-2662-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Microbial cell surface display technology can redesign cell surfaces with functional proteins and peptides to endow cells some unique features. Foreign peptides or proteins are transported out of cells and immobilized on cell surface by fusing with anchoring proteins, which is an effective solution to avoid substance transfer limitation, enzyme purification, and enzyme instability. As the most frequently used prokaryotic and eukaryotic protein surface display system, bacterial and yeast surface display systems have been widely applied in vaccine, biocatalysis, biosensor, bioadsorption, and polypeptide library screening. In this review of bacterial and yeast surface display systems, different cell surface display mechanisms and their applications in biocatalysis as well as biosensors are described with their strengths and shortcomings. In addition to single enzyme display systems, multi-enzyme co-display systems are presented here. Finally, future developments based on our and other previous reports are discussed.
Collapse
|
37
|
Surface display of lipolytic enzyme, Lipase A and Lipase B of Bacillus subtilis on the Bacillus subtilis spore. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0205-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Cell surface engineering of Bacillus subtilis improves production yields of heterologously expressed α-amylases. Microb Cell Fact 2017; 16:56. [PMID: 28376879 PMCID: PMC5379735 DOI: 10.1186/s12934-017-0674-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/31/2017] [Indexed: 11/24/2022] Open
Abstract
Background Bacillus subtilis is widely used as a cell factory for numerous heterologous proteins of commercial value and medical interest. To explore the possibility of further enhancing the secretion potential of this model bacterium, a library of engineered strains with modified cell surface components was constructed, and the corresponding influences on protein secretion were investigated by analyzing the secretion of α-amylase variants with either low-, neutral- or high- isoelectric points (pI). Results Relative to the wild-type strain, the presence of overall anionic membrane phospholipids (phosphatidylglycerol and cardiolipin) increased dramatically in the PssA-, ClsA- and double KO mutants, which resulted in an up to 47% higher secretion of α-amylase. Additionally, we demonstrated that the appropriate net charge of secreted targets (AmyTS-23, AmyBs and AmyBm) was beneficial for secretion efficiency as well. Conclusions In B. subtilis, the characteristics of cell membrane phospholipid bilayer and the pIs of heterologous α-amylases appear to be important for their secretion efficiency. These two factors can be engineered to reduce the electrostatic interaction between each other during the secretion process, which finally leads to a better secretion yield of α-amylases.
Collapse
|
39
|
Development of a new yeast surface display system based on Spi1 as an anchor protein. Appl Microbiol Biotechnol 2016; 101:287-299. [DOI: 10.1007/s00253-016-7905-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/16/2016] [Accepted: 09/27/2016] [Indexed: 01/28/2023]
|