1
|
Cerqueira de Araujo A, Noel B, Bretaudeau A, Labadie K, Boudet M, Tadrent N, Istace B, Kritli S, Cruaud C, Olaso R, Deleuze JF, Voordouw MJ, Hervet C, Plantard O, Zamoto-Niikura A, Chertemps T, Maïbèche M, Hilliou F, Le Goff G, Chmelař J, Mazák V, Jmel MA, Kotsyfakis M, Medina JM, Hackenberg M, Šimo L, Koutroumpa FA, Wincker P, Kopáček P, Perner J, Aury JM, Rispe C. Genome sequences of four Ixodes species expands understanding of tick evolution. BMC Biol 2025; 23:17. [PMID: 39838418 PMCID: PMC11752866 DOI: 10.1186/s12915-025-02121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Ticks, hematophagous Acari, pose a significant threat by transmitting various pathogens to their vertebrate hosts during feeding. Despite advances in tick genomics, high-quality genomes were lacking until recently, particularly in the genus Ixodes, which includes the main vectors of Lyme disease. RESULTS Here, we present the genome sequences of four tick species, derived from a single female individual, with a particular focus on the European species Ixodes ricinus, achieving a chromosome-level assembly. Additionally, draft assemblies were generated for the three other Ixodes species, I. persulcatus, I. pacificus, and I. hexagonus. The quality of the four genomes and extensive annotation of several important gene families have allowed us to study the evolution of gene repertoires at the level of the genus Ixodes and of the tick group. We have determined gene families that have undergone major amplifications during the evolution of ticks, while an expression atlas obtained for I. ricinus reveals striking patterns of specialization both between and within gene families. Notably, several gene family amplifications are associated with a proliferation of single-exon genes-most strikingly for fatty acid elongases and sulfotransferases. CONCLUSIONS The integration of our data with existing genomes establishes a solid framework for the study of gene evolution, improving our understanding of tick biology. In addition, our work lays the foundations for applied research and innovative control targeting these organisms.
Collapse
Affiliation(s)
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | | | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Matéo Boudet
- University of Rennes, INRIA, CNRS, IRISA, Rennes, France
- IGEPP, INRAE, Institut Agro, BIPAA, University of Rennes, Rennes, France
| | - Nachida Tadrent
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Salima Kritli
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Maarten J Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | - Aya Zamoto-Niikura
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Thomas Chertemps
- Institut d'Ecologie Et Des Sciences de L'Environnement de Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Paris, France
| | - Martine Maïbèche
- Institut d'Ecologie Et Des Sciences de L'Environnement de Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Paris, France
| | - Frédérique Hilliou
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Vilém Mazák
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Mohamed Amine Jmel
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| | - Michalis Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, 70013, Heraklion, Crete, Greece
| | - José María Medina
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva S/N, 18071, Granada, Spain
- Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento S/N, 18100, Granada, Spain
| | - Michael Hackenberg
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva S/N, 18071, Granada, Spain
- Lab. de Bioinformática, Centro de Investigación Biomédica, PTS, Instituto de Biotecnología, Avda. del Conocimiento S/N, 18100, Granada, Spain
| | - Ladislav Šimo
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 22 Rue Pierre Et Marie Curie, Maisons-Alfort, France
| | - Fotini A Koutroumpa
- INRAE, Université de Tours, UMR1282 Infectiologie Et Santé Publique, 37380, Nouzilly, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 37005, České Budějovice, Czech Republic
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | | |
Collapse
|
2
|
Li R, Zhang Y, Salman HMS, Li Y, Wang M. Elucidating enantioselective fate and sensitive biomarkers in zebrafish of chiral pesticide fenpropidin: Insights into metabolic pathways and hazard assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136293. [PMID: 39471623 DOI: 10.1016/j.jhazmat.2024.136293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Fenpropidin (FPD), a widely utilized chiral fungicide, has been detected in aquatic environments. This study systematically evaluated the bioaccumulation, depuration, biotransformation, and sensitive biomarkers of FPD enantiomers in zebrafish to assess their environmental risks. Compared with S-FPD, R-FPD demonstrated a higher rate of enrichment and an increased level of bioaccumulation. The half-lives of R-FPD and S-FPD were 0.49 ± 0.01 and 0.91 ± 0.02 days at 0.05 mg/L and 1.65 ± 0.01 and 1.85 ± 0.03 days at 0.5 mg/L. Nontarget metabolism analysis identified nine metabolites, primarily formed through hydroxylation, oxidation, dehydration, glutathione conjugation, and glucuronidation pathways. Some metabolites exhibited high toxicity, underscoring the necessity for continuous monitoring of their toxicological effects and environmental fate in risk assessments. The toxicity of S-FPD in zebrafish was 1.21 times greater than that of R-FPD. Furthermore, this study identified sensitive markers for the enantiomers at both protein and transcriptional levels using an integrated biomarker response approach. S-FPD exhibited increased sensitivity to apoptosis and metabolic gene expression, while R-FPD showed greater sensitivity to antioxidant kinase activity. These findings facilitate timely monitoring of environmental pollution caused by FPD enantiomers. This study provides critical insights for assessing potential risks associated with pesticide exposure to human health.
Collapse
Affiliation(s)
- Rui Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yanqing Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Hagar M S Salman
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yanhong Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
3
|
Alshehri JA, Jones AM. Chemical approaches to the sulfation of small molecules: current progress and future directions. Essays Biochem 2024; 68:449-466. [PMID: 38958528 PMCID: PMC11625868 DOI: 10.1042/ebc20240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Sulfation is one of the most important modifications that occur to a wide range of bioactive small molecules including polysaccharides, proteins, flavonoids, and steroids. In turn, these sulfated molecules have significant biological and pharmacological roles in diverse processes including cell signalling, modulation of immune and inflammation response, anti-coagulation, anti-atherosclerosis, and anti-adhesive properties. This Essay summarises the most encountered chemical sulfation methods of small molecules. Sulfation reactions using sulfur trioxide amine/amide complexes are the most used method for alcohol and phenol groups in carbohydrates, steroids, proteins, and related scaffolds. Despite the effectiveness of these methods, they suffer from issues including multiple-purification steps, toxicity issues (e.g., pyridine contamination), purification challenges, stoichiometric excess of reagents which leads to an increase in reaction cost, and intrinsic stability issues of both the reagent and product. Recent advances including SuFEx, the in situ reagent approach, and TBSAB show the widespread appeal of novel sulfating approaches that will enable a larger exploration of the field in the years to come by simplifying the purification and isolation process to access bespoke sulfated small molecules.
Collapse
Affiliation(s)
- Jaber A Alshehri
- School of Pharmacy, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - Alan M Jones
- School of Pharmacy, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| |
Collapse
|
4
|
Duffel MW. Cytosolic sulfotransferases in endocrine disruption. Essays Biochem 2024; 68:541-553. [PMID: 38699885 PMCID: PMC11531609 DOI: 10.1042/ebc20230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
The mammalian cytosolic sulfotransferases (SULTs) catalyze the sulfation of endocrine hormones as well as a broad array of drugs, environmental chemicals, and other xenobiotics. Many endocrine-disrupting chemicals (EDCs) interact with these SULTs as substrates and inhibitors, and thereby alter sulfation reactions responsible for metabolism and regulation of endocrine hormones such as estrogens and thyroid hormones. EDCs or their metabolites may also regulate expression of SULTs through direct interaction with nuclear receptors and other transcription factors. Moreover, some sulfate esters derived from EDCs (EDC-sulfates) may serve as ligands for endocrine hormone receptors. While the sulfation of an EDC can lead to its excretion in the urine or bile, it may also result in retention of the EDC-sulfate through its reversible binding to serum proteins and thereby enable transport to other tissues for intracellular hydrolysis and subsequent endocrine disruption. This mini-review outlines the potential roles of SULTs and sulfation in the effects of EDCs and our evolving understanding of these processes.
Collapse
Affiliation(s)
- Michael W Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, U.S.A
| |
Collapse
|
5
|
Glatt H, Meinl W. Sulphotransferase-mediated toxification of chemicals in mouse models: effect of knockout or humanisation of SULT genes. Essays Biochem 2024; 68:523-539. [PMID: 39611595 PMCID: PMC11625864 DOI: 10.1042/ebc20240030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Cytosolic sulphotransferase (SULT) enzymes catalyse reactions involved in xenobiotic elimination and hormone regulation. However, SULTs can also generate electrophilic reactive intermediates from certain substrates, including the activation of carcinogens. Here, we review toxicological studies of mouse strains with SULT status altered by genetic modification. Knockout mouse strains have been constructed for the enzymes Sult1a1, 1d1, 1e1, 2b1 and 4a1. In addition, transgenic strains are available for human SULT1A1/2. Among SULT knockout mouse strains, reduced fertility (Sult1e1) and early postnatal death (Sult4a1) were observed. In contrast, Sult1a1 or Sult1d1 knockouts and SULT1A1/2 transgenics were healthy and showed no obvious deficiencies. These strains were used in toxicological studies with 13 chemicals. Manipulation of the SULT system altered dramatically the adverse effects of many compounds; thus, very large differences in levels of DNA adducts formed in the liver or other tissues were seen with some chemicals - up to 99.2% decreases in knockouts and 83-fold increases in SULT1A1/2 transgenics. In many cases, these changes were restricted to the tissues in which the corresponding enzymes are expressed, arguing for local activation. However, with some compounds, the kidney was an important target tissue, due to the active transfer to that organ, via the circulation, of reactive sulphuric acid esters.
Collapse
Affiliation(s)
- Hansruedi Glatt
- Federal Institute for Risk Assessment (BfR), Department Food Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Department of Nutritional Toxicology (HG & WM) and Department of Molecular Toxicology (WM), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Walter Meinl
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Department of Nutritional Toxicology (HG & WM) and Department of Molecular Toxicology (WM), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| |
Collapse
|
6
|
Kurogi K, Suiko M, Sakakibara Y. Evolution and multiple functions of sulfonation and cytosolic sulfotransferases across species. Biosci Biotechnol Biochem 2024; 88:368-380. [PMID: 38271594 DOI: 10.1093/bbb/zbae008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Organisms have conversion systems for sulfate ion to take advantage of the chemical features. The use of biologically converted sulfonucleotides varies in an evolutionary manner, with the universal use being that of sulfonate donors. Sulfotransferases have the ability to transfer the sulfonate group of 3'-phosphoadenosine 5'-phosphosulfate to a variety of molecules. Cytosolic sulfotransferases (SULTs) play a role in the metabolism of low-molecular-weight compounds in response to the host organism's living environment. This review will address the diverse functions of the SULT in evolution, including recent findings. In addition to the diversity of vertebrate sulfotransferases, the molecular aspects and recent studies on bacterial and plant sulfotransferases are also addressed.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
7
|
Langford L, Shah DD. Bioinformatic Analysis of Sulfotransferases from an Unexplored Gut Microbe, Sutterella wadsworthensis 3_1_45B: Possible Roles towards Detoxification via Sulfonation by Members of the Human Gut Microbiome. Int J Mol Sci 2024; 25:2983. [PMID: 38474230 DOI: 10.3390/ijms25052983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Sulfonation, primarily facilitated by sulfotransferases, plays a crucial role in the detoxification pathways of endogenous substances and xenobiotics, promoting metabolism and elimination. Traditionally, this bioconversion has been attributed to a family of human cytosolic sulfotransferases (hSULTs) known for their high sequence similarity and dependence on 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfo donor. However, recent studies have revealed the presence of PAPS-dependent sulfotransferases within gut commensals, indicating that the gut microbiome may harbor a diverse array of sulfotransferase enzymes and contribute to detoxification processes via sulfation. In this study, we investigated the prevalence of sulfotransferases in members of the human gut microbiome. Interestingly, we stumbled upon PAPS-independent sulfotransferases, known as aryl-sulfate sulfotransferases (ASSTs). Our bioinformatics analyses revealed that members of the gut microbial genus Sutterella harbor multiple asst genes, possibly encoding multiple ASST enzymes within its members. Fluctuations in the microbes of the genus Sutterella have been associated with various health conditions. For this reason, we characterized 17 different ASSTs from Sutterella wadsworthensis 3_1_45B. Our findings reveal that SwASSTs share similarities with E. coli ASST but also exhibit significant structural variations and sequence diversity. These differences might drive potential functional diversification and likely reflect an evolutionary divergence from their PAPS-dependent counterparts.
Collapse
Affiliation(s)
- Lauryn Langford
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Dhara D Shah
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| |
Collapse
|
8
|
Kurogi K, Sakakibara Y, Hashiguchi T, Kakuta Y, Kanekiyo M, Teramoto T, Fukushima T, Bamba T, Matsumoto J, Fukusaki E, Kataoka H, Suiko M. A new type of sulfation reaction: C-sulfonation for α,β-unsaturated carbonyl groups by a novel sulfotransferase SULT7A1. PNAS NEXUS 2024; 3:pgae097. [PMID: 38487162 PMCID: PMC10939482 DOI: 10.1093/pnasnexus/pgae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
Cytosolic sulfotransferases (SULTs) are cytosolic enzymes that catalyze the transfer of sulfonate group to key endogenous compounds, altering the physiological functions of their substrates. SULT enzymes catalyze the O-sulfonation of hydroxy groups or N-sulfonation of amino groups of substrate compounds. In this study, we report the discovery of C-sulfonation of α,β-unsaturated carbonyl groups mediated by a new SULT enzyme, SULT7A1, and human SULT1C4. Enzymatic assays revealed that SULT7A1 is capable of transferring the sulfonate group from 3'-phosphoadenosine 5'-phosphosulfate to the α-carbon of α,β-unsaturated carbonyl-containing compounds, including cyclopentenone prostaglandins as representative endogenous substrates. Structural analyses of SULT7A1 suggest that the C-sulfonation reaction is catalyzed by a novel mechanism mediated by His and Cys residues in the active site. Ligand-activity assays demonstrated that sulfonated 15-deoxy prostaglandin J2 exhibits antagonist activity against the prostaglandin receptor EP2 and the prostacyclin receptor IP. Modification of α,β-unsaturated carbonyl groups via the new prostaglandin-sulfonating enzyme, SULT7A1, may regulate the physiological function of prostaglandins in the gut. Discovery of C-sulfonation of α,β-unsaturated carbonyl groups will broaden the spectrum of potential substrates and physiological functions of SULTs.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Takuyu Hashiguchi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Miho Kanekiyo
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takamasa Teramoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Tsuyoshi Fukushima
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Jin Matsumoto
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Hiroaki Kataoka
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
9
|
Duffel MW, Lehmler HJ. Complex roles for sulfation in the toxicities of polychlorinated biphenyls. Crit Rev Toxicol 2024; 54:92-122. [PMID: 38363552 PMCID: PMC11067068 DOI: 10.1080/10408444.2024.2311270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic toxicants derived from legacy pollution sources and their formation as inadvertent byproducts of some current manufacturing processes. Metabolism of PCBs is often a critical component in their toxicity, and relevant metabolic pathways usually include their initial oxidation to form hydroxylated polychlorinated biphenyls (OH-PCBs). Subsequent sulfation of OH-PCBs was originally thought to be primarily a means of detoxication; however, there is strong evidence that it may also contribute to toxicities associated with PCBs and OH-PCBs. These contributions include either the direct interaction of PCB sulfates with receptors or their serving as a localized precursor for OH-PCBs. The formation of PCB sulfates is catalyzed by cytosolic sulfotransferases, and, when transported into the serum, these metabolites may be retained, taken up by other tissues, and subjected to hydrolysis catalyzed by intracellular sulfatase(s) to regenerate OH-PCBs. Dynamic cycling between PCB sulfates and OH-PCBs may lead to further metabolic activation of the resulting OH-PCBs. Ultimate toxic endpoints of such processes may include endocrine disruption, neurotoxicities, and many others that are associated with exposures to PCBs and OH-PCBs. This review highlights the current understanding of the complex roles that PCB sulfates can have in the toxicities of PCBs and OH-PCBs and research on the varied mechanisms that control these roles.
Collapse
Affiliation(s)
- Michael W. Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, 52242, United States
| |
Collapse
|
10
|
Singh N, Singh AK. A comprehensive review on structural and therapeutical insight of Cerebroside sulfotransferase (CST) - An important target for development of substrate reduction therapy against metachromatic leukodystrophy. Int J Biol Macromol 2024; 258:128780. [PMID: 38104688 DOI: 10.1016/j.ijbiomac.2023.128780] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
This review is an effort towards the development of substrate reduction therapy using cerebroside sulfotransferase (CST) as a target protein for the development of inhibitors intended to treat pathophysiological condition resulting from the accumulation of sulfatide, a product from the catalytic action of CST. Accumulation of sulfatides leads to progressive impairment and destruction of the myelin structure, disruption of normal physiological transmission of electrical impulse between nerve cells, axonal loss in the central and peripheral nervous system and cumulatively gives a clinical manifestation of metachromatic leukodystrophy. Thus, there is a need to develop specific and potent CST inhibitors to positively control sulfatide accumulation. Structural similarity and computational studies revealed that LYS85, SER172 and HIS141 are key catalytic residues that determine the catalytic action of CST through the transfer of sulfuryl group from the donor PAPS to the acceptor galactosylceramide. Computational studies revealed catalytic site of CST consists two binding site pocket including PAPS binding pocket and substrate binding pocket. Specific substrate site residues in CST can be targeted to develop specific CST inhibitors. This review also explores the challenges of CST-directed substrate reduction therapy as well as the opportunities available in natural products for inhibitor development.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Anil Kumar Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
11
|
Marchak A, Neilson KM, Majumdar HD, Yamauchi K, Klein SL, Moody SA. The sulfotransferase XB5850668.L is required to apportion embryonic ectodermal domains. Dev Dyn 2023; 252:1407-1427. [PMID: 37597164 PMCID: PMC10842325 DOI: 10.1002/dvdy.648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Members of the sulfotransferase superfamily (SULT) influence the activity of a wide range of hormones, neurotransmitters, metabolites and xenobiotics. However, their roles in developmental processes are not well characterized even though they are expressed during embryogenesis. We previously found in a microarray screen that Six1 up-regulates LOC100037047, which encodes XB5850668.L, an uncharacterized sulfotransferase. RESULTS Since Six1 is required for patterning the embryonic ectoderm into its neural plate, neural crest, preplacodal and epidermal domains, we used loss- and gain-of function assays to characterize the role of XB5850668.L during this process. Knockdown of endogenous XB5850668.L resulted in the reduction of epidermal, neural crest, cranial placode and otic vesicle gene expression domains, concomitant with neural plate expansion. Increased levels had minimal effects, but infrequently expanded neural plate and neural crest gene domains, and infrequently reduced cranial placode and otic vesicle gene domains. Mutation of two key amino acids in the sulfotransferase catalytic domain required for PAPS binding and enzymatic activity tended to reduce the effects of overexpressing the wild-type protein. CONCLUSIONS Our analyses indicates that XB5850668.L is a member of the SULT2 family that plays important roles in patterning the embryonic ectoderm. Some aspects of its influence likely depend on sulfotransferase activity.
Collapse
Affiliation(s)
- Alexander Marchak
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Karen M. Neilson
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Himani D. Majumdar
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Kiyoshi Yamauchi
- Department of Biological Science Shizuoka University Shizuoka, Japan
| | - Steven L. Klein
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| |
Collapse
|
12
|
Dou Y, Pei S, Li Y, Wang M, Liu Z, Li J, Cao J, Qin J, Zhang M, Hou L, Sun H. Farnesoid X receptor represses human sulfotransferase 1A3 expression through direct binding to the promoter. Chem Biol Drug Des 2023; 102:1014-1023. [PMID: 37487659 DOI: 10.1111/cbdd.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Human sulfotransferases 1A3 (SULT1A3) has received particular interest, due to their functions of catalyzing the sulfonation of numerous phenolic substrates, including bioactive endogenous molecules and therapeutic agents. However, the regulation of SULT1A3 expression and the underlying mechanism remain unclear. Here, we aimed to investigate the regulation effects of bile acid-activated farnesoid X receptor (FXR) on SULT1A3 expression, and to shed light on the mechanism thereof. Our results demonstrated that FXR agonists (CDCA and GW4064) significantly inhibit the expression of SULT1A3 at mRNA and protein levels. In addition, overexpression of FXR led to decrease in SULT1A3 expression and knockdown of FXR significantly induced the expression of SULT1A3 in protein and mRNA levels, confirming that FXR expression manifestly showed negative regulatory effect on basal SULT1A3 expression. Furthermore, a combination of luciferase reporter gene and CHIP assays showed that FXR repressed SULT1A3 transcription through direct binding to the region at base pair positions -664 to -654. In conclusion, this study for the first time confirmed FXR was a negative transcriptional regulator of human SULT1A3 enzyme.
Collapse
Affiliation(s)
- Yuanyuan Dou
- School of Pharmacy, Henan University, Kaifeng, China
| | - Shuhua Pei
- School of Pharmacy, Henan University, Kaifeng, China
| | - Yingying Li
- School of Pharmacy, Henan University, Kaifeng, China
| | - Mengqing Wang
- School of Pharmacy, Henan University, Kaifeng, China
| | | | - Jiqin Li
- School of Pharmacy, Henan University, Kaifeng, China
| | - Jinlan Cao
- School of Pharmacy, Henan University, Kaifeng, China
| | - Jia Qin
- School of Pharmacy, Henan University, Kaifeng, China
| | - Mingzhu Zhang
- School of Pharmacy, Henan University, Kaifeng, China
| | - Lili Hou
- School of Pharmacy, Henan University, Kaifeng, China
| | - Hua Sun
- School of Pharmacy, Henan University, Kaifeng, China
- Academy for advanced interdisciplinary studies, Henan University, Kaifeng, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, China
| |
Collapse
|
13
|
Slattery O, Dahle MK, Sundaram AYM, Nowak BF, Gjessing MC, Solhaug A. Functional and molecular characterization of the Atlantic salmon gill epithelium cell line ASG-10; a tool for in vitro gill research. Front Mol Biosci 2023; 10:1242879. [PMID: 37916189 PMCID: PMC10616884 DOI: 10.3389/fmolb.2023.1242879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/08/2023] [Indexed: 11/03/2023] Open
Abstract
Fish gills are not only the respiratory organ, but also essential for ion-regulation, acid-base control, detoxification, waste excretion and host defense. Multifactorial gill diseases are common in farmed Atlantic salmon, and still poorly understood. Understanding gill pathophysiology is of paramount importance, but the sacrifice of large numbers of experimental animals for this purpose should be avoided. Therefore, in vitro models, such as cell lines, are urgently required to replace fish trials. An Atlantic salmon gill epithelial cell line, ASG-10, was established at the Norwegian Veterinary institute in 2018. This cell line forms a monolayer expressing cytokeratin, e-cadherin and desmosomes, hallmarks of a functional epithelial barrier. To determine the value of ASG-10 for comparative studies of gill functions, the characterization of ASG-10 was taken one step further by performing functional assays and comparing the cell proteome and transcriptome with those of gills from juvenile freshwater Atlantic salmon. The ASG-10 cell line appear to be a homogenous cell line consisting of epithelial cells, which express tight junction proteins. We demonstrated that ASG-10 forms a barrier, both alone and in co-culture with the Atlantic salmon gill fibroblast cell line ASG-13. ASG-10 cells can phagocytose and express several ATP-binding cassette transport proteins. Additionally, ASG-10 expresses genes involved in biotransformation of xenobiotics and immune responses. Taken together, this study provides an overview of functions that can be studied using ASG-10, which will be an important contribution to in vitro gill epithelial research of Atlantic salmon.
Collapse
Affiliation(s)
- Orla Slattery
- Marine and Freshwater Research Centre, Atlantic Technological University, Galway, Ireland
| | | | - Arvind Y. M. Sundaram
- Norwegian Veterinary Institute, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Barbara F. Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | | | | |
Collapse
|
14
|
Sato K, Yamauchi K, Ishihara A. Analysis of evolutionary and functional features of the bullfrog SULT1 family. Gen Comp Endocrinol 2023; 342:114349. [PMID: 37495023 DOI: 10.1016/j.ygcen.2023.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
We identified the bullfrog Rana catesbeiana sulfotransferase 1 (SULT1) family from the BLAST search tool of the public databases based on the SULT1 families of Nanorana parkeri, Xenopus laevis, and Xenopus tropicalis as queries, revealing the characteristics of the anuran SULT1 family. The results showed that the anuran SULT1 family comprises six subfamilies, four of which were related to the mammalian SULT1 subfamily. Additionally, the bullfrog has two SULT1Cc subfamily members that are consistent with the characteristics of the expanded Xenopus SULT1C subfamily. Several members of the bullfrog SULT1 family were suggested to play important roles in sulfation during metamorphosis. Among these, cDNAs encoding SULT1Cc1 and SULT1Y1 were cloned, and the sulfation activity was analyzed using recombinant proteins. The affinity for 2-naphthol and 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and the enzymatic reaction rate were higher in SULT1Cc1 than in SULT1Y1. Both the enzymes showed inhibitory effect of many thyroid hormones (THs) analogs on the sulfation of 2-naphthol. The potency of sulfation activities of SULT1Cc1 and SULT1Y1 against T4 indicated their possible role in the intracellular T4 clearance during metamorphosis.
Collapse
Affiliation(s)
- Kosuke Sato
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Kiyoshi Yamauchi
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Akinori Ishihara
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
15
|
Dave A, Park EJ, Pezzuto JM. Multi-Organ Nutrigenomic Effects of Dietary Grapes in a Mouse Model. Antioxidants (Basel) 2023; 12:1821. [PMID: 37891900 PMCID: PMC10604885 DOI: 10.3390/antiox12101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
As a whole food, the potential health benefits of table grapes have been widely studied. Some individual constituents have garnered great attention, particularly resveratrol, but normal quantities in the diet are meniscal. On the other hand, the grape contains hundreds of compounds, many of which have antioxidant potential. Nonetheless, the achievement of serum or tissue concentrations of grape antioxidants sufficient to mediate a direct quenching effect is not likely, which supports the idea of biological responses being mediated by an indirect catalytic-type response. We demonstrate herein with Hsd:ICR (CD-1® Outbred, 18-24 g, 3-4 weeks old, female) mice that supplementation of a semi-synthetic diet with a grape surrogate, equivalent to the human consumption of 2.5 servings per day for 12 months, modulates gene expression in the liver, kidney, colon, and ovary. As might be expected when sampling changes in a pool of over 35,000 genes, there are numerous functional implications. Analysis of some specific differentially expressed genes suggests the potential of grape consumption to bolster metabolic detoxification and regulation of reactive oxygen species in the liver, cellular metabolism, and anti-inflammatory activity in the ovary and kidney. In the colon, the data suggest anti-inflammatory activity, suppression of mitochondrial dysfunction, and maintaining homeostasis. Pathway analysis reveals a combination of up- and down-regulation in the target tissues, primarily up-regulated in the kidney and down-regulated in the ovary. More broadly, based on these data, it seems logical to conclude that grape consumption leads to modulation of gene expression throughout the body, the consequence of which may help to explain the broad array of activities demonstrated in diverse tissues such as the brain, heart, eye, bladder, and colon. In addition, this work further supports the profound impact of nutrigenomics on mammalian phenotypic expression.
Collapse
Affiliation(s)
- Asim Dave
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.)
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eun-Jung Park
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.)
- Department of Pharmaceutical and Administrative Science, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - John M. Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- Department of Medicine, UMass Chan Medical School—Baystate, Springfield, MA 01199, USA
| |
Collapse
|
16
|
Campbell LI, Nwezeobi J, van Brunschot SL, Kaweesi T, Seal SE, Swamy RAR, Namuddu A, Maslen GL, Mugerwa H, Armean IM, Haggerty L, Martin FJ, Malka O, Santos-Garcia D, Juravel K, Morin S, Stephens ME, Muhindira PV, Kersey PJ, Maruthi MN, Omongo CA, Navas-Castillo J, Fiallo-Olivé E, Mohammed IU, Wang HL, Onyeka J, Alicai T, Colvin J. Comparative evolutionary analyses of eight whitefly Bemisia tabaci sensu lato genomes: cryptic species, agricultural pests and plant-virus vectors. BMC Genomics 2023; 24:408. [PMID: 37468834 DOI: 10.1186/s12864-023-09474-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The group of > 40 cryptic whitefly species called Bemisia tabaci sensu lato are amongst the world's worst agricultural pests and plant-virus vectors. Outbreaks of B. tabaci s.l. and the associated plant-virus diseases continue to contribute to global food insecurity and social instability, particularly in sub-Saharan Africa and Asia. Published B. tabaci s.l. genomes have limited use for studying African cassava B. tabaci SSA1 species, due to the high genetic divergences between them. Genomic annotations presented here were performed using the 'Ensembl gene annotation system', to ensure that comparative analyses and conclusions reflect biological differences, as opposed to arising from different methodologies underpinning transcript model identification. RESULTS We present here six new B. tabaci s.l. genomes from Africa and Asia, and two re-annotated previously published genomes, to provide evolutionary insights into these globally distributed pests. Genome sizes ranged between 616-658 Mb and exhibited some of the highest coverage of transposable elements reported within Arthropoda. Many fewer total protein coding genes (PCG) were recovered compared to the previously published B. tabaci s.l. genomes and structural annotations generated via the uniform methodology strongly supported a repertoire of between 12.8-13.2 × 103 PCG. An integrative systematics approach incorporating phylogenomic analysis of nuclear and mitochondrial markers supported a monophyletic Aleyrodidae and the basal positioning of B. tabaci Uganda-1 to the sub-Saharan group of species. Reciprocal cross-mating data and the co-cladogenesis pattern of the primary obligate endosymbiont 'Candidatus Portiera aleyrodidarum' from 11 Bemisia genomes further supported the phylogenetic reconstruction to show that African cassava B. tabaci populations consist of just three biological species. We include comparative analyses of gene families related to detoxification, sugar metabolism, vector competency and evaluate the presence and function of horizontally transferred genes, essential for understanding the evolution and unique biology of constituent B. tabaci. s.l species. CONCLUSIONS These genomic resources have provided new and critical insights into the genetics underlying B. tabaci s.l. biology. They also provide a rich foundation for post-genomic research, including the selection of candidate gene-targets for innovative whitefly and virus-control strategies.
Collapse
Affiliation(s)
- Lahcen I Campbell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Joachim Nwezeobi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, UK.
| | - Sharon L van Brunschot
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- CSIRO Health and Biosecurity, Dutton Park, QLD, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tadeo Kaweesi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Rwebitaba Zonal Agricultural Research and Development Institute, Fort Portal, Uganda
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Rekha A R Swamy
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Annet Namuddu
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- National Crops Resources Research Institute, Kampala, Uganda
| | - Gareth L Maslen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Imperial College London, South Kensington, London, UK
| | - Habibu Mugerwa
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Department of Entomology, University of Georgia, Griffin, GA, USA
| | - Irina M Armean
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- CNRS, Laboratory of Biometry and Evolutionary Biology UMR 5558, University of Lyon, Villeurbanne, France
- Center for Biology and Management of Populations, INRAe UMR1062, Montferrier-sur-Lez, France
| | - Ksenia Juravel
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Paul Visendi Muhindira
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Paul J Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Royal Botanic Gardens, Kew, London, UK
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | | | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | | | - Hua-Ling Wang
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Joseph Onyeka
- National Root Crops Research Institute (NRCRI), Umudike, Nigeria
| | - Titus Alicai
- National Crops Resources Research Institute, Kampala, Uganda
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| |
Collapse
|
17
|
Lan H, Wang H, Chen C, Hu W, Ai C, Chen L, Teng H. Flavonoids and gastrointestinal health: single molecule for multiple roles. Crit Rev Food Sci Nutr 2023; 64:10987-11005. [PMID: 37409462 DOI: 10.1080/10408398.2023.2230501] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Diet can be considered as one of the pivotal factors in regulating gastrointestinal health, and polyphenols widely distributed in human daily diet. The polyphenols and their metabolites playing a series of beneficial effects in human gastrointestinal tract that can regulate of the gut microbiota, increase intestinal barrier function, repair gastrointestinal mucosa, reduce oxidative stress, inhibit the secretion of inflammatory factors and regulating immune function, and their absorption and biotransformation mainly depend on the activity of intestinal microflora. However, little is known about the two-way interaction between polyphenols and intestinal microbiota. The objective of this review is to highlight the structure optimization and effect of flavonoids on intestinal flora, and discusses the mechanisms of dietary flavonoids regulating intestinal flora. The multiple effects of single molecule of flavonoids, and inter-dependence between the gut microbiota and polyphenol metabolites. Moreover, the protective effects of polyphenols on intestinal barrier function, and effects of interaction between plant polyphenols and macromolecules on gastrointestinal health. This review provided valuable insight that may be useful for better understanding the mechanism of the gastrointestinal health effects of polyphenols, and provide a scientific basis for their application as functional food.
Collapse
Affiliation(s)
- Haijing Lan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Chong Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Wenlu Hu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
18
|
Öeren M, Kaempf SC, Ponting DJ, Hunt PA, Segall MD. Predicting Regioselectivity of Cytosolic Sulfotransferase Metabolism for Drugs. J Chem Inf Model 2023. [PMID: 37229540 DOI: 10.1021/acs.jcim.3c00275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cytosolic sulfotransferases (SULTs) are a family of enzymes responsible for the sulfation of small endogenous and exogenous compounds. SULTs contribute to the conjugation phase of metabolism and share substrates with the uridine 5'-diphospho-glucuronosyltransferase (UGT) family of enzymes. UGTs are considered to be the most important enzymes in the conjugation phase, and SULTs are an auxiliary enzyme system to them. Understanding how the regioselectivity of SULTs differs from that of UGTs is essential from the perspective of developing novel drug candidates. We present a general ligand-based SULT model trained and tested using high-quality experimental regioselectivity data. The current study suggests that, unlike other metabolic enzymes in the modification and conjugation phases, the SULT regioselectivity is not strongly influenced by the activation energy of the rate-limiting step of the catalysis. Instead, the prominent role is played by the substrate binding site of SULT. Thus, the model is trained only on steric and orientation descriptors, which mimic the binding pocket of SULT. The resulting classification model, which predicts whether a site is metabolized, achieved a Cohen's kappa of 0.71.
Collapse
Affiliation(s)
- Mario Öeren
- Cambridge Innovation Park, Optibrium Limited, Denny End Road, Cambridge CB25 9GL, U.K
| | - Sylvia C Kaempf
- Cambridge Innovation Park, Optibrium Limited, Denny End Road, Cambridge CB25 9GL, U.K
- School of Chemistry, North Haugh, University of St Andrews, St Andrews KY16 9ST, U.K
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, U.K
| | - Peter A Hunt
- Cambridge Innovation Park, Optibrium Limited, Denny End Road, Cambridge CB25 9GL, U.K
| | - Matthew D Segall
- Cambridge Innovation Park, Optibrium Limited, Denny End Road, Cambridge CB25 9GL, U.K
| |
Collapse
|
19
|
Kondo M, Ikenaka Y, Nakayama SMM, Kawai YK, Mizukawa H, Mitani Y, Nomyama K, Tanabe S, Ishizuka M. Sulfotransferases (SULTs), enzymatic and genetic variation in Carnivora: Limited sulfation capacity in pinnipeds. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109476. [PMID: 36182081 DOI: 10.1016/j.cbpc.2022.109476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/13/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
Abstract
Wild carnivorans are one of the most important species due to their high positions in the food chain. They are also highly affected by numerous environmental contaminants through bioaccumulation and biomagnification. Xenobiotic metabolism is a significant chemical defense system from xenobiotics because it degrades the activity of a wide range of chemicals, generally into less active forms, resulting in their deactivation. Sulfotransferases (SULTs) are one of the most important xenobiotic metabolic enzymes, which catalyze the sulfonation of a variety of endogenous and exogenous chemicals, such as hormones, neurotransmitters, and a wide range of xenobiotic compounds. Although SULTs are of such high importance, little research has focused on these enzymes in wild carnivorans. In this study, we clarified the genetic properties of SULTs in a wide range of mammals, focusing on carnivorans, using in silico genetic analyses. We found genetic deficiencies of SULT1E1 and SULT1D1 isoforms in all pinnipeds analyzed and nonsense mutations in SULT1Cs in several carnivorans including pinnipeds. We further investigated the enzymatic activity of SULT1E1 in vitro using liver cytosols from pinnipeds. Using a SULT1E1 probe substrate, we found highly limited estradiol sulfonation in pinnipeds, whereas other mammals had relatively high sulfation. These results suggest that pinnipeds have severely or completely absent SULT1E1 activity, which importantly catalyzes the metabolism of estrogens, drugs, and environmental toxins. This further implies a high susceptibility to a wide range of xenobiotics in these carnivorans, which are constantly exposed to environmental chemicals throughout their lifetime.
Collapse
Affiliation(s)
- Mitsuki Kondo
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan(1)
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan(1); Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Japan; One Health Research Center, Hokkaido University, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan(1); Biomedical Sciences Department, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Yusuke K Kawai
- Laboratory of Toxicology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan(2)
| | - Hazuki Mizukawa
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama 790-8566, Japan
| | - Yoko Mitani
- Field Science Center for Northern Biosphere, Hokkaido University, N11, W10, Kita-ku, Sapporo 060-0811, Japan(3)
| | - Kei Nomyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan(4)
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan(4)
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan(1).
| |
Collapse
|
20
|
Nakamura Y, Yoshihara A, Kiriya M, Kawashima A, Tanigawa K, Luo Y, Fujiwara Y, Maruyama K, Watanabe S, Kihara-Negishi F, Karasawa K, Suzuki K. Thyroid stimulating hormone suppresses the expression and activity of cytosolic sulfotransferase 1a1 in thyrocytes. Endocr J 2022; 69:1261-1269. [PMID: 35675983 DOI: 10.1507/endocrj.ej22-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sulfonation is an important step in the metabolism of dopamine, estrogens, dehydroepiandrosterone, as well as thyroid hormones. However, the regulation of cytosolic sulfotransferases in the thyroid is not well understood. In a DNA microarray analysis of rat thyroid FRTL-5 cells, we found that the mRNA expression of 10 of 48 sulfotransferases was significantly altered by thyroid stimulating hormone (TSH), with that of sulfotransferase family 1A member 1 (SULT1A1) being the most significantly affected. Real-time PCR and Western blot analyses revealed that TSH, forskolin and dibutyryl cyclic AMP significantly suppressed SULT1A1 mRNA and protein levels in a time- and concentration-dependent manner. Moreover, immunofluorescence staining of FRTL-5 cells showed that SULT1A1 is localized in the perinuclear area in the absence of TSH but is spread throughout the cytoplasm with reduced fluorescence intensity in the presence of TSH. Sulfotransferase activity in FRTL-5 cells, measured using 3'-phosphoadenosine-5'-phosphosulfate as a donner and p-nitrophenol as an acceptor substrate, was significantly reduced by TSH. These findings suggest that the expression and activity of SULT1A1 are modulated by TSH in thyrocytes.
Collapse
Affiliation(s)
| | - Aya Yoshihara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
- Center for Medical Education, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| | | | - Yuqian Luo
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing 210008, China
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| | - Keiji Maruyama
- Faculty of Pharma-Science, Teikyo University, Tokyo 173-8605, Japan
| | | | | | - Ken Karasawa
- Faculty of Pharma-Science, Teikyo University, Tokyo 173-8605, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| |
Collapse
|
21
|
Morita C, Tokunaga Y, Ueda Y, Ono M, Kinoshita H, Kurogi K, Sakakibara Y, Suiko M, Liu MC, Yasuda S. Investigation of radical scavenging effects of acetaminophen, p-aminophenol and their O-sulfated conjugates. J Toxicol Sci 2022; 47:421-428. [PMID: 36184561 DOI: 10.2131/jts.47.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Acetaminophen (APAP) and p-aminophenol (p-AP) are the analogous simple phenolic compounds that undergo sulfate conjugation (sulfation) by cytosolic sulfotransferases. Sulfation is generally thought to lead to the inactivation and disposal of endogenous as well as xenobiotic compounds. This study aimed to investigate the antioxidative effects of O-sulfated form of APAP and p-AP, i.e., APAPS and p-APS, in comparison with their unsulfated counterparts. Using a 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay, the antioxidant capacity of APAPS was shown to be approximately 126-times lower than that of APAP. In contrast, p-APS displayed comparable activity as unsulfated p-AP. Similar trends concerning the suppressive effects of these chemicals on cellular O2- radical generation were found using an activated granulocytic neutrophil cell model. Collectively, these results indicated that, depending on the presence of an additional "active site", sulfation may not always decrease the antioxidant activities of phenolic compounds.
Collapse
Affiliation(s)
| | | | - Yuto Ueda
- Department of Life Science, Shokei University
| | - Masateru Ono
- Graduate School of Agriculture, Tokai University.,Department of Food and Life Sciences (Formerly, Department of Bioscience), School of Agriculture, Tokai University
| | - Hideki Kinoshita
- Graduate School of Agriculture, Tokai University.,Department of Food and Life Sciences (Formerly, Department of Bioscience), School of Agriculture, Tokai University
| | - Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki
| | - Masahito Suiko
- Support Office for the Next Generation Researcher, University of Miyazaki
| | - Ming-Cheh Liu
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, USA
| | - Shin Yasuda
- Graduate School of Agriculture, Tokai University.,Department of Food and Life Sciences (Formerly, Department of Bioscience), School of Agriculture, Tokai University
| |
Collapse
|
22
|
Pei S, Dou Y, Zhang W, Qi D, Li Y, Wang M, Li W, Shi H, Gao Z, Yao C, Fang D, Sun H, Xie S. O-Sulfation disposition of curcumin and quercetin in SULT1A3 overexpressing HEK293 cells: the role of arylsulfatase B in cellular O-sulfation regulated by transporters. Food Funct 2022; 13:10558-10573. [PMID: 36156668 DOI: 10.1039/d2fo01436j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extensive phase II metabolic reactions (i.e., glucuronidation and sulfation) have resulted in low bioavailability and decreased biological effects of curcumin and quercetin. Compared to glucuronidation, information on the sulfation disposition of curcumin and quercetin is limited. In this study, we identified that BCRP and MRP4 played a critical role in the cellular excretion of curcumin-O-sulfate (C-O-S) and quercetin-O-sulfate (Q-O-S) by integrating chemical inhibition with transporter knock-down experiments. Inhibited excretion of sulfate (C-O-S and Q-O-S) caused significant reductions in cellular O-sulfation of curcumin (a maximal 74.4% reduction) and quercetin (a maximal 76.9% reduction), revealing a strong interplay of sulfation with efflux transport. It was further identified that arylsulfatase B (ARSB) played a crucial role in the regulation of cellular O-sulfation by transporters. ARSB overexpression significantly enhanced the reduction effect of MK-571 on the cellular O-sulfation (fmet) of the model compound (38.8% reduction for curcumin and 44.2% reduction for quercetin). On the contrary, ARSB knockdown could reverse the effect of MK-571 on the O-sulfation disposition of the model compound (29.7% increase for curcumin and 47.3% increase for quercetin). Taken together, ARSB has been proven to be involved in cellular O-sulfation, accounting for transporter-dependent O-sulfation of curcumin and quercetin. A better understanding of the interplay beneath metabolism and transport will contribute to the exact prediction of in vivo drug disposition and drug-drug interactions.
Collapse
Affiliation(s)
- Shuhua Pei
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Yuanyuan Dou
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Wenke Zhang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Defei Qi
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Yingying Li
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Mengqing Wang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Wenqi Li
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Hongxiang Shi
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Zixuan Gao
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Chaoyan Yao
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Dong Fang
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China. .,Academy for advanced interdisciplinary studies, Henan University, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Hua Sun
- School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China. .,Academy for advanced interdisciplinary studies, Henan University, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China.
| | - Songqiang Xie
- Academy for advanced interdisciplinary studies, Henan University, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China. .,Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng, Henan 475004, China
| |
Collapse
|
23
|
Chen Y, Jin S, Zhang M, Hu Y, Wu KL, Chung A, Wang S, Tian Z, Wang Y, Wolynes PG, Xiao H. Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat Commun 2022; 13:5434. [PMID: 36114189 PMCID: PMC9481576 DOI: 10.1038/s41467-022-33111-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 01/31/2023] Open
Abstract
Despite the great promise of genetic code expansion technology to modulate structures and functions of proteins, external addition of ncAAs is required in most cases and it often limits the utility of genetic code expansion technology, especially to noncanonical amino acids (ncAAs) with poor membrane internalization. Here, we report the creation of autonomous cells, both prokaryotic and eukaryotic, with the ability to biosynthesize and genetically encode sulfotyrosine (sTyr), an important protein post-translational modification with low membrane permeability. These engineered cells can produce site-specifically sulfated proteins at a higher yield than cells fed exogenously with the highest level of sTyr reported in the literature. We use these autonomous cells to prepare highly potent thrombin inhibitors with site-specific sulfation. By enhancing ncAA incorporation efficiency, this added ability of cells to biosynthesize ncAAs and genetically incorporate them into proteins greatly extends the utility of genetic code expansion methods.
Collapse
Affiliation(s)
- Yuda Chen
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shikai Jin
- grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Mengxi Zhang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yu Hu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Kuan-Lin Wu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Anna Chung
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shichao Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Zeru Tian
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yixian Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Peter G. Wolynes
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Han Xiao
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005 USA
| |
Collapse
|
24
|
Kurogi K, Cao Y, Segawa K, Sakakibara Y, Suiko M, Uetrecht J, Liu MC. Sulfation of 12-hydroxy-nevirapine by human SULTs and the effects of genetic polymorphisms of SULT1A1 and SULT2A1. Biochem Pharmacol 2022; 204:115243. [PMID: 36084709 DOI: 10.1016/j.bcp.2022.115243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
Nevirapine (NVP) is an effective drug for the treatment of HIV infections, but its use is limited by a high incidence of severe skin rash and liver injury. 12-Hydroxynevirapine (12-OH-NVP) is the major metabolite of nevirapine. There is strong evidence that the sulfate of 12-OH-NVP is responsible for the skin rash. While several cytosolic sulfotransferases (SULTs) have been shown to be capable of sulfating 12-OH-NVP, the exact mechanism of sulfation in vivo is unclear. The current study aimed to clarify human SULT(s) and human organs that are capable of sulfating 12-OH-NVP and investigate the metabolic sulfation of 12-OH-NVP using cultured HepG2 human hepatoma cells. Enzymatic assays revealed that of the thirteen human SULTs, SULT1A1 and SULT2A1 displayed strong 12-OH-NVP-sulfating activity. 1-Phenyl-1-hexanol (PHHX), which applied topically prevents the skin rash in rats, inhibited 12-OH-NVP sulfation by SULT1A1 and SULT2A1, implying the involvement of these two enzymes in the sulfation of 12-OH-NVP in vivo. Among five human organ cytosols analyzed, liver cytosol displayed the strongest 12-OH-NVP-sulfating activity, while a low but significant activity was detected with skin cytosol. Cultured HepG2 cells were shown to be capable of sulfating 12-OH-NVP. The effects of genetic polymorphisms of SULT1A1 and SULT2A1 genes on the sulfation of 12-OH-NVP by SULT1A1 and SULT2A1 allozymes were investigated. Two SULT1A1 allozymes, Arg37Asp and Met223Val, showed no detectable 12-OH-NVP-sulfating activity, while a SULT2A1 allozyme, Met57Thr, displayed significantly higher 12-OH-NVP-sulfating activity compared with the wild-type enzyme. Collectively, these results contribute to a better understanding of the involvement of sulfation in NVP-induced skin rash and provide clues to the possible role of SULT genetic polymorphisms in the risk of this adverse reaction.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA; Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yanshan Cao
- Leslie Dan Faculty of Pharmacy and Faculty of Medicine, University of Toronto, Toronto M5S3M2, Canada
| | - Koshi Segawa
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Jack Uetrecht
- Leslie Dan Faculty of Pharmacy and Faculty of Medicine, University of Toronto, Toronto M5S3M2, Canada
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|
25
|
A high-quality genome of the dobsonfly Neoneuromus ignobilis reveals molecular convergences in aquatic insects. Genomics 2022; 114:110437. [PMID: 35902070 DOI: 10.1016/j.ygeno.2022.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/03/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Neoneuromus ignobilis is an archaic holometabolous aquatic predatory insect. However, a lack of genomic resources hinders the use of whole genome sequencing to explore their genetic basis and molecular mechanisms for adaptive evolution. Here, we provided a high-contiguity, chromosome-level genome assembly of N. ignobilis using high coverage Nanopore and PacBio reads with the Hi-C technique. The final assembly is 480.67 MB in size, containing 12 telomere-ended pseudochromosomes with only 17 gaps. We compared 42 hexapod species genomes including six independent lineages comprising 11 aquatic insects, and found convergent expansions of long wavelength-sensitive and blue-sensitive opsins, thermal stress response TRP channels, and sulfotransferases in aquatic insects, which may be related to their aquatic adaptation. We also detected strong nonrandom signals of convergent amino acid substitutions in aquatic insects. Collectively, our comparative genomic analysis revealed the evidence of molecular convergences in aquatic insects during both gene family evolution and convergent amino acid substitutions.
Collapse
|
26
|
A prototype of the mammalian sulfotransferase 1 (SULT1) family in Xenopus laevis: Characterization of a biased usage of SULT1 genes located in the S-subgenome. Gene 2022; 830:146495. [PMID: 35447235 DOI: 10.1016/j.gene.2022.146495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
BLAST searches previously carried out against Xenopus genome databases, using the cloned X. laevis cytosolic sulfotransferase 1 (SULT1) cDNA sequence, revealed the presence of more than a dozen members of this gene family. Among them, 11 genes composed of five sets, four pairs and a triplet, were homeologous genes in the X. laevis allotetraploid genome consisting of S- and L-subgenomes (≥83% identity within a set). Phylogenetic and synteny analyses of tetrapod SULT1 genes demonstrated that X. laevis possessed six subfamilies, four of which were related to mammalian SULT1 gene subfamilies, while two were ectothermic vertebrate-specific and amphibian-specific SULT1 gene subfamilies. Five sets of homeologous SULT1 genes were located as a gene cluster, and showed S-subgenome-biased gene expression patterns. Acetylation levels of histone H3 at lysine 9 and H4 were also higher in the homeologous SULT1 genes on the S-subgenome than those on the L-subgenome, however, methylation levels of histone H3 at lysine 9 and DNA methylation levels showed no correlation with their transcript levels. In conclusion, histone modifications such as acetylation may be a key factor that controls the S-subgenome-biased expression of the homeologous SULT1 genes.
Collapse
|
27
|
Czechtizky W, Su W, Ripa L, Schiesser S, Höijer A, Cox RJ. Advances in the design of new types of inhaled medicines. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:93-162. [PMID: 35753716 DOI: 10.1016/bs.pmch.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inhalation of small molecule drugs has proven very efficacious for the treatment of respiratory diseases due to enhanced efficacy and a favourable therapeutic index compared with other dosing routes. It enables targeted delivery to the lung with rapid onset of therapeutic action, low systemic drug exposure, and thereby reduced systemic side effects. An increasing number of pharmaceutical companies and biotechs are investing in new modalities-for this review defined as therapeutic molecules with a molecular weight >800Da and therefore beyond usual inhaled small molecule drug-like space. However, our experience with inhaled administration of PROTACs, peptides, oligonucleotides (antisense oligonucleotides, siRNAs, miRs and antagomirs), diverse protein scaffolds, antibodies and antibody fragments is still limited. Investigating the retention and metabolism of these types of molecules in lung tissue and fluid will contribute to understanding which are best suited for inhalation. Nonetheless, the first such therapeutic molecules have already reached the clinic. This review will provide information on the physiology of healthy and diseased lungs and their capacity for drug metabolism. It will outline the stability, aggregation and immunogenicity aspects of new modalities, as well as recap on formulation and delivery aspects. It concludes by summarising clinical trial outcomes with inhaled new modalities based on information available at the end of 2021.
Collapse
Affiliation(s)
- Werngard Czechtizky
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden.
| | - Wu Su
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Lena Ripa
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Stefan Schiesser
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Andreas Höijer
- Cardiovascular, Renal & Metabolism CMC Projects, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rhona J Cox
- Department of Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
28
|
Pearson D, Jin Y, Romeo A, Birlinger BL, Schiller H, Ji Y, Gunduz M, Baldoni D, Walles M. Species-dependent hepatic and intestinal metabolism of selective estrogen receptor degrader LSZ102 by sulfation and glucuronidation. Xenobiotica 2022; 52:26-37. [DOI: 10.1080/00498254.2022.2037027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- David Pearson
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Yi Jin
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Andrea Romeo
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Hilmar Schiller
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Yan Ji
- Novartis Institutes for Biomedical Research, East Hanover, USA
| | - Mithat Gunduz
- Novartis Institutes for Biomedical Research, Cambridge, USA
| | - Daniela Baldoni
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Markus Walles
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
29
|
Nakamura Y, Higuchi K, Kumon K, Yasuike M, Takashi T, Gen K, Fujiwara A. Prediction of the Sex-Associated Genomic Region in Tunas ( Thunnus Fishes). Int J Genomics 2021; 2021:7226353. [PMID: 34957293 PMCID: PMC8693018 DOI: 10.1155/2021/7226353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/28/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
Fish species have a variety of sex determination systems. Tunas (genus Thunnus) have an XY genetic sex determination system. However, the Y chromosome or responsible locus has not yet been identified in males. In a previous study, a female genome of Pacific bluefin tuna (T. orientalis) was sequenced, and candidates for sex-associated DNA polymorphisms were identified by a genome-wide association study using resequencing data. In the present study, we sequenced a male genome of Pacific bluefin tuna by long-read and linked-read sequencing technologies and explored male-specific loci through a comparison with the female genome. As a result, we found a unique region carrying the male-specific haplotype, where a homolog of estrogen sulfotransferase gene was predicted to be encoded. The genome-wide mapping of previously resequenced data indicated that, among the functionally annotated genes, only this gene, named sult1st6y, was paternally inherited in the males of Pacific bluefin tuna. We reviewed the RNA-seq data of southern bluefin tuna (T. maccoyii) in the public database and found that sult1st6y of southern bluefin tuna was expressed in all male testes, but absent or suppressed in the female ovary. Since estrogen sulfotransferase is responsible for the inactivation of estrogens, it is reasonable to assume that the expression of sult1st6y in gonad cells may inhibit female development, thereby inducing the individuals to become males. Thus, our results raise a promising hypothesis that sult1st6y is the sex determination gene in Thunnus fishes or at least functions at a crucial point in the sex-differentiation cascade.
Collapse
Affiliation(s)
- Yoji Nakamura
- Bioinformatics and Biosciences Division, Fisheries Stock Assessment Center, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fuku-ura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Kentaro Higuchi
- Tuna Aquaculture Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan
| | - Kazunori Kumon
- Amami Field Station, Tuna Aquaculture Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 955-5 Hyousakiyamahara, Setouchi, Kagoshima 894-2414, Japan
| | - Motoshige Yasuike
- Bioinformatics and Biosciences Division, Fisheries Stock Assessment Center, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fuku-ura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Toshinori Takashi
- Tuna Aquaculture Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan
| | - Koichiro Gen
- Tuna Aquaculture Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan
| | - Atushi Fujiwara
- Aquatic Breeding Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhamaura, Minami-ise, Mie 516-0193, Japan
| |
Collapse
|
30
|
Kurogi K, Manabe Y, Liu MC, Suiko M, Sakakibara Y. Molecular cloning and characterization of common marmoset SULT1C subfamily members that catalyze the sulfation of thyroid hormones. Biosci Biotechnol Biochem 2021; 85:2113-2120. [PMID: 34370005 PMCID: PMC8458394 DOI: 10.1093/bbb/zbab141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/29/2021] [Indexed: 11/14/2022]
Abstract
Cytosolic sulfotransferase SULT1C subfamily is one of the most flexible gene subfamilies during mammalian evolution. The physiological functions of SULT1C enzymes still remain to be fully understood. In this study, common marmoset (Callithrix jacchus), a promising primate animal model, was used to investigate the functional relevance of the SULT1C subfamily. Gene database search revealed 3 intact SULT1C genes and a pseudogene in its genome. These 4 genes were named SULT1C1, SULT1C2, SULT1C3P, and SULT1C5, according to the sequence homology and gene location. Since SULT1C5 is the orthologous gene for human SULT1C2P, we propose, here, to revisit the designation of human SULT1C2P to SULT1C5P. Purified recombinant SULT1C enzymes showed sulfating activities toward a variety of xenobiotic compounds and thyroid hormones. Kinetic analysis revealed high catalytic activities of SULT1C1 and SULT1C5 for 3,3'-T2. It appears therefore that SULT1C isoforms may play a role in the thyroid hormone metabolism in common marmoset.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Yoko Manabe
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH, USA
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
31
|
Omura K, Motoki K, Kobashi S, Miyata K, Yamano K, Iwanaga T. Identification of human UDP-glucuronosyltransferase and sulfotransferase as responsible for the metabolism of dotinurad, a novel selective urate reabsorption inhibitor. Drug Metab Dispos 2021; 49:1016-1024. [PMID: 34380635 DOI: 10.1124/dmd.120.000251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 08/03/2021] [Indexed: 11/22/2022] Open
Abstract
Dotinurad, a novel selective urate reabsorption inhibitor, is used to treat hyperuricemia. In humans, orally administered dotinurad is excreted mainly as glucuronide and sulfate conjugates in urine. To identify the isoforms of UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) involved in dotinurad glucuronidation and sulfation, microsome and cytosol fractions of liver, intestine, kidney, and lung tissues (cytosol only) were analyzed along with recombinant human UGT and SULT isoforms. Dotinurad was mainly metabolized to its glucuronide conjugate by human liver microsomes (HLMs), and the glucuronidation followed the two-enzyme Michaelis-Menten equation. Among the recombinant human UGT isoforms expressed in the liver, UGT1A1, UGT1A3, UGT1A9, and UGT2B7 catalyzed dotinurad glucuronidation. Based on inhibition analysis using HLMs, bilirubin, imipramine, and diflunisal decreased glucuronosyltransferase activities by 45.5, 22.3, and 22.2%, respectively. Diflunisal and 3'-azido-3'-deoxythymidine, in the presence of 1% BSA, decreased glucuronosyltransferase activities by 21.1 and 13.4%, respectively. Dotinurad was metabolized to its sulfate conjugate by human liver cytosol (HLC) and human intestinal cytosol (HIC) samples, with the sulfation reaction in HLC samples following the two-enzyme Michaelis-Menten equation and that in HIC samples following the Michaelis-Menten equation. All eight recombinant human SULT isoforms used herein catalyzed dotinurad sulfation. Gavestinel decreased sulfotransferase activity by 15.3% in HLC samples, and salbutamol decreased sulfotransferase activity by 68.4% in HIC samples. These results suggest that dotinurad glucuronidation is catalyzed mainly by UGT1A1, UGT1A3, UGT1A9, and UGT2B7, whereas its sulfation is catalyzed by many SULT isoforms, including SULT1B1 and SULT1A3. Significance Statement The identification of enzymes involved in drug metabolism is important to predicting drug-drug interactions (DDIs) and interindividual variability for safe drug use. The present study revealed that dotinurad glucuronidation is catalyzed mainly by UGT1A1, UGT1A3, UGT1A9, and UGT2B7 and that its sulfation is catalyzed by many SULT isoforms, including SULT1B1 and SULT1A3. Therefore, dotinurad, a selective urate reabsorption inhibitor, is considered safe for use with a small risk of DDIs and low interindividual variability.
Collapse
Affiliation(s)
- Koichi Omura
- Research Institute, FUJI YAKUHIN CO., LTD., Japan
| | | | | | - Kengo Miyata
- Research Institute, FUJI YAKUHIN CO., LTD., Japan
| | | | | |
Collapse
|
32
|
Sturm S, Högner C, Seger C, Stuppner H. Combining HPLC-DAD-QTOF-MS and HPLC-SPE-NMR to Monitor In Vitro Vitetrifolin D Phase I and II Metabolism. Metabolites 2021; 11:529. [PMID: 34436470 PMCID: PMC8400717 DOI: 10.3390/metabo11080529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
By combining HPLC-DAD-QTOF-MS and HPLC-SPE-NMR, the in vitro metabolism of vitetrifolin D, a pharmacologically active key molecule from Vitex agnus-castus in liver cell fractions, was investigated. Twenty-seven phase I and phase II metabolites were tentatively identified from the culture broth by HPLC-DAD-QTOF-MS. The subsequent HPLC-SPE-NMR analysis allowed for the unequivocal structural characterization of nine phase I metabolites. Since the preparative isolation of the metabolites was avoided, the substance input was much lower than in conventional strategies. The study did prove that the use of hyphenated instrumental analysis methodologies allows for the successful performance of in vitro metabolism studies, even if the availability of substances is very limited.
Collapse
|
33
|
Buczkowska M, Paciorek K, Kapcińska A, Górski M. Caramel colors in terms of scientific research, with particular
consideration of their toxicity. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Caramel colors, the most common food additives in the world, are divided into four classes (IIV),
marked with the symbols E150 a-d, respectively. Individual classes of caramel colors differ
from each other in physico-chemical properties and the method of preparation, which affects
the formation of various compounds that are important for the assessment of food safety A number of studies on all caramel classes of have been performed, including toxicokinetic,
genotoxic, carcinogenic and reproductive and developmental toxicity studies, which have
not shown harmful effects of these additives at doses not exceeding ADI. However, there is
an increasing number of scientific reports of the possible toxic effects present in caramels of
low-molecular compounds. Currently, three compounds are considered to be toxicologically
important and resulting from the possible concentration in the final product: 5-HMF (present
in all classes), 4(5)-MeI (present in caramel classes III and IV) or THI (present in caramel
class III). 4(5)-MeI has a neurotoxic effect and was considered in 2011 as a possible human
carcinogen (class 2B, according to IARC). In the case of THI, studies have confirmed its lymphopenic
activity, probably secondary to its immunosuppressive effect. Consequently, in the
1980s, JECFA set acceptable levels 4(5)-MeI and THI, for the caramel classes in which these
compounds may be present. The toxicity of 5-HMF has not been confirmed unequivocally,
but studies have shown that this compound is not neutral to living organisms.
Currently, most international organizations and scientific institutes recognize these additives
as safe for consumers, but at the same time scientists emphasize the need for further
research.
Collapse
Affiliation(s)
- Marta Buczkowska
- Zakład Toksykologii i Ochrony Zdrowia w Środowisku Pracy, Katedra Toksykologii i Uzależnień, Wydział Nauk o Zdrowiu w Bytomiu, Śląski Uniwersytet Medyczny w Katowicach
| | - Kamila Paciorek
- Drugie Koło Naukowe przy Zakładzie Toksykologii i Ochrony Zdrowia w Środowisku Pracy, Katedra Toksykologii i Uzależnień
| | - Anna Kapcińska
- Drugie Koło Naukowe przy Zakładzie Toksykologii i Ochrony Zdrowia w Środowisku Pracy, Katedra Toksykologii i Uzależnień
| | - Michał Górski
- Szkoła Doktorska Śląskiego Uniwersytetu Medycznego w Katowicach, Wydział Nauk o Zdrowiu w Bytomiu Śląski Uniwersytet Medyczny
| |
Collapse
|
34
|
Baglia RA, Mills KR, Mitra K, Tutol JN, Ball D, Page KM, Kallu J, Gottipolu S, D'Arcy S, Nielsen SO, Dodani SC. An activity-based fluorescent sensor for the detection of the phenol sulfotransferase SULT1A1 in living cells. RSC Chem Biol 2021; 2:830-834. [PMID: 34212150 PMCID: PMC8190907 DOI: 10.1039/d0cb00231c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Human phenol sulfotransferases mediate the transfer of a sulfuryl moiety from the activated sulfate donor PAPS to hydroxy-containing substrates, altering substrate solubility and charge to affect phase II metabolism and cell signaling. Here, we present the development, computational modeling, in vitro enzymology, and biological application of STS-3, an activity-based fluorescent sensor for the SULT1A1 isoform.
Collapse
Affiliation(s)
- Regina A Baglia
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Kira R Mills
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Koushambi Mitra
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Darby Ball
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Kierstin M Page
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Jyothi Kallu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Sriharika Gottipolu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Steven O Nielsen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| |
Collapse
|
35
|
Sulfation predominates the pharmacokinetics, metabolism, and excretion of forsythin in humans: major enzymes and transporters identified. Acta Pharmacol Sin 2021; 42:311-322. [PMID: 32860005 DOI: 10.1038/s41401-020-0481-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Forsythin extracted from Forsythiae Fructus is widely used to treat fever caused by the common cold or influenza in China, Japan and Korea. The present study aimed to analyze the pharmacokinetics, metabolism and excretion routes of forsythin in humans and determine the major enzymes and transporters involved in these processes. After a single oral administration, forsythin underwent extensive metabolism via hydrolysis and further sulfation. In total, 3 of the 13 metabolites were confirmed by comparison to reference substances, i.e., aglycone M1, M1 sulfate (M2), and M1 glucuronide (M7). Hydrolysis was the initial and main metabolic pathway of the parent compound, followed by extensive sulfation to form M2 and a reduced level of glucuronidation to form M7. In addition, the plasma exposure of M2 and M7 were 86- and 4.2-fold higher than that of forsythin. Within 48 h, ~75.1% of the administered dose was found in urine, with M2 accounting for 71.6%. Further phenotyping experiments revealed that sulfotransferase 1A1 and UDP-glucuronosyltransferase 1A8 were the most active hepatic enzymes involved in the formation of M2 and M7, respectively. The in vitro kinetic study provided direct evidence that M1 showed a preference for sulfation. Sulfated conjugate M2 was identified as a specific substrate of organic anion transporter 3, which could facilitate the renal excretion of M2. Altogether, our study demonstrated that sulfation dominated the metabolism and pharmacokinetics of forsythin, while the sulfate conjugate was excreted mainly in the urine.
Collapse
|
36
|
Zhang Y, Chen X, Zhang Y. Analytical chemistry, formation, mitigation, and risk assessment of polycyclic aromatic hydrocarbons: From food processing to
in vivo
metabolic transformation. Compr Rev Food Sci Food Saf 2021; 20:1422-1456. [DOI: 10.1111/1541-4337.12705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/11/2020] [Accepted: 01/01/2021] [Indexed: 01/09/2023]
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Xiaoqian Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| |
Collapse
|
37
|
Ma G, Geng L, Lu Y, Wei X, Yu H. Investigating the molecular mechanism of hydroxylated bromdiphenyl ethers to inhibit the thyroid hormone sulfotransferase SULT1A1. CHEMOSPHERE 2021; 263:128353. [PMID: 33297275 DOI: 10.1016/j.chemosphere.2020.128353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
Hydroxylated bromodiphenyl ethers (OH-BDEs) have raised great concern due to their potential endocrine disrupting effects on humans. In vitro experiments have indicated OH-BDEs can inhibit the activity of thyroid hormone (TH) sulfotransferases (SULTs); however, the molecular mechanism has not been investigated in depth. In this work, we employed 17 OH-BDEs with five or fewer Br atoms, and performed integrated computational simulations to unravel the possible inhibition mechanism of OH-BDEs on human SULT1A1. The molecular docking results demonstrate that OH-BDEs form hydrogen bonds with residues Lys106 and His108, and the neutral OH-BDEs show comparable binding energies with their anionic counterparts. The further hybrid quantum mechanical/molecular mechanical (QM/MM) calculations unravel a metabolic mechanism of OH-BDEs comprised by proton abstraction and sulfation steps. This mechanism is involved in the SULT1A1 inhibition by some OH-BDEs comprised of three or fewer Br atoms, while other OH-BDEs likely only form ternary complexes to competitively inhibit SULT1A1 activity. Moreover, the effect of the hydroxyl group of OH-BDEs on SULT1A1 inhibition potential follows the order of ortho-OH BDE > meta-OH BDE > para-OH BDE. These results provide an insight into the inhibition mechanism of OH-BDEs to SULT1A1 at the molecular level, which are beneficial in illuminating the molecular initiating events involved in the TH disruption of OH-BDEs.
Collapse
Affiliation(s)
- Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua, 321004, China
| | - Liming Geng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua, 321004, China
| | - Yuchen Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua, 321004, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua, 321004, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua, 321004, China.
| |
Collapse
|
38
|
Dai Z, Zhao F, Li Y, Xu J, Liu Z. The Environmental Pollutant Bromophenols Interfere With Sulfotransferase That Mediates Endocrine Hormones. Front Endocrinol (Lausanne) 2021; 12:814373. [PMID: 35069453 PMCID: PMC8777265 DOI: 10.3389/fendo.2021.814373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Bromophenols (BPs), known as an important environmental contaminant, can cause endocrine disruption and other chronic toxicity. The study aimed to investigate the potential inhibitory capability of BPs on four human sulfotransferase isoforms (SULT1A1, SULT1A3, SULT1B1 and SULT1E1) and interpret how to interfere with endocrine hormone metabolism. P-nitrophenol(PNP) was utilized as a nonselective probe substrate, and recombinant SULT isoforms were utilized as the enzyme resources. PNP and its metabolite PNP-sulfate were analyzed using a UPLC-UV detecting system. SULT1A1 and SULT1B1 were demonstrated to be the most vulnerable SULT isoforms towards BPs' inhibition. To determine the inhibition kinetics, 2,4,6-TBP and SULT1A3 were selected as the representative BPs and SULT isoform respectively. The competitive inhibition of 2,4,6-TBP on SULT1A3. The fitting equation was y=90.065x+1466.7, and the inhibition kinetic parameter (Ki) was 16.28 µM. In vitro-in vivo extrapolation (IVIVE) showed that the threshold concentration of 2,4,6-TBP to induce inhibition of SULT1A3 was 1.628 µM. In silico docking, the method utilized indicated that more hydrogen bonds formation contributed to the stronger inhibition of 3,5-DBP than 3-BP. In conclusion, our study gave the full description of the inhibition of BPs towards four SULT isoforms, which may provide a new perspective on the toxicity mechanism of BPs and further explain the interference of BPs on endocrine hormone metabolism.
Collapse
Affiliation(s)
- Zhihong Dai
- Department of Urology, Second Hospital of Dalian Medical University, Dalian, China
| | - Furong Zhao
- Research Department, Dalian Innovation Center of Laboratory Medicine Mass Spectrometry Technology, Dalian, China
- Research Department, Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Jinzhou, China
| | - Ying Li
- Research Department, Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Jinzhou, China
| | - Jing Xu
- Research Department, Dalian Innovation Center of Laboratory Medicine Mass Spectrometry Technology, Dalian, China
- Research Department, Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Jinzhou, China
| | - Zhiyu Liu
- Department of Urology, Second Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Zhiyu Liu,
| |
Collapse
|
39
|
MaitiDutta S, Chen G, Maiti S. Tocopherol Moderately Induces the Expressions of Some Human Sulfotransferases, which are Activated by Oxidative Stress. Cell Biochem Biophys 2020; 78:439-446. [PMID: 32897507 PMCID: PMC9199087 DOI: 10.1007/s12013-020-00938-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/25/2020] [Indexed: 11/25/2022]
Abstract
Oxidative stress is generated in biological system by several endogenous/exogenous factors like environmental-pollution/toxicity/diseases and by daily-life-stress. We previously showed that oxidative-stress impaired the activities/expressions of phase-II drug-metabolizing enzyme, sulfotransferases (SULTs). The SULT catalyzes sulfation of endogenous/exogenous compounds. Vitamin E is globally consumed by a large number of individuals for the cellular protection from oxidative stress and aging. Here, vitamin E (tocopherol; α/γ and tocotrienol; α/γ; 0, 1, 10, or 100 μM) was tested in human carcinoma cell line, HepG2 for their influences on SULTs expression/(western blotting). The effects of oxidant (glutathione-oxidized/GSSG) or reductant (glutathione-reduced/GSH, Dithiothreitol/DTT) on SULT activities were studied in rat-liver/human intestinal tissues. Results suggest, tocopherol is more inductive to monoamine-SULT (MPST) and Dehydroepiandrosterone-SULT (DHEAST) compared to that of tocotrienol (inconsistent change in PPST, phenol sulfotransferase/MPST/EST, estrogen sulfotransferase). The nuclear-factor constitutive androstane receptor (CAR) was found to be induced moderately. This study overall describes that vitamin E moderately influences SULTs expression. The induction ability of tocopherol should be judged taking into account its long-term consummation. Oxidative stress activates rat and human SULTs activities and expressions. Further studies are necessary in this regard.
Collapse
Affiliation(s)
- Sangita MaitiDutta
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India
| | - Guangping Chen
- Venture I OSU Laboratory, Oklahoma Technology & Research Park, 1110S. Innovation Way, Stillwater, OK, 74074, USA
| | - Smarajit Maiti
- Cell and Molecular Therapeutics Laboratory, Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Midnapore, West Bengal, 721102, India.
- Agricure Biotech Research Society, Epidemiology and Human Health Division, Midnapore, West Bengal, 721101, India.
| |
Collapse
|
40
|
Tsutsumi S, Tokunaga Y, Shimizu S, Kinoshita H, Ono M, Kurogi K, Sakakibara Y, Suiko M, Liu MC, Yasuda S. Effects of indole and indoxyl on the intracellular oxidation level and phagocytic activity of differentiated HL-60 human macrophage cells. J Toxicol Sci 2020; 45:569-579. [PMID: 32879256 DOI: 10.2131/jts.45.569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Indoxyl, a derivative of indole originating from tryptophan, may undergo phase-II sulfate-conjugation pathway, thereby forming indoxyl sulfate (IS) in vivo. We previously reported that IS, a well-known uremic toxin, can increase the intracellular oxidation level and decrease the phagocytic activity in a differentiated HL-60 human macrophage cell model. Using the same cell model, the current study aimed to investigate whether indole and indoxyl (the metabolic precursors of indoxyl and IS, respectively) may cause macrophage immune dysfunction. Results obtained indicated that intracellular oxidation level and cytotoxicity markedly increased upon treatment with indole and indoxyl, in comparison with IS. Incubation of the cells with indole and indoxyl also resulted in attenuated phagocytic activity. Human serum albumin (HSA)-binding assay confirmed that tryptophan and IS, but not indole and indoxyl, could selectively bind to the site II in HSA. Collectively, the results indicated that indole and indoxyl may strongly down-regulate the phagocytic immune function of macrophages, whereas IS, formed upon sulfate conjugation of indoxyl, may exhibit enhanced HSA-binding capability, thereby reducing the adverse effects of indoxyl.
Collapse
Affiliation(s)
| | | | - Shunsuke Shimizu
- Department of Bioscience, School of Agriculture, Tokai University
| | - Hideki Kinoshita
- Graduate School of Agriculture, Tokai University.,Department of Bioscience, School of Agriculture, Tokai University
| | - Masateru Ono
- Graduate School of Agriculture, Tokai University.,Department of Bioscience, School of Agriculture, Tokai University
| | - Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki
| | - Ming-Cheh Liu
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, USA
| | - Shin Yasuda
- Graduate School of Agriculture, Tokai University.,Department of Bioscience, School of Agriculture, Tokai University
| |
Collapse
|
41
|
Basit A, Neradugomma NK, Wolford C, Fan PW, Murray B, Takahashi RH, Khojasteh SC, Smith BJ, Heyward S, Totah RA, Kelly EJ, Prasad B. Characterization of Differential Tissue Abundance of Major Non-CYP Enzymes in Human. Mol Pharm 2020; 17:4114-4124. [PMID: 32955894 DOI: 10.1021/acs.molpharmaceut.0c00559] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The availability of assays that predict the contribution of cytochrome P450 (CYP) metabolism allows for the design of new chemical entities (NCEs) with minimal oxidative metabolism. These NCEs are often substrates of non-CYP drug-metabolizing enzymes (DMEs), such as UDP-glucuronosyltransferases (UGTs), sulfotransferases (SULTs), carboxylesterases (CESs), and aldehyde oxidase (AO). Nearly 30% of clinically approved drugs are metabolized by non-CYP enzymes. However, knowledge about the differential hepatic versus extrahepatic abundance of non-CYP DMEs is limited. In this study, we detected and quantified the protein abundance of eighteen non-CYP DMEs (AO, CES1 and 2, ten UGTs, and five SULTs) across five different human tissues. AO was most abundantly expressed in the liver and to a lesser extent in the kidney; however, it was not detected in the intestine, heart, or lung. CESs were ubiquitously expressed with CES1 being predominant in the liver, while CES2 was enriched in the small intestine. Consistent with the literature, UGT1A4, UGT2B4, and UGT2B15 demonstrated liver-specific expression, whereas UGT1A10 expression was specific to the intestine. UGT1A1 and UGT1A3 were expressed in both the liver and intestine; UGT1A9 was expressed in the liver and kidney; and UGT2B17 levels were significantly higher in the intestine than in the liver. All five SULTs were detected in the liver and intestine, and SULT1A1 and 1A3 were detected in the lung. Kidney abundance was the most variable among the studied tissues, and overall, high interindividual variability (>15-fold) was observed for UGT2B17, CES2 (intestine), SULT1A1 (liver), UGT1A9, UGT2B7, and CES1 (kidney). These differential tissue abundance data can be integrated into physiologically based pharmacokinetic (PBPK) models for the prediction of non-CYP drug metabolism and toxicity in hepatic and extrahepatic tissues.
Collapse
Affiliation(s)
- Abdul Basit
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Naveen K Neradugomma
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Christopher Wolford
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Peter W Fan
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Bernard Murray
- Drug Metabolism and Pharmacokinetics Department, Gilead Sciences Inc., 324 Lakeside Drive, Foster City, California 94404, United States
| | - Ryan H Takahashi
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, MS 412a, South San Francisco, California 94080, United States
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, MS 412a, South San Francisco, California 94080, United States
| | - Bill J Smith
- Drug Metabolism and Pharmacokinetics Department, Gilead Sciences Inc., 324 Lakeside Drive, Foster City, California 94404, United States
| | - Scott Heyward
- BioIVT Inc., Baltimore, Maryland 21227, United States
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Edward J Kelly
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, United States
| | - Bhagwat Prasad
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
42
|
Johnson E, Nussenzveig R, Agarwal N, Swami U. Germline variants and response to systemic therapy in advanced prostate cancer. Pharmacogenomics 2020; 21:75-81. [PMID: 31849283 DOI: 10.2217/pgs-2019-0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our current understanding of prostate cancer pharmacogenomics is growing at a rapid pace. Apart from evaluating relevant biomarkers and genomic alterations in tumor tissues, an increasing focus is being placed on decoding the impact of germline alterations on prostate cancer and its treatment. Herein we summarize various germline variants that have shown to associate with response to systemic therapy in men with advanced prostate cancer. Covered biomarkers include HSD3B1, SLCO2B1, SULT1E1, TRMT11, CYP17A1, CYP1B1, genes involved in homologous recombination and DNA mismatch repair.
Collapse
Affiliation(s)
- Eric Johnson
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Roberto Nussenzveig
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Neeraj Agarwal
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Umang Swami
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
43
|
The genome of the marine monogonont rotifer Brachionus rotundiformis and insight into species-specific detoxification components in Brachionus spp. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100714. [PMID: 32784096 DOI: 10.1016/j.cbd.2020.100714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 11/20/2022]
Abstract
The monogonont rotifer Brachionus spp. have been widely used for ecotoxicological studies because of their advantages as one of the most suitable laboratory experimental species. In the present study, we obtained and assembled the whole genome sequence of the rotifer Brachionus rotundiformis, consisting of 13,612 annotated genes with 213 scaffolds and 58 Mb in total length. Focusing on ecotoxicological aspects, we conducted a comparative genome analysis on the gene families involved in detoxification, including four to six sulfotransferase gene families, seven uridine 5'-diphospho-glucuronosyltransferase gene families, and 58, 61, or 70 ATP-binding cassette genes in the genus Brachionus including Brachionus koreanus and Brachionus plicatilis. Our results suggest that these gene families have undergone a species- and/or lineage-specific evolution in response to the surrounding environmental pressure. Our genome resource for B. rotundiformis would be highly useful for future ecotoxicological studies and also provides a better understanding on the view of evolutionary mechanism of detoxification in the genus Brachionus spp.
Collapse
|
44
|
Ertunc N, Sato C, Kitajima K. Sialic acid sulfation is induced by the antibiotic treatment in mammalian cells. Biosci Biotechnol Biochem 2020; 84:2311-2318. [PMID: 32752946 DOI: 10.1080/09168451.2020.1792763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sialic acids (Sias) are an outermost-situated sugar of glycoproteins and glycolipids to play important roles in various biological phenomena. They are often modified by additional substituents, such as O-acetyl group, to display more than 50 different structures in nature. Of those modified Sia, nothing is known about the occurrence and biological functions of sulfated Sias (SiaSs) in mammals. To elucidate the significance of sialic acid sulfation, we investigated various mammalian-cultured cell lines for the expression of SiaS using the specific antibody 3G9. First, SiaS is expressed in a cell line-dependent and a cell density-dependent manner. Second, in CHO cells, the expression of SiaS is reversibly induced by treatment with the antibiotic G418. Taken together, the expression of SiaS is changed by intrinsic and extrinsic factors in mammalian cells. This is the first demonstration of regulated expression of SiaS.
Collapse
Affiliation(s)
- Nursah Ertunc
- Bioscience and Biotechnology Center and Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center and Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya, Japan.,Institute for Glyco-core Research, Tokai National Higher Education and Research System , Nagoya, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center and Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya, Japan.,Institute for Glyco-core Research, Tokai National Higher Education and Research System , Nagoya, Japan
| |
Collapse
|
45
|
Juvonen RO, Pentikäinen O, Huuskonen J, Timonen J, Kärkkäinen O, Heikkinen A, Fashe M, Raunio H. In vitro sulfonation of 7-hydroxycoumarin derivatives in liver cytosol of human and six animal species. Xenobiotica 2020; 50:885-893. [PMID: 31903849 DOI: 10.1080/00498254.2020.1711544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Sulfonation is an important high affinity elimination pathway for phenolic compounds.In this study sulfonation of 7-hydroxycoumarin and 13 its derivatives were evaluated in liver cytosols of human and six animal species. 7-hydroxycoumarin and its derivatives are strongly fluorescent, and their sulfate conjugates are nonfluorescent at excitation 405 nm and emission 460 nm. A convenient fluorescence based kinetic assay of sulfonation was established.The sulfonation rate of most of the 7-hydroxycoumarin derivatives was low in liver cytosol of human and pig, whereas it was high with most compounds in dog and intermediate in rat, mouse, rabbit, and sheep. Sulfonation of the 7-hydroxycoumarin derivatives followed Michaelis-Menten kinetics with Km values of 0.1-12 µM, Vmax of 0.005-1.7 µmol/(min * g protein) and intrinsic clearance (Vmax/Km) of 0.004-1.9 L/(min * g cytosolic protein).Fluorescence based measurement of sulfonation of 7-hydroxycoumarin derivatives provides a sensitive and convenient high-throughput assay to determine sulfonation rate in different species and tissues and can be applied to evaluate sulfonation kinetics and inhibition.
Collapse
Affiliation(s)
- Risto O Juvonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Olli Pentikäinen
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juhani Huuskonen
- Department of Chemistry, University of Jyvaskyla, Jyvaskyla, Finland
| | - Juri Timonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Olli Kärkkäinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Muluneh Fashe
- Reproductive & Developmental Biology Laboratory/Pharmacogenetics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Hannu Raunio
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
46
|
Cho P, Choi SM, Kim Y, Lee DH, Noh Y, Kim S, Kim JH, Lee T, Lee S. Characterization of osthenol metabolism in vivo and its pharmacokinetics. Xenobiotica 2019; 50:839-846. [PMID: 31847686 DOI: 10.1080/00498254.2019.1705427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Osthenol, a prenylated coumarin, is a C8-prenylated derivative of umbelliferone isolated from the root of Angelica koreana and Angelica dahurica, an intermediate and is known as a major metabolite of desmethyl-osthole.The various pharmacological effects of osthenol have been reported. In previous studies, we investigated five hydroxylated metabolites by cytochromes P450 (CYP) and glucuronide conjugates of osthenol by uridine diphosphate-glucuronosyltransferases (UGTs). However, osthenol have very few studies have been reported on its pharmacokinetic (PK) profiling, we reported the PK parameters in mouse of osthenol through this study.After oral (5 and 20 mg/kg) and intravenous (5 mg/kg) administration, the concentration of osthenol in plasma was determined by LC-MS/MS. The quantitative method was validated in terms of linearity, accuracy, and precision. When 5 and 20 mg/kg of osthenol were orally administered, the bioavailability (BA) was found to be very low at 0.43 and 0.02%, respectively.In fact, osthenol was mostly metabolized to a two-Phase II conjugates, a sulfonyl and glucuronyl-osthenol, in the blood, which was determined by LC-HR/MS analysis of the blood sample. Because osthenol is rapidly metabolized to two conjugates by first-pass effect the BA of osthenol is low after oral administration.
Collapse
Affiliation(s)
- Piljoung Cho
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Su Min Choi
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Younah Kim
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Doo Hyun Lee
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yeeun Noh
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sujeong Kim
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Taeho Lee
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
47
|
Li Y, Meng Q, Yang M, Liu D, Hou X, Tang L, Wang X, Lyu Y, Chen X, Liu K, Yu AM, Zuo Z, Bi H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B 2019; 9:1113-1144. [PMID: 31867160 PMCID: PMC6900561 DOI: 10.1016/j.apsb.2019.10.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice.
Collapse
Affiliation(s)
- Yuhua Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Mengbi Yang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiangyu Hou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanfeng Lyu
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ai-Ming Yu
- UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Zhong Zuo
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
48
|
Shaw P, Chattopadhyay A. Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. J Cell Physiol 2019; 235:3119-3130. [PMID: 31549397 DOI: 10.1002/jcp.29219] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Pallab Shaw
- Department of Zoology, Toxicology and Cancer Biology Laboratory Visva‐Bharati Santiniketan West Bengal India
| | - Ansuman Chattopadhyay
- Department of Zoology, Toxicology and Cancer Biology Laboratory Visva‐Bharati Santiniketan West Bengal India
| |
Collapse
|
49
|
Hwang DK, Kim JH, Shin Y, Choi WG, Kim S, Cho YY, Lee JY, Kang HC, Lee HS. Identification of Catalposide Metabolites in Human Liver and Intestinal Preparations and Characterization of the Relevant Sulfotransferase, UDP-glucuronosyltransferase, and Carboxylesterase Enzymes. Pharmaceutics 2019; 11:pharmaceutics11070355. [PMID: 31336576 PMCID: PMC6681058 DOI: 10.3390/pharmaceutics11070355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/06/2023] Open
Abstract
Catalposide, an active component of Veronica species such as Catalpa ovata and Pseudolysimachion lingifolium, exhibits anti-inflammatory, antinociceptic, anti-oxidant, hepatoprotective, and cytostatic activities. We characterized the in vitro metabolic pathways of catalposide to predict its pharmacokinetics. Catalposide was metabolized to catalposide sulfate (M1), 4-hydroxybenzoic acid (M2), 4-hydroxybenzoic acid glucuronide (M3), and catalposide glucuronide (M4) by human hepatocytes, liver S9 fractions, and intestinal microsomes. M1 formation from catalposide was catalyzed by sulfotransferases (SULTs) 1C4, SULT1A1*1, SULT1A1*2, and SULT1E1. Catalposide glucuronidation to M4 was catalyzed by gastrointestine-specific UDP-glucuronosyltransferases (UGTs) 1A8 and UGT1A10; M4 was not detected after incubation of catalposide with human liver preparations. Hydrolysis of catalposide to M2 was catalyzed by carboxylesterases (CESs) 1 and 2, and M2 was further metabolized to M3 by UGT1A6 and UGT1A9 enzymes. Catalposide was also metabolized in extrahepatic tissues; genetic polymorphisms of the carboxylesterase (CES), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes responsible for catalposide metabolism may cause inter-individual variability in terms of catalposide pharmacokinetics.
Collapse
Affiliation(s)
- Deok-Kyu Hwang
- BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea
| | - Yongho Shin
- BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| | - Won-Gu Choi
- BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| | - Sunjoo Kim
- BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| | - Yong-Yeon Cho
- BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| | - Joo Young Lee
- BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| | - Han Chang Kang
- BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| | - Hye Suk Lee
- BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea.
| |
Collapse
|
50
|
Hossain MI, Marcus JM, Lee JH, Garcia PL, Gagné JP, Poirier GG, Falany CN, Andrabi SA. SULT4A1 Protects Against Oxidative-Stress Induced Mitochondrial Dysfunction in Neuronal Cells. Drug Metab Dispos 2019; 47:949-953. [PMID: 31266751 DOI: 10.1124/dmd.119.088047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022] Open
Abstract
Sulfotransferase 4A1 (SULT4A1), a member of cytosolic sulfotransferases (SULT), is exclusively expressed in neurons with no known function. Severe phenotype and early postnatal death in SULT4A1 knockout mice revealed that SULT4A1 is an essential neuronal protein. Localization of SULT4A1 in different cytosolic compartments, including mitochondria, suggests multiple roles for this protein. We observed that knockdown of SULT4A1 results in the accumulation of reactive oxygen species in primary cortical neurons, suggesting a potential role of SULT4A1 in regulating redox homeostasis. Expression of SULT4A1 in the human neuroblastoma SH-SY5Y cells revealed a defused but nonuniform staining pattern in the cytoplasm, with increased density around mitochondria. Subcellular fractionation of SULT4A1 expressing SH-SY5Y cells confirms the presence of SULT4A1 in mitochondrial fractions. SULT4A1 expressing cells display significant protection against H2O2-mediated defects in mitochondrial function and loss of mitochondrial membrane potential. Expression of SULT4A1 in SH-SY5Y cells also protects against H2O2-induced cell death. These data indicate that SULT4A1 protects mitochondria against oxidative damage and may serve as a potential pharmacological target in neural diseases involving mitochondrial dysfunction and oxidative stress. SIGNIFICANCE STATEMENT: Studies on SULT4A1 knockout mice suggest that SULT4A1 plays a vital role in neuronal function and survival via yet undefined mechanisms. Our data demonstrate that depletion of SULT4A1 induces oxidative stress in neurons and expression of SULT4A1 in SH-SY5Y cells protects against oxidative-stress-induced mitochondrial dysfunction and cell death. These results suggest that SULT4A1 may have a crucial protective function against mitochondrial dysfunction and oxidative stress, and may serve a potential therapeutic target in different neurological diseases involving mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Mohammed I Hossain
- Departments of Pharmacology and Toxicology (M.I.H., J.M.M., J.H.L., P.L.G., C.N.F., S.A.A.) and Neurology (S.A.A.), University of Alabama at Birmingham, Birmingham, Alabama; and Centre de recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada (J.-P.G., G.G.P.)
| | - Joshua M Marcus
- Departments of Pharmacology and Toxicology (M.I.H., J.M.M., J.H.L., P.L.G., C.N.F., S.A.A.) and Neurology (S.A.A.), University of Alabama at Birmingham, Birmingham, Alabama; and Centre de recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada (J.-P.G., G.G.P.)
| | - Jun Hee Lee
- Departments of Pharmacology and Toxicology (M.I.H., J.M.M., J.H.L., P.L.G., C.N.F., S.A.A.) and Neurology (S.A.A.), University of Alabama at Birmingham, Birmingham, Alabama; and Centre de recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada (J.-P.G., G.G.P.)
| | - Patrick L Garcia
- Departments of Pharmacology and Toxicology (M.I.H., J.M.M., J.H.L., P.L.G., C.N.F., S.A.A.) and Neurology (S.A.A.), University of Alabama at Birmingham, Birmingham, Alabama; and Centre de recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada (J.-P.G., G.G.P.)
| | - Jean-Philippe Gagné
- Departments of Pharmacology and Toxicology (M.I.H., J.M.M., J.H.L., P.L.G., C.N.F., S.A.A.) and Neurology (S.A.A.), University of Alabama at Birmingham, Birmingham, Alabama; and Centre de recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada (J.-P.G., G.G.P.)
| | - Guy G Poirier
- Departments of Pharmacology and Toxicology (M.I.H., J.M.M., J.H.L., P.L.G., C.N.F., S.A.A.) and Neurology (S.A.A.), University of Alabama at Birmingham, Birmingham, Alabama; and Centre de recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada (J.-P.G., G.G.P.)
| | - Charles N Falany
- Departments of Pharmacology and Toxicology (M.I.H., J.M.M., J.H.L., P.L.G., C.N.F., S.A.A.) and Neurology (S.A.A.), University of Alabama at Birmingham, Birmingham, Alabama; and Centre de recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada (J.-P.G., G.G.P.)
| | - Shaida A Andrabi
- Departments of Pharmacology and Toxicology (M.I.H., J.M.M., J.H.L., P.L.G., C.N.F., S.A.A.) and Neurology (S.A.A.), University of Alabama at Birmingham, Birmingham, Alabama; and Centre de recherche du CHU de Québec, Faculté de Médecine, Université Laval, Québec, Canada (J.-P.G., G.G.P.)
| |
Collapse
|