1
|
Li P, Chen S, Meng Y, Wang C, Ni X. Simple Preparation and Bone Regeneration Effects of Poly(vinyl alcohol)-Resveratrol Self-Cross-Linked Hydrogels. ACS OMEGA 2024; 9:49043-49053. [PMID: 39713622 PMCID: PMC11656249 DOI: 10.1021/acsomega.4c02849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
Hydrogels have broad application prospects in bone repair. Pure poly(vinyl alcohol) (PVA) hydrogels have limited applications because of their low hardness and poor mechanical properties. This study found that resveratrol (Res) and PVA self-assembled and cross-linked through the formation of strong hydrogen bonds after freeze-thawing, forming an easily available PVA-Res supramolecular hydrogel through a green process. PVA-Res hydrogels with different Res wt %:10 wt % PVA ratios were prepared through freeze-thawing and designated as 0.4, 1.2, and 2.0 wt % PVA-Res hydrogels. Rheological studies demonstrated that the viscoelastic modulus of the PVA-Res hydrogels was significantly improved compared to pure PVA hydrogels. The viscoelastic modulus G' of 1.2% PVA-Res hydrogel was 2299 Pa, which was 8.5-fold that of the pure PVA hydrogel. We conducted a study on cell proliferation and osteogenic differentiation using MC3T3-E1 (preosteoblasts from newborn mouse calvaria). The results showed that the 0.4% PVA-Res hydrogel promotes alkaline phosphatase activity and mineral deposition. Real-time quantitative PCR (RT-qPCR) analysis demonstrated that the 0.4% PVA-Res hydrogel upregulated the expression of osteogenic differentiation-related genes (BMP-9, OCN, and ALP). Furthermore, RT-qPCR and flow cytometry demonstrated that the 0.4% PVA-Res hydrogel could effectively promote the M2 transformation and polarization of mouse mononuclear macrophage leukemia cells (Raw 264.7). The expression of related genes, such as Arg-1 and CD206, significantly increased, whereas that of M1 polarization-related genes, such as iNOS and TNF-α, significantly decreased. In summary, PVA-Res supramolecular hydrogels are potential materials for use in bone repair.
Collapse
Affiliation(s)
- Pengyin Li
- School
of Pharmacy, Changzhou University, Changzhou 213000, China
- Department
of Radiotherapy Oncology, Changzhou No.2 People’s Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu
Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou
Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Shaoqing Chen
- Department
of Radiotherapy Oncology, Changzhou No.2 People’s Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu
Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou
Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Yanyan Meng
- School
of Pharmacy, Changzhou University, Changzhou 213000, China
- Department
of Radiotherapy Oncology, Changzhou No.2 People’s Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu
Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou
Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Cheli Wang
- School
of Pharmacy, Changzhou University, Changzhou 213000, China
| | - Xinye Ni
- Department
of Radiotherapy Oncology, Changzhou No.2 People’s Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu
Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou
Key Laboratory of Medical Physics, Changzhou 213003, China
| |
Collapse
|
2
|
Chatterjee S, Mohanta A, De A, Mukherjee A, Hazra A, Niloy PP, Tudu M, Chattopadhyay K, Samanta A. Evaluation of gum odina/carbopol composite mucoadhesive hydrogel on pharmaceutical performance: Focusing on potential periodontal treatment. Int J Biol Macromol 2024; 288:138708. [PMID: 39681246 DOI: 10.1016/j.ijbiomac.2024.138708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/16/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
Antimicrobial buccal hydrogel made of polymers have gained tremendous utilisation in biomedical field. Dual drug loaded, porous materials are important areas of research for medical and pharmaceutical industries. In this regard, a series of hydrogels (F1, F2, F3) were prepared with gum odina and carbopol 940 in aqueous solution with calcium chloride as the cross linker and glycerol as plasticizer by ionotropic gelation method. The buccal hydrogel was evaluated for thermal stability (TGA/DSC) revealing them to be thermally stable. The SEM and AFM studies of the optimized formulation (F2) exhibits cracks and porous structure. It also depicted good injectability and self-healing. The XRD result displayed amorphous nature of the formulation (F2) making them soluble in buccal fluids. The chemical nature and interactions were analysed by FTIR study. The release profile portrayed controlled release patterns for amoxicillin trihydrate and fluconazole. Appreciable mucoadhesion time (6 ± 0.7 h) and strength (12.03 ± 0.45 g) was observed in case of F2. The optimized formulation F2 displayed good antifungal and antibacterial properties. Thus, it is concluded that the hydrogel formed were mucoadhesive and highly potent to carry drug molecules for controlled release in the buccal mucosa to treat several periodontal infections.
Collapse
Affiliation(s)
- Sohini Chatterjee
- Division of Microbiology & Pharmaceutical Biotechnology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Abhishek Mohanta
- Division of Microbiology & Pharmaceutical Biotechnology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Arnab De
- Department of Pharmaceutics, Bharat Technology, Uluberia, Howrah, West Bengal 711316, India
| | - Ashmita Mukherjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Ahana Hazra
- Division of Microbiology & Pharmaceutical Biotechnology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Pratik Paul Niloy
- Division of Microbiology & Pharmaceutical Biotechnology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Mousumi Tudu
- Division of Microbiology & Pharmaceutical Biotechnology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Amalesh Samanta
- Division of Microbiology & Pharmaceutical Biotechnology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| |
Collapse
|
3
|
Seifi S, Shamloo A, Barzoki AK, Bakhtiari MA, Zare S, Cheraghi F, Peyrovan A. Engineering biomimetic scaffolds for bone regeneration: Chitosan/alginate/polyvinyl alcohol-based double-network hydrogels with carbon nanomaterials. Carbohydr Polym 2024; 339:122232. [PMID: 38823905 DOI: 10.1016/j.carbpol.2024.122232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
In this study, new types of hybrid double-network (DN) hydrogels composed of polyvinyl alcohol (PVA), chitosan (CH), and sodium alginate (SA) are introduced, with the hypothesis that this combination and incorporating multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) will enhance osteogenetic differentiation and the structural and mechanical properties of scaffolds for bone tissue engineering applications. Initially, the impact of varying mass ratios of the PVA/CH/SA mixture on mechanical properties, swelling ratio, and degradability was examined. Based on this investigation, a mass ratio of 4:6:6 was determined to be optimal. At this ratio, the hydrogel demonstrated a Young's modulus of 47.5 ± 5 kPa, a swelling ratio of 680 ± 6 % after 3 h, and a degradation rate of 46.5 ± 5 % after 40 days. In the next phase, following the determination of the optimal mass ratio, CNTs and GNPs were incorporated into the 4:6:6 composite resulting in a significant enhancement in the electrical conductivity and stiffness of the scaffolds. The introduction of CNTs led to a notable increase of 36 % in the viability of MG63 osteoblast cells. Additionally, the inhibition zone test revealed that GNPs and CNTs increased the diameter of the inhibition zone by 49.6 % and 52.6 %, respectively.
Collapse
Affiliation(s)
- Saeed Seifi
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Amir Shamloo
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Ali Kheirkhah Barzoki
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Mohammad Ali Bakhtiari
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Sona Zare
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Cheraghi
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O. Box 11155-9466, Tehran, Iran
| | - Aisan Peyrovan
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Abudukelimu K, Aierken A, Tuerxuntayi A, Yilihamu Y, Abulizi S, Wufuer D, Dong H. Preliminary study on the preparation of antler powder/chitosan/β-glycerophosphate sodium/polyvinyl alcohol porous hydrogel scaffolds and their osteogenic effects. Front Bioeng Biotechnol 2024; 12:1421718. [PMID: 38988866 PMCID: PMC11233688 DOI: 10.3389/fbioe.2024.1421718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction: The production of bone-like structural scaffolds through bone tissue engineering technology is a promising method for bone regeneration to repair bone defects. Deer antler, an easily harvested and abundantly sourced initial bone tissue structure, resembles the composition and structure of human cancellous bone and can serve as a new material for allogeneic bone transplantation. Methods: This study involved the preparation and characterization of antler powder/chitosan/β-glycerophosphate sodium/polyvinyl alcohol (AP/CS/β-GP/PVA) porous hydrogel scaffolds to verify their material properties and osteogenic mechanisms. The microstructure, hydrophilicity, and mechanical properties of the scaffolds were studied using Scanning Electron Microscopy (SEM), contact angle measurement, and a universal material testing machine. The interactions between the various components were investigated using Fourier-Transform Infrared Spectroscopy (FTIR). Biocompatibility, osteogenic properties, and expression of osteogenesis-related proteins of the scaffolds were evaluated through Cell Counting Kit-8 (CCK-8) assays, alkaline phosphatase staining, Alizarin Red staining, live/dead cell staining, and Western blot analysis. Results: The results showed that as the content of deer antler powder increased, both the hydrophilicity and mechanical properties of the scaffold materials improved, while the porosity slightly decreased with an increase in deer antler powder content. Cell culture experiments demonstrated that scaffolds with a higher proportion of deer antler powder were beneficial for the proliferation and differentiation of mouse pre-osteoblast (MC3T3-E1) cells, with the scaffolds containing 10% and 8% deer antler powder showing the best effects. The upregulation of RUNX2, OCN, OSX, and OPN protein expression may promote differentiation. Discussion: Therefore, the AP/CS/β-GP/PVA hydrogel scaffolds have the potential to become a promising biomaterial for bone tissue engineering.
Collapse
Affiliation(s)
- Kudelaiti Abudukelimu
- Department of Prosthodontics, The First Affiliated Hospital (Affiliated Stomatological Hospital) of Xinjiang Medical University, Urumqi, China
- People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Aikepaer Aierken
- People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | | | - Yilizhati Yilihamu
- College of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Saierdaer Abulizi
- People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Duolikun Wufuer
- People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hongbin Dong
- Department of Prosthodontics, The First Affiliated Hospital (Affiliated Stomatological Hospital) of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
5
|
El-Bahrawy NR, Elgharbawy H, Elmekawy A, Salem M, Morsy R. Development of porous hydroxyapatite/PVA/gelatin/alginate hybrid flexible scaffolds with improved mechanical properties for bone tissue engineering. MATERIALS CHEMISTRY AND PHYSICS 2024; 319:129332. [DOI: 10.1016/j.matchemphys.2024.129332] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2024]
|
6
|
Jin Y, Liu D, Xiong W, Wu Z, Xiao G, Wang S, Su H. Enhancing nitrogen removal performance using immobilized aerobic denitrifying bacteria by modified polyvinyl alcohol/sodium alginate (PVA/SA). CHEMOSPHERE 2024; 357:141954. [PMID: 38615964 DOI: 10.1016/j.chemosphere.2024.141954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Aerobic denitrification has emerged as a promising and efficient method for nitrogen removal from wastewater. However, the direct application of aerobic denitrifying bacteria has faced challenges such as low nitrogen removal efficiency, bacterial loss, and poor stability. To address these issues, this study developed a novel microbial particle carrier using NaHCO3-modified polyvinyl alcohol (PVA)/sodium alginate (SA) gel (NaHCO3-PVA/SA). This carrier exhibits several advantageous properties, including excellent mass transfer efficiency, favorable biocompatibility, convenient film formation, abundant biomass, and exceptional pollutant treatment capacity. The carrier was modified with 0.3% NaHCO3, 8.0% PVA, and 1.0% SA, resulting in a remarkable 3.4-fold increase in the average pore diameter and a 12.8% improvement in mass transfer efficiency. This carrier was utilized to immobilize the aerobic denitrifying bacterium Stutzerimonas stutzeri W-2 to enhance nitrogen removal (NaHCO3-PVA/SA@W-2), resulting in a NO3--N removal efficiency of 99.06%, which was 21.39% higher than that without modification. Compared with the non-immobilized W-2, the degradation efficiency was improved by 43.70%. After five reuses, the NO3--N and TN removal rates remained at 99% and 93.01%, respectively. These results provide a solid foundation for the industrial application of the modified carrier as an effective tool for nitrogen removal in large-scale wastewater treatment processes.
Collapse
Affiliation(s)
- Yu Jin
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Dan Liu
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wei Xiong
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhiqing Wu
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Gang Xiao
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
7
|
Yan L, Peng Y. Enhanced treatment of acute organophosphorus pesticide poisoning using activated charcoal-embedded sodium alginate-polyvinyl alcohol hydrogel. Biomed Mater Eng 2024:BME240007. [PMID: 38607746 DOI: 10.3233/bme-240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
BACKGROUND The adsorption of activated charcoal is currently a major clinical treatment for acute organophosphorus pesticide poisoning (AOPP). However, the adsorption duration and efficiency of this method is unstable. OBJECTIVE In this study, a hydrogel embedding activated charcoal was prepared and its alleviating effects on AOPP were investigated. METHODS A composite hydrogel using sodium alginate and polyvinyl alcohol (SA-PVA) hydrogel was prepared in this study. The structural properties of the SA-PVA hydrogel were characterized via multiple analysis including FTIR, TGA, XRD, SEM, tensile strength and expansion rate. Based on these, activated charcoal (AC) was embedded within the SA-PVA hydrogel (SA-PVA-AC) and it was used for the treatment of AOPP. RESULTS Structural characterization indicated SA-PVA hydrogel possesses excellent mechanical properties and biocompatibility. The in vivo study demonstrated that SA-PVA-AC significantly alleviated the inflammation and oxidative damage in the liver, as evidenced by reduced levels of IL-6, TNF-α, and, IL-1β, SOD, and MDA. Furthermore, SA-PVA-AC treatment effectively re-regulated the activities of serum AST and ALT, exhibiting an improved effect on liver function. CONCLUSION The findings suggest that activated charcoal embedded within SA-PVA hydrogel has significant potential as a therapeutic agent in treating AOPP, and offering a novel approach to managing pesticide-induced toxicity.
Collapse
Affiliation(s)
- Li Yan
- Department of Occupational Disease and Pooning Medicine, First Affiliated Hospital of Chongqing Medical College, Chongqing, China
| | - Ying Peng
- Department of Occupational Disease and Pooning Medicine, First Affiliated Hospital of Chongqing Medical College, Chongqing, China
| |
Collapse
|
8
|
Masri S, Fadilah NIM, Hao LQ, Maarof M, Tabata Y, Hiraoka Y, Fauzi MB. Multifunctionalised skin substitute of hybrid gelatin-polyvinyl alcohol bioinks for chronic wound: injectable vs. 3D bioprinting. Drug Deliv Transl Res 2024; 14:1005-1027. [PMID: 37938542 DOI: 10.1007/s13346-023-01447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/09/2023]
Abstract
Chronic wounds are challenging to heal and increase global mortality. The effectiveness of skin graft is limited by rejection, fibrosis, and inadequate donor site. Multifunctionalised-hydrogel skin substitutes promoted higher wound healing by maintaining the moisture microenvironment and permit gas exchange/nourishment in prolong cell viability/activity. The purpose of this study was to evaluate a skin substitute using two strategies; via injectable and 3D bioprinting technique. New hydrogel formulations that composed of gelatin (GE) and polyvinyl-alcohol (PVA) were constructed using a pre-mix crosslinking approach with genipin (GNP) to generate the biodegradable and biocompatible skin substitute with reduced secondary traumatic wound. GPVA5_GNP (6% GE: 5% PVA crosslinked with GNP) was the most stable hydrogel for wound healing application with the longest enzymatic degradation and stable hydrogel for absorption of excess wound exudates. Primary human dermal fibroblasts (HDFs) migrated extensively through 3D bioprinted hydrogels with larger average pore sizes and interconnected pores than injectable hydrogels. Moreover, 3D bioprinted GPVA hydrogels were biocompatible with HDFs and demonstrated > 90% cell viability. HDFs maintained their phenotype and positively expressed collagen type-I, vinculin, short and dense F-actin, alpha-smooth muscle actin, and Ki67. Additionally, the presence of GNP demonstrated antioxidant capacity and high-ability of angiogenesis. The utilisation of the 3D bioprinting (layer-by-layer) approach did not compromise the HDFs' growth capacity and biocompatibility with selected bioinks. In conclusion, it allows the cell encapsulation sustainability in a hydrogel matrix for a longer period, in promoting tissue regeneration and accelerating healing capacity, especially for difficult or chronic wound.
Collapse
Affiliation(s)
- Syafira Masri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, 15th Floor Pre-Clinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, 15th Floor Pre-Clinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
| | - Looi Qi Hao
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, 15th Floor Pre-Clinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
- My Cytohealth Sdn. Bhd, 56000, Kuala Lumpur, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, 15th Floor Pre-Clinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Science (LiMe), Kyoto University, Kyoto, 606-8500, Japan
| | - Yosuke Hiraoka
- Biomaterial Group, R&D Center, Yao City, 581-0000, Japan
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, 15th Floor Pre-Clinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia.
- My Cytohealth Sdn. Bhd, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Batool S, Liaqat U, Hussain Z. Preparation and physicochemical characterization of whitlockite/PVA/Gelatin composite for bone tissue regeneration. Front Chem 2024; 12:1355545. [PMID: 38420578 PMCID: PMC10900066 DOI: 10.3389/fchem.2024.1355545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
This work used a straightforward solvent casting approach to synthesize bone whitlockite (WH) based PVA/Gelatin composites. WH nanoparticles (NPs) were synthesized using the wet precipitation method, followed by their addition into the PVA/Gelatin matrix at concentrations from 1% to 10%. The physicochemical characterization of the prepared PVA/Gelatin/WH composite was carried out using ATR-FTIR, Optical profilometry, a Goniometer, a Universal tensile testing machine (UTM), and scanning electron microscopy (SEM) techniques. The ATR-FTIR analysis confirmed the formation of noncovalent interactions between polymeric chains and WH NPs and the incorporation of WH NPs into the polymer cavities. SEM analysis demonstrated increased surface roughness with the addition of WH NPs, supporting the results obtained through optical profilometry analysis. The mechanical properties of the prepared composite showed an increase in the tensile strength with the addition of WH filler up to 7% loading. The prepared composite has demonstrated an excellent swelling ability and surface wettability. The reported results demonstrate the exceptional potential of the prepared composite for bone tissue regeneration.
Collapse
Affiliation(s)
- Sadaf Batool
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Usman Liaqat
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Zakir Hussain
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
10
|
Zhang J, Liu Z, Tang Y, Wang S, Meng J, Li F. Explainable Deep Learning-Assisted Self-Calibrating Colorimetric Patches for In Situ Sweat Analysis. Anal Chem 2024; 96:1205-1213. [PMID: 38191284 DOI: 10.1021/acs.analchem.3c04368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Sweat has emerged as a compelling analyte for noninvasive biosensing technology because it contains a wealth of important biomarkers in hormones, organic biomacromolecules, and various ionic mixtures. These components offer valuable insights and can reflect an individual's physiological conditions. Here, we introduced an explainable deep learning (DL)-assisted wearable self-calibrating colorimetric biosensing analysis platform to efficiently and precisely detect the biomarker's concentration in sweat. Specifically, we have integrated the advantages of the colorimetric sensing method, adsorbing-swelling hydrogel, and explainable DL algorithms to develop an enzyme/indicator-immobilized colorimetric patch, which has reliable colorimetric sensing ability and excellent adsorbing-swelling function. A total of 5625 colorimetric images were collected as the analysis data set and assessed two DL algorithms and seven machine learning (ML) algorithms. Zn2+, glucose, and Ca2+ in human sweats could be facilely classified and quantified with 100% accuracy via the convolutional neural network (CNN) model, and the testing results of actual sweats via the DL-assisted colorimetric approach are 91.7-97.2% matching with the classical UV-vis spectrum. Class activation mapping (CAM) was utilized to visualize the inner working mechanism of CNN operation, which contributes to verify and explicate the design rationality of the noninvasive biosensing technology. An "end-to-end" model was established to ascertain the black box of the DL algorithm, promoted software design or principium optimization, and contributed facile indicators for health monitoring, disease prevention, and clinical diagnosis.
Collapse
Affiliation(s)
- Jiabing Zhang
- Xidian University, Xi'an 710071, P. R. China
- Graduate School of Medical School of Chinese PLA Hospital BeiJing, Beijing 100853, P. R. China
| | - Zhihao Liu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Yongtao Tang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
- Graduate School of Medical School of Chinese PLA Hospital BeiJing, Beijing 100853, P. R. China
| | - Shuang Wang
- Xidian University, Xi'an 710071, P. R. China
| | - Jianxin Meng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou 510632, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Zhang G, Wang X, Meng G, Xu T, Shu J, Zhao J, He J, Wu F. Enzyme-Mineralized PVASA Hydrogels with Combined Toughness and Strength for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:178-189. [PMID: 38116784 DOI: 10.1021/acsami.3c14006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Enzymatic mineralization is an advanced mineralization method that is often used to enhance the stiffness and strength of hydrogels, but often accompanied by brittle behavior. Moreover, the hydrogel systems with dense networks currently used for enzymatic mineralization are not ideal materials for bone repair applications. To address these issues, two usual bone repair hydrogels, poly(vinyl alcohol) (PVA) and sodium alginate (SA), were selected to form a double-network structure through repeated freeze-thawing and ionic cross-linking, followed by enzyme mineralization. The results demonstrated that both enzymatic mineralization and double-network structure improved the mechanical and biological properties and even exhibited synergistic effects. The mineralized PVASA hydrogels exhibited superior comprehensive mechanical properties, with a Young's modulus of 1.03 MPa, a storage modulus of 103 kPa, and an equilibrium swelling ratio of 132%. In particular, the PVASA hydrogel did not suffer toughness loss after mineralization, with a high toughness value of 1.86 MJ/m3. The prepared hydrogels also exhibited superior biocompatibility with a cell spreading area about 13 times that of mineralized PVA. It also effectively promoted cellular osteogenic differentiation in vitro and further promoted the formation of new bone in the femur defect region in vivo. Overall, the enzyme-mineralized PVASA hydrogel demonstrated combined strength and toughness and great potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Guangpeng Zhang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinying Wang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Guolong Meng
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Tingting Xu
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Shu
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jingwen Zhao
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jing He
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Fang Wu
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
12
|
Wu H, Zhang X, Wang Z, Chen X, Li Y, Fang J, Zheng S, Zhang L, Li C, Hao L. Preparation, properties and in vitro osteogensis of self-reinforcing injectable hydrogel. Eur J Pharm Sci 2024; 192:106617. [PMID: 37865283 DOI: 10.1016/j.ejps.2023.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/22/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
As an attractive biomaterial for bone reconstruction, injectable biomaterials have many prominent characteristics such as good biocompatibility and bone-filling ability. However, there are weak as load-bearing scaffolds. In this study, polyvinyl alcohol (PVA) and bioactive glass (BAG) were interpenetrated into sodium alginate (SA) network to obtain self-enhanced injectable hydrogel. The optimum ratio of PVA/SA/BAG hydrogel was determined based on injectability, gelation time and chemical characterization. Results showed that the selected ratio had the shortest gelation time of 3.5min, and the hydrogel had a rough surface and good coagulation property. The hydrogel was capable of carrying 1kg of weight by mineralization for 14 d The compressive strength, compressive modulus, and fracture energy of the hydrogel reached 0.12MPa, 0.376MPa and 17.750kJ m-2, respectively. Meanwhile, the hydrogel had high moisture content and dissolution rate, and it was sensitive to temperature and ionic strength. Hydroxyapatite was generated on the hydrogel surface, and the hydrogel pores increased, and the pore size enlarged. The biocompatibility of PVA/SA/BAG hydrogel was analyzed using hemolysis and cytotoxicity assays. Results revealed its good biocompatibility with low hemolysis rate and no cytotoxicity to MC3T3-E1 cells. The hydrogel was also found to promote the differentiation of MC3T3-E1 cells with significantly increased in ALP activity and expression of relevant differentiation factors. In vitro mineralization assay showed an increase in calcium nodules and calcification area, indicating the ability of hydrogel to promote mineralization MC3T3-E1 cells. These findings indicated that PVA/SA/BAG hydrogel had potential uses in the field of irregular bone-defect repair due to its injectability, cytocompatibility, and tailorable functionality.
Collapse
Affiliation(s)
- Hongyan Wu
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Xunming Zhang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Xi Chen
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Yi Li
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Jiayuan Fang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Shuo Zheng
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Libo Zhang
- College of Animal Science, Jilin University, Changchun, Jilin, China
| | - Changhong Li
- College of Life Sciences, Baicheng Normal University, Baicheng, Jilin, China.
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
13
|
Hu Y, Kang M, Yin X, Cheng Y, Liu Z, Wei Y, Huang D. High biocompatible polyacrylamide hydrogels fabricated by surface mineralization for subchondral bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2217-2231. [PMID: 37368489 DOI: 10.1080/09205063.2023.2230856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
The subchondral bone is an important part of cartilage which contains a large amount of hydroxyapatite. The mineral components of subchondral bone is the key factor which determines the biomechanical strength, and then affects the biological function of articular cartilage. Here, a mineralized polyacrylamide (PAM-Mineralized) hydrogel with good ALP activity, cell adhesion and biocompatibility was fabricated for subchondral bone tissue engineering. The micromorphology, composition and mechanical properties of PAM and PAM-Mineralized hydrogels were studied. The PAM hydrogels showed a porous structure, while the PAM-Mineralized hydrogels had well-distributed layers of hydroxyapatite mineralization on the surface. The XRD results show that the characteristic peak of hydroxyapatite (HA) was measured in PAM-Mineralized, indicating that the main component of the mineralized structure formed on the surface of the hydrogel after mineralization is HA. The formation of HA ectively decreased the rate of equilibrium swelling of the PAM hydrogel, with PAM-M reaching swelling equilibrium at 6 h. Meanwhile, compressive strength of PAM-Mineralized hydrogel (moisture state) reached 290 ± 30 kPa, compressive modulus reached 130 ± 4 kPa. PAM-Mineralized hydrogels did not affect the growth and proliferation of MC3T3-E1 cells. Surface mineralization of PAM hydrogel could significantly improve osteogenic differentiation of MC3T3-E1 cells. These results showed that PAM-Mineralized hydrogel could possess potential application in the field of subchondral bone tissue engineering.
Collapse
Affiliation(s)
- Yinchun Hu
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, P.R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P.R. China
| | - Min Kang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Xiangfei Yin
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Yizhu Cheng
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Zexin Liu
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, P.R. China
| | - Yan Wei
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, P.R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P.R. China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, P.R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P.R. China
| |
Collapse
|
14
|
Dibazar ZE, Zarei M, Mohammadikhah M, Oudah SK, Elyasi M, Kokabi H, Shahgolzari M, Asl LD, Azizy M. Crosslinking strategies for biomimetic hydrogels in bone tissue engineering. Biophys Rev 2023; 15:2027-2040. [PMID: 38192345 PMCID: PMC10771399 DOI: 10.1007/s12551-023-01141-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/03/2023] [Indexed: 01/10/2024] Open
Abstract
Bone tissue engineering has become a popular area of study for making biomimetic hydrogels to treat bone diseases. In this work, we looked at biocompatible hydrogels that can be injected into bone defects that require the smallest possible surgery. Mineral ions can be attached to polymer chains to make useful hydrogels that help bones heal faster. These ions are very important for the balance of the body. In the chemically-triggered sector, advanced hydrogels cross-linked by different molecular agents have many advantages, such as being selective, able to form gels, and having mechanical properties that can be modified. In addition, different photo-initiators can be used to make photo cross linkable hydrogels react quickly and moderately under certain light bands. Enzyme-triggered hydrogels are another type of hydrogel that can be used to repair bone tissue because they are biocompatible and gel quickly. We also look at some of the important factors mentioned above that could change how well bone tissue engineering works as a therapy. Finally, this review summarizes the problems that still need to be solved to make clinically relevant hydrogels.
Collapse
Affiliation(s)
- Zahra Ebrahimvand Dibazar
- Department of Oral and Maxillo Facial Medicine, Faculty of Dentistry, Tabriz Azad University of Medical Sciences, Tabriz, 5165687386 Iran
| | - Mahdi Zarei
- Student Research Committee, Tabriz university of medical sciences, Tabriz, Iran
| | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Shamam Kareem Oudah
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Milad Elyasi
- Otolaryngology department, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Hadi Kokabi
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, 65175-4171 Iran
| | - Mehdi Shahgolzari
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, 65175-4171 Iran
| | - Leila Delnabi Asl
- Department of Internal Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Azizy
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
15
|
Xiang C, Guo Z, Wang Z, Zhang J, Chen W, Li X, Wei X, Li P. Fabrication and characterization of porous, degradable, biocompatible poly(vinyl alcohol)/tannic acid/gelatin/hyaluronic acid hydrogels with good mechanical properties for cartilage tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2198-2216. [PMID: 37403564 DOI: 10.1080/09205063.2023.2230855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 07/06/2023]
Abstract
At present, articular cartilage repair and regeneration remain still one of the most concerned problems due to its poor self-healing capacity. Among the tissue engineering materials, hydrogel is considered an ideal candidate due to its similarity to extracellular matrices. Despite the good biocompatibility of gelatin and hyaluronic acid hydrogels, they are still limited to serve as tissue engineering materials by fast degradation rate and poor mechanical performances. In order to solve these problems, novel polyvinyl alcohol/tannic acid/gelatin/hyaluronic acid (PTGH) hydrogels are prepared by a facile physical crosslinked method. The PTGH hydrogels exhibit a high moisture content (85%) and porosity (87%). Meanwhile, the porous microstructures and mechanical properties (compressive strength: 0.85-2.59 MPa; compressive modulus: 57.88-124.27 kPa) can be controlled by adjusting the mass ratio of PT/GH. In vitro degradation analysis shows that the PTGH hydrogels can be degraded gradually in PBS solution with the presence of lysozyme. For this gel system, based on the hydrogen bonds among molecules, it improved the mechanical properties of gelatin and hyaluronic acid hydrogels. With the degradation of PTGH hydrogels, the release of gelatin and hyaluronic acid can have a continuous effort for the cartilage tissue regeneration and repair. In addition, in vitro cell culture results show that the PTGH hydrogels have no negative effects on chondrocytes growth and proliferation. In all, the PTGH hydrogels exhibit potential applications for articular cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Changxin Xiang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zijian Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zehua Wang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaona Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
16
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
17
|
Bergoglio M, Najmi Z, Cochis A, Miola M, Vernè E, Sangermano M. UV-Cured Bio-Based Acrylated Soybean Oil Scaffold Reinforced with Bioactive Glasses. Polymers (Basel) 2023; 15:4089. [PMID: 37896333 PMCID: PMC10610054 DOI: 10.3390/polym15204089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, a bio-based acrylate resin derived from soybean oil was used in combination with a reactive diluent, isobornyl acrylate, to synthetize a composite scaffold reinforced with bioactive glass particles. The formulation contained acrylated epoxidized soybean oil (AESO), isobornyl acrylate (IBOA), a photo-initiator (Irgacure 819) and a bioactive glass particle. The resin showed high reactivity towards radical photopolymerisation, and the presence of the bioactive glass did not significantly affect the photocuring process. The 3D-printed samples showed different properties from the mould-polymerised samples. The glass transition temperature Tg showed an increase of 3D samples with increasing bioactive glass content, attributed to the layer-by-layer curing process that resulted in improved interaction between the bioactive glass and the polymer matrix. Scanning electron microscope analysis revealed an optimal distribution on bioactive glass within the samples. Compression tests indicated that the 3D-printed sample exhibited higher modulus compared to mould-synthetized samples, proving the enhanced mechanical behaviour of 3D-printed scaffolds. The cytocompatibility and biocompatibility of the samples were evaluated using human bone marrow mesenchymal stem cells (bMSCs). The metabolic activity and attachment of cells on the samples' surfaces were analysed, and the results demonstrated higher metabolic activity and increased cell attachment on the surfaces containing higher bioactive glass content. The viability of the cells was further confirmed through live/dead staining and reseeding experiments. Overall, this study presents a novel approach for fabricating bioactive glass reinforced scaffolds using 3D printing technology, offering potential applications in tissue engineering.
Collapse
Affiliation(s)
- Matteo Bergoglio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (M.B.); (M.M.); (E.V.)
| | - Ziba Najmi
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, Università Del Piemonte Orientale (UPO), 28100 Novara, Italy; (Z.N.); (A.C.)
| | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, Università Del Piemonte Orientale (UPO), 28100 Novara, Italy; (Z.N.); (A.C.)
| | - Marta Miola
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (M.B.); (M.M.); (E.V.)
| | - Enrica Vernè
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (M.B.); (M.M.); (E.V.)
| | - Marco Sangermano
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy; (M.B.); (M.M.); (E.V.)
| |
Collapse
|
18
|
Li S, Xiaowen Y, Yang Y, Liu L, Sun Y, Liu Y, Yin L, Chen Z. Osteogenic and anti-inflammatory effect of the multifunctional bionic hydrogel scaffold loaded with aspirin and nano-hydroxyapatite. Front Bioeng Biotechnol 2023; 11:1105248. [PMID: 36761294 PMCID: PMC9902883 DOI: 10.3389/fbioe.2023.1105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Although tissue engineering offered new approaches to repair bone defects, it remains a great challenge to create a bone-friendly microenvironment and rebuild bone tissue rapidly by a scaffold with a bionic structure. In this study, a multifunctional structurally optimized hydrogel scaffold was designed by integrating polyvinyl alcohol (PVA), gelatin (Gel), and sodium alginate (SA) with aspirin (ASA) and nano-hydroxyapatite (nHAP). The fabrication procedure is through a dual-crosslinking process. The chemical constitution, crystal structure, microstructure, porosity, mechanical strength, swelling and degradation property, and drug-release behavior of the hydrogel scaffold were analyzed. Multi-hydrogen bonds, electrostatic interactions, and strong "egg-shell" structure contributed to the multi-network microstructure, bone tissue-matched properties, and desirable drug-release function of the hydrogel scaffold. The excellent performance in improving cell viability, promoting cell osteogenic differentiation, and regulating the inflammatory microenvironment of the prepared hydrogel scaffold was verified using mouse pre-osteoblasts (MC3T3-E1) cells. And the synergistic osteogenic and anti-inflammatory functions of aspirin and nano-hydroxyapatite were also verified. This study provided valuable insights into the design, fabrication, and biological potential of multifunctional bone tissue engineering materials with the premise of constructing a bone-friendly microenvironment.
Collapse
Affiliation(s)
- Shaoping Li
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Yundeng Xiaowen
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Yuqing Yang
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Libo Liu
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Yifan Sun
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Ying Liu
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Lulu Yin
- College of Dentistry, Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Chen
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China,*Correspondence: Zhiyu Chen,
| |
Collapse
|
19
|
Aziz K, El Achaby M, Mamouni R, Saffaj N, Aziz F. A novel hydrogel beads based copper-doped Cerastoderma edule shells@Alginate biocomposite for highly fungicide sorption from aqueous medium. CHEMOSPHERE 2023; 311:136932. [PMID: 36283436 DOI: 10.1016/j.chemosphere.2022.136932] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
The engineering of a novel biocomposite based on Cerastoderma edule shells doped with copper and alginate (Ce-Cu@Alg) forming hydrogel beads was used for batch and dynamic adsorption thiabendazole (TBZ) pesticide from water. The prepared biosorbent was analyzed by various characterization techniques such as scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Brunauer-Emmett-Teller analysis (BET), and energy dispersive spectroscopy (EDS), thermogravimetric and differential analysis (TGA-DTA). The results of the TBZ batch biosorption by Ce-Cu@Alg composite showed that the Langmuir model was the most adequate to describe the adsorption process, with a maximum adsorption capacity value of 21.98 mg/g. Moreover, the adsorption kinetics were adjusted by the pseudo-second-order model. The optimal conditions determined by the RSM approach coupled with the CCD design were 100 ppm of initial TBZ concentration, a Ce-Cu@Alg beads dose of 6 g/L and a contact time of 180 min for maximum removal of 83.42%. On the other hand, the TBZ sorption on a fixed bed of Ce-Cu@Alg beads was effective at high column height, low effluent flow and low solution concentration. The Thomas model was best fitted to the kinetic data. This study shows the possibility of using this new hybrid biocomposite in the industrial sector to treat large effluent volumes.
Collapse
Affiliation(s)
- Khalid Aziz
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Mounir El Achaby
- Materials Science and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Rachid Mamouni
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Nabil Saffaj
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity & Climate Changes, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco; National Centre for Research and Study on Water and Energy (CNEREE), University Cadi Ayyad, Marrakech, Morocco.
| |
Collapse
|
20
|
Du J, Zhang Y, Wang J, Xu M, Qin M, Zhang X, Huang D. Highly resilient porous polyurethane composite scaffolds filled with whitlockite for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:845-859. [PMID: 36346014 DOI: 10.1080/09205063.2022.2145871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present work is intended to provide a base for further investigation of the composite scaffolds for bone tissue engineering, and whitlockite/polyurethane (WH/PU) scaffolds, in particular. WH Ca18Mg2(HPO4)2(PO4)12 was successfully prepared by means of a chemical reaction between Ca(OH)2, Mg(OH)2 and H3PO4. WH/PU scaffolds were synthesized via in situ polymerization. Synthesized WH particles and WH/PU composite scaffolds were characterized using FTIR, XRD, SEM and EDS. The porosity of scaffolds was calculated by the liquid displacement method. The water contact angle of scaffolds was tested. Mechanical characterization of WH/PU composite scaffolds was evaluated according to monotonic and cyclic compression examination. MC3T3-E1 cells were employed to evaluate the cytocompatibility of scaffolds. The results showed that WH and PU were completely integrated into composite biomaterials. The maximum compressive strength and elastic modulus of WH/PU composite scaffold reached up to 5.2 and 14.1 MPa, respectively. WH/PU composite scaffold had maximum 73% porosity. The minimum contact angle of WH/PU composite scaffold was 89.16°. WH/PU composite scaffolds have a good elasticity. Cyclic compression tests showed that scaffold could recover 90% of its original shape 1 h after removing the load. WH/PU composite scaffolds exhibited a high affinity to MC3T3-E1 cells. WH/PU composite scaffolds significantly promoted proliferation and alkaline phosphatase activity of MC3T3-E1 cells when compared to those grown on tissue culture well plates. It is suggested that the WH/PU scaffolds might be suitable for the application of bone tissue engineering.
Collapse
Affiliation(s)
- Jingjing Du
- Analytical & Testing Center, Hainan University, Haikou 570228, P. R. China
| | - Yang Zhang
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jiaqi Wang
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Mengjie Xu
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Miao Qin
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiumei Zhang
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
21
|
A Porous Hydrogel with High Mechanical Strength and Biocompatibility for Bone Tissue Engineering. J Funct Biomater 2022; 13:jfb13030140. [PMID: 36135575 PMCID: PMC9504119 DOI: 10.3390/jfb13030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Polyvinyl alcohol (PVA) hydrogels are considered to be ideal materials for tissue engineering due to their high water content, low frictional behavior, and good biocompatibility. However, their limited mechanical properties restrict them from being applied when repairing load-bearing tissue. Inspired by the composition of mussels, we fabricated polyvinyl alcohol/hydroxyapatite/tannic acid (PVA/HA/TA) hydrogels through a facile freeze–thawing method. The resulting composite hydrogels exhibited high moisture content, porous structures, and good mechanical properties. The compressive strength and tensile strength of PVA hydrogels were improved from 0.77 ± 0.11 MPa and 0.08 ± 0.01 MPa to approximately 3.69 ± 0.41 MPa and 0.43 ± 0.01 MPa, respectively, for the PVA/HA/1.5TA hydrogel. The toughness and the compressive elastic modulus of PVA/HA/1.5TA hydrogel also attained 0.86 ± 0.02 MJm−3 and 0.11 ± 0.02 MPa, which was approximately 11 times and 5 times higher than the PVA hydrogel, respectively. The PVA/HA/1.5TA hydrogel also exhibited fatigue resistance abilities. The mechanical properties of the composite hydrogels were improved through the introduction of TA. Furthermore, in vitro PVA/HA/1.5TA hydrogel showed excellent cytocompatibility by promoting cell proliferation in vitro. Scanning electron microscopy analysis indicated that PVA/HA/1.5TA hydrogels provided favorable circumstances for cell adhesion. The aforementioned results also indicate that the composite hydrogels had potential applications in bone tissue engineering, and this study provides a facile method to improve the mechanical properties of PVA hydrogel.
Collapse
|
22
|
Xue X, Hu Y, Wang S, Chen X, Jiang Y, Su J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater 2022; 12:327-339. [PMID: 35128180 PMCID: PMC8784310 DOI: 10.1016/j.bioactmat.2021.10.029] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Bone tissue engineering has emerged as a significant research area that provides promising novel tools for the preparation of biomimetic hydrogels applied in bone-related diseases (e.g., bone defects, cartilage damage, osteoarthritis, etc.). Herein, thermal sensitive polymers (e.g., PNIPAAm, Soluplus, etc.) were introduced into main chains to fabricate biomimetic hydrogels with injectability and compatibility for those bone defect need minimally invasive surgery. Mineral ions (e.g., calcium, copper, zinc, and magnesium), as an indispensable role in maintaining the balance of the organism, were linked with polymer chains to form functional hydrogels for accelerating bone regeneration. In the chemically triggered hydrogel section, advanced hydrogels crosslinked by different molecular agents (e.g., genipin, dopamine, caffeic acid, and tannic acid) possess many advantages, including extensive selectivity, rapid gel-forming capacity and tunable mechanical property. Additionally, photo crosslinking hydrogel with rapid response and mild condition can be triggered by different photoinitiators (e.g., I2959, LAP, eosin Y, riboflavin, etc.) under specific wavelength of light. Moreover, enzyme triggered hydrogels were also utilized in the tissue regeneration due to its rapid gel-forming capacity and excellent biocompatibility. Particularly, some key factors that can determine the therapy effect for bone tissue engineering were also mentioned. Finally, brief summaries and remaining issues on how to properly design clinical-oriented hydrogels were provided in this review.
Collapse
Affiliation(s)
- Xu Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai, 201900, China
| | - Xiao Chen
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- Shanghai Clinical Research Center for Aging and Medicine, Shanghai, 200040, China
| |
Collapse
|
23
|
Wang BX, Xu W, Yang Z, Wu Y, Pi F. An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties to Functional Applications. Macromol Rapid Commun 2022; 43:e2100785. [PMID: 35075726 DOI: 10.1002/marc.202100785] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/04/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels, as the most typical elastomer materials with three-dimensional network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility and bio-compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state-of-the-art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross-linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, we have done this review with the promises and challenges for the future evolution of hydrogels and their biological applications. cross-linking methods; functional applications; hydrogels; material resources This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Zhuchuang Yang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
24
|
Zou Y, Wang P, Fang S, Li H, Yu Y, Liu Y, Zhang H, Guo J. Near-infrared light-responsive shape memory hydrogels with remolding and excellent mechanical performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj00056c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: In recent years, intelligent shape memory hydrogels (SMHs) have received extensive attention. However, due to the limitations of poor mechanical properties and the single functionality of soft materials, the...
Collapse
|
25
|
李 永, 周 俊, 胡 书, 王 家, 王 坤, 王 伟. [Methods of improving the mechanical properties of hydrogels and their research progress in bone tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1615-1622. [PMID: 34913320 PMCID: PMC8669179 DOI: 10.7507/1002-1892.202107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/13/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To review the methods of improving the mechanical properties of hydrogels and the research progress in bone tissue engineering. METHODS The recent domestic and foreign literature on hydrogels in bone tissue engineering was reviewed, and the methods of improving the mechanical properties of hydrogels and the effect of bone repair in vivo and in vitro were summarized. RESULTS Hydrogels are widely used in bone tissue engineering, but their mechanical properties are poor. Improving the mechanical properties of hydrogels can enhance bone repair. The methods of improving the mechanical properties of hydrogels include the construction of dual network structures, inorganic nanoparticle composites, introduction of conductive materials, and fiber network reinforcement. These methods can improve the mechanical properties of hydrogels to various degrees while also demonstrating a significant bone repair impact. CONCLUSION The mechanical properties of hydrogels can be effectively improved by modifying the system, components, and fiber structure, and bone repair can be effectively promoted.
Collapse
Affiliation(s)
- 永伟 李
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| | - 俊鹏 周
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| | - 书刚 胡
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| | - 家麟 王
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| | - 坤正 王
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| | - 伟 王
- 西安交通大学第二附属医院骨关节外科(西安 710004)Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Shaanxi, 710004, P.R.China
| |
Collapse
|
26
|
Zhao D, Nuntanaranont T, Thuaksubun N, Meesane J. Osteo-conductive hydrogel scaffolds of poly(vinylalcohol) with silk fibroin particles for bone augmentation: Structural formation and in vitro testing. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211055720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone augmentation is an effective approach to treat patients who have bone loss at the maxillofacial area. In this research, osteo-conductive hydrogel scaffolds of poly(vinylalcohol) (PVA) with silk fibroin particles (SFP) were fabricated. The SFP were formed by dropping a solution of silk fibroin into acetone at different volume ratios (v/v) of silk to acetone: 1:3 (SFP-3), 1:6 (SFP-6), 1:12 (SFP-12), and 1:24 (SFP-24). The various SFP solutions were mixed with a PVA solution before fabrication into hydrogels by freeze-thawing. Afterwards, the hydrogels were freeze-dried to fabricate the scaffolds. The particle size and charge, molecular organization, and morphology of the SFP were characterized and observed with dynamic light scattering, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy (SEM). The morphologies of the hydrogel scaffolds were observed with SEM. Swelling percentage was used to assess the swelling behavior of the hydrogel scaffolds. The mechanical properties were also tested. The scaffolds were cultured with osteoblast cells to test the biological performance, cell viability and performance, alkaline phosphatase activity, calcium deposition, and total protein. The SFP-24 was the smallest in particle size. PVA hydrogel scaffolds with SFP-24 demonstrated low particle aggregation, good particle distribution within the scaffold, and a lower swelling percentage. PVA hydrogel scaffolds with SFP had higher mechanical stability than scaffolds without the SFP. Furthermore, the PVA hydrogel scaffold with SFP-24 had better biological performance. Finally, the results demonstrated that PVA hydrogel scaffolds with SFP-24 showed good osteo-conductive performance which is promising for bone augmentation.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thongchai Nuntanaranont
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nuttawut Thuaksubun
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jirut Meesane
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
27
|
Poly (caprolactone)/sodium-alginate-functionalized halloysite clay nanotube nanocomposites: Potent biocompatible materials for wound healing applications. Int J Pharm 2021; 607:121048. [PMID: 34454027 DOI: 10.1016/j.ijpharm.2021.121048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022]
Abstract
In this study, halloysite nanotubes (HNTs) were subjected to surface functionalization using sodium alginate and incorporated into poly(caprolactone) (PCL) to fabricate nanocomposites for potential wound healing applications. The nanocomposite films were fabricated through the solution casting technique and characterized using various instrumental methods. The films exhibited enhanced thermal and mechanical properties. FE-SEM and AFM analyses confirmed the uniform dispersion of the HNTs and increased roughness of the films, respectively. The swelling properties, in-vitro enzymatic degradation, and anti-inflammatory activity of the films were also analyzed. The MTT assay performed using NIH3T3 cell lines revealed enhanced cell proliferation (126 ± 1.38) of 5 wt% film. Besides, the cell adhesion tests of the films revealed their cytocompatibility. The scratch assay tests conducted for observing the effectiveness of the films for wound closure showed that the 5 wt% film offered a higher rate of fibroblast cell migration (32.24 ± 0.49) than the pristine PCL film. The HRBCMS assay demonstrated the hemocompatibility of these films. The biological test results indicated the delayed enzymatic degradability and haemocompatiblity of nanocomposites with enhanced cell adhesion, cell proliferation, and cell migration capabilities with respect to fibroblast cells. In summary, the synthesized nanocomposite films can be effectively used in wound healing applications after further clinical trials.
Collapse
|
28
|
Chocholata P, Kulda V, Dvorakova J, Supova M, Zaloudkova M, Babuska V. In Situ Hydroxyapatite Synthesis Enhances Biocompatibility of PVA/HA Hydrogels. Int J Mol Sci 2021; 22:ijms22179335. [PMID: 34502243 PMCID: PMC8431644 DOI: 10.3390/ijms22179335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/17/2023] Open
Abstract
Bone tissue engineering tries to simulate natural behavior of hard tissues. This study aimed to produce scaffolds based on polyvinyl alcohol (PVA) and hyaluronic acid (HA) with hydroxyapatite (HAp) incorporated in two different ways, by in situ synthesis and physical mixing of pre-prepared HAp. In situ synthesis resulted in calcium deficient form of HAp with lower crystallinity. The proliferation of human osteoblast-like cells MG-63 proved to be better in the scaffolds with in situ synthesized HAp compared to those with physically mixed pre-prepared HAp. For scaffolds with PVA/HA/HAp ratio 3:1:2, there was significantly higher initial adhesion (p = 0.0440), as well as the proliferation in the following days (p < 0.001). It seemed to be advantageous improve the properties of the scaffold by in situ synthesizing of HAp directly in the organic matrix.
Collapse
Affiliation(s)
- Petra Chocholata
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic; (P.C.); (V.K.); (J.D.)
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic; (P.C.); (V.K.); (J.D.)
| | - Jana Dvorakova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic; (P.C.); (V.K.); (J.D.)
| | - Monika Supova
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holesovickach 41, 182 09 Prague, Czech Republic; (M.S.); (M.Z.)
| | - Margit Zaloudkova
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holesovickach 41, 182 09 Prague, Czech Republic; (M.S.); (M.Z.)
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Plzen, Czech Republic; (P.C.); (V.K.); (J.D.)
- Correspondence: ; Tel.: +420-377-593-281
| |
Collapse
|
29
|
Kouser S, Sheik S, Prabhu A, Nagaraja GK, Prashantha K, D'souza JN, Navada MK, Manasa DJ. Effects of reinforcement of sodium alginate functionalized halloysite clay nanotubes on thermo-mechanical properties and biocompatibility of poly (vinyl alcohol) nanocomposites. J Mech Behav Biomed Mater 2021; 118:104441. [PMID: 33714903 DOI: 10.1016/j.jmbbm.2021.104441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
In the present work sodium alginate functionalized halloysite nanotubes (HNTs) reinforced poly (vinyl alcohol) nanocomposite films were prepared by solution casting technique. Sodium alginate surface functionalizing on the HNTs through hydrogen bonding was confirmed by spectroscopic and morphological analysis. The functionalized HNTs were successfully incorporated into the PVA matrix. Further, the films were characterized by using FTIR, TGA, XRD, SEM, AFM, UTM, WCA and swelling ratio analysis. The obtained results indicated improved physico-thermal properties, and uniform distribution of nanotubes in the matrix and roughness of the surface compared with the pristine PVA films. After inclusion of functionalized nanotubes causes enhancement of tensile strength as well as young's modulus of the nanocomposite films. Water contact angle measurement was carried out to know the hydrophilic or hydrophobic nature of the films and results were correlated with swelling ratio analysis. Furthermore, the films were analyzed for in-vitro biocompatibility studies. In -vitro enzymatic degradation was carried out in PBS media and cellular behaviour studies were analyzed using NIH3T3 cell lines. The results showed enhancement in the enzymatic degradation, proliferation, adhesion activity compared to that of pristine PVA films. In extension, nanocomposite films were subjected to hemocompatibility studies using human erythrocyte. The results revealed that nanocomposite films were biocompatible and hemocompatible. The fabricated films can be used in biomedical application.
Collapse
Affiliation(s)
- Sabia Kouser
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 (D.K.), Karnataka, India
| | - Sareen Sheik
- Department of Chemistry, P.A. College of Engineering, Mangalore, 574153(D.K.), Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road Deralakatte, Mangalore, 575018 (D.K.), Karnataka, India
| | - G K Nagaraja
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 (D.K.), Karnataka, India.
| | - Kalappa Prashantha
- ACU-Centre for Research and Innovation, Faculty of Natural Sciences, Adichunchanagiri University, B.G. Nagara, Mandya District, 571448, Karnataka, India
| | - Josline Neetha D'souza
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 (D.K.), Karnataka, India
| | - Meghana K Navada
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 (D.K.), Karnataka, India
| | - D J Manasa
- Department of Botany, Davanagere University, Davanagere, 577007, Karnataka, India
| |
Collapse
|
30
|
Cheng Y, Hu Y, Xu M, Qin M, Lan W, Huang D, Wei Y, Chen W. High strength polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel fabricated by Cold-Drawn method for cartilage tissue substitutes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1836-1851. [PMID: 32529914 DOI: 10.1080/09205063.2020.1782023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Poly (vinyl alcohol) (PVA) hydrogel has been considered as promising cartilage replacement materials due to its excellent characteristics such as high water content, low frictional behavior and excellent biocompatibility. However, lack of sufficient mechanical properties and cytocompatibility are two key obstacles for PVA hydrogel to be applied as cartilage substitutes. Herein, Polyacrylic acid (PAA) has been introduced into PVA hydrogel to balance these problems. Compared with pure PVA hydrogel, PVA/PAA hydrogel has the equal excellent biocompatibility, and its cell adhesion is significantly improved. In order to further improve the mechanical properties of hydrogels, Cold-Drawn treatment of hydrogels is performed in this paper. Compared to pure 12% PVA hydrogel, 40.8-fold, 50.8-fold, and 46.8-fold increase in tensile strength, tensile modulus, and toughness, respectively, which can be obtained from 12% PVA/PAA Cold-Drawn hydrogel. These biocompatible composite hydrogels have a great application potential as cartilage tissue substitutes.
Collapse
Affiliation(s)
- Yizhu Cheng
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Mengjie Xu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Miao Qin
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Weiwei Lan
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| | - Weiyi Chen
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, PR China
| |
Collapse
|
31
|
Amiryaghoubi N, Fathi M, Pesyan NN, Samiei M, Barar J, Omidi Y. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine. Med Res Rev 2020; 40:1833-1870. [PMID: 32301138 DOI: 10.1002/med.21672] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
The loss of bone tissue is a striking challenge in orthopedic surgery. Tissue engineering using various advanced biofunctional materials is considered a promising approach for the regeneration and substitution of impaired bone tissues. Recently, polymeric supportive scaffolds and biomaterials have been used to rationally promote the generation of new bone tissues. To restore the bone tissue in this context, biofunctional polymeric materials with significant mechanical robustness together with embedded materials can act as a supportive matrix for cellular proliferation, adhesion, and osteogenic differentiation. The osteogenic regeneration to replace defective tissues demands greater calcium deposits, high alkaline phosphatase activity, and profound upregulation of osteocalcin as a late osteogenic marker. Ideally, the bioactive polymeric scaffolds (BPSs) utilized for bone tissue engineering should impose no detrimental impacts and function as a carrier for the controlled delivery and release of the loaded molecules necessary for the bone tissue regeneration. In this review, we provide comprehensive insights into different synthetic and natural polymers used for the regeneration of bone tissue and discuss various technologies applied for the engineering of BPSs and their physicomechanical properties and biological effects.
Collapse
Affiliation(s)
- Nazanin Amiryaghoubi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Noroozi Pesyan
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|