1
|
Li J, Li C, Wu X, Yu S, Sun G, Ding P, Lu S, Zhang L, Yang P, Peng Y, Fu J, Wang L. Bioinformatics analysis of immune infiltration in human diabetic retinopathy and identification of immune-related hub genes and their ceRNA networks. Sci Rep 2024; 14:24003. [PMID: 39402134 PMCID: PMC11473686 DOI: 10.1038/s41598-024-75055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2024] [Indexed: 10/17/2024] Open
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication in diabetic patients, and recent studies have shown that immune regulatory mechanisms are closely associated with retinal damage in DR. Therefore, this study focused on exploring immune cells and immune-related genes (IRGs) in DR and gaining insight into the ceRNA mechanisms by which IRGs regulate DR progression. Four datasets from human DR model retinal tissues were obtained from the Gene Expression Omnibus (GEO) database. R software was first used to identify differentially expressed mRNAs (DE-mRNAs) in the dataset GSE160306-mRNAs, then the distribution of immune cells in the gene matrix was analyzed by xCell and ImmuCellAI, ImmPort and InnateDB database were used to obtain immune-related hub genes (IRHGs) in the DR, and finally the STRING online tool and Cytoscape to construct the immune-related ceRNA network. The datasets GSE102485, GSE160308 and GSE160306-lncRNAs were used to validate the results of the ceRNA network further. The results of immune cell infiltration analysis showed that macrophages are important immune cells in DR; immune-related gene screening showed that FCGR2B is an IRHG in DR, and 2 immune-related ceRNA networks of IRHG were obtained: DDN-AS1/miR-10a-5p/FCGR2B and LINC01515/miR-10a-5p/FCGR2B. Our study suggests that infiltration of immune cells, especially the immune role of macrophages, is an important component of DR progression; the immune-related hub gene FCGR2B and its ceRNA network may be a key regulatory network for DR progression. The discovery of key immune cells, IRHG and ceRNA networks in this study may provide new prospects for early intervention and targeted treatment of DR.
Collapse
Affiliation(s)
- Jingru Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Chaozhong Li
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xinyu Wu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Shuai Yu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Guihu Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Peng Ding
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Si Lu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Lijiao Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Ping Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Yunzhu Peng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Jingyun Fu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China.
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China.
| |
Collapse
|
2
|
Liang P, Ness J, Rapp J, Boneva S, Schwämmle M, Jung M, Schlunck G, Agostini H, Bucher F. Characterization of the angiomodulatory effects of Interleukin 11 cis- and trans-signaling in the retina. J Neuroinflammation 2024; 21:230. [PMID: 39294742 PMCID: PMC11412048 DOI: 10.1186/s12974-024-03223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND The IL-6 cytokine family, with its crucial and pleiotropic intracellular signaling pathway STAT3, is a promising target for treating vasoproliferative retinal diseases. Previous research has shown that IL-6 cis-signaling (via membrane-bound receptors) and trans-signaling (via soluble receptors) can have distinct effects on target cells, leading to their application in various disease treatments. While IL-6 has been extensively studied, less is known about the angiogenic effects of IL-11, another member of the IL-6 family, in the retina. Therefore, the aim of this study was to characterize the effects of IL-11 on retinal angiogenesis. MAIN TEXT In vitreous samples from proliferative diabetic retinopathy (PDR) patients, elevated levels of IL-11Rα, but not IL-11, were detected. In vitro studies using vascular endothelial cells revealed distinct effects of cis- and trans-signaling: cis-signaling (IL-11 alone) had antiangiogenic effects, while trans-signaling (IL-11 + sIL-11Rα) had proangiogenic and pro-migratory effects. These differences can be attributed to their individual signaling responses and associated transcriptomic changes. Notably, no differences in cis- and trans-signaling were detected in primary mouse Müller cell cultures. STAT3 and STAT1 siRNA knockdown experiments revealed opposing effects on IL-11 signaling, with STAT3 functioning as an antiproliferative and proapoptotic player while STAT1 acts in opposition to STAT3. In vivo, both IL-11 and IL-11 + sIL-11Rα led to a reduction in retinal neovascularization. Immunohistochemical staining revealed Müller cell activation in response to treatment, suggesting that IL-11 affects multiple retinal cell types in vivo beyond vascular endothelial cells. CONCLUSIONS Cis- and trans-signaling by IL-11 have contrasting angiomodulatory effects on endothelial cells in vitro. In vivo, cis- and trans-signaling also influence Müller cells, ultimately determining the overall angiomodulatory impact on the retina, highlighting the intricate interplay between vascular and glial cells in the retina.
Collapse
Affiliation(s)
- Paula Liang
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
| | - Jan Ness
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Julian Rapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
- Department of Medicine I, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
| | - Melanie Schwämmle
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Malte Jung
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany.
| |
Collapse
|
3
|
Tu Y, Luo Y, Zhao Q, Zeng Y, Leng K, Zhu M. Role of macrophage in ocular neovascularization. Heliyon 2024; 10:e30840. [PMID: 38770313 PMCID: PMC11103465 DOI: 10.1016/j.heliyon.2024.e30840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Ocular neovascularization is the leading cause of blindness in clinical settings. Pathological angiogenesis of the eye can be divided into corneal neovascularization (CoNV), retinal neovascularization (RNV, including diabetic retinopathy and retinopathy of prematurity), and choroidal neovascularization (CNV) based on the anatomical location of abnormal neovascularization. Although anti-Vascular endothelial growth factor (VEGF) agents have wide-ranging clinical applications and are an effective treatment for neovascular eye disease, many deficiencies in this treatment strategy remain. Recently, emerging evidence has demonstrated that macrophages are vital during the process of physiological and pathological angiogenesis. Monocyte-macrophage lineage is diverse and plastic, they can shift between different activation modes and have different functions. Due to the obvious regulatory effect of macrophages on inflammation and angiogenesis, macrophages have been increasingly studied in the field of ophthalmology. Here, we detail how macrophage activated and the role of different subtypes of macrophages in the pathogenesis of ocular neovascularization. The complexity of macrophages has recently taken center stage owing to their subset diversity and tightly regulated molecular and metabolic phenotypes. In this review, we reveal the functional and phenotypic characterization of macrophage subsets associated with ocular neovascularization, more in-depth research is needed to explore the specific mechanisms by which macrophages regulate angiogenesis as well as macrophage polarization. Targeted regulation of macrophage differentiation based on their phenotype and function could be an effective approach to treat and manage ocular neovascularization in the future.
Collapse
Affiliation(s)
- Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yalu Luo
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Qingliang Zhao
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanfeng Zeng
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kai Leng
- Department of Medical Informatics, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Cook SA. Understanding interleukin 11 as a disease gene and therapeutic target. Biochem J 2023; 480:1987-2008. [PMID: 38054591 PMCID: PMC10754292 DOI: 10.1042/bcj20220160] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Interleukin 11 (IL11) is an elusive member of the IL6 family of cytokines. While initially thought to be a haematopoietic and cytoprotective factor, more recent data show instead that IL11 is redundant for haematopoiesis and toxic. In this review, the reasons that led to the original misunderstandings of IL11 biology, which are now understandable, are explained with particular attention on the use of recombinant human IL11 in mice and humans. Following tissue injury, as part of an evolutionary ancient homeostatic response, IL11 is secreted from damaged mammalian cells to signal via JAK/STAT3, ERK/P90RSK, LKB1/mTOR and GSK3β/SNAI1 in autocrine and paracrine. This activates a program of mesenchymal transition of epithelial, stromal, and endothelial cells to cause inflammation, fibrosis, and stalled endogenous tissue repair, leading to organ failure. The role of IL11 signalling in cell- and organ-specific pathobiology is described, the large unknowns about IL11 biology are discussed and the promise of targeting IL11 signalling as a therapeutic approach is reviewed.
Collapse
Affiliation(s)
- Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
5
|
Ye W, Wang Q, Zhao L, Wang C, Zhang D, Zhou M, Chen F, Wang W, Zhu Z, Guo W, Liu Y, Zou H, Xue Y. Blockade of IL-11 Trans-Signaling or JAK2/STAT3 Signaling Ameliorates the Profibrotic Effect of IL-11. Immunol Invest 2023; 52:703-716. [PMID: 37401665 DOI: 10.1080/08820139.2023.2222746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is a rare rheumatic disease characterized by vascular damage, dysregulated immune response, and fibrosis. Interleukin-11 (IL-11) is upregulated in SSc. This study aimed to investigate the pathological and therapeutic role of the IL-11 trans-signaling pathway in SSc. METHODS Plasma IL-11 level was evaluated in 32 patients with SSc and 15 healthy controls, while the expression levels of ADAM10, ADAM17, IL-11, IL-11 Rα, or IL-11 co-stained with CD3 or CD163 in the skin of SSc patients and healthy controls were analyzed. Fibroblasts were treated with IL-11 and ionomycin to evaluate the profibrotic effect of IL-11 trans-signaling pathway. TJ301 (sgp130Fc) and WP1066 (a JAK2/STAT3 inhibitor) intervention groups were set up to investigate the antifibrotic effect of targeting IL-11. RESULTS Levels of plasma IL-11 were extremely low in most SSc patients and healthy controls. In contrast, levels of IL-11, IL-11 Rα, and ADAM10, but not ADAM17, were significantly elevated in the skin of SSc patients. Moreover, the numbers of IL-11+ CD3+ cells and IL-11+ CD163+ cells were increased in the skin of SSc patients. Besides, IL-11 and ADAM10 were also elevated in the skin and pulmonary of bleomycin-induced SSc mouse. Fibroblasts co-stimulated with IL-11 and ionomycin showed increased expression of COL3 and phosphorylation of STAT3, which could be inhibited by TJ301 or WP1066. TJ301 also ameliorated skin and lung fibrosis in BLM-induced SSc mouse. CONCLUSIONS IL-11 induces fibrosis in SSc by regulating the trans-signaling pathway. Blockage of sgp130Fc or inhibition of the JAK2/STAT3 pathway could ameliorate the profibrotic effect of IL-11.
Collapse
Affiliation(s)
- Wenjing Ye
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zhao
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Changcheng Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dandan Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengyu Zhou
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fangfang Chen
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiguo Wang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zaihua Zhu
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenyu Guo
- Clinical Development, I-Mab Biopharma, Hangzhou, China
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Yuan L, Zhang L, Liu X, Li S, Zou J. Identification of differential immune cells and related diagnostic genes in patients with diabetic retinopathy. Medicine (Baltimore) 2023; 102:e35331. [PMID: 37773794 PMCID: PMC10545100 DOI: 10.1097/md.0000000000035331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a frequent microvascular abnormality associated with diabetes mellitus. The loss of retinal immunity is an important underlying mechanism of the DR pathogenesis, including the change in retinal immunosuppressive characteristics and the blood-retinal barrier disturbances. Therefore, this investigation screens immune-associated biomarkers in the retina of DR patients. METHODS In this investigation, the differential expression genes (DEGs) were acquired from Gene Expression Omnibus data GSE102485. The relative expression of 22 immune cell types in each sample was calculated by CIBERSORT analysis based on gene expression profile. The core module closely associated with immune infiltration was also screened by weighted gene co-expression network analysis (WGCNA). The overlapping DEGs and module genes were the differentially expressed immune-related genes (DEIRGs). With the help of the genes/proteins (STRING) database and MCODE plug-in, the protein-protein interaction (PPI) network hub genes were screened. Furthermore, the miRNA-hub genes and transcription factor (TF)-hub gene regulatory network were used to explain the possible signal pathways in DR. The hub genes verification was carried out by Polymerase Chain Reaction. Lastly, select CSF1R and its related pathway factor p-ERK1/2 to verify their expression in RF/6A under normal and high glucose environments. RESULTS A total of 3583 principle DEGs, that enriched immune-related GO terms and infection-related pathways were identified. CIBERSORT analysis showed that naive B cells, M2 macrophages, eosinophils, and neutrophil infiltration were significantly different. After intersecting 3583 DEGs, 168 DEIRGs and 181 module genes were identified. Furthermore, 15 hub genes, TYROBP, FCGR3A, CD163, FCGR2A, PTPRC, TLR2, CD14, VSIG4, HCK, CSF1R, LILRB2, ITGAM, CTSS, CD86, and LY86, were identified via PPI network. The identified hub genes were up-regulated in DR and showed a high DR diagnostic value. Regulatory networks of the miRNA- and TF-hub genes can help understand the etiology of disease at the genetic level and optimize treatment strategy. CD14, VSIG4, HCK, and CSF1R were verified to be highly expressed in the vitreous of patients with DR. n RF/6A, CSF1R, and p-ERK1/2 were significantly overexpressed under high glucose conditions, with a statistically significant difference. CONCLUSION This investigation identified 15 genes (TYROBP, FCGR3A, CD163, FCGR2A, PTPRC, TLR2, CD14, VSIG4, HCK, CSF1R, LILRB2, ITGAM, CTSS, CD86, and LY86) as hub DR genes, which may serve as a new potential point for the diagnosis and treatment of DR. CSF1R/p-ERK1/2 signaling may promotes the development of retinal neovascularization.
Collapse
Affiliation(s)
- LinHui Yuan
- Department of Ophthalmology, the Third People’s Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - LiJun Zhang
- Department of Ophthalmology, the Third People’s Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Xin Liu
- Department of Ophthalmology, the Third People’s Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Sheng Li
- Department of Ophthalmology, the Third People’s Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - JiXin Zou
- Department of Ophthalmology, the Third People’s Hospital Affiliated to Dalian Medical University, Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
7
|
Abu El-Asrar AM, De Hertogh G, Allegaert E, Nawaz MI, Abouelasrar Salama S, Gikandi PW, Opdenakker G, Struyf S. Macrophage-Myofibroblast Transition Contributes to Myofibroblast Formation in Proliferative Vitreoretinal Disorders. Int J Mol Sci 2023; 24:13510. [PMID: 37686317 PMCID: PMC10487544 DOI: 10.3390/ijms241713510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Inflammation and fibrosis are key features of proliferative vitreoretinal disorders. We aimed to define the macrophage phenotype and investigate the role of macrophage-myofibroblast transition (MMT) in the contribution to myofibroblast populations present in epiretinal membranes. Vitreous samples from proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR) and nondiabetic control patients, epiretinal fibrovascular membranes from PDR patients and fibrocellular membranes from PVR patients, human retinal Müller glial cells and human retinal microvascular endothelial cells (HRMECs) were studied by ELISA, immunohistochemistry and flow cytometry analysis. Myofibroblasts expressing α-SMA, fibroblast activation protein-α (FAP-α) and fibroblast-specific protein-1 (FSP-1) were present in all membranes. The majority of CD68+ monocytes/macrophages co-expressed the M2 macrophage marker CD206. In epiretinal membranes, cells undergoing MMT were identified by co-expression of the macrophage marker CD68 and myofibroblast markers α-SMA and FSP-1. Further analysis revealed that CD206+ M2 macrophages co-expressed α-SMA, FSP-1, FAP-α and ß-catenin. Soluble (s) CD206 and sFAP-α levels were significantly higher in vitreous samples from PDR and PVR patients than in nondiabetic control patients. The proinflammatory cytokine TNF-α and the hypoxia mimetic agent cobalt chloride induced upregulation of sFAP-α in culture media of Müller cells but not of HRMECs. The NF-ĸß inhibitor BAY11-7085 significantly attenuated TNF-α-induced upregulation of sFAP-α in Müller cells. Our findings suggest that the process of MMT might contribute to myofibroblast formation in epiretinal membranes, and this transition involved macrophages with a predominant M2 phenotype. In addition, sFAP-α as a vitreous biomarker may be derived from M2 macrophages transitioned to myofibroblasts and from Müller cells.
Collapse
Affiliation(s)
- Ahmed M. Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (P.W.G.); (G.O.)
- Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, 3000 Leuven, Belgium; (G.D.H.); (E.A.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
| | - Eef Allegaert
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, 3000 Leuven, Belgium; (G.D.H.); (E.A.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
| | - Mohd I. Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (P.W.G.); (G.O.)
| | - Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, University of Leuven, KU Leuven, 3000 Leuven, Belgium; (S.A.S.); (S.S.)
| | - Priscilla W. Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (P.W.G.); (G.O.)
| | - Ghislain Opdenakker
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (P.W.G.); (G.O.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, University of Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, University of Leuven, KU Leuven, 3000 Leuven, Belgium; (S.A.S.); (S.S.)
| |
Collapse
|
8
|
Wang X, Wang T, Lam E, Alvarez D, Sun Y. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. Int J Mol Sci 2023; 24:12090. [PMID: 37569464 PMCID: PMC10418793 DOI: 10.3390/ijms241512090] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The eye is an immune privileged tissue that insulates the visual system from local and systemic immune provocation to preserve homeostatic functions of highly specialized retinal neural cells. If immune privilege is breached, immune stimuli will invade the eye and subsequently trigger acute inflammatory responses. Local resident microglia become active and release numerous immunological factors to protect the integrity of retinal neural cells. Although acute inflammatory responses are necessary to control and eradicate insults to the eye, chronic inflammation can cause retinal tissue damage and cell dysfunction, leading to ocular disease and vision loss. In this review, we summarized features of immune privilege in the retina and the key inflammatory responses, factors, and intracellular pathways activated when retinal immune privilege fails, as well as a highlight of the recent clinical and research advances in ocular immunity and ocular vascular diseases including retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - David Alvarez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| |
Collapse
|
9
|
Hector S, Thulesius HO, Landin-Olsson M, Hillman M, Melin EO. Soluble CD163 and glycated haemoglobin were independently associated with the progression of diabetic retinopathy in adult patients with type 1 diabetes. BMJ Open Ophthalmol 2023; 8:e001314. [PMID: 37493689 PMCID: PMC10351291 DOI: 10.1136/bmjophth-2023-001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVE High vitreous levels of soluble (s)CD163 have been demonstrated in severe diabetic retinopathy (DR). The aim of this study was to explore the predictive values of plasma sCD163 and glycated haemoglobin (HbA1c) for DR progression in adults with type 1 diabetes. METHODS AND ANALYSES The study design was prospective. Fundus photography performed in 2009 and at follow-up (≤12 years later) were compared after being categorised according to the International Clinical Diabetic Retinopathy Disease Severity Scale. 'DR progression at least one level' was calculated. In 2009, data collection (sex, age, diabetes duration, metabolic variables, serum creatinine, macroalbuminuria and lifestyle factors) and biochemical analyses were performed. Plasma sCD163 and HbA1c were divided into quartiles. Logistic regression analyses were performed. RESULTS The prevalence of DR in 2009 versus at follow-up in 270 participants (57% male) were: no apparent 28% vs 18%; mild 20% vs 13%; moderate 24% vs 26%; severe 11% vs 13%; and proliferative DR 17% vs 30% (p<0.001). DR progression occurred in 101 (45%) patients. HbA1c ≥54 mmol/mol (≥7.1%) (>1st quartile) (adjusted odds ratio (AOR) 3.8, p<0.001) and sCD163 ≥343 ng/mL (>1st quartile) (AOR 2.6, p=0.004) were independently associated with DR progression. The associations with DR progression increased significantly from the first to the fourth quartile for HbA1c (AORs: 1; 2.5; 3.6; 7.4), but not for sCD163 (AORs: 1; 2.9; 2.4; 2.4). CONCLUSION Plasma sCD163 may constitute a valuable biomarker for DR progression in addition to and independent of the well-established biomarker HbA1c.
Collapse
Affiliation(s)
- Sven Hector
- Research and Development, Region Kronoberg, Växjö, Sweden
- Ophthalmology, Central Hospital Växjö, Växjö, Kronoberg, Sweden
| | - Hans Olav Thulesius
- Department of Medicine and Optometry, Linnaeus University, Kalmar, Sweden
- Division of Family Medicine, Lund University Faculty of Medicine, Malmö, Sweden
| | - Mona Landin-Olsson
- Department of Clinical Sciences, Diabetology and Endocrinology, Lund University Faculty of Medicine, Lund, Sweden
- Diabetes Research Laboratory, Lund University Faculty of Medicine, Lund, Sweden
| | - Magnus Hillman
- Diabetes Research Laboratory, Lund University Faculty of Medicine, Lund, Sweden
| | - Eva Olga Melin
- Department of Clinical Sciences, Diabetology and Endocrinology, Lund University Faculty of Medicine, Lund, Sweden
- Diabetes Research Laboratory, Lund University Faculty of Medicine, Lund, Sweden
| |
Collapse
|
10
|
Wu J, Ma W, Qiu Z, Zhou Z. Roles and mechanism of IL-11 in vascular diseases. Front Cardiovasc Med 2023; 10:1171697. [PMID: 37304948 PMCID: PMC10250654 DOI: 10.3389/fcvm.2023.1171697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Vascular diseases are the leading cause of morbidity and mortality worldwide. Therefore, effective treatment strategies that can reduce the risk of vascular diseases are urgently needed. The relationship between Interleukin-11 (IL-11) and development of vascular diseases has gained increasing attention. IL-11, a target for therapeutic research, was initially thought to participate in stimulating platelet production. Additional research concluded that IL-11 is effective in treating several vascular diseases. However, the function and mechanism of IL-11 in these diseases remain unknown. This review summarizes IL-11 expression, function, and signal transduction mechanism. This study also focuses on the role of IL-11 in coronary artery disease, hypertension, pulmonary hypertension, cerebrovascular disease, aortic disease, and other vascular diseases and its potential as a therapeutic target. Consequently, this study provides new insight into the clinical diagnosis and treatment of vascular diseases.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenrui Ma
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Wuhan, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Padovani-Claudio DA, Ramos CJ, Capozzi ME, Penn JS. Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis. Prog Retin Eye Res 2023; 94:101151. [PMID: 37028118 PMCID: PMC10683564 DOI: 10.1016/j.preteyeres.2022.101151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 04/08/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. DR has non-proliferative stages, characterized in part by retinal neuroinflammation and ischemia, and proliferative stages, characterized by retinal angiogenesis. Several systemic factors, including poor glycemic control, hypertension, and hyperlipidemia, increase the risk of DR progression to vision-threatening stages. Identification of cellular or molecular targets in early DR events could allow more prompt interventions pre-empting DR progression to vision-threatening stages. Glia mediate homeostasis and repair. They contribute to immune surveillance and defense, cytokine and growth factor production and secretion, ion and neurotransmitter balance, neuroprotection, and, potentially, regeneration. Therefore, it is likely that glia orchestrate events throughout the development and progression of retinopathy. Understanding glial responses to products of diabetes-associated systemic dyshomeostasis may reveal novel insights into the pathophysiology of DR and guide the development of novel therapies for this potentially blinding condition. In this article, first, we review normal glial functions and their putative roles in the development of DR. We then describe glial transcriptome alterations in response to systemic circulating factors that are upregulated in patients with diabetes and diabetes-related comorbidities; namely glucose in hyperglycemia, angiotensin II in hypertension, and the free fatty acid palmitic acid in hyperlipidemia. Finally, we discuss potential benefits and challenges associated with studying glia as targets of DR therapeutic interventions. In vitro stimulation of glia with glucose, angiotensin II and palmitic acid suggests that: 1) astrocytes may be more responsive than other glia to these products of systemic dyshomeostasis; 2) the effects of hyperglycemia on glia are likely to be largely osmotic; 3) fatty acid accumulation may compound DR pathophysiology by promoting predominantly proinflammatory and proangiogenic transcriptional alterations of macro and microglia; and 4) cell-targeted therapies may offer safer and more effective avenues for DR treatment as they may circumvent the complication of pleiotropism in retinal cell responses. Although several molecules previously implicated in DR pathophysiology are validated in this review, some less explored molecules emerge as potential therapeutic targets. Whereas much is known regarding glial cell activation, future studies characterizing the role of glia in DR and how their activation is regulated and sustained (independently or as part of retinal cell networks) may help elucidate mechanisms of DR pathogenesis and identify novel drug targets for this blinding disease.
Collapse
Affiliation(s)
- Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3321A Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, AA1324 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke Street, Durham, NC, 27701, USA.
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3307 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| |
Collapse
|
12
|
Wolf S, Rannikko JH, Virtakoivu R, Cinelli P, Felmerer G, Burger A, Giovanoli P, Detmar M, Lindenblatt N, Hollmén M, Gousopoulos E. A distinct M2 macrophage infiltrate and transcriptomic profile decisively influence adipocyte differentiation in lipedema. Front Immunol 2022; 13:1004609. [PMID: 36605202 PMCID: PMC9809281 DOI: 10.3389/fimmu.2022.1004609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Lipedema is a chronic and progressive adipose tissue disorder, characterized by the painful and disproportionate increase of the subcutaneous fat in the lower and/or upper extremities. While distinct immune cell infiltration is a known hallmark of the disease, its role in the onset and development of lipedema remains unclear. To analyze the macrophage composition and involved signaling pathways, anatomically matched lipedema and control tissue samples were collected intra-operatively from gender- and BMI-matched patients, and the Stromal Vascular Fraction (SVF) was used for Cytometry by Time-of-Flight (CyTOF) and RNA sequencing. The phenotypic characterization of the immune component of lipedema versus control SVF using CyTOF revealed significantly increased numbers of CD163 macrophages. To gain further insight into this macrophage composition and molecular pathways, RNA sequencing of isolated CD11b+ cells was performed. The analysis suggested a significant modification of distinct gene ontology clusters in lipedema, including cytokine-mediated signaling activity, interleukin-1 receptor activity, extracellular matrix organization, and regulation of androgen receptor signaling. As distinct macrophage populations are known to affect adipose tissue differentiation and metabolism, we evaluated the effect of M2 to M1 macrophage polarization in lipedema using the selective PI3Kγ inhibitor IPI-549. Surprisingly, the differentiation of adipose tissue-derived stem cells with conditioned medium from IPI-549 treated SVF resulted in a significant decreased accumulation of lipids in lipedema versus control SVF. In conclusion, our results indicate that CD163+ macrophages are a critical component in lipedema and re-polarization of lipedema macrophages can normalize the differentiation of adipose-derived stem cells in vitro evaluated by the cellular lipid accumulation. These data open a new chapter in understanding lipedema pathophysiology and may indicate potential treatment options.
Collapse
Affiliation(s)
- Stefan Wolf
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Paolo Cinelli
- Department of Trauma Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Gunther Felmerer
- Division of Plastic Surgery, Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Anna Burger
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Maija Hollmén
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Epameinondas Gousopoulos
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland,*Correspondence: Epameinondas Gousopoulos,
| |
Collapse
|
13
|
Ji N, Guo Y, Liu S, Zhu M, Tu Y, Du J, Wang X, Wang Y, Song E. MEK/ERK/RUNX2 Pathway-Mediated IL-11 Autocrine Promotes the Activation of Müller Glial Cells during Diabetic Retinopathy. Curr Eye Res 2022; 47:1622-1630. [PMID: 36154781 DOI: 10.1080/02713683.2022.2129070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE To uncover the role of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/runt-related transcription factor 2 (RUNX2)/interleukin-11 (IL-11) pathway in the activation of Müller glial cells (MGCs) and the breakdown of blood-retina barrier (BRB) during diabetic retinopathy (DR). METHODS Western blot (WB) detected the activation of MEK/ERK/RUNX2/IL-11 pathway, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) detected IL-11 mRNA levels in high glucose (HG)-exposed MIO-M1 cells. Co-immunoprecipitation (Co-IP) identified the interaction between ERK and RUNX2. Immunofluorescence (IF) measured the co-localization of ERK and RUNX2. Luciferase reporter gene assay identified the transcription activity of IL-11 promoter under HG conditions. Enzyme-linked immunosorbent assay (ELISA) detected IL-11 levels in MIO-M1 cell culture supernatant. WB detected IL-RA protein levels, and Immunofluorescence measured the co-localization of IL-11 and IL-11RA. WB detected MGCs activation marker glial fibrillary acidic protein (GFAP) protein levels. 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay detected the proliferation of MGCs. WB detected the activation of MEK/ERK/RUNX2/IL-11 pathway in streptozotocin (STZ)-induced diabetic mice. ELISA detected IL-11 and IL-11RA levels in mouse retina tissues. QRT-PCR and WB detected tight junction-associated molecules claudin-5, occluding and tight junction protein 1 (ZO-1) mRNA and protein levels in mouse retina tissues, respectively. RESULTS MEK/ERK/RUNX2/IL-11 pathway was activated in HG-exposed MIO-M1 cells. Additionally, IL-11 bound to IL-11RA on MIO-M1 cells to promote MIO-M1 cell activation and proliferation. In the mouse STZ-induced diabetic model, MEK/ERK/RUNX2/IL-11/IL-11RA pathway was also activated. Finally, the blockade of the pathway mitigated the activation of MGCs and the breakdown of BRB. CONCLUSION The data suggested that activated MEK/ERK/RUNX2/IL-11/IL-11RA autocrine pathway can promote the activation of MGCs and the breakdown of BRB during DR, implying novel anti-molecular strategies for the treatment of DR.
Collapse
Affiliation(s)
- Na Ji
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China.,The Affiliated Eye Hospital, Suzhou Vocational Health College, Suzhou, China
| | - Yang Guo
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - Songbai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| | - Jiahui Du
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Xiaoxiao Wang
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Ying Wang
- Department of Ophthalmology, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - E Song
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Zou J, Tan W, Li B, Wang Z, Li Y, Zeng J, Jiang B, Yoshida S, Zhou Y. Interleukin-19 Promotes Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy. Invest Ophthalmol Vis Sci 2022; 63:9. [PMID: 35816041 PMCID: PMC9284469 DOI: 10.1167/iovs.63.8.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal neovascularization is a major cause of blindness. This study aimed to investigate the effects of IL-19 and the underlying mechanisms in a mouse model of oxygen-induced retinopathy (OIR). Methods C57BL/6J wild-type mice and IL-19 knockout (KO) mice were used to establish an OIR mouse model. Bone marrow–derived macrophages (BMDMs) with or without recombinant IL-19 (rIL-19) stimulation were injected intravitreally. Reverse transcription-quantitative polymerase chain reaction was used to determine the mRNA expressions. ELISA and western blotting were performed to assess the protein levels. Immunofluorescence staining was applied to assess retinal neovascularization. Human retinal endothelial cells (HRECs) stimulated with rIL-19 were cultured to evaluate the effects on cell proliferation and migration. Results The level of IL-19 was significantly elevated at postnatal day 17 in OIR retinas. Both the avascular areas and pathological neovascular tufts were significantly increased in rIL-19–treated OIR retinas and suppressed in IL-19 KO retinas. IL-19 KO mice suppressed expression of ARG1, VEGFA, and pSTAT3. Moreover, BMDMs stimulated by rIL-19 enhanced that expression and suppressed the expression of inducible nitric oxide synthase (iNOS). The proliferation and migration of HRECs were significantly augmented by rIL-19. In addition, intravitreal injection of BMDMs stimulated by rIL-19 enhanced retinal neovascularization. Conclusions These findings suggest that IL-19 enhances pathological neovascularization through a direct effect on microvascular endothelial cells and the promotion of M2 macrophage polarization. The inhibition of IL-19 may be a potential treatment for retinal neovascularization.
Collapse
Affiliation(s)
- Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jun Zeng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| |
Collapse
|
15
|
Mason RH, Minaker SA, Lahaie Luna G, Bapat P, Farahvash A, Garg A, Bhambra N, Muni RH. Changes in aqueous and vitreous inflammatory cytokine levels in proliferative diabetic retinopathy: a systematic review and meta-analysis. Eye (Lond) 2022:10.1038/s41433-022-02127-x. [PMID: 35672457 DOI: 10.1038/s41433-022-02127-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/05/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic retinopathy is a major complication of diabetes mellitus, where in its most advanced form ischemic changes lead to the development of retinal neovascularization, termed proliferative diabetic retinopathy (PDR). While the development of PDR is often associated with angiogenic and inflammatory cytokines, studies differ on which cytokines are implicated in disease pathogenesis and on the strength of these associations. We therefore conducted a systematic review and meta-analysis to quantitatively assess the existing body of data on intraocular cytokines as biomarkers in PDR. METHODS A comprehensive search of the literature without year limitation was conducted to January 18, 2021, which identified 341 studies assessing vitreous or aqueous cytokine levels in PDR, accounting for 10379 eyes with PDR and 6269 eyes from healthy controls. Effect sizes were calculated as standardized mean differences (SMD) of cytokine concentrations between PDR and control patients. RESULTS Concentrations (SMD, 95% confidence interval, and p-value) of aqueous IL-1β, IL-6, IL-8, MCP-1, TNF-α, and VEGF, and vitreous IL-2, IL-4, IL-6, IL-8, angiopoietin-2, eotaxin, erythropoietin, GM-CSF, GRO, HMGB-1, IFN-γ, IGF, IP-10, MCP-1, MIP-1, MMP-9, PDGF-AA, PlGF, sCD40L, SDF-1, sICAM-1, sVEGFR, TIMP, TNF-α, and VEGF were significantly higher in patients with PDR when compared to healthy nondiabetic controls. For all other cytokines no differences, failed sensitivity analyses or insufficient data were found. CONCLUSIONS This extensive list of cytokines speaks to the complexity of PDR pathogenesis, and informs future investigations into disease pathogenesis, prognosis, and management.
Collapse
Affiliation(s)
- Ryan H Mason
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Samuel A Minaker
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | | | - Priya Bapat
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Armin Farahvash
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Anubhav Garg
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Nishaant Bhambra
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Rajeev H Muni
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada.
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada.
- Kensington Vision and Research Centre, Toronto, ON, Canada.
- University of Toronto/Kensington Health Ophthalmology Biobank and Cytokine Laboratory, Toronto, ON, Canada.
| |
Collapse
|
16
|
Siwan E, Twigg SM, Min D. Alterations of CD163 expression in the complications of diabetes: A systematic review. J Diabetes Complications 2022; 36:108150. [PMID: 35190247 DOI: 10.1016/j.jdiacomp.2022.108150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
AIMS Diabetes mellitus is a state of chronic low-grade inflammation. Scavenger receptor CD163, expressed on monocyte/macrophage cells with anti-inflammatory functions, has been observed in diabetes complications. This review aimed to systematically survey human studies published until 31st January 2022 for CD163 expression, in particular diabetes complications and additionally to investigate whether CD163 may be implicated as a biomarker of, and mediator in, the progression of diabetes complications. METHODS A systematic literature search undertaken in Scopus, Embase and Medline established 79 papers of relevance. Data extraction and assessment followed the PRISMA workflow. RESULTS Based on specific criteria, 11 studies totalling 821 participants were included in this review. CD163 was quantified in various forms including soluble, cell surface, and mRNA measures. This review found that soluble CD163 was upregulated in diabetes complications in various local body fluids and systemically in plasma or serum and therefore implicated in the progression of those complications. CD163+ cells and mRNA were variably expressed across diabetes complications. CONCLUSIONS CD163 was altered in series of diabetes complications and the circulating sCD163 has potential utility as an inflammation biomarker. The variable expression of CD163 on cell surfaces and its mRNA across different diabetes complications warrants further systematic investigation.
Collapse
Affiliation(s)
- Elisha Siwan
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Danqing Min
- Greg Brown Diabetes and Endocrinology Research Laboratory, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Mezu-Ndubuisi OJ, Maheshwari A. Role of the Endothelium in Neonatal Diseases. NEWBORN 2022; 1:44-57. [PMID: 35754998 PMCID: PMC9217741 DOI: 10.5005/jp-journals-11002-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In both fetal and neonatal physiologic and pathologic processes in most organs, endothelial cells are known to play critical roles. Although the endothelium is one of the most ubiquitous cell type in the body, the tight adherence to the blood vessel wall has made it difficult to study their diverse function and structure. In this article, we have reviewed endothelial cell origins and explored their heterogeneity in terms of structure, function, developmental changes, and their role in inflammatory and infectious diseases. We have also attempted to evaluate the untapped therapeutic potentials of endothelial cells in neonatal disease. This article comprises various peer-reviewed studies, including ours, and an extensive database literature search from EMBASE, PubMed, and Scopus.
Collapse
Affiliation(s)
- Olachi J Mezu-Ndubuisi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Akhil Maheshwari
- Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
18
|
Ikeda T, Nakamura K, Kida T, Oku H. Possible roles of anti-type II collagen antibody and innate immunity in the development and progression of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2022; 260:387-403. [PMID: 34379187 PMCID: PMC8786754 DOI: 10.1007/s00417-021-05342-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/08/2022] Open
Abstract
The pathogenesis of both diabetic retinopathy (DR) and rheumatoid arthritis (RA) has recently been considered to involve autoimmunity. Serum and synovial fluid levels of anti-type II collagen antibodies increase early after the onset of RA, thus inducing immune responses and subsequent hydrarthrosis and angiogenesis, which resemble diabetic macular edema and proliferative DR (PDR), respectively. We previously reported that DR is also associated with increased serum levels of anti-type II collagen antibodies. Retinal hypoxia in DR may induce pericytes to express type II collagen, resulting in autoantibody production against type II collagen. As the result of blood-retinal barrier disruption, anti-type II collagen antibodies in the serum come into contact with type II collagen around the retinal vessels. A continued loss of pericytes and type II collagen around the retinal vessels may result in a shift of the immune reaction site from the retina to the vitreous. It has been reported that anti-inflammatory M2 macrophages increased in the vitreous of PDR patients, accompanied by the activation of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a key regulator of innate immunity. M2 macrophages promote angiogenesis and fibrosis, which might be exacerbated and prolonged by dysregulated innate immunity.
Collapse
Affiliation(s)
- Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan.
- Department of Ophthalmology, Osaka Kaisei Hospital, 1-6-10 Miyahara Yodogawa-ku, Osaka City, Osaka, Japan.
| | | | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| |
Collapse
|
19
|
Meng Z, Chen Y, Wu W, Yan B, Meng Y, Liang Y, Yao X, Luo J. Exploring the Immune Infiltration Landscape and M2 Macrophage-Related Biomarkers of Proliferative Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:841813. [PMID: 35692390 PMCID: PMC9186015 DOI: 10.3389/fendo.2022.841813] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUNDS Diabetic retinopathy (DR), especially proliferative diabetic retinopathy (PDR), is the major cause of irreversible blindness in the working-age population. Increasing evidence indicates that immune cells and the inflammatory microenvironment play an important role during PDR development. Herein, we aim to explore the immune landscape of PDR and then identify potential biomarkers correlated with specific infiltrating immune cells. METHODS We mined and re-analyzed PDR-related datasets from the Gene Expression Omnibus (GEO) database. Using the cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm, we investigated the infiltration of 22 types of immune cells in all selected samples; analyses of differences and correlations between infiltrating cells were used to reveal the immune landscape of PDR. Thereafter, weighted gene co-expression network analysis (WGCNA) and differential expression analysis were applied to identify the hub genes on M2 macrophages that may affect PDR progression. RESULTS Significant differences were found between infiltration levels of immune cells in fibrovascular membranes (FVMs) from PDR and normal retinas. The percentages of follicular helper T cells, M1 macrophages, and M2 macrophages were increased significantly in FVMs. Integrative analysis combining the differential expression and co-expression revealed the M2 macrophage-related hub genes in PDR. Among these, COL5A2, CALD1, COL6A3, CORO1C, and CALU showed increased expression in FVM and may be potential biomarkers for PDR. CONCLUSIONS Our findings provide novel insights into the immune mechanisms involved in PDR. COL5A2, CALD1, COL6A3, CORO1C, and CALU are M2 macrophage-related biomarkers, further study of these genes could inform novel ideas and basis for the understanding of disease progression and targeted treatment of PDR.
Collapse
Affiliation(s)
- Zhishang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanzhu Chen
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenyi Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongan Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Youling Liang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxi Yao
- Shenzhen College of International Education, Shenzhen, China
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jing Luo,
| |
Collapse
|
20
|
Wu H, Wang M, Li X, Shao Y. The Metaflammatory and Immunometabolic Role of Macrophages and Microglia in Diabetic Retinopathy. Hum Cell 2021; 34:1617-1628. [PMID: 34324139 DOI: 10.1007/s13577-021-00580-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/17/2021] [Indexed: 12/17/2022]
Abstract
Emergent studies reveal the roles of inflammatory cells and cytokines in the development of diabetic retinopathy (DR), which is gradually portrayed as a chronic inflammatory disease accompanied by metabolic disorder. Through the pathogenesis of DR, macrophages or microglia play a critical role in the inflammation, neovascularization, and neurodegeneration of the retina. Conventionally, macrophages are generally divided into M1 and M2 phenotypes which mainly rely on glycolysis and oxidative phosphorylation, respectively. Recently, studies have found that nutrients (including glucose and lipids) and metabolites (such as lactate), can not only provide energy for cells, but also act as signaling molecules to regulate the function and fate of cells. In this review, we discussed the intrinsic correlations among the metabolic status, polarization, and function of macrophage/microglia in DR. Hyperglycemia and hyperlipidemia could induce M1-like and M2-like macrophages polarization in different phases of DR. Targeting the regulation of microglial metabolic profile might be a promising therapeutic strategy to modulate the polarization and function of macrophages/microglia, thus attenuating the progression of DR.
Collapse
Affiliation(s)
- Honglian Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China
| | - Mengqi Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China
| | - Yan Shao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China. .,Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China. .,Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.
| |
Collapse
|
21
|
Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163 + Macrophages in Inflammatory and Malignant Diseases. Int J Mol Sci 2020; 21:E5497. [PMID: 32752088 PMCID: PMC7432735 DOI: 10.3390/ijms21155497] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
The macrophage is a key cell in the pro- and anti-inflammatory response including that of the inflammatory microenvironment of malignant tumors. Much current drug development in chronic inflammatory diseases and cancer therefore focuses on the macrophage as a target for immunotherapy. However, this strategy is complicated by the pleiotropic phenotype of the macrophage that is highly responsive to its microenvironment. The plasticity leads to numerous types of macrophages with rather different and, to some extent, opposing functionalities, as evident by the existence of macrophages with either stimulating or down-regulating effect on inflammation and tumor growth. The phenotypes are characterized by different surface markers and the present review describes recent progress in drug-targeting of the surface marker CD163 expressed in a subpopulation of macrophages. CD163 is an abundant endocytic receptor for multiple ligands, quantitatively important being the haptoglobin-hemoglobin complex. The microenvironment of inflammation and tumorigenesis is particular rich in CD163+ macrophages. The use of antibodies for directing anti-inflammatory (e.g., glucocorticoids) or tumoricidal (e.g., doxorubicin) drugs to CD163+ macrophages in animal models of inflammation and cancer has demonstrated a high efficacy of the conjugate drugs. This macrophage-targeting approach has a low toxicity profile that may highly improve the therapeutic window of many current drugs and drug candidates.
Collapse
Affiliation(s)
- Maria K. Skytthe
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Jonas Heilskov Graversen
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Søren K. Moestrup
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|