1
|
Najafipour H, Rostamzadeh F, Jafarinejad-Farsangi S, Bagheri-Hosseinabadi Z, Jafari E, Farsinejad A, Bagheri MM. Human platelet lysate combined with mesenchymal stem cells pretreated with platelet lysate improved cardiac function in rats with myocardial infarction. Sci Rep 2024; 14:27701. [PMID: 39533052 PMCID: PMC11557824 DOI: 10.1038/s41598-024-79050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a leading cause of heart failure, disability and mortality worldwide. In this study, the effects of intramyocardial injection of human platelet lysate (HPL), bone marrow mesenchymal stem cells pretreated with HPL (PMSCs), and PMSC lysate (lys), alone and in combination were investigated on MI-induced by LAD ligation in male Wistar rats. The experiment was carried out on sham, vehicle (Veh), HPL, PMSCs, PMSC lysate (PMSC lys), HPL + PMSCs, and HPL + PMSC lys groups. SBP, DBP, and ± dp/dt max were monitored by the PowerLab physiograph. The MSC characteristics and CD31, NKX2.5, and cardiac troponin I (cTnI) contents were determined by flow cytometry, immunohistochemistry, and immunofluorescence, respectively. SBP, DBP, and ± dp/dt max that decreased in the MI group were recovered by HPL, PMSC, PMSC lys, HPL + PMSC, and HPL + PMSC lys treatments. CD31 density was higher in all treated groups compared to the Veh group. CD31 density in the HPL + PMSCs and HPL + PMSC lys groups was higher than in the PMSCs group. The number of Dil+/NKX2.5 + and Dil+/cTnI + cells was higher in the HPL + PMSCs group compared to the PMSCs group. The HPL and PMSCs mitigates heart injuries and cardiac dysfunction after MI. HPL provides an appropriate environment for cardiomyocyte differentiation from PMSCs.
Collapse
Affiliation(s)
- Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Boulevard Jihad, Ebne-Sina Avenue, 7619813159, Kerman, Iran.
| | - Seedieh Jafarinejad-Farsangi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Bagheri-Hosseinabadi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, and Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinejad
- Stem Cell and Regenerative Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohmmad Mehdi Bagheri
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Barone L, Cucchiara M, Palano MT, Bassani B, Gallazzi M, Rossi F, Raspanti M, Zecca PA, De Antoni G, Pagiatakis C, Papait R, Bernardini G, Bruno A, Gornati R. Dental pulp mesenchymal stem cell (DPSCs)-derived soluble factors, produced under hypoxic conditions, support angiogenesis via endothelial cell activation and generation of M2-like macrophages. J Biomed Sci 2024; 31:99. [PMID: 39491013 PMCID: PMC11533415 DOI: 10.1186/s12929-024-01087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Cell therapy has emerged as a revolutionary tool to repair damaged tissues by restoration of an adequate vasculature. Dental Pulp stem cells (DPSC), due to their easy biological access, ex vivo properties, and ability to support angiogenesis have been largely explored in regenerative medicine. METHODS Here, we tested the capability of Dental Pulp Stem Cell-Conditioned medium (DPSC-CM), produced in normoxic (DPSC-CM Normox) or hypoxic (DPSC-CM Hypox) conditions, to support angiogenesis via their soluble factors. CMs were characterized by a secretome protein array, then used for in vivo and in vitro experiments. In in vivo experiments, DPSC-CMs were associated to an Ultimatrix sponge and injected in nude mice. After excision, Ultimatrix were assayed by immunohistochemistry, electron microscopy and flow cytometry, to evaluate the presence of endothelial, stromal, and immune cells. For in vitro procedures, DPSC-CMs were used on human umbilical-vein endothelial cells (HUVECs), to test their effects on cell adhesion, migration, tube formation, and on their capability to recruit human CD14+ monocytes. RESULTS We found that DPSC-CM Hypox exert stronger pro-angiogenic activities, compared with DPSC-CM Normox, by increasing the frequency of CD31+ endothelial cells, the number of vessels and hemoglobin content in the Ultimatrix sponges. We observed that Utimatrix sponges associated with DPSC-CM Hypox or DPSC-CM Normox shared similar capability to recruit CD45- stromal cells, CD45+ leukocytes, F4/80+ macrophages, CD80+ M1-macrophages and CD206+ M2-macropages. We also observed that DPSC-CM Hypox and DPSC-CM Normox have similar capabilities to support HUVEC adhesion, migration, induction of a pro-angiogenic gene signature and the generation of capillary-like structures, together with the ability to recruit human CD14+ monocytes. CONCLUSIONS Our results provide evidence that DPSCs-CM, produced under hypoxic conditions, can be proposed as a tool able to support angiogenesis via macrophage polarization, suggesting its use to overcome the issues and restrictions associated with the use of staminal cells.
Collapse
Affiliation(s)
- Ludovica Barone
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Martina Cucchiara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy
| | - Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy
| | - Matteo Gallazzi
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy
| | - Federica Rossi
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Mario Raspanti
- Department of Medicine and Technological Innovation, University of Insubria, 21100, Varese, Italy
| | - Piero Antonio Zecca
- Department of Medicine and Technological Innovation, University of Insubria, 21100, Varese, Italy
| | - Gianluca De Antoni
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy
| | - Christina Pagiatakis
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Roberto Papait
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Giovanni Bernardini
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Antonino Bruno
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy.
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy.
| | - Rosalba Gornati
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy.
| |
Collapse
|
3
|
Summer M, Ali S, Fiaz U, Hussain T, Khan RRM, Fiaz H. Revealing the molecular mechanisms in wound healing and the effects of different physiological factors including diabetes, age, and stress. J Mol Histol 2024; 55:637-654. [PMID: 39120834 DOI: 10.1007/s10735-024-10223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Wounds are the common fates in various microbial infections and physical damages including accidents, surgery, and burns. In response, a healthy body with a potent immune system heals that particular site within optimal time by following the coagulation, inflammation, proliferation, and remodeling phenomenon. However, certain malfunctions in the body due to various diseases particularly diabetes and other physiological factors like age, stress, etc., prolong the process of wound healing through various mechanisms including the Akt, Polyol, and Hexosamine pathways. The current review thoroughly explains the wound types, normal wound healing mechanisms, and the immune system's role. Moreover, the mechanistic role of diabetes is also elaborated comprehensively.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan.
| | - Umaima Fiaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, 54000, Pakistan
| | | | - Hashim Fiaz
- Ammer-ud-Din Medical College, Lahore, 54000, Pakistan
| |
Collapse
|
4
|
Bennardo F, Barone S, Antonelli A, Giudice A. Autologous platelet concentrates as adjuvant in the surgical management of medication-related osteonecrosis of the jaw. Periodontol 2000 2024. [PMID: 39345044 DOI: 10.1111/prd.12608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 10/01/2024]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is an infectious side effect associated with bisphosphonates and monoclonal antibodies (denosumab, immune modulators, and antiangiogenic medications). Adjunctive therapies for the surgical management of MRONJ include autologous platelet concentrates (APCs). These APCs serve as a source of various cells and growth factors that aid tissue healing and regeneration. This review evaluated the use of platelet-rich plasma (PRP), plasma-rich in growth factors (PRGF), and leukocyte- and platelet-rich fibrin (L-PRF) as adjuvant therapies for the surgical management of MRONJ by conducting analyses on the results of 58 articles. Compared to surgical treatment alone, the application of PRP and L-PRF after surgery appears to increase healing in the management of patients with MRONJ. No studies have reported unhealed lesions as a result of surgical treatment of MRONJ with PRGF application or compared it with surgical treatment alone. The overall results of this review have shown favorable healing rates of MRONJ lesions managed with the application of APCs after surgical treatment; however, significant methodological limitations may limit the scientific evidence supporting their use. Further randomized controlled trials with strict criteria are needed to establish the extent to which APCs can improve wound healing and quality of life in patients with MRONJ requiring surgical treatment.
Collapse
Affiliation(s)
- Francesco Bennardo
- School of Dentistry, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Selene Barone
- School of Dentistry, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Amerigo Giudice
- School of Dentistry, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
Dhandhi S, Yeshna, Vishal, Monika, Goel B, Chauhan S, Nishal S, Singh M, Jhawat V. The interplay of skin architecture and cellular dynamics in wound healing: Insights and innovations in care strategies. Tissue Cell 2024; 91:102578. [PMID: 39378666 DOI: 10.1016/j.tice.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
Wound healing involves complex interactions among skin layers: the epidermis, which epithelializes to cover wounds; the dermis, which supports granulation tissue and collagen production; and the hypodermis, which protects overall skin structure. Key factors include neutrophils, activated by platelet degranulation and cytokines, and fibroblasts, which aid in collagen production during proliferation. The healing process encompasses inflammation, proliferation, and remodeling, with angiogenesis, fibroplasia, and re-epithelialization crucial for wound closure. Angiogenesis is characterized by the creation of collateral veins, the proliferation of endothelial cells, and the recruitment of perivascular cells. Collagen is produced by fibroblasts in granulation tissue, aiding in the contraction of wounds. The immunological response is impacted by T cells and cytokines. External topical application of various formulations and dressings expedites healing and controls microbial contamination. Polymeric materials, both natural and synthetic, and advanced dressings enhance healing by providing biodegradability, biocompatibility, and infection control, thus addressing tissue regeneration challenges. Numerous dressings promote healing, including films, hydrocolloids, hydrogels, foams, alginates, and tissue-engineered substitutes. Wound dressings are treated with growth factors, particularly PDGF, and antibacterial drugs to prevent infection. The challenges of tissue regeneration and infection control are evolving along with the field of wound care.
Collapse
Affiliation(s)
- Sourav Dhandhi
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Yeshna
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vishal
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Monika
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Bhawna Goel
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Suchitra Nishal
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Monika Singh
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India.
| |
Collapse
|
6
|
Aljohani MH. Platelet-Rich Plasma in the Prevention and Treatment of Medication-Related Osteonecrosis of the Jaw: A Systematic Review and Meta-Analysis. J Craniofac Surg 2024:00001665-990000000-01945. [PMID: 39287416 DOI: 10.1097/scs.0000000000010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVES Medication-related osteonecrosis of the jaw (MRONJ) is a significant complication associated with bisphosphonates, impacting jaw osteoclasts, and causing altered bone remodelling. Prevention involves stabilizing systemic pathology, considering antiresorptive therapies, and exploring platelet-rich fibrin (PRF) for wound healing and tissue regeneration. The study aims to assess the efficacy of PRF in MRONJ treatment and highlight research gaps for more robust investigations. METHODS Following PRISMA and MOOSE guidelines, this systematic review and meta-analysis included English publications from 2013 to 2023, employing a systematic search in databases such as MEDLINE, Scopus, and Web of Science. Quality assessment used the Cochrane Collaboration's tool and the NOS, with the main meta-analysis concentrating on PRF-treated MRONJ cases, assessing resolution rates, and prioritizing healing outcomes and infection absence as primary endpoints. RESULTS The study, encompassing 11 articles and 480 participants with MRONJ, demonstrated that in stage 1 procedures, PRF significantly outperformed conventional medical treatments (OR: 2.93, 95% CI: 1.54-5.59, P=0.001), particularly at the mandible site (OR: 1.65, 95% CI: 0.86-3.17, P=0.13). PRF also exhibited significantly superior healing outcomes compared with conventional medical treatments (OR: 4.45, 95% CI: 1.58-12.53, P=0.005), supporting its consideration as a valuable alternative in specific MRONJ management scenarios. CONCLUSION This study highlights PRF's effectiveness in early MRONJ interventions and specific anatomic sites, despite acknowledged limitations, emphasizing the need for further research, and supporting its consideration in MRONJ surgical management.
Collapse
Affiliation(s)
- Marwan H Aljohani
- Department of Oral and Maxillofacial Diagnostic Sciences, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
7
|
Chen X, Tang J, Dong Y, Xuan M, Tian Y, Liu Y, Peng N, Cheng B. A novel hydrogel with inherent antibacterial and hemostatic properties for burn wound healing. Colloids Surf B Biointerfaces 2024; 245:114250. [PMID: 39303388 DOI: 10.1016/j.colsurfb.2024.114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
The skin is the immune system's first line of defense. Extensive skin burns can lead to tissue necrosis, sepsis, and even death. Anti-infectious care of burn wounds is a major challenge in clinical medicine. However, the extensive use of antibiotics led to the emergence of multi-drug-resistant bacteria and silver dressings with antibacterial effects are also cytotoxic. We used the natural cationic antibacterial agent ε-polylysine (EPL) to graft Epigallocatechin-3-gallate (EGCG) to synthesize EPL-EGCG. Then, we used methacrylated gelatin (GelMA) with arginine-glycine-aspartate-rich acid (RGD) sequence and EPL-EGCG form interpenetrating polymer network hydrogels with excellent swelling properties. The hydrogel's inherent antibacterial properties and photo-cross-linking properties can cover irregular burn wounds and isolate bacteria to prevent infection. In addition, we used polydopamine (PDA) to coat GelMA microspheres with excellent hemostatic efficacy and load platelet-rich plasma (PRP) to enhance the hemostatic efficacy of the microspheres and impart inflammation-regulating functions. The hydrogel showed excellent hemostatic efficacy in rat liver injury and tail vein injury models. In the rat infected burn model, the hydrogel exhibited favorable antimicrobial, pro-angiogenic, and anti-inflammatory phenotype polarization of macrophages. Our study shows that GelMA/EPL-EGCG/GM-PDA@PRP hydrogel application has excellent antibacterial, hemostatic and anti-inflammatory effects, providing a new treatment strategy for wound care before burn skin grafting.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Jianbing Tang
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Yunqing Dong
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Min Xuan
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Yan Tian
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Yijie Liu
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Na Peng
- Department of Emergency Surgery, Southern Theater General Hospital, Guangzhou 510010, China.
| | - Biao Cheng
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China.
| |
Collapse
|
8
|
Norton P, Trus P, Wang F, Thornton MJ, Chang C. Understanding and treating diabetic foot ulcers: Insights into the role of cutaneous microbiota and innovative therapies. SKIN HEALTH AND DISEASE 2024; 4:e399. [PMID: 39104636 PMCID: PMC11297444 DOI: 10.1002/ski2.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 08/07/2024]
Abstract
Background Notoriously known as the silent pandemic, chronic, non-healing diabetic foot ulcers (DFUs), pose a significant rate of incidence for amputation and are a major cause of morbidity. Alarmingly, the treatment and management strategies of chronic wounds represent a significant economic and health burden as well as a momentous drain on resources with billions per annum being spent in the US and UK alone. Defective wound healing is a major pathophysiological condition which propagates an acute wound to a chronic wound, further propelled by underlying conditions such as diabetes and vascular complications which are more prevalent amongst the elderly. Chronic wounds are prone to infection, which can exacerbate the condition, occasionally resulting in amputation for the patient, despite the intervention of modern therapies. However, amputation can only yield a 5-year survival rate for 50% of patients, highlighting the need for new treatments for chronic wounds. Findings The dynamic cutaneous microbiota is comprised of diverse microorganisms that often aid wound healing. Conversely, the chronic wound microbiome consists of a combination of common skin commensals such as Staphylococcus aureus and Staphylococcus epidermidis, as well as the opportunistic pathogen Pseudomonas aeruginosa. These bacteria have been identified as the most prevalent bacterial pathogens isolated from chronic wounds and contribute to prolific biofilm formation decreasing the efficiency of antimicrobials and further perpetuating a hyper-inflammatory state. Discussion and Conclusion Here, we review recent advances and provide a new perspective on alternative treatments including phage and microbiome transplant therapies and how the definitive role of the cutaneous microbiota impacts the aetiology of DFUs.
Collapse
Affiliation(s)
- Paul Norton
- School of Dental SciencesFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Biosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Centre for Skin SciencesFaculty of Life SciencesUniversity of BradfordBradfordUK
| | - Pavlos Trus
- School of Dental SciencesFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Biosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Fengyi Wang
- School of Dental SciencesFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Biosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - M. Julie Thornton
- Centre for Skin SciencesFaculty of Life SciencesUniversity of BradfordBradfordUK
| | - Chien‐Yi Chang
- School of Dental SciencesFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Biosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| |
Collapse
|
9
|
Anestiadou E, Kotidis E, Abba Deka I, Tatsis D, Bekiari C, Loukousia A, Ioannidis O, Stamiris S, Zapsalis K, Xylas C, Siozos K, Chatzianestiadou C, Angelopoulos S, Papavramidis T, Cheva A. Platelet-Rich Therapies in Hernia Repair: A Comprehensive Review of the Impact of Platelet Concentrates on Mesh Integration in Hernia Management. Biomolecules 2024; 14:921. [PMID: 39199309 PMCID: PMC11352183 DOI: 10.3390/biom14080921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Mesh-augmented hernia repair is the gold standard in abdominal wall and hiatal/diaphragmatic hernia management and ranks among the most common procedures performed by general surgeons. However, it is associated with a series of drawbacks, including recurrence, mesh infection, and adhesion formation. To address these weaknesses, numerous biomaterials have been investigated for mesh coating. Platelet-rich plasma (PRP) is an autologous agent that promotes tissue healing through numerous cytokines and growth factors. In addition, many reports highlight its contribution to better integration of different types of coated meshes, compared to conventional uncoated meshes. The use of PRP-coated meshes for hernia repair has been reported in the literature, but a review of technical aspects and outcomes is missing. The aim of this comprehensive review is to report the experimental studies investigating the synergistic use of PRP and mesh implants in hernia animal models. A comprehensive literature search was conducted across PubMed/Medline, Web of Science, and Scopus without chronological constraints. In total, fourteen experimental and three clinical studies have been included. Among experimental trials, synthetic, biologic, and composite meshes were used in four, nine, and one study, respectively. In synthetic meshes, PRP-coating leads to increased antioxidant levels and collaged deposition, reduced oxidative stress, and improved inflammatory response, while studies on biological meshes revealed increased neovascularization and tissue integration, reduced inflammation, adhesion severity, and mechanical failure rates. Finally, PRP-coating of composite meshes results in reduced adhesions and improved mechanical strength. Despite the abundance of preclinical data, there is a scarcity of clinical studies, mainly due to the absence of an established protocol regarding PRP preparation and application. To this point in time, PRP has been used as a coating agent for the repair of abdominal and diaphragmatic hernias, as well as for mesh fixation. Clinical application of conclusions drawn from experimental studies may lead to improved results in hernia repair.
Collapse
Affiliation(s)
- Elissavet Anestiadou
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Efstathios Kotidis
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Ioanna Abba Deka
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.A.D.); (A.L.); (A.C.)
| | - Dimitrios Tatsis
- Department of Oral and Maxillofacial Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece;
| | - Chryssa Bekiari
- Experimental and Research Center, Papageorgiou General Hospital of Thessaloniki, 56403 Thessaloniki, Greece;
- Laboratory of Anatomy and Histology, Veterinary School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonia Loukousia
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.A.D.); (A.L.); (A.C.)
| | - Orestis Ioannidis
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Stavros Stamiris
- Orthopaedic Department, 424 General Military Hospital, Ring Road West, Nea Efkarpia, 56429 Thessaloniki, Greece;
| | - Konstantinos Zapsalis
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Christos Xylas
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Konstantinos Siozos
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Christiana Chatzianestiadou
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Stamatios Angelopoulos
- 4th Department of Surgery, General Hospital “George Papanikolaou”, Aristotle University of Thessaloniki, 57010 Exochi, Greece; (E.K.); (O.I.); (K.Z.); (C.X.); (K.S.); (C.C.); (S.A.)
| | - Theodosios Papavramidis
- 1st Propaedeutic Department of Surgery, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Angeliki Cheva
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.A.D.); (A.L.); (A.C.)
| |
Collapse
|
10
|
Mohsin F, Javaid S, Tariq M, Mustafa M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int Immunopharmacol 2024; 139:112713. [PMID: 39047451 DOI: 10.1016/j.intimp.2024.112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Diabetic foot ulcer (DFU) is a foremost cause of amputation in diabetic patients. Consequences of DFU include infections, decline in limb function, hospitalization, amputation, and in severe cases, death. Immune cells including macrophages, regulatory T cells, fibroblasts and other damage repair cells work in sync for effective healing and in establishment of a healthy skin barrier post-injury. Immune dysregulation during the healing of wounds can result in wound chronicity. Hyperglycemic conditions in diabetic patients influence the pathophysiology of wounds by disrupting the immune system as well as promoting neuropathy and ischemic conditions, making them difficult to heal. Chronic wound microenvironment is characterized by increased expression of matrix metalloproteinases, reactive oxygen species as well as pro-inflammatory cytokines, resulting in persistent inflammation and delayed healing. Novel treatment modalities including growth factor therapies, nano formulations, microRNA based treatments and skin grafting approaches have significantly augmented treatment efficiency, demonstrating creditable efficacy in clinical practices. Advancements in local treatments as well as invasive methodologies, for instance formulated wound dressings, stem cell applications and immunomodulatory therapies have been successful in targeting the complex pathophysiology of chronic wounds. This review focuses on elucidating the intricacies of emerging physical and non-physical therapeutic interventions, delving into the realm of advanced wound care and comprehensively summarizing efficacy of evidence-based therapies for DFU currently available.
Collapse
Affiliation(s)
- Fatima Mohsin
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Sheza Javaid
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Mishal Tariq
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| |
Collapse
|
11
|
Veerakulwatana S, Suk-ouichai C, Taweemonkongsap T, Chotikawanich E, Jitpraphai S, Woranisarakul V, Wanvimolkul N, Hansomwong T. Perioperative factors and 30-day major complications following radical cystectomy: A single-center study in Thailand. Heliyon 2024; 10:e33476. [PMID: 39027524 PMCID: PMC11255853 DOI: 10.1016/j.heliyon.2024.e33476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Objective This study aims to evaluate the prevalence of early postoperative complications of radical cystectomy, using standardized reporting methodology to assess perioperative characteristics and determine risk factors for major complications. Materials and methods A retrospective study included 254 consecutive bladder cancer patients undergoing RC between 2012 and 2020 at a urological cancer referral center. Postoperative complications within 30 days were recorded and graded according to the Clavien-Dindo classification (CDC). The study examined risk factors, including novel inflammatory-nutrition biomarkers and perioperative serum chloride. Results Total complications were observed in 135 (53 %). Of these, 47 (18.5 %) were high grade (CDC ≥ 3). Wound dehiscence was the most common complication, occurring in 14 (5.5 %) patients. Independent risk factors for major complications included an age-adjusted Charlson comorbidity index (ACCI) > 4 and thrombocytopenia (odds ratio [OR] 3.67 and OR 8.69). Preoperative platelet counts < 220,000/μL and albumin < 3 mg/dL were independent risk factors for wound dehiscence (OR 3.91 and OR 4.72). Additionally, postoperative hypochloremia was a risk factor for major complications (OR 13.71), while novel serum biomarkers such as neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic inflammatory response index (SIRI), and prognostic nutritional index (PNI) were not associated with early major complications. Conclusion Patients who have multiple comorbidities are at a greater risk of developing major complications after undergoing RC. Our result suggests that preoperative platelet counts and serum albumin levels are associated with wound dehiscence.
Collapse
Affiliation(s)
- Songyot Veerakulwatana
- Division of Urology, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chalairat Suk-ouichai
- Division of Urology, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tawatchai Taweemonkongsap
- Division of Urology, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ekkarin Chotikawanich
- Division of Urology, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siros Jitpraphai
- Division of Urology, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Varat Woranisarakul
- Division of Urology, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattaporn Wanvimolkul
- Division of Urology, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thitipat Hansomwong
- Division of Urology, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Alföldi M, Ferianec V. Anti-infectious and anti-inflammatory effect of amniopatch in the treatment of spontaneous previable rupture of membranes. Arch Gynecol Obstet 2024; 310:615-626. [PMID: 38642127 PMCID: PMC11169006 DOI: 10.1007/s00404-024-07399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/24/2024] [Indexed: 04/22/2024]
Abstract
Spontaneous previable rupture of membranes complicates approximately 0.4-0.7% of pregnancies and is associated with severe maternal and neonatal morbidity and mortality. Intra-amniotic inflammation is present in up to 94.4% of cases, most often caused by a bacterial infection. In comparison, the effectiveness of antibiotic therapy in its eradication reaches less than 17%. Inflammatory activity in the amniotic cavity disrupts the physiological development of the fetus with an increase in maternal, fetal, and neonatal inflammatory morbidity through the development of fetal inflammatory response syndrome, maternal chorioamnionitis, and neonatal sepsis. Amniopatch is an invasive therapeutic technique based on intra-amniotic administration of maternal hemoderivates in the form of thromboconcentrate and plasma cryoprecipitate to provide the temporary closure of the fetal membranes defect and secondary restitution of normohydramnios with correction of pressure-volume ratios. The supposed basis of this physical-mechanical action is the aggregation of coagulant components of amniopatch in the area of the defect with the formation of a valve cap. The background for the formulation of the hypothesis on the potential anti-infectious and anti-inflammatory action of non-coagulant components of amniopatch involved: i) clinical-academic and publishing outputs of the authors based on their many years' experience with amniopatch application in the treatment of spontaneous previable rupture of membranes (2008-2019), ii) the documented absence of clinically manifested chorioamnionitis in patients treated this way with a simultaneously reduced incidence of neonatal respiratory distress syndrome compared to expectant management (tocolysis, corticotherapy, antibiotic therapy). The non-coagulant components of plasma cryoprecipitate include mainly naturally occurring isohemagglutinins, albumin, and soluble plasma fibrinogen. Although these components of the amniopatch have not been attributed a significant therapeutic role, the authors assume that due to their opsonizing and aggregative properties, they can significantly participate in optimizing the intrauterine environment through the reduction in bacterial and cytokine charge in the amniotic fluid. The authors think these facts constitute a vital stimulus to future research-academic activity and, at the same time, an idea for reconsidering the therapeutic role of amniopatch as a tool for improving perinatal results of spontaneous previable ruptures of membranes.
Collapse
Affiliation(s)
- Martin Alföldi
- 2nd Department of Gynaecology and Obstetrics, Faculty of Medicine Comenius University (FMCU) and University Hospital (UH) Bratislava, 6 Ružinovská Str, 82606, Bratislava, Slovakia.
| | - Vladimír Ferianec
- 2nd Department of Gynaecology and Obstetrics, Faculty of Medicine Comenius University (FMCU) and University Hospital (UH) Bratislava, 6 Ružinovská Str, 82606, Bratislava, Slovakia
| |
Collapse
|
13
|
Guo CY, Mo R, Kim H. Surface topography modulates initial platelet adhesion to titanium substrata. J Oral Biol Craniofac Res 2024; 14:471-477. [PMID: 38962718 PMCID: PMC11220530 DOI: 10.1016/j.jobcr.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 02/23/2024] [Indexed: 07/05/2024] Open
Abstract
The clinical success of implanted biomaterials such as dental implants is largely determined by the molecular signaling that occurs at the tissue-implant interface. The modification of surface topography is a widely-employed strategy for optimizing tissue integration with dental implants. However, little is known regarding the direct, cellular-level effects of substratum topography on platelet signaling and adhesion, despite these cells being the first to encounter the implant surface during surgical placement. Here we compared platelet adhesion and secretion on four (4) different titanium surfaces, notably, the modifications applied to commercially available dental implants: smooth (S) titanium; acid-etched (AE), sandblasted (SB) and a combined acid-etching/sandblasting procedure (SLA). Platelets were isolated from human blood, washed, and seeded on to the 4 test surfaces; platelet adhesion was quantified by microscopy. In addition, the secretion of critical molecules stored in platelet granules (platelet factor 4, PF4; soluble P-selectin, sCD62P; transforming growth factor-beta1, TGF-β1; platelet-derived growth factor-AB, PDGF-AB) was measured by enzyme-linked immunosorbent assay (ELISA) analysis of the supernatants. There was greater platelet adhesion to the rougher AE and SB surfaces, however, the concentration of the secreted growth factors was comparable on all surfaces. We conclude that while surface topography can be engineered to modulate initial platelet adhesion, granule secretion is likely regulated as a separate and independent process.
Collapse
Affiliation(s)
- Cecilia Yan Guo
- Centre for Blood Research, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
- Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Raymond Mo
- Centre for Blood Research, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
- Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
14
|
Wang X, Huang Y, Liu D, Zeng T, Wang J, Al Hasan MJ, Liu W, Wang D. The Masquelet induced membrane technique with PRP-FG-nHA/PA66 scaffold can heal a rat large femoral bone defect. BMC Musculoskelet Disord 2024; 25:455. [PMID: 38851675 PMCID: PMC11162015 DOI: 10.1186/s12891-024-07567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Masquelet membrane induction technology is one of the treatment strategies for large bone defect (LBD). However, the angiogenesis ability of induced membrane decreases with time and autologous bone grafting is associated with donor site morbidity. This study investigates if the PRP-FG-nHA/PA66 scaffold can be used as a spacer instead of PMMA to improve the angiogenesis ability of induced membrane and reduce the amount of autologous bone graft. METHODS Platelet rich plasma (PRP) was prepared and PRP-FG-nHA/PA66 scaffold was synthesized and observed. The sustained release of VEGFA and porosity of the scaffold were analyzed. We established a femur LBD model in male SD rats. 55 rats were randomly divided into four groups depending on the spacer filled in the defect area. "Defect only" group (n = 10), "PMMA" group (n = 15), "PRP-nHA/PA66" group (n = 15) and "PRP-FG-nHA/PA66" group (n = 15 ). At 6 weeks, the spacers were removed and the defects were grafted. The induced membrane and bone were collected and stained. The bone formation was detected by micro-CT and the callus union was scored on a three point system. RESULTS The PRP-FG-nHA/PA66 scaffold was porosity and could maintain a high concentration of VEGFA after 30 days of preparation. The induced membrane in PRP-FG-nHA/PA66 group was thinner than PMMA, but the vessel density was higher.The weight of autogenous bone grafted in PRP-FG-nHA/PA66 group was significantly smaller than that of PMMA group. In PRP-FG-nHA/PA66 group, the bone defect was morphologically repaired. CONCLUSION The study showed that PRP-FG-nHA/PA66 scaffold can significantly reduce the amount of autologous bone graft, and can achieve similar bone defect repair effect as PMMA. Our findings provide some reference and theoretical support for the treatment of large segmental bone defects in humans.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yong Huang
- Department of Orthopedic Surgery, the Affiliated Hospital of Qinghai University, Xining, Qinghai, China
| | - Daqian Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Teng Zeng
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Jingzhe Wang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Md Junaed Al Hasan
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Wei Liu
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Dawei Wang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
15
|
Zhu Z, Sun X, Chen K, Zhang M, Wu G. Comprehensive evaluation of advanced platelet-rich fibrin in common complications following sagittal split ramus osteotomy: a double-blind, split-mouth, randomized clinical trial. Int J Oral Maxillofac Surg 2024:S0901-5027(24)00060-2. [PMID: 38839533 DOI: 10.1016/j.ijom.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 06/07/2024]
Abstract
The sagittal split ramus osteotomy (SSRO) carries potential risks and complications. A double-blind, split-mouth, randomized clinical trial was performed, involving 30 patients undergoing mandibular setback. Advanced platelet-rich fibrin (A-PRF) was applied to one side, and the other side served as a control. The volume of postoperative drainage over 24 h was recorded. At 1, 2, and 5 days, and 3 months postsurgery, nerve recovery was assessed using the two-point discrimination test (TPD), while pain was evaluated using a visual analogue scale (VAS pain). Facial swelling was evaluated by taking linear measurements from facial reference points at the same time intervals. In the treatment group, the 24-hour drainage volume was lower (P = 0.011), pain was better on day 5 (P = 0.011), and TPD was better on day 2 (P = 0.011), day 5 (P = 0.007), and 3 months postoperatively (P = 0.020) than in the control group. There was also less facial swelling in the treatment group when compared to the baseline of 3 months postoperative (day 1, P = 0.012; day 2, P = 0.001; day 5, P = 0.011). The difference in bone mineral density (HU) at 3 months between the treatment group (469.7 ± 134.2) and the control group (348.3 ± 127.2) was statistically significant (P = 0.011), in favour of the treatment group. A-PRF may reduce postoperative complications such as neurosensory disturbance of the inferior alveolar nerve, pain, swelling, and drainage while enhancing bone healing in the osteotomy gap following SSRO. TRIAL REGISTRATION: The study was registered with the Chinese Clinical Trial Register (ChiCTR2200064534).
Collapse
Affiliation(s)
- Z Zhu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - X Sun
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - K Chen
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - M Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - G Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
16
|
Liu H, Welburn JPI. A circle of life: platelet and megakaryocyte cytoskeleton dynamics in health and disease. Open Biol 2024; 14:240041. [PMID: 38835242 DOI: 10.1098/rsob.240041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024] Open
Abstract
Platelets are blood cells derived from megakaryocytes that play a central role in regulating haemostasis and vascular integrity. The microtubule cytoskeleton of megakaryocytes undergoes a critical dynamic reorganization during cycles of endomitosis and platelet biogenesis. Quiescent platelets have a discoid shape maintained by a marginal band composed of microtubule bundles, which undergoes remarkable remodelling during platelet activation, driving shape change and platelet function. Disrupting or enhancing this process can cause platelet dysfunction such as bleeding disorders or thrombosis. However, little is known about the molecular mechanisms underlying the reorganization of the cytoskeleton in the platelet lineage. Recent studies indicate that the emergence of a unique platelet tubulin code and specific pathogenic tubulin mutations cause platelet defects and bleeding disorders. Frequently, these mutations exhibit dominant negative effects, offering valuable insights into both platelet disease mechanisms and the functioning of tubulins. This review will highlight our current understanding of the role of the microtubule cytoskeleton in the life and death of platelets, along with its relevance to platelet disorders.
Collapse
Affiliation(s)
- Haonan Liu
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
17
|
Du X, Zhao J, Ren Q, Ma Y, Duan P, Huang Y, Wang S. Clinical application of platelet rich plasma to promote healing of open hand injury with skin defect. Regen Ther 2024; 26:308-314. [PMID: 39022599 PMCID: PMC11253146 DOI: 10.1016/j.reth.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 07/20/2024] Open
Abstract
Background Skin defects caused by open hand trauma are difficult to treat clinically and severely affect the recovery of hand function. Autologous platelet-rich plasma (PRP) has been widely used in the treatment of refractory chronic wounds, but its use in hand trauma skin defects remains scarce. Methods This study compared the outcomes of 27 patients treated with PRP to 31 patients undergoing skin flap transplantation for hand wounds. We assessed several parameters, including healing times, duration of surgery, postoperative pain (VAS score), intraoperative amputation length, finger function, sensation restoration, nail bed preservation, and hospitalization expenses. Results PRP-treated patients showed a mean healing time of 21.59 ± 3.17 days. Surgical times were significantly shorter in the PRP group (22.04 ± 7.04 min) compared to the flap group (57.45 ± 8.15 min, P < 0.0001). PRP patients experienced longer postoperative healing times (20.15 ± 2.16 days) than those in the skin flap group (12.84 ± 1.08 days, P < 0.0001), but reported lower pain scores (1.3 ± 1.44 vs 2.55 ± 2.06, P = 0.0119). Range of Motion (ROM) at the proximal interphalangeal joint was better in the PRP group (96.26° ± 6.69) compared to the flap group (86.16° ± 15.24, P = 0.0028). Sensory outcomes favored the PRP group, with a two-point discrimination of 2.37 ± 1.34 mm versus 2.52 ± 1.27 mm in the flap group (P = 0.0274). Costs were lower in the PRP group ($2081.6 ± 258.14 vs $2680.18 ± 481.15, P < 0.0001). Conclusion PRP treatment for skin defects from hand trauma is effective, offering advantages in terms of reduced surgical time, pain, and cost, with comparable or superior functional outcomes to flap transplantation. Despite longer healing times, PRP may represent a preferable option for open hand injuries, preserving more nail beds and resulting in better sensation and joint motion.
Collapse
Affiliation(s)
- Xinhui Du
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832000, China
| | - Jiarui Zhao
- Hanzhong Downtown Hospital, No. 557, West Labour Road, Hantai District, Hanzhong City, Shaanxi Province, China
| | - Qian Ren
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832000, China
| | - Yibo Ma
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832000, China
| | - Pengxia Duan
- The First Affiliated Hospital of Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832000, China
| | - Yansheng Huang
- Department of Spine Surgery, Xi'an HongHui Hospital, Beilin District, Xi'an, Shannxi Province, 710000, China
| | - Sibo Wang
- Department of Spine Surgery, Xi'an HongHui Hospital, Beilin District, Xi'an, Shannxi Province, 710000, China
| |
Collapse
|
18
|
Lu J, Zhang T, Zhou L, Tong X, Gui R, Jiang L, Tang Z, Fu Y, Zhao G, Zeng J, Gao L. The therapeutic effect of sufficient oxygen-rich PRP injection in facial rejuvenation by multiple objective evaluations in 26 cases. Regen Ther 2024; 26:213-218. [PMID: 38962491 PMCID: PMC11219273 DOI: 10.1016/j.reth.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 07/05/2024] Open
Abstract
Background Ozone can enhance the expression of some growth factors (GFs) in platelet rich plasma (PRP), recent study showed oxygen-rich PRP (ozonized PRP) have better therapeutic effects on bone and joint diseases. PRP injection has been widely used in the treatment of facial rejuvenation, but the efficacy of sufficient oxygen-rich PRP in facial rejuvenation has not been studied. Objective Firstly, we examined whether ozone treatment can increase the concentration of GFs of PRP in vitro. And then a variety of subjective and objective detection methods were used to evaluate the effect of sufficient(10-12 mL each time for the injection of face and neck) oxygen-rich (ozonized PRP) PRP injection in facial rejuvenation by follow-up for 6 months. At last, we investigated the satisfaction, side effects and pain score of the treatment through a questionnaire survey. Methods The concentration of main GFs in PRP treated with different dose of ozone in vitro was measured by ELISA. Clinical picture, the collagen thickness of dermis by reflectance confocal microscope(RCM), skin conditions (including spots, ultraviolet (UV) spots, brown spots, red area, pores, wrinkles, texture and porphyrin) by VISIA were collected before treatment and each month follow-up visit after treatment until 6-month follow-up period was finished. Patients' satisfaction, side effects and pain score were collected at the end of follow-up period. Results PRP treated by high-dose ozone (57 μg/mL, ozone/PRP volume ratio:1/1) in vitro showed a significant increase in endothelial growth factor (EGF) and transforming growth factor-β (TGF-β) compared to baseline(P < 0.05). Collagen thickness of forehead, cheek and neck improved significantly compare to the baseline until to the 6 months after treatment. Spots, UV spots, brown spots, red area and texture improved significantly compare to the baseline(P < 0.05). All of participants reported improvement and have a median pain score of 4.19. No serious adverse events were observed. Conclusions Ozone treatment can increase the concentration of GFs such as EGF and TGF-β in PRP in vitro. Sufficient oxygen-rich PRP injection may be an effective and promising method to treat facial rejuvenation.
Collapse
Affiliation(s)
- Jianyun Lu
- Departments of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Tong Zhang
- Xiangya Medical College, Central South University, Changsha, China
| | - Lu Zhou
- Departments of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoliang Tong
- Departments of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Jiang
- Departments of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Tang
- Departments of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guosheng Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinrong Zeng
- Departments of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Gao
- Departments of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Zhao Y, Ghaedi A, Azami P, Nabipoorashrafi SA, Drissi HB, Dezfouli MA, Sarejloo S, Lucke-Wold B, Cerillo J, Khanzadeh M, Jafari N, Khanzadeh S. Inflammatory biomarkers in cardiac syndrome X: a systematic review and meta-analysis. BMC Cardiovasc Disord 2024; 24:276. [PMID: 38807048 PMCID: PMC11134643 DOI: 10.1186/s12872-024-03939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
INTRODUCTION In the current systematic review and meta-analysis, we aim to analyze the existing literature to evaluate the role of inflammatory biomarkers, including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), C-reactive protein (CRP), tumor necrosis factor-a (TNF-a), and interleukin-6 (IL-6) among individuals with cardiac syndrome X (CSX) compared to healthy controls. METHODS We used PubMed, Web of Science, Scopus, Science Direct, and Embase to systematically search relevant publications published before April 2, 2023. We performed the meta-analysis using Stata 11.2 software (Stata Corp, College Station, TX). So, we used standardized mean difference (SMD) with a 95% confidence interval (CI) to compare the biomarker level between patients and healthy controls. The I2 and Cochran's Q tests were adopted to determine the heterogeneity of the included studies. RESULTS Overall, 29 articles with 3480 participants (1855 with CSX and 1625 healthy controls) were included in the analysis. There was a significantly higher level of NLR (SMD = 0.85, 95%CI = 0.55-1.15, I2 = 89.0 %), CRP (SMD = 0.69, 95%CI = 0.38 to 1.02, p < 0.0001), IL-6 (SMD = 5.70, 95%CI = 1.91 to 9.50, p = 0.003), TNF-a (SMD = 3.78, 95%CI = 0.63 to 6.92, p = 0.019), and PLR (SMD = 1.38, 95%CI = 0.50 to 2.28, p = 0.02) in the CSX group in comparison with healthy controls. CONCLUSION The results of this study showed that CSX leads to a significant increase in inflammatory biomarkers, including NLR, CRP, IL-6, TNF-a, and PLR.
Collapse
Affiliation(s)
- Yuexia Zhao
- Shandong Mental Health Center, Jinan, Shandong Province, China
| | - Arshin Ghaedi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pouria Azami
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, Tehran, Iran
| | | | - Maryam Amin Dezfouli
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - John Cerillo
- Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Tampa Bay Regional Campus, Gulf to Bay Blvd, Clearwater, FL, 3375, USA
| | - Monireh Khanzadeh
- Geriatric & Gerontology Department, Medical School, Tehran University of medical and health sciences, Tehran, Iran
| | - Negar Jafari
- Department of cardiovascular medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
20
|
Chen X, Yang N, Li B, Gao X, Wang Y, Wang Q, Liu X, Zhang Z, Zhang R. Visualization Analysis of Small Extracellular Vesicles in the Application of Bone-Related Diseases. Cells 2024; 13:904. [PMID: 38891036 PMCID: PMC11171653 DOI: 10.3390/cells13110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Small extracellular vesicles were shown to have similar functional roles to their parent cells without the defect of potential tumorigenicity, which made them a great candidate for regenerative medicine. The last twenty years have witnessed the rapid development of research on small extracellular vesicles. In this paper, we employed a scientometric synthesis method to conduct a retrospective analysis of small extracellular vesicles in the field of bone-related diseases. The overall background analysis consisted the visualization of the countries, institutions, journals, and authors involved in research. The current status of the research direction and future trends were presented through the analysis of references and keywords, which showed that engineering strategies, mesenchymal stem cell derived exosomes, and cartilage damage were the most concerning topics, and scaffold, osteoarthritis, platelet-rich plasma, and senescence were the future trends. We also discussed the current problems and challenges in practical applications, including the in-sight mechanisms, the building of relevant animal models, and the problems in clinical trials. By using CiteSpace, VOSviewer, and Bibliometrix, the presented data avoided subjective selectivity and tendency well, which made the conclusion more reliable and comprehensive. We hope that the findings can provide new perspectives for researchers to understand the evolution of this field over time and to search for novel research directions.
Collapse
Affiliation(s)
- Xinjiani Chen
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Yang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
| | - Bailei Li
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinyu Gao
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
| | - Yayu Wang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qin Wang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaojun Liu
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 318000, China
| | - Zhen Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
| | - Rongqing Zhang
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; (X.C.); (N.Y.); (B.L.); (X.G.); (Y.W.); (Q.W.); (X.L.)
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, China
- Taizhou Innovation Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 318000, China
| |
Collapse
|
21
|
Jiang Z, Huang C, Guo E, Zhu X, Li N, Huang Y, Wang P, Shan H, Yin Y, Wang H, Huang L, Han Z, Ouyang K, Sun L. Platelet-Rich Plasma in Young and Elderly Humans Exhibits a Different Proteomic Profile. J Proteome Res 2024; 23:1788-1800. [PMID: 38619924 DOI: 10.1021/acs.jproteome.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
As people age, their ability to resist injury and repair damage decreases significantly. Platelet-rich plasma (PRP) has demonstrated diverse therapeutic effects on tissue repair. However, the inconsistency of patient outcomes poses a challenge to the practical application of PRP in clinical practice. Furthermore, a comprehensive understanding of the specific impact of aging on PRP requires a systematic investigation. We derived PRP from 6 young volunteers and 6 elderly volunteers, respectively. Subsequently, 95% of high-abundance proteins were removed, followed by mass spectrometry analysis. Data are available via ProteomeXchange with the identifier PXD050061. We detected a total of 739 proteins and selected 311 proteins that showed significant differences, including 76 upregulated proteins in the young group and 235 upregulated proteins in the elderly group. Functional annotation and enrichment analysis unveiled upregulation of proteins associated with cell apoptosis, angiogenesis, and complement and coagulation cascades in the elderly. Conversely, IGF1 was found to be upregulated in the young group, potentially serving as the central source of enhanced cell proliferation ability. Our investigation not only provides insights into standardizing PRP preparation but also offers novel strategies for augmenting the functionality of aging cells or tissues.
Collapse
Affiliation(s)
- Zhitong Jiang
- Department of Cardiovascular Surgery, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Erliang Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yu Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peihe Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Shan
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yuxin Yin
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hong Wang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Lu Sun
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
22
|
Zhang G, Samarawickrama PN, Gui L, Ma Y, Cao M, Zhu H, Li W, Yang H, Li K, Yang Y, Zhu E, Li W, He Y. Revolutionizing Diabetic Foot Ulcer Care: The Senotherapeutic Approach. Aging Dis 2024:AD.2024.0065. [PMID: 38739931 DOI: 10.14336/ad.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are a prevalent and profoundly debilitating complication that afflicts individuals with diabetes mellitus (DM). These ulcers are associated with substantial morbidity, recurrence rates, disability, and mortality, imposing substantial economic, psychological, and medical burdens. Timely detection and intervention can mitigate the morbidity and disparities linked to DFU. Nevertheless, current therapeutic approaches for DFU continue to grapple with multifaceted limitations. A growing body of evidence emphasizes the crucial role of cellular senescence in the pathogenesis of chronic wounds. Interventions that try to delay cellular senescence, eliminate senescent cells (SnCs), or suppress the senescence-associated secretory phenotype (SASP) have shown promise for helping chronic wounds to heal. In this context, targeting cellular senescence emerges as a novel therapeutic strategy for DFU. In this comprehensive review, we look at the pathology and treatment of DFU in a systematic way. We also explain the growing importance of investigating SnCs in DFU and highlight the great potential of senotherapeutics that target SnCs in DFU treatment. The development of efficacious and safe senotherapeutics represents a pioneering therapeutic approach aimed at enhancing the quality of life for individuals affected by DFU.
Collapse
Affiliation(s)
- Guiqin Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li Gui
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Yuan Ma
- Department of Orthopedics, the Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, China
| | - Mei Cao
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Hong Zhu
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Wei Li
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Honglin Yang
- Department of Orthopedics, the Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, China
| | - Kecheng Li
- Department of Orthopedics, the Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, China
| | - Yang Yang
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Enfang Zhu
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Wen Li
- Department of Endocrinology, the Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province), Kunming, Yunnan 650011, China
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
23
|
Roweth HG. Platelet Contributions to the (Pre)metastatic Tumor Microenvironment. Semin Thromb Hemost 2024; 50:455-461. [PMID: 37832586 PMCID: PMC11177183 DOI: 10.1055/s-0043-1776005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Alongside their conventional roles in thrombosis and hemostasis, platelets have long been associated with nonhemostatic pathologies, including tumor cell metastasis. Numerous mechanistic studies have since demonstrated that the direct binding of platelets to intravascular tumor cells promotes key hallmarks of metastasis, including survival in circulation and tumor cell arrest at secondary sites. However, platelets also interact with nonmalignant cells that make up the stromal and immune compartments within both primary and metastatic tumors. This review will first provide a brief historical perspective on platelet contributions to metastatic disease before discussing the emerging roles that platelets play in creating microenvironments that likely support successful tumor cell metastasis.
Collapse
Affiliation(s)
- Harvey G. Roweth
- Hematology Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Dinh MTP, Mukhamedshin A, Abhishek K, Lam FW, Gifford SC, Shevkoplyas SS. Separation of platelets by size in a microfluidic device based on controlled incremental filtration. LAB ON A CHIP 2024; 24:913-923. [PMID: 38263850 DOI: 10.1039/d3lc00842h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The significant biological and functional differences between small and large platelets suggested by recent studies could have profound implications for transfusion medicine. However, investigating the relationship between platelet size and function is challenging because separating platelets by size without affecting their properties is difficult. A standard approach is centrifugation, but it inevitably leads to premature activation and aggregation of separated platelets. This paper describes the development and validation of a microfluidic device based on controlled incremental filtration (CIF) for separating platelets by size without the cell damage and usability limitations associated with centrifugation. Platelet samples derived from whole blood were used to evaluate the dependence of the CIF device separation performance on design parameters and flow rate, and to compare the properties of PLT fractions generated by the CIF device with those produced using a centrifugation protocol in a split-sample study. This was accomplished by quantifying the platelet size distribution, mean platelet volume (MPV), platelet-large cell ratio (P-LCR) and platelet activation before and after processing for all input and output samples. The 'large platelet' fractions produced by the CIF device and the centrifugation protocol were essentially equivalent (no significant difference in MPV and P-LCR). Platelets in the 'small platelet' fraction produced by the CIF device were significantly smaller than those produced by centrifugation (lower MPV and P-LCR). This was because the CIF 'small platelet' fraction was contaminated by much fewer large platelets (∼2-times lower recovery of >12 fL platelets) and retained the smallest platelets that were discarded by the centrifugation protocol. There was no significant difference in platelet activation between the two methods. However, centrifugation required a substantial amount of additional anticoagulant to prevent platelet aggregation during pelleting. Unlike centrifugation, the CIF device offered continuous, flow-through, single-step processing that did not cause platelet aggregation. Such a capability has the potential to accelerate the basic studies of the relationship between platelet size and function, and ultimately improve transfusion practice, particularly in the pediatric setting, where the need for low-volume, high-quality platelet transfusions is most urgent.
Collapse
Affiliation(s)
- Mai T P Dinh
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Houston, TX 77204-5060, USA.
| | - Anton Mukhamedshin
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Houston, TX 77204-5060, USA.
| | - Kumar Abhishek
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Houston, TX 77204-5060, USA.
| | - Fong W Lam
- Division of Pediatric Critical Care Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean C Gifford
- Halcyon Biomedical Incorporated, Friendswood, TX 77546, USA
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Houston, TX 77204-5060, USA.
| |
Collapse
|
25
|
Müller WEG, Neufurth M, Wang S, Schröder HC, Wang X. The Physiological Inorganic Polymers Biosilica and Polyphosphate as Key Drivers for Biomedical Materials in Regenerative Nanomedicine. Int J Nanomedicine 2024; 19:1303-1337. [PMID: 38348175 PMCID: PMC10860874 DOI: 10.2147/ijn.s446405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
There is a need for novel nanomaterials with properties not yet exploited in regenerative nanomedicine. Based on lessons learned from the oldest metazoan phylum, sponges, it has been recognized that two previously ignored or insufficiently recognized principles play an essential role in tissue regeneration, including biomineral formation/repair and wound healing. Firstly, the dependence on enzymes as a driving force and secondly, the availability of metabolic energy. The discovery of enzymatic synthesis and regenerative activity of amorphous biosilica that builds the mineral skeleton of siliceous sponges formed the basis for the development of successful strategies for the treatment of osteochondral impairments in humans. In addition, the elucidation of the functional significance of a second regeneratively active inorganic material, namely inorganic polyphosphate (polyP) and its amorphous nanoparticles, present from sponges to humans, has pushed forward the development of innovative materials for both soft (skin, cartilage) and hard tissue (bone) repair. This energy-rich molecule exhibits a property not shown by any other biopolymer: the delivery of metabolic energy, even extracellularly, necessary for the ATP-dependent tissue regeneration. This review summarizes the latest developments in nanobiomaterials based on these two evolutionarily old, regeneratively active materials, amorphous silica and amorphous polyP, highlighting their specific, partly unique properties and mode of action, and discussing their possible applications in human therapy. The results of initial proof-of-concept studies on patients demonstrating complete healing of chronic wounds are outlined.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
26
|
Song S, Wu S, Meiduo D, Chen P, Li H, He H. Nano-biomaterial Fibrinogen/P(LLA-CL) for prevention of intrauterine adhesion and restoration of fertility. J Biomed Mater Res A 2024; 112:167-179. [PMID: 37724479 DOI: 10.1002/jbm.a.37604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/14/2023] [Accepted: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Endometrial damage resulting from surgical procedures is a significant cause of intrauterine adhesion, thin endometrium, and subsequent miscarriage and infertility. Unfortunately, there is currently no effective clinical solution to promote endometrial regeneration after severe injury. In this study, we combined fibrinogen (Fg) and P(LLA-CL) by electrostatic spinning to form a stable nano-biomaterial Fg/P(LLA-CL), which can promote endometrial regeneration. After inducing physical injury to rat endometrium, we found that Fg/P(LLA-CL) membranes placed in the uterine cavities increased endometrial thickness and the number of glands after injury, while reducing the area of endometrial fibrosis. In addition, Fg/P(LLA-CL) increased neovascularization and decreased COL1A1 deposition. The expression of TGF-β1, a cytokine that promotes fibrosis, was down-regulated in the early stage of injury. Finally, fertility assays confirmed that Fg/P(LLA-CL) improved the pregnancy rate in rats with endometrial injury, and its safety was verified by blood tests and pathological examination of heart, liver, spleen, lung, and kidney. Therefore, Fg/P(LLA-CL) shows great potential as a safe and nontoxic biomaterial for endometrial regeneration, ultimately improving pregnancy outcomes in patients with intrauterine adhesion.
Collapse
Affiliation(s)
- Sirui Song
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Siyu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Danzeng Meiduo
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Ping Chen
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Hongbing He
- Shanghai Pine & Power Biotech Co. Ltd, Shanghai, China
| |
Collapse
|
27
|
Abu Bakar N, Mydin RBSMN, Yusop N, Matmin J, Ghazalli NF. Understanding the ideal wound healing mechanistic behavior using in silico modelling perspectives: A review. J Tissue Viability 2024; 33:104-115. [PMID: 38092620 DOI: 10.1016/j.jtv.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 03/17/2024]
Abstract
Complexity of the entire body precludes an accurate assessment of the specific contributions of tissues or cells during the healing process, which might be expensive and time consuming. Because of this, controlling the wound's size, depth, and dimensions may be challenging, and there is not yet an efficient and reliable chronic wound model representation. Furthermore, given the inherent challenges associated with conducting non-invasive in vivo investigations, it becomes peremptory to explore alternative methodologies for studying wound healing. In this context, biologically-realistic mathematical and computational models emerge as a valuable framework that can effectively address this need. Therefore, it might improve our approach to understanding the process at its core. This article will examines all facets of wound healing, including the kinds, pathways, and most current developments in wound treatment worldwide, particularly in silico modelling utilizing both mathematical and structure-based modelling techniques. It may be helpful to identify the crucial traits through the feedback loop of computer models and experimental investigations in order to build innovative therapies to cure wounds. Hence the effectiveness of personalised medicine and more targeted therapy in the healing of wounds may be enhanced by this interdisciplinary expertise.
Collapse
Affiliation(s)
- Norshamiza Abu Bakar
- School of Dental Sciences, Universiti Sains Malaysia, 16150, Kota Bharu, Kelantan, Malaysia
| | - Rabiatul Basria S M N Mydin
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Norhayati Yusop
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Juan Matmin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Malaysia
| | - Nur Fatiha Ghazalli
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.
| |
Collapse
|
28
|
Su L, Xie S, Li T, Jia Y, Wang Y. Pretreatment with platelet-rich plasma protects against ischemia-reperfusion induced flap injury by deactivating the JAK/STAT pathway in mice. Mol Med 2024; 30:18. [PMID: 38302877 PMCID: PMC10835983 DOI: 10.1186/s10020-024-00781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is a major cause of surgical skin flap compromise and organ dysfunction. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, with tissue regenerative potential. PRP has shown promise in multiple I/R-induced tissue injuries, but its effects on skin flap injury remain unexplored. METHODS We evaluated the effects of PRP on I/R-injured skin flaps, optimal timing of PRP administration, and the involved mechanisms. RESULTS PRP protected against I/R-induced skin flap injury by improving flap survival, promoting blood perfusion and angiogenesis, suppressing oxidative stress and inflammatory response, and reducing apoptosis, at least partly via deactivating Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signalling pathway. PRP given before ischemia displayed overall advantages over that given before reperfusion or during reperfusion. In addition, PRP pretreatment had a stronger ability to reverse I/R-induced JAK/STAT activation and apoptosis than AG490, a specific inhibitor of JAK/STAT signalling. CONCLUSIONS This study firstly demonstrates the protective role of PRP against I/R-injured skin flaps through negative regulation of JAK/STAT activation, with PRP pretreatment showing optimal therapeutic effects.
Collapse
Affiliation(s)
- Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.
| | - Songtao Xie
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Ting Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
29
|
Chen N, Wang H, Shao Y, Yang J, Song G. A Comparative Study on Platelet-Rich Plasma From Elderly Individuals and Young Adults to Treat Pressure Ulcers in Mice. J Surg Res 2024; 294:198-210. [PMID: 37913727 DOI: 10.1016/j.jss.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE The aim of the present study was to compare the therapeutic effects of activated platelet-rich plasma (PRP) prepared from elderly individuals and young adults to treat pressure ulcers (PUs), and to accumulate a theoretical basis for allogeneic PRP treatment of PUs in elderly patients. MATERIALS AND METHODS Whole blood was extracted from elderly individuals aged >65 y and young adult volunteers for PRP preparation, and platelet concentrations in whole blood and PRP were compared. Growth factors released from activated PRP were assayed using the enzyme-linked immunosorbent assay. C57BL/6 mice were divided into three groups: the control saline, elderly-PRP (Group A), and young adult-PRP (Group B). Ischemia-reperfusion injury-induced PUs were established on the backs of mice. PUs were photographed on days 0, 5, and 10 to assess their sizes. Specimens were collected on day 10 and subjected to hematoxylin and eosin and Masson's staining. Immunohistochemical staining for CD31 was conducted to evaluate vascular formation, and cell invasion was assessed using a Transwell assay. The action of PRP on transforming growth factor-beta (TGF-β)-dependent fibroblast activity and epithelial-mesenchymal transition was analyzed using immunofluorescence and Western blotting in vitro. RESULTS The platelet concentrations in whole blood and PRP of young adults were significantly higher than that in elderly individuals. The two PRP treatment groups had similar platelet enrichment coefficients of PRP. After activation, PRP from young adults produced significantly higher levels of platelet-derived growth factor, TGF-β, and vascular endothelial growth factor than PRP from elderly individuals (P < 0.05). The concentrations of platelet-derived growth factor, TGF-β, and vascular endothelial growth factor were positively correlated with the platelet concentrations in whole blood and PRP. The effects of PRP in regulating the expressions of TGF-β, α-smooth muscle actin, vimentin, and E-cadherin were observed in vivo and in vitro. The two PRP treatment groups exhibited better wound healing than the control group, as evidenced by more re-epithelialization, higher collagen content, skin fibrosis, and more blood vessel formation over time. Group B exhibited better wound healing than Group A (P < 0.05). CONCLUSION PRP exhibits potent wound healing ability in PU therapy, and PRP from young adults is seemingly superior to that from elderly individuals because of a higher concentration of platelets and increased production of growth factors.
Collapse
Affiliation(s)
- Ningjie Chen
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Burns and Plastic Surgery, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, China
| | - Haitao Wang
- Department of Burns and Plastic Surgery, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, China
| | - Yang Shao
- Department of Burns and Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Jincun Yang
- Department of Burns and Plastic Surgery, Weihai Municipal Hospital, Shandong University, Weihai, Shandong, China
| | - Guodong Song
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Burns and Orthopedic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
30
|
Zawadzki T, Sitek A, Antoszewski B, Kasielska-Trojan A. Do Intraoperative Platelet-Rich Plasma Injections Influence the Final Appearance of Vertical Scars after Breast Reduction? Spectrophotometric Analysis. J Clin Med 2024; 13:691. [PMID: 38337385 PMCID: PMC10856486 DOI: 10.3390/jcm13030691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Platelet-rich plasma (PRP) has been shown to support wound healing and tissue regeneration due to its high concentration of growth factors and cytokines. This study aims to investigate the effect of intraoperative PRP injections on the final appearance of vertical scars after breast reduction, as well as to identify potential predictors of a scar's aesthetic assessment using spectrophotometric parameters. Methods: In this prospective, randomized trial, 82 scars from 41 women who underwent bilateral breast reduction with an inverted T pattern were analyzed. PRP or a placebo substance (0.9% sodium chloride solution) was injected intraoperatively into the edges of vertical wounds. Spectrophotometric measurements of scar pigmentation were performed 3 and 6 months after surgery; additionally, two independent observers evaluated the aesthetic appearance of scars based on photographs. Results: The results showed that the use of intraoperative PRP injections did not significantly influence the final appearance of vertical scars after breast reduction. Conclusions: We indicated spectrophotometric variables (b) in the early stages of wound healing (after 3 months) that can be predictors of the final scar's aesthetic outcome. This can be helpful in detecting scars that may need additional interventions to optimize the healing process.
Collapse
Affiliation(s)
- Tomasz Zawadzki
- Plastic, Reconstructive and Aesthetic Surgery Clinic, Institute of Surgery, Medical University of Lodz, 90-153 Lodz, Poland; (T.Z.); (B.A.)
| | - Aneta Sitek
- Department of Anthropology, University of Lodz, 90-237 Lodz, Poland;
| | - Bogusław Antoszewski
- Plastic, Reconstructive and Aesthetic Surgery Clinic, Institute of Surgery, Medical University of Lodz, 90-153 Lodz, Poland; (T.Z.); (B.A.)
| | - Anna Kasielska-Trojan
- Plastic, Reconstructive and Aesthetic Surgery Clinic, Institute of Surgery, Medical University of Lodz, 90-153 Lodz, Poland; (T.Z.); (B.A.)
| |
Collapse
|
31
|
Yadav A, Nandy A, Sharma A, Ghatak S. Exosome Mediated Cell-Cell Crosstalk in Tissue Injury and Repair. Results Probl Cell Differ 2024; 73:249-297. [PMID: 39242383 DOI: 10.1007/978-3-031-62036-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The landscape of exosome research has undergone a significant paradigm shift, with a departure from early conceptions of exosomes as vehicles for cellular waste disposal towards their recognition as integral components of cellular communication with therapeutic potential. This chapter presents an exhaustive elucidation of exosome biology, detailing the processes of exosome biogenesis, release, and uptake, and their pivotal roles in signal transduction, tissue repair, regeneration, and intercellular communication. Additionally, the chapter highlights recent innovations and anticipates future directions in exosome research, emphasizing their applicability in clinical settings. Exosomes have the unique ability to navigate through tissue spaces to enter the circulatory system, positioning them as key players in tissue repair. Their contributory role in various processes of tissue repair, although in the nascent stages of investigation, stands out as a promising area of research. These vesicles function as a complex signaling network for intracellular and organ-level communication, critical in both pathological and physiological contexts. The chapter further explores the tissue-specific functionality of exosomes and underscores the advancements in methodologies for their isolation and purification, which have been instrumental in expanding the scope of exosome research. The differential cargo profiles of exosomes, dependent on their cellular origin, position them as prospective diagnostic biomarkers for tissue damage and regenerative processes. Looking ahead, the trajectory of exosome research is anticipated to bring transformative changes to biomedical fields. This includes advancing diagnostic and prognostic techniques that utilize exosomes as non-invasive biomarkers for a plethora of diseases, such as cancer, neurodegenerative, and cardiovascular conditions. Additionally, engineering exosomes through alterations of their native content or surface properties presents a novel frontier, including the synthesis of artificial or hybrid variants with enhanced functional properties. Concurrently, the ethical and regulatory frameworks surrounding exosome research, particularly in clinical translation, will require thorough deliberation. In conclusion, the diverse aspects of exosome research are coalescing to redefine the frontiers of diagnostic and therapeutic methodologies, cementing its importance as a discipline of considerable consequence in the biomedical sciences.
Collapse
Affiliation(s)
- Anita Yadav
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aparajita Nandy
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anu Sharma
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
32
|
Jiang Y, Zhu Y, Shao Y, Yang K, Zhu L, Liu Y, Zhang P, Zhang X, Zhou Y. Platelet-Derived Apoptotic Vesicles Promote Bone Regeneration via Golgi Phosphoprotein 2 (GOLPH2)-AKT Signaling Axis. ACS NANO 2023; 17:25070-25090. [PMID: 38047915 PMCID: PMC10753896 DOI: 10.1021/acsnano.3c07717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Apoptotic vesicles (apoVs) are apoptotic-cell-derived nanosized vesicles that take on dominant roles in regulating bone homeostasis. We have demonstrated that mesenchymal stem cell (MSC)-derived apoVs are promising therapeutic agents for bone regeneration. However, clinical translation of MSC-derived apoVs has been hindered due to cell expansion and nuclear substance. As another appealing source for apoV therapy, blood cells could potentially eliminate these limitations. However, whether blood cells can release apoVs during apoptosis is uncertain, and the detailed characteristics and biological properties of respective apoVs are not elucidated. In this study, we showed that platelets (PLTs) could rapidly release abundant apoVs during apoptosis in a short time. To recognize the different protein expressions between PLT-derived apoVs and PLTs, we established their precise protein landscape. Furthermore, we identified six proteins specifically enriched in PLT-derived apoVs, which could be considered as specific biomarkers. More importantly, PLT-derived apoVs promoted osteogenesis of MSCs and rescued bone loss via Golgi phosphoprotein 2 (GOLPH2)-induced AKT phosphorylation, therefore, leading to the emergence of their potential in bone regeneration. In summary, we comprehensively determined characteristics of PLT-derived apoVs and confirmed their roles in bone metabolism through previously unrecognized GOPLH2-dependent AKT signaling, providing more understanding for exploring apoV-based therapy in bone tissue engineering.
Collapse
Affiliation(s)
- Yuhe Jiang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yuzi Shao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Lei Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| |
Collapse
|
33
|
Vladulescu D, Scurtu LG, Simionescu AA, Scurtu F, Popescu MI, Simionescu O. Platelet-Rich Plasma (PRP) in Dermatology: Cellular and Molecular Mechanisms of Action. Biomedicines 2023; 12:7. [PMID: 38275368 PMCID: PMC10813350 DOI: 10.3390/biomedicines12010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Platelet-rich plasma (PRP) therapy has gained attention in the scientific field due to its potential regenerative effects and great benefit-risk ratio. This review extensively explores the most studied mechanisms of this therapy according to the etiopathogenesis of skin diseases: cellular proliferation, matrix formation, regulation of inflammation, angiogenesis, collagen synthesis, and the remodeling of new tissue. Moreover, it draws on newly reported and lesser-known effects of PRP: its anti-apoptotic effects, immunological suppression, decrease in melanin synthesis, anti-microbial effects, overexpression of miR-155, antioxidant effects, and their involved pathways. This work aims to provide a complete update for understanding PRP's benefits and clinical relevance in wound healing, alopecia, pigmentary disorders, scars, rejuvenation, lichen sclerosus, and other inflammatory dermatoses, based on the current evidence. Furthermore, recent reports with novel indications for PRP therapy are highlighted, and new potential pathways correlated with the pathogenesis of skin diseases are explored.
Collapse
Affiliation(s)
- Denisa Vladulescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology I, Colentina Hospital, 020125 Bucharest, Romania
| | - Lucian G. Scurtu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology I, Colentina Hospital, 020125 Bucharest, Romania
| | - Anca Angela Simionescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 011132 Bucharest, Romania
| | - Francesca Scurtu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 011132 Bucharest, Romania
| | - Marco I. Popescu
- Faculty of Medicine, “Titu Maiorescu” University, 040441 Bucharest, Romania
| | - Olga Simionescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology I, Colentina Hospital, 020125 Bucharest, Romania
| |
Collapse
|
34
|
Warin R, Vongchan P, Suriyasathaporn W, Hall DC, Boripun R, Suriyasathaporn W. In Vitro Antimicrobial Properties and Their Mechanisms in Relation to Reactive Oxygen Species of Canine Platelet-Rich Fibrin. Animals (Basel) 2023; 13:3786. [PMID: 38136823 PMCID: PMC10740687 DOI: 10.3390/ani13243786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Platelet-rich fibrin (PRF), which has been shown to promote wound and bone regeneration, has demonstrated antimicrobial properties against periodontal pathogens. However, in veterinary medicine, no study has determined the antimicrobial effects of canine platelet-rich fibrin (cPRF). Therefore, this study aimed to determine the antimicrobial effect of cPRF against E. coli and S. pseudintermedius found in dogs' wounds and against the standard strain S. aureus. Additionally, the mechanism of the existing antibacterial activity of cPRF, which involves the formation of reactive oxygen species (ROS), was tested. Blood samples from six dogs were processed for cPRF. The antimicrobial properties of three groups (growth control, cPRF, and drug control) were evaluated at 0.5, 4, 8, and 24 h using a time-kill assay. The killing mechanisms involving ROS were evaluated using horseradish peroxidase (HRP) to suppress ROS production in PRF (PRF-SR). Subsequently, tests for antimicrobial properties and ROS generation were compared to those of the growth control and cPRF groups. The results showed that cPRF had significant antimicrobial properties against E. coli but no antimicrobial properties against S. pseudintermedius. After the ROS suppression, PRF-SR did not show an antimicrobial property against E. coli. Moreover, cPRF-treated bacteria exhibited significantly greater intracellular ROS than PRF-SR. In conclusion, canine PRF showed an antimicrobial effect against E. coli, and its antibacterial mechanism was related to releasing ROS.
Collapse
Affiliation(s)
- Ravisa Warin
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (R.W.); (W.S.)
| | - Preeyanat Vongchan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Witaya Suriyasathaporn
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (R.W.); (W.S.)
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
- Asian Satellite Campuses Institute, Cambodian Campus, Nagoya University, Nagoya 464-8601, Japan
| | - David C. Hall
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z1, Canada;
| | - Ratchadaporn Boripun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Wanna Suriyasathaporn
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (R.W.); (W.S.)
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
35
|
Wang J, Li W, He X, Li S, Pan H, Yin L. Injectable platelet-rich fibrin positively regulates osteogenic differentiation of stem cells from implant hole via the ERK1/2 pathway. Platelets 2023; 34:2159020. [PMID: 36644947 DOI: 10.1080/09537104.2022.2159020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bone regeneration in dentistry is a dynamic approach for treating critical size bone defects that are unlikely to self-heal. Human bone marrow stem cell (hBMSCs) therapies are being tested clinically for various disorders and have remarkable clinical advancements in bone regeneration. Injectable platelet-rich fibrin (i-PRF), which is obtained from autologous blood centrifuged at 700 rpm (60 G) for 3 min can promote osteogenic differentiation of this cell, but the mechanism remains unclear. The objectives of this study were to explore the contents of i-PRF further and investigate its effect on the cell behavior of hBMSCs and the underlying molecular mechanisms. The results showed that i-PRF contained 41 cytokines, including macrophage colony-stimulating factor (M-CSF) and β-nerve growth factor (β-NGF), which had not been reported before. The Cell Counting Kit-8 and wound healing assay showed that 10% and 20% i-PRF improved the proliferation rate and the migration capacity of hBMSCs without toxicity to cells. Besides, the expression of osteogenic markers and the capacity to form mineralized nodules of hBMSCs were promoted by 20% i-PRF. Furthermore, i-PRF activated the ERK pathway, and the ERK inhibitor attenuated its effects. In summary, i-PRF promotes hBMSCs proliferation and migration and facilitates cell osteogenesis through the ERK pathway, which has promising potential in bone regeneration.
Collapse
Affiliation(s)
- Jia Wang
- Department of Implantology, School/Hospital of Stomatology Lanzhou University, Lanzhou, China
| | - Wanxin Li
- Department of Implantology, School/Hospital of Stomatology Lanzhou University, Lanzhou, China
| | - Xuxia He
- Department of Implantology, School/Hospital of Stomatology Lanzhou University, Lanzhou, China
| | - Simei Li
- Department of Implantology, School/Hospital of Stomatology Lanzhou University, Lanzhou, China
| | - Hongwei Pan
- Department of Implantology, School/Hospital of Stomatology Lanzhou University, Lanzhou, China
| | - Lihua Yin
- Department of Implantology, School/Hospital of Stomatology Lanzhou University, Lanzhou, China
| |
Collapse
|
36
|
Li S, Niu D, Fang H, Chen Y, Li J, Zhang K, Yin J, Fu P. Tissue adhesive, ROS scavenging and injectable PRP-based 'plasticine' for promoting cartilage repair. Regen Biomater 2023; 11:rbad104. [PMID: 38235061 PMCID: PMC10793072 DOI: 10.1093/rb/rbad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/17/2023] [Accepted: 11/11/2023] [Indexed: 01/19/2024] Open
Abstract
Platelet-rich plasma (PRP) that has various growth factors has been used clinically in cartilage repair. However, the short residence time and release time at the injury site limit its therapeutic effect. The present study fabricated a granular hydrogel that was assembled from gelatin microspheres and tannic acid through their abundant hydrogen bonding. Gelatin microspheres with the gelatin concentration of 10 wt% and the diameter distribution of 1-10 μm were used to assemble by tannic acid to form the granular hydrogel, which exhibited elasticity under low shear strain, but flowability under higher shear strain. The viscosity decreased with the increase in shear rate. Meanwhile, the granular hydrogel exhibited self-healing feature during rheology test. Thus, granular hydrogel carrying PRP not only exhibited well-performed injectability but also performed like a 'plasticine' that possessed good plasticity. The granular hydrogel showed tissue adhesion ability and reactive oxygen species scavenging ability. Granular hydrogel carrying PRP transplanted to full-thickness articular cartilage defects could integrate well with native cartilage, resulting in newly formed cartilage articular fully filled in defects and well-integrated with the native cartilage and subchondral bone. The unique features of the present granular hydrogel, including injectability, plasticity, porous structure, tissue adhesion and reactive oxygen species scavenging provided an ideal PRP carrier toward cartilage tissue engineering.
Collapse
Affiliation(s)
- Shiao Li
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Dawei Niu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Yancheng Chen
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Jinyan Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Peiliang Fu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
37
|
Cao W, Meng X, Cao F, Wang J, Yang M. Exosomes derived from platelet-rich plasma promote diabetic wound healing via the JAK2/STAT3 pathway. iScience 2023; 26:108236. [PMID: 37953957 PMCID: PMC10637946 DOI: 10.1016/j.isci.2023.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/26/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetic non-healing wounds are bringing a heavy burden on patients and society. Platelet-rich plasma (PRP) has been widely applied in tissue regenerating for containing various growth factors. Recently, PRP-derived exosomes (PRP-Exos) have been proved to be more effective than PRP in tissue regeneration. However, few studies have investigated the therapeutic potential of PRP-Exos in diabetic wound healing to date. Therefore, we extracted and identified exosomes derived from PRP and tested its promoting effect on diabetic wound healing in vivo and in vitro. We found that high glucose (HG) inhibited cell proliferation and migration and induced apoptosis through ROS-dependent activation of the JNK and p38 MAPK signaling pathways. PRP-Exos can stimulate fibroblast functions and accelerate diabetic wound healing. The benefits of PRP-Exos may be attributed to its capability to prevent HG-induced ROS-dependent apoptosis via the PDGF-BB/JAK2/STAT3/Bcl-2 signaling pathway. This illustrates the therapeutic potential of PRP-Exos in diabetic wounds.
Collapse
Affiliation(s)
- Wenhai Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Xiaotong Meng
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Fangming Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Jinpeng Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Maowei Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Zhang J, Luo Q, Hu Q, Zhang T, Shi J, Kong L, Fu D, Yang C, Zhang Z. An injectable bioactive dressing based on platelet-rich plasma and nanoclay: Sustained release of deferoxamine to accelerate chronic wound healing. Acta Pharm Sin B 2023; 13:4318-4336. [PMID: 37799395 PMCID: PMC10547914 DOI: 10.1016/j.apsb.2022.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Delayed diabetic wound healing has placed an enormous burden on society. The key factors limiting wound healing include unresolved inflammation and impaired angiogenesis. Platelet-rich plasma (PRP) gel, a popular biomaterial in the field of regeneration, has limited applications due to its non-injectable properties and rapid release and degradation of growth factors. Here, we prepared an injectable hydrogel (DPLG) based on PRP and laponite by a simple one-step mixing method. Taking advantages of the non-covalent interactions, DPLG could overcome the limitations of PRP gels, which is injectable to fill irregular injures and could serve as a local drug reservoir to achieve the sustained release of growth factors in PRP and deferoxamine (an angiogenesis promoter). DPLG has an excellent ability in accelerating wound healing by promoting macrophage polarization and angiogenesis in a full-thickness skin defect model in type I diabetic rats and normal rats. Taken together, this study may provide the ingenious and simple bioactive wound dressing with a superior ability to promote wound healing.
Collapse
Affiliation(s)
- Jiao Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Luo
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiantian Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingyu Shi
- Liyuan Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dehao Fu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
39
|
Fernández-Guarino M, Hernández-Bule ML, Bacci S. Cellular and Molecular Processes in Wound Healing. Biomedicines 2023; 11:2526. [PMID: 37760967 PMCID: PMC10525842 DOI: 10.3390/biomedicines11092526] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
This review summarizes the recent knowledge of the cellular and molecular processes that occur during wound healing. However, these biological mechanisms have yet to be defined in detail; this is demonstrated by the fact that alterations of events to pathological states, such as keloids, consisting of the excessive formation of scars, have consequences yet to be defined in detail. Attention is also dedicated to new therapies proposed for these kinds of pathologies. Awareness of these scientific problems is important for experts of various disciplines who are confronted with these kinds of presentations daily.
Collapse
Affiliation(s)
- Montserrat Fernández-Guarino
- Dermatology Service, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), 28034 Madrid, Spain;
| | - Maria Luisa Hernández-Bule
- Bioelectromagnetic Lab, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), 28034 Madrid, Spain;
| | - Stefano Bacci
- Research Unit of Histology and Embriology, Department of Biology, University of Florence, Viale Pieraccini 6, 50134 Firenze, Italy
| |
Collapse
|
40
|
Vishva P, R N, Harikrishnan S. The Effect of Platelet-Rich Plasma on Bone Volume in Secondary Alveolar Bone Grafting in Alveolar Cleft Patients: A Systematic Review. Cureus 2023; 15:e46245. [PMID: 37908953 PMCID: PMC10614025 DOI: 10.7759/cureus.46245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
This systematic review aims to investigate the impact of platelet-rich plasma (PRP) in conjunction with bone grafting on bone volume outcomes in secondary alveolar bone grafting (SABG) procedures among alveolar cleft patients. An exhaustive search involving PubMed, Cochrane, and Google Scholar databases yielded 20 relevant titles, ultimately leading to the inclusion of four articles meeting all specified criteria. Based on the Cochrane risk of bias in systematic reviews (ROBIS) tool, the studies showed a high risk of bias. The primary outcome, bone volume assessment, was analyzed across these articles. While the Cochrane ROBIS tool deemed the included articles to have a high risk of bias, the comparison between PRP and Non-PRP groups did not reveal a significant difference in bone volume. Radiographic data illustrated an initial three-month period of bone resorption post-graft, regardless of PRP application, followed by a six-month phase of heightened bone density, particularly discernible in the PRP groups. To sum up, our findings indicate an absence of substantial bone density increase in cleft patients undergoing SABG with PRP augmentation. Nonetheless, there was a modest trend that suggests potential incremental bone density improvement with PRP usage, underscoring the need to conduct rigorously designed, randomized controlled trials (RCTs) with low bias to validate these observations.
Collapse
Affiliation(s)
- Prem Vishva
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Navaneethan R
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sruthi Harikrishnan
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
41
|
Lai H, Chen G, Zhang W, Wu G, Xia Z. Research trends on platelet-rich plasma in the treatment of wounds during 2002-2021: A 20-year bibliometric analysis. Int Wound J 2023; 20:1882-1892. [PMID: 36480439 PMCID: PMC10333001 DOI: 10.1111/iwj.14047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 09/10/2023] Open
Abstract
Platelet-rich plasma (PRP) has attracted attention because of its potential to accelerate the wound healing process. However, resources for evaluating research trends in the treatment of wounds with PRP were limited. In this study, we aimed to make a bibliometric analysis of the literature related to PRP in the treatment of wounds and explore the research status, hotspots and frontiers in this field in recent 20 years. Studies about PRP treatment for wounds from 2002 to 2021 were retrieved from the Science Citation Index Expanded (SCI-E) of Web of Science (WOS) database. Visualisation softwares such as VOSviewer and SCImago Graphica, and CiteSpace were used to analyse the research trends and features. A total of 1748 studies were identified in the SCI-Expanded from 2002 to 2021. The number of publications on PRP in the treatment of wounds has shown an increasing trend, from 6 (in 2002) to 228 (in 2021). The papers published in the United States have led in times cited (14637) and H-index (63). Though Italy was slightly lower than China in the number of publications, the H-index and average cited (47, 28.45) were higher than that of China (38, 27.01). The strongest keyword was "fibrin" (strength = 13.07), and the longest burst duration keyword was "thrombin" (began in 2002 and ended in 2014). The largest 10 co-citation clusters are as follows: endothelial cell proliferation (#0), regenerative medicine-associated treatment (#1), diabetic wound healing (#2), autologous derived (#3), platelet-rich fibrin (#4), tissue engineering (#5), regenerative potential (#6), clinical randomised trial (#7), histologic observation (#8), and wound bacteria (#9). The United States has made the most outstanding contribution in this field. Chinese researchers need to enhance the quality of publications further. Wound Repair Regen. is the most noteworthy journal. The mechanism of growth factors of PRP, combination therapy, preparation of PRP, and related clinical trials may be topics that need attention.
Collapse
Affiliation(s)
- Honghao Lai
- Department of Burn, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Burn Surgery, Changhai HospitalNaval Medical UniversityShanghaiChina
- Research Institute, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Guangping Chen
- Department of Burn, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wei Zhang
- Department of Burn Surgery, Changhai HospitalNaval Medical UniversityShanghaiChina
| | - Guosheng Wu
- Department of Burn Surgery, Changhai HospitalNaval Medical UniversityShanghaiChina
| | - Zhaofan Xia
- Department of Burn, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Burn Surgery, Changhai HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
42
|
Qiu Y, Bao S, Wei H, Miron RJ, Bao S, Zhang Y, Wang Y. Bacterial exclusion and wound healing potential of horizontal platelet-rich fibrin (H-PRF) membranes when compared to 2 commercially available collagen membranes. Clin Oral Investig 2023; 27:4795-4802. [PMID: 37318640 DOI: 10.1007/s00784-023-05108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES The aim of the present study was to compare the barrier function during bacterial invasion and wound healing properties of 3 commonly used membranes including horizontal platelet-rich fibrin (H-PRF) against two commercially available resorbable collagen membranes. MATERIALS AND METHODS H-PRF membranes were prepared by collecting venous blood from 3 healthy volunteers using a 700 g for 8-min centrifugation protocol followed by compression into membranes. To evaluate their barrier function, 3 groups (H-PRF membrane, collagen membrane A (Bio-Gide, Geistlich), collagen membrane B (Megreen, Shanxi Ruisheng Biotechnology Co) were placed between an inner chamber and outer chamber and inoculated with S. aureus. At 2 h, 24 h, and 48 h post-inoculation, cultures from the inner and outer chambers were assessed for bacterial CFUs. Then, scanning electron microscope (SEM) was utilized to visualized the morphological destruction by bacteria of the inner and outer surfaces of the membranes. To assess the wound healing properties of each membrane, leachates from each group were applied to human gingival fibroblasts (HGF) and a scratch assay was performed at 24 h and 48 h. RESULTS S. aureus showed a minimal bacterial attachment or invasion rate through either collagen membranes at 2 h post-inoculation, yet over time demonstrated rapid degradation, especially on the rougher surface. While PRF demonstrated higher number of CFUs after 2 h, no significant penetration/degradation of the H-PRF membranes was observed at 24 h and 48 h in the H-PRF group. Both collagen membranes demonstrated significant morphological changes 48 h post-bacterial innoculation, while minimal obvious morphological changes were observed in the H-PRF group. The wound healing assay also demonstrated significantly better wound closure rates in the H-PRF group. CONCLUSION H-PRF membranes exhibited better barrier function towards S. aureus over 2 days of innoculation and better wound healing ability when compared to two commercially available collagen membranes. CLINICAL RELEVANCE This study provides further evidence for the application of H-PRF membranes during guided bone regeneration by minimizing bacterial invasion. Furthermore, H-PRF membranes have significantly better ability to promote wound healing.
Collapse
Affiliation(s)
- Yun Qiu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shanying Bao
- Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Hongjiang Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Senzhu Bao
- Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Dental Implantology, School and Hospital of Stomatology, University of Wuhan, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yulan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Dental Implantology, School and Hospital of Stomatology, University of Wuhan, Wuhan, China.
| |
Collapse
|
43
|
Johnson J, Law SQK, Shojaee M, Hall AS, Bhuiyan S, Lim MBL, Silva A, Kong KJW, Schoppet M, Blyth C, Ranasinghe HN, Sejic N, Chuei MJ, Tatford OC, Cifuentes‐Rius A, James PF, Tester A, Dixon I, Lichtfuss G. First-in-human clinical trial of allogeneic, platelet-derived extracellular vesicles as a potential therapeutic for delayed wound healing. J Extracell Vesicles 2023; 12:e12332. [PMID: 37353884 PMCID: PMC10290200 DOI: 10.1002/jev2.12332] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
The release of growth factors, cytokines and extracellular matrix modifiers by activated platelets is an important step in the process of healthy wound healing. Extracellular vesicles (EVs) released by activated platelets carry this bioactive cargo in an enriched form, and may therefore represent a potential therapeutic for the treatment of delayed wound healing, such as chronic wounds. While EVs show great promise in regenerative medicine, their production at clinical scale remains a critical challenge and their tolerability in humans is still to be fully established. In this work, we demonstrate that Ligand-based Exosome Affinity Purification (LEAP) chromatography can successfully isolate platelet EVs (pEVs) of clinical grade from activated platelets, which retain the regenerative properties of the parent cell. LEAP-isolated pEVs display the expected biophysical features of EV populations and transport essential proteins in wound healing processes, including insulin growth factor (IGF) and transforming growth factor beta (TGF-ß). In vitro studies show that pEVs induce proliferation and migration of dermal fibroblasts and increase dermal endothelial cells' angiogenic potential, demonstrating their wound healing potential. pEV treatment activates the ERK and Akt signalling pathways within recipient cells. In a first-in-human, double-blind, placebo-controlled, phase I clinical trial of healthy volunteer adults, designed primarily to assess safety in the context of wound healing, we demonstrate that injections of LEAP-purified pEVs in formulation buffer are safe and well tolerated (Plexoval II study, ACTRN12620000944932). As a secondary objective, biological activity in the context of wound healing rate was assessed. In this cohort of healthy participants, in which the wound bed would not be expected to be deficient in the bioactive cargo that pEVs carry, all wounds healed rapidly and completely and no difference in time to wound closure of the treated and untreated wounds was observed at the single dose tested. The outcomes of this study evidence that pEVs manufactured through the LEAP process can be injected safely in humans as a potential wound healing treatment, and warrant further study in clinical trials designed expressly to assess therapeutic efficacy in patients with delayed or disrupted wound healing.
Collapse
Affiliation(s)
- Jancy Johnson
- Exopharm LtdMelbourneVICAustralia
- Department of Biochemistry and PharmacologyUniversity of MelbourneParkvilleVICAustralia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gregor Lichtfuss
- Exopharm LtdMelbourneVICAustralia
- Department of Biochemistry and PharmacologyUniversity of MelbourneParkvilleVICAustralia
| |
Collapse
|
44
|
Tian K, Ye J, Zhong Y, Jia Z, Xu W, Gao S, Cao S, Li K, Wu L. Autologous i-PRF promotes healing of radiation-induced skin injury. Wound Repair Regen 2023; 31:454-463. [PMID: 37073922 DOI: 10.1111/wrr.13083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 04/20/2023]
Abstract
Skin, as an exposed tissue, often suffers damage after exposure to radiotherapy and accidental events, which may lead to the formation of chronic refractory wounds. However, effective treatment options are usually limited for severe radiation-induced skin injury (RSI). Platelet-rich plasma (PRP) has been identified to promote wound healing, but whether a new generation of blood-derived biomaterial, injectable platelet-rich fibrin (i-PRF), is effective in repairing RSI remains unclear. In this study, blood was drawn from humans and Sprague-Dawley rats to prepare PRP and i-PRF, and the regenerative functions of PRP and i-PRF were investigated by exposing the dorsal skin of SD rats to local radiation (45 Gy) and exposing HDF-α cells and human umbilical vein endothelial cells (HUVECs) cells to X-rays (10 Gy). The healing effect of i-PRF on RSI was analysed by tube formation assay, cell migration and apoptosis assays, ROS assay, wound healing assay, histological characterisation and immunostaining. The results showed that exposure to high doses of radiation reduced cell viability, increased ROS levels and induced cell apoptosis, thereby causing dorsal trauma of rats. However, both PRP and i-PRF could resisted RSI, and they were capable of reducing inflammation and promoting angiogenesis and vascular regeneration. i-PRF has a higher concentration of platelets and platelet-derived growth factors, which has a more convenient preparation method and better repair effect and possesses a good application prospect for the repair of RSI.
Collapse
Affiliation(s)
- Kai Tian
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingcheng Ye
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuanyuan Zhong
- Party and Administration Office, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zou Jia
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wushuang Xu
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Suyue Gao
- Department of Dermatology and Cosmetic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Shikun Cao
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Li
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lijun Wu
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
45
|
Bukharova TB, Nedorubova IA, Mokrousova VO, Meglei AY, Basina VP, Nedorubov AA, Vasilyev AV, Grigoriev TE, Zagoskin YD, Chvalun SN, Kutsev SI, Goldshtein DV. Adenovirus-Based Gene Therapy for Bone Regeneration: A Comparative Analysis of In Vivo and Ex Vivo BMP2 Gene Delivery. Cells 2023; 12:1762. [PMID: 37443796 PMCID: PMC10340163 DOI: 10.3390/cells12131762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Adenovirus-mediated gene therapy is a promising tool in bone regenerative medicine. In this work, gene-activated matrices (GAMs) composed of (1) polylactide granules (PLA), which serve as a depot for genetic constructs or matrices for cell attachment, (2) a PRP-based fibrin clot, which is a source of growth factors and a binding gel, and (3) a BMP2 gene providing osteoinductive properties were studied. The study aims to compare the effectiveness of in vivo and ex vivo gene therapy based on adenoviral constructs with the BMP2 gene, PLA particles, and a fibrin clot for bone defect healing. GAMs with Ad-BMP2 and MSC(Ad-BMP2) show osteoinductive properties both in vitro and in vivo. However, MSCs incubated with GAMs containing transduced cells showed a more significant increase in osteopontin gene expression, protein production, Alpl activity, and matrix mineralization. Implantation of the studied matrices into critical-size calvarial defects after 56 days promotes the formation of young bone. The efficiency of neoosteogenesis and the volume fraction of newly formed bone tissue are higher with PLA/PRP-MSC(Ad-BMP2) implantation (33%) than PLA/PRP-Ad-BMP2 (28%). Thus, ex vivo adenoviral gene therapy with the BMP2 gene has proven to be a more effective approach than the in vivo delivery of gene constructs for bone regeneration.
Collapse
Affiliation(s)
- Tatiana Borisovna Bukharova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Irina Alekseevna Nedorubova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Viktoria Olegovna Mokrousova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Anastasiia Yurevna Meglei
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Viktoriia Pavlovna Basina
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Andrey Anatolevich Nedorubov
- Institute of Translational Medicine and Biotechnology and E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
| | - Andrey Vyacheslavovich Vasilyev
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
- Institute of Translational Medicine and Biotechnology and E.V. Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
| | | | | | | | - Sergey Ivanovich Kutsev
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| | - Dmitry Vadimovich Goldshtein
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (I.A.N.); (V.O.M.); (A.Y.M.); (V.P.B.); (A.V.V.); (S.I.K.); (D.V.G.)
| |
Collapse
|
46
|
Olisova O, Potapova M, Suvorov A, Koriakin D, Lepekhova A. Meta-analysis on the Efficacy of Platelet-rich Plasma in Patients with Androgenetic Alopecia. Int J Trichology 2023; 15:117-126. [PMID: 38765721 PMCID: PMC11098138 DOI: 10.4103/ijt.ijt_90_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 05/22/2024] Open
Abstract
Platelet-rich plasma (PRP) is an autologous platelet concentrate in plasma enriched with growth factors that may stimulate tissue regeneration, collagen formation, re-epithelization, and angiogenesis. PRP is widely used as an androgenetic alopecia treatment option. The present work aims to test the efficacy of various PRP methods, including those with single-spin and double-spin centrifugation. We performed a review of articles published from 2011 to 2021 in PubMed and ScienceDirect. The studies vary in the preparation procedure, dose, number, intervals between the procedures, and the injection technique because of low standardization of PRP preparation, complicating the evaluation of the clinical efficacy of the method. Based on the conducted statistical analysis, we came to the conclusion that the double-spin PRP preparation method was superior to the single-spin technique, which may be taken into account for AGA management.
Collapse
Affiliation(s)
- Olga Olisova
- Department of Dermatology and Venereology, Sechenov University, Moscow, Russia
| | - Mariia Potapova
- Department of Dermatology and Venereology, Sechenov University, Moscow, Russia
| | - Aleksandr Suvorov
- Centre for Analysis of Complex Systems, Research Center “Digital Biodesign and Personalized Healthcare,” Sechenov First Moscow State Medical University, Moscow, Russia
| | - Danila Koriakin
- Department of Dermatology and Venereology, Sechenov University, Moscow, Russia
| | - Anfisa Lepekhova
- Department of Dermatology and Venereology, Sechenov University, Moscow, Russia
| |
Collapse
|
47
|
Barone L, Palano MT, Gallazzi M, Cucchiara M, Rossi F, Borgese M, Raspanti M, Zecca PA, Mortara L, Papait R, Bernardini G, Valdatta L, Bruno A, Gornati R. Adipose mesenchymal stem cell-derived soluble factors, produced under hypoxic condition, efficiently support in vivo angiogenesis. Cell Death Discov 2023; 9:174. [PMID: 37221171 DOI: 10.1038/s41420-023-01464-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Tissue regeneration or healing both require efficient vascularization within a tissue-damaged area. Based on this concept, a remarkable number of strategies, aimed at developing new tools to support re-vascularization of damaged tissue have emerged. Among the strategies proposed, the use of pro-angiogenic soluble factors, as a cell-free tool, appears as a promising approach, able to overcome the issues concerning the direct use of cells for regenerative medicine therapy. Here, we compared the effectiveness of adipose mesenchymal stem cells (ASCs), use as cell suspension, ASC protein extract or ASC-conditioned-medium (i.e., soluble factors), combined with collagenic scaffold, in supporting in vivo angiogenesis. We also tested the capability of hypoxia in increasing the efficiency of ASC to promote angiogenesis, via soluble factors, both in vivo and in vitro. In vivo studies were performed using the Integra® Flowable Wound Matrix, and the Ultimatrix in sponge assay. Flow cytometry was used to characterize the scaffold- and sponge-infiltrating cells. Real-time PCR was used to evaluate the expression of pro-angiogenic factors by stimulating Human Umbilical-Vein Endothelial Cells with ASC-conditioned media, obtained in hypoxic and normoxic conditions. We found that, in vivo, ACS-conditioned media can support angiogenesis similar to ASCs and ASC protein extract. Also, we observed that hypoxia increases the pro-angiogenic activities of ASC-conditioned media, compared to normoxia, by generating a secretome enriched in pro-angiogenic soluble factors, with bFGF, Adiponectine, ENA78, GRO, GRO-a, and ICAM1-3, as most regulated factors. Finally, ASC-conditioned media, produced in hypoxic condition, induce the expression of pro-angiogenic molecules in HUVECs. Our results provide evidence that ASC-conditioned-medium can be proposed as a cell-free preparation able to support angiogenesis, thus providing a relevant tool to overcome the issues and restrictions associated with the use of cells.
Collapse
Affiliation(s)
- Ludovica Barone
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy
| | - Matteo Gallazzi
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy
| | - Martina Cucchiara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Federica Rossi
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Marina Borgese
- Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Mario Raspanti
- Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Piero Antonio Zecca
- Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Roberto Papait
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Giovanni Bernardini
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Luigi Valdatta
- Unit of Plastic and Reconstructive Surgery, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy.
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy.
| | - Rosalba Gornati
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy.
| |
Collapse
|
48
|
Asgari A, Jurasz P. Role of Nitric Oxide in Megakaryocyte Function. Int J Mol Sci 2023; 24:ijms24098145. [PMID: 37175857 PMCID: PMC10179655 DOI: 10.3390/ijms24098145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Megakaryocytes are the main members of the hematopoietic system responsible for regulating vascular homeostasis through their progeny platelets, which are generally known for maintaining hemostasis. Megakaryocytes are characterized as large polyploid cells that reside in the bone marrow but may also circulate in the vasculature. They are generated directly or through a multi-lineage commitment step from the most primitive progenitor or Hematopoietic Stem Cells (HSCs) in a process called "megakaryopoiesis". Immature megakaryocytes enter a complicated development process defined as "thrombopoiesis" that ultimately results in the release of extended protrusions called proplatelets into bone marrow sinusoidal or lung microvessels. One of the main mediators that play an important modulatory role in hematopoiesis and hemostasis is nitric oxide (NO), a free radical gas produced by three isoforms of nitric oxide synthase within the mammalian cells. In this review, we summarize the effect of NO and its signaling on megakaryopoiesis and thrombopoiesis under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G-2E1, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G-2H7, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G-2S2, Canada
- Mazankowski Alberta Heart Institute, Edmonton, AB T6G-2R7, Canada
| |
Collapse
|
49
|
Golla K, Paul M, Lengyell TC, Simpson EM, Falet H, Kim H. A novel association between platelet filamin A and soluble N-ethylmaleimide sensitive factor attachment proteins regulates granule secretion. Res Pract Thromb Haemost 2023; 7:100019. [PMID: 37538498 PMCID: PMC10394388 DOI: 10.1016/j.rpth.2022.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 08/05/2023] Open
Abstract
Background and Objective The molecular mechanisms that underpin platelet granule secretion remain poorly defined. Filamin A (FLNA) is an actin-crosslinking and signaling scaffold protein whose role in granule exocytosis has not been explored despite evidence that FLNA gene mutations confer platelet defects in humans. Methods and Results Using platelets from platelet-specific conditional Flna-knockout mice, we showed that the loss of FLNA confers a severe defect in alpha (α)- and dense (δ)-granule exocytosis, as measured based on the release of platelet factor 4 (aka CXCL4) and adenosine triphosphate (ATP), respectively. This defect was observed following activation of both immunoreceptor tyrosine-based activation motif (ITAM) signaling by collagen-related peptide (CRP) and G protein-coupled receptor (GPCR) signaling by thrombin and the thromboxane mimetic U46619. CRP-induced spikes in intracellular calcium [Ca2+]i were impaired in FLNA-null platelets relative to controls, confirming that FLNA regulates ITAM-driven proximal signaling. In contrast, GPCR-mediated spikes in [Ca2+]i in response to thrombin and U46619 were unaffected by FLNA. Normal platelet secretion requires complexing of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins synaptosomal-associated protein 23 (SNAP23) and syntaxin-11 (STX11). We determined that FLNA coimmunoprecipitates with both SNAP23 and STX11 upon platelet stimulation. Conclusion FLNA regulates GPCR-driven platelet granule secretion and associates with SNAP23 and STX11 in an activation-dependent manner.
Collapse
Affiliation(s)
- Kalyan Golla
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manoj Paul
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tess C. Lengyell
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Hervé Falet
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Huang Q, Wu T, Guo Y, Wang L, Yu X, Zhu B, Fan L, Xin JH, Yu H. Platelet-rich plasma-loaded bioactive chitosan@sodium alginate@gelatin shell-core fibrous hydrogels with enhanced sustained release of growth factors for diabetic foot ulcer healing. Int J Biol Macromol 2023; 234:123722. [PMID: 36801280 DOI: 10.1016/j.ijbiomac.2023.123722] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
The ability of autologous platelet-rich plasma (PRP) gel to promote rapid wound healing without immunological rejection has opened new avenues for the treatment of diabetic foot wounds. However, PRP gel still suffers from the quick release of growth factors (GFs) and requires frequent administration, thus resulting in decreased wound healing efficiency, higher cost as well as greater pain and suffering for the patients. In this study, the flow-assisted dynamic physical cross-linked coaxial microfluidic three-dimensional (3D) bio-printing technology, combined with the calcium ion chemical dual cross-linking method was developed to design PRP-loaded bioactive multi-layer shell-core fibrous hydrogels. The prepared hydrogels exhibited outstanding water absorption-retention capacity, good biocompatibility as well as a broad-spectrum antibacterial effect. Compared with clinical PRP gel, these bioactive fibrous hydrogels displayed a sustained release of GFs, reducing the administration frequency by 33 % availably during the wound treatment, but more prominent therapeutic effects such as effective reduced inflammation, in addition to promoting the growth of granulation tissue and angiogenesis, the formation of high-density hair follicles, and the generation of regular ordered and high-density collagen fiber network, which suggested great promise as exceptional candidates for treatment of diabetic foot ulcer in clinical settings.
Collapse
Affiliation(s)
- Qiwei Huang
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China
| | - Tingbin Wu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China
| | - Yongshi Guo
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China
| | - Lihuan Wang
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China
| | - Xi Yu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China
| | - Bo Zhu
- Department of Heapatobiliary Surgery, Jiangmen Central Hospital, Jiangmen, 529020, China
| | - Longfei Fan
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China
| | - John H Xin
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hui Yu
- Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|