1
|
Siddiqui IFS, Muthu ML, Reinhardt DP. Isolation and adipogenic differentiation of murine mesenchymal stem cells harvested from macrophage-depleted bone marrow and adipose tissue. Adipocyte 2024; 13:2350751. [PMID: 38860452 PMCID: PMC11174124 DOI: 10.1080/21623945.2024.2350751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
INTRODUCTION AND PURPOSE Mouse mesenchymal stem cells (MSCs) provide a resourceful tool to study physiological and pathological aspects of adipogenesis. Bone marrow-derived MSCs (BM-MSCs) and adipose tissue-derived MSCs (ASCs) are widely used for these studies. Since there is a wide spectrum of methods available, the purpose is to provide a focused hands-on procedural guide for isolation and characterization of murine BM-MSCs and ASCs and to effectively differentiate them into adipocytes. METHODS AND RESULTS Optimized harvesting procedures for murine BM-MSCs and ASCs are described and graphically documented. Since macrophages reside in bone-marrow and fat tissues and regulate the biological behaviour of BM-MSCs and ASCs, we included a procedure to deplete macrophages from the MSC preparations. The identity and stemness of BM-MSCs and ASCs were confirmed by flow cytometry using established markers. Since the composition and concentrations of adipogenic differentiation cocktails differ widely, we present a standardized four-component adipogenic cocktail, consisting of insulin, dexamethasone, 3-isobutyl-1-methylxanthine, and indomethacin to efficiently differentiate freshly isolated or frozen/thawed BM-MSCs and ASCs into adipocytes. We further included visualization and quantification protocols of the differentiated adipocytes. CONCLUSION This laboratory protocol was designed as a step-by-step procedure for harvesting murine BM-MSCs and ASCs and differentiating them into adipocytes.
Collapse
Affiliation(s)
| | - Muthu L. Muthu
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Dieter P. Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
2
|
Whitehead AK, Wang Z, Boustany RJ, Vivès RR, Lazartigues E, Liu J, Siggins RW, Yue X. Myeloid Deficiency of Heparan Sulfate 6-O-Endosulfatases Impairs Bone Marrow Hematopoiesis. Matrix Biol 2024; 134:S0945-053X(24)00123-9. [PMID: 39368561 DOI: 10.1016/j.matbio.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The heparan sulfate (HS) 6-O-endosulfatases or the Sulfs (Sulf1 and Sulf2) are the only known enzymes that can modify HS sulfation status extracellularly and have been shown to regulate diverse biological processes. The role of the Sulfs in bone marrow (BM) hematopoiesis is not known. In this study, we generated a novel mouse line with myeloid-specific deletion of the Sulfs by crossing Sulf1/2 double floxed mice with the LysM-cre line. The LysM-Sulf knockout (KO) male mice exhibited age-dependent expansion of hematopoietic stem cells and the granulocyte-monocyte lineages in the BM, whereas common lymphoid progenitors and B lymphocyte populations were significantly reduced. Although megakaryocytic and erythroid progenitors were not reduced in the BM, the LysM-Sulf KO males suffered age-dependent reduction of red blood cells (RBCs) and platelets in the peripheral blood, suggesting that the production of RBCs and platelets was arrested at later stages. In addition, LysM-Sulf KO males displayed progressive splenomegaly with extramedullary hematopoiesis. Compared to males, LysM-Sulf KO females exhibited a much-reduced phenotype, and ovariectomy had little effect. Mechanistically, reduced TGF-β/Smad2 but enhanced p53/p21 signaling were observed in male but not female LysM-Sulf KO mice. Finally, HS disaccharide analysis via LC-MS/MS revealed increased HS 6-O-sulfation in the BM from both male and female LysM-Sulf KO mice, however, the distribution of 6-O-sulfated motifs were different between the sexes with compensatory increase in Sulf1 expression observed only in LysM-Sulf KO females. In conclusion, our study reveals that myeloid deficiency of the Sulfs leads to multilineage abnormalities in BM hematopoiesis in an age- and sex-dependent manner.
Collapse
Affiliation(s)
- Anna K Whitehead
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zhangjie Wang
- Glycan Therapeutics Corporation, Raleigh, North Carolina, USA
| | | | - Romain R Vivès
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert W Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Xinping Yue
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.
| |
Collapse
|
3
|
Nock SH, Blanco-Lopez MR, Stephenson-Deakin C, Jones S, Unsworth AJ. Pim Kinase Inhibition Disrupts CXCR4 Signalling in Megakaryocytes and Platelets by Reducing Receptor Availability at the Surface. Int J Mol Sci 2024; 25:7606. [PMID: 39062849 PMCID: PMC11276893 DOI: 10.3390/ijms25147606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
A key step in platelet production is the migration of megakaryocytes to the vascular sinusoids within the bone marrow. This homing is mediated by the chemokine CXCL12 and its receptor CXCR4. CXCR4 is also a positive regulator of platelet activation and thrombosis. Pim-1 kinase has been shown to regulate CXCR4 signalling in other cell types, and we have previously described how Pim kinase inhibitors attenuate platelet aggregation to CXCL12. However, the mechanism by which Pim-1 regulates CXCR4 signalling in platelets and megakaryocytes has yet to be elucidated. Using human platelets, murine bone marrow-derived megakaryocytes, and the megakaryocyte cell line MEG-01, we demonstrate that pharmacological Pim kinase inhibition leads to reduced megakaryocyte and platelet function responses to CXCL12, including reduced megakaryocyte migration and platelet granule secretion. Attenuation of CXCL12 signalling was found to be attributed to the reduced surface expression of CXCR4. The decrease in CXCR4 surface levels was found to be mediated by rapid receptor internalisation, in the absence of agonist stimulation. We demonstrate that pharmacological Pim kinase inhibition disrupts megakaryocyte and platelet function by reducing constitutive CXCR4 surface expression, decreasing the number of receptors available for agonist stimulation and signalling. These findings have implications for the development and use of Pim kinase inhibitors for the treatment of conditions associated with elevated circulating levels of CXCL12/SDF1α and increased thrombotic risk.
Collapse
Affiliation(s)
- Sophie H Nock
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Maria R Blanco-Lopez
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Chloe Stephenson-Deakin
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Sarah Jones
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Amanda J Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 3AA, UK
| |
Collapse
|
4
|
Becker IC, Wilkie AR, Nikols E, Carminita E, Roweth HG, Tilburg J, Sciaudone AR, Noetzli LJ, Fatima F, Couldwell G, Ray A, Mogilner A, Machlus KR, Italiano JE. Cell cycle-dependent centrosome clustering precedes proplatelet formation. SCIENCE ADVANCES 2024; 10:eadl6153. [PMID: 38896608 PMCID: PMC11186502 DOI: 10.1126/sciadv.adl6153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Platelet-producing megakaryocytes (MKs) primarily reside in the bone marrow, where they duplicate their DNA content with each cell cycle resulting in polyploid cells with an intricate demarcation membrane system. While key elements of the cytoskeletal reorganizations during proplatelet formation have been identified, what initiates the release of platelets into vessel sinusoids remains largely elusive. Using a cell cycle indicator, we observed a unique phenomenon, during which amplified centrosomes in MKs underwent clustering following mitosis, closely followed by proplatelet formation, which exclusively occurred in G1 of interphase. Forced cell cycle arrest in G1 increased proplatelet formation not only in vitro but also in vivo following short-term starvation of mice. We identified that inhibition of the centrosomal protein kinesin family member C1 (KIFC1) impaired clustering and subsequent proplatelet formation, while KIFC1-deficient mice exhibited reduced platelet counts. In summary, we identified KIFC1- and cell cycle-mediated centrosome clustering as an important initiator of proplatelet formation from MKs.
Collapse
Affiliation(s)
- Isabelle C. Becker
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Adrian R. Wilkie
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Emma Nikols
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
| | - Estelle Carminita
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Harvey G. Roweth
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Julia Tilburg
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | | | - Leila J. Noetzli
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Farheen Fatima
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
| | | | - Anjana Ray
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Joseph E. Italiano
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
5
|
Piollet M, Porsch F, Rizzo G, Kapser F, Schulz DJ, Kiss MG, Schlepckow K, Morenas-Rodriguez E, Sen MO, Gropper J, Bandi SR, Schäfer S, Krammer T, Leipold AM, Hoke M, Ozsvár-Kozma M, Beneš H, Schillinger M, Minar E, Roesch M, Göderle L, Hladik A, Knapp S, Colonna M, Martini R, Saliba AE, Haass C, Zernecke A, Binder CJ, Cochain C. TREM2 protects from atherosclerosis by limiting necrotic core formation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:269-282. [PMID: 38974464 PMCID: PMC7616136 DOI: 10.1038/s44161-024-00429-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/15/2024] [Indexed: 07/09/2024]
Abstract
Atherosclerosis is a chronic disease of the vascular wall driven by lipid accumulation and inflammation in the intimal layer of arteries, and its main complications, myocardial infarction and stroke, are the leading cause of mortality worldwide [1], [2]. Recent studies have identified Triggering receptor expressed on myeloid cells 2 (TREM2), a lipid-sensing receptor regulating myeloid cell functions [3], to be highly expressed in macrophage foam cells in experimental and human atherosclerosis [4]. However, the role of TREM2 in atherosclerosis is not fully known. Here, we show that hematopoietic or global TREM2 deficiency increased, whereas TREM2 agonism decreased necrotic core formation in early atherosclerosis. We demonstrate that TREM2 is essential for the efferocytosis capacities of macrophages, and to the survival of lipid-laden macrophages, indicating a crucial role of TREM2 in maintaining the balance between foam cell death and clearance of dead cells in atherosclerotic lesions, thereby controlling plaque necrosis.
Collapse
Affiliation(s)
- Marie Piollet
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Giuseppe Rizzo
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Frederieke Kapser
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Dirk J.J. Schulz
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Máté G. Kiss
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377Munich, Germany
| | | | - Mustafa Orkun Sen
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Julius Gropper
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Sourish Reddy Bandi
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Sarah Schäfer
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Tobias Krammer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Alexander M. Leipold
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Matthias Hoke
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Mária Ozsvár-Kozma
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Hannah Beneš
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Schillinger
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Erich Minar
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Melanie Roesch
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Laura Göderle
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377Munich, Germany
- Division of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, 81377Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377Munich, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Clément Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Mondemé M, Zeroual Y, Soulard D, Hennart B, Beury D, Saliou JM, Carnoy C, Sirard JC, Faveeuw C. Amoxicillin treatment of pneumococcal pneumonia impacts bone marrow neutrophil maturation and function. J Leukoc Biol 2024; 115:463-475. [PMID: 37837383 DOI: 10.1093/jleuko/qiad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
Pneumonia caused by Streptococcus pneumoniae is a leading cause of death worldwide. A growing body of evidence indicates that the successful treatment of bacterial infections results from synergy between antibiotic-mediated direct antibacterial activity and the host's immune defenses. However, the mechanisms underlying the protective immune responses induced by amoxicillin, a β-lactam antibiotic used as the first-line treatment of S. pneumoniae infections, have not been characterized. A better understanding of amoxicillin's effects on host-pathogen interactions might facilitate the development of other treatment options. Given the crucial role of neutrophils in the control of S. pneumoniae infections, we decided to investigate amoxicillin's impact on neutrophil development in a mouse model of pneumococcal superinfection. A single therapeutic dose of amoxicillin almost completely eradicated the bacteria and prevented local and systemic inflammatory responses. Interestingly, in this context, amoxicillin treatment did not impair the emergency granulopoiesis triggered in the bone marrow by S. pneumoniae. Importantly, treatment of pneumonia with amoxicillin was associated with a greater mature neutrophil count in the bone marrow; these neutrophils had specific transcriptomic and proteomic profiles. Furthermore, amoxicillin-conditioned, mature neutrophils in the bone marrow had a less activated phenotype and might be rapidly mobilized in peripheral tissues in response to systemic inflammation. Thus, by revealing a novel effect of amoxicillin on the development and functions of bone marrow neutrophils during S. pneumoniae pneumonia, our findings provide new insights into the impact of amoxicillin treatment on host immune responses.
Collapse
Affiliation(s)
- Mélanie Mondemé
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| | - Yasmine Zeroual
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| | - Daphnée Soulard
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| | - Benjamin Hennart
- Toxicology and Genopathy Unit, Centre Hospitalier Universitaire de Lille, Lille F-59000, France
| | - Delphine Beury
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - Plateformes Lilloises de Biologie et Santé, Lille F-59000, France
| | - Jean-Michel Saliou
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - Plateformes Lilloises de Biologie et Santé, Lille F-59000, France
| | - Christophe Carnoy
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| | - Jean-Claude Sirard
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| | - Christelle Faveeuw
- Université de Lille, CNRS, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille F-59019, France
| |
Collapse
|
7
|
Mondesir J, Ghisi M, Poillet L, Bossong RA, Kepp O, Kroemer G, Sarry JE, Tamburini J, Lane AA. AMPK activation induces immunogenic cell death in AML. Blood Adv 2023; 7:7585-7596. [PMID: 37903311 PMCID: PMC10733104 DOI: 10.1182/bloodadvances.2022009444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 11/01/2023] Open
Abstract
Survival of patients with acute myeloid leukemia (AML) can be improved by allogeneic hematopoietic stem cell transplantation (allo-HSCT) because of the antileukemic activity of T and natural killer cells from the donor. However, the use of allo-HSCT is limited by donor availability, recipient age, and potential severe side effects. Similarly, the efficacy of immunotherapies directing autologous T cells against tumor cells, including T-cell recruiting antibodies, chimeric antigen receptor T-cell therapy, and immune checkpoint inhibitors are limited in AML because of multiple mechanisms of leukemia immune escape. This has prompted a search for novel immunostimulatory approaches. Here, we show that activation of adenosine 5'-monophosphate-activated protein kinase (AMPK), a master regulator of cellular energy balance, by the small molecule GSK621 induces calreticulin (CALR) membrane exposure in murine and human AML cells. When CALR is exposed on the cell surface, it serves as a damage-associated molecular pattern that stimulates immune responses. We found that GSK621-treated murine leukemia cells promote the activation and maturation of bone marrow-derived dendritic cells. Moreover, vaccination with GSK621-treated leukemia cells had a protective effect in syngeneic immunocompetent recipients bearing transplanted AMLs. This effect was lost in recipients depleted of CD4/CD8 T cells. Together, these results demonstrate that AMPK activation by GSK621 elicits traits of immunogenic cell death and promotes a robust immune response against leukemia. Pharmacologic AMPK activation thus represents a new potential target for improving the activity of immunotherapy in AML.
Collapse
Affiliation(s)
- Johanna Mondesir
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Université Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, Équipe labellisée Ligue contre le cancer, Paris, France
| | - Margherita Ghisi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm U1037, CNRS U5077, Université de Toulouse, Équipe labellisée Ligue contre le cancer, Toulouse, France
- LabEx Toucan, Toulouse, France
| | - Laura Poillet
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm U1037, CNRS U5077, Université de Toulouse, Équipe labellisée Ligue contre le cancer, Toulouse, France
- LabEx Toucan, Toulouse, France
| | - Robert A. Bossong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Oliver Kepp
- Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Équipe labellisée Ligue contre le cancer, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Équipe labellisée Ligue contre le cancer, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm U1037, CNRS U5077, Université de Toulouse, Équipe labellisée Ligue contre le cancer, Toulouse, France
- LabEx Toucan, Toulouse, France
| | - Jérôme Tamburini
- Université Paris Cité, Institut Cochin, CNRS UMR8104, INSERM U1016, Équipe labellisée Ligue contre le cancer, Paris, France
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Andrew A. Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Gopal A, Ibrahim R, Karsan A. Protocol for performing consecutive bone marrow transplants in mice to study the role of marrow niche in supporting hematopoiesis. STAR Protoc 2023; 4:102719. [PMID: 37967015 PMCID: PMC10684876 DOI: 10.1016/j.xpro.2023.102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023] Open
Abstract
Hematopoietic stem and progenitor cells depend on bone marrow (BM) stromal cells for survival. Here, we present a protocol for performing three consecutive BM transplants in mice to study the role of BM niche in supporting hematopoiesis. We describe steps for transplanting cells to condition the marrow of the recipient mice and transplanting wild-type cells to examine the effect of the conditioned marrow in supporting hematopoiesis. We then detail procedures for transplanting into wild-type recipients to measure bone marrow chimerism. For complete details on the use and execution of this protocol, please refer to Gopal et al. (2022).1.
Collapse
Affiliation(s)
- Aparna Gopal
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Rawa Ibrahim
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Xu C, Zhang Q, Zhang Y, Chen H, Tang T, Wang J, Xia S, Chen G, Zhang J. Lateralized response of skull bone marrow via osteopontin signaling in mice after ischemia reperfusion. J Neuroinflammation 2023; 20:294. [PMID: 38071333 PMCID: PMC10710724 DOI: 10.1186/s12974-023-02980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Skull bone marrow is thought to be an immune tissue closely associated with the central nervous system (CNS). Recent studies have focused on the role of skull bone marrow in central nervous system disorders. In this study, we performed single-cell RNA sequencing on ipsilateral and contralateral skull bone marrow cells after experimental stroke and then performed flow cytometry and analysis of cytokine expression. Skull marrow showed lateralization in response to stroke. Lateralization is demonstrated primarily by the proliferation and differentiation of myeloid and lymphoid lineage cells in the skull bone marrow adjacent to the ischemic region, with an increased proportion of neutrophils compared to monocytes. Analysis of chemokines in the skull revealed marked differences in chemotactic signals between the ipsilateral and contralateral skull, whereas sympathetic signals innervating the skull did not affect cranial bone marrow lateralization. Osteopontin (OPN) is involved in region-specific activation of the skull marrow that promotes inflammation in the meninges, and inhibition of OPN expression improves neurological function.
Collapse
Affiliation(s)
- Chaoran Xu
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Qia Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yi Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianchi Tang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjie Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Siqi Xia
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Sounbuli K, Alekseeva LA, Markov OV, Mironova NL. A Comparative Study of Different Protocols for Isolation of Murine Neutrophils from Bone Marrow and Spleen. Int J Mol Sci 2023; 24:17273. [PMID: 38139101 PMCID: PMC10743699 DOI: 10.3390/ijms242417273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Neutrophils are considered as the main player in innate immunity. In the last few years, it has been shown that they are involved in different physiological conditions and diseases. However, progress in the field of neutrophil biology is relatively slow due to existing difficulties in neutrophil isolation and maintenance in culture. Here we compare four protocols based on density-gradient and immunomagnetic methods for isolation of murine neutrophils from bone marrow and spleen. Neutrophil isolation was performed using Ficoll 1.077/1.119 g/mL density gradient, Ficoll 1.083/1.090/1.110 g/mL density gradient and immunomagnetic method of negative and positive selection. The different protocols were compared with respect to sample purity, cell viability, yield, and cost. The functionality of isolated neutrophils was checked by NETosis analysis and neutrophil oxidative burst test. Obtained data revealed that given purity/yield/viability/cost ratio the protocol based on cell centrifugation on Ficoll 1.077/1.119 g/mL density gradient is recommended for isolation of neutrophils from bone marrow, whereas immunomagnetic method of positive selection using Dynabeads is recommended for isolation of splenic neutrophils.
Collapse
Affiliation(s)
- Khetam Sounbuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (K.S.); (L.A.A.); (O.V.M.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ludmila A. Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (K.S.); (L.A.A.); (O.V.M.)
| | - Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (K.S.); (L.A.A.); (O.V.M.)
| | - Nadezhda L. Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (K.S.); (L.A.A.); (O.V.M.)
| |
Collapse
|
11
|
de Jonckheere B, Kollotzek F, Münzer P, Göb V, Fischer M, Mott K, Coman C, Troppmair NN, Manke MC, Zdanyte M, Harm T, Sigle M, Kopczynski D, Bileck A, Gerner C, Hoffmann N, Heinzmann D, Assinger A, Gawaz M, Stegner D, Schulze H, Borst O, Ahrends R. Critical shifts in lipid metabolism promote megakaryocyte differentiation and proplatelet formation. NATURE CARDIOVASCULAR RESEARCH 2023; 2:835-852. [PMID: 38075556 PMCID: PMC7615361 DOI: 10.1038/s44161-023-00325-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2024]
Abstract
During megakaryopoiesis, megakaryocytes (MK) undergo cellular morphological changes with strong modification of membrane composition and lipid signaling. Here we adopt a lipid-centric multiomics approach to create a quantitative map of the MK lipidome during maturation and proplatelet formation. Data reveal that MK differentiation is driven by an increased fatty acyl import and de novo lipid synthesis, resulting in an anionic membrane phenotype. Pharmacological perturbation of fatty acid import and phospholipid synthesis blocked membrane remodeling and directly reduced MK polyploidization and proplatelet formation resulting in thrombocytopenia. The anionic lipid shift during megakaryopoiesis was paralleled by lipid-dependent relocalization of the scaffold protein CKIP-1 and recruitment of the kinase CK2α to the plasma membrane, which seems to be essential for sufficient platelet biogenesis. Overall, this study provides a framework to understand how the MK lipidome is altered during maturation and the impact of MK membrane lipid remodeling on MK kinase signaling involved in thrombopoiesis.
Collapse
Affiliation(s)
- Bianca de Jonckheere
- Institute of Analytical Chemistry, University of Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Austria
| | - Ferdinand Kollotzek
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Patrick Münzer
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Vanessa Göb
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Melina Fischer
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Kristina Mott
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Cristina Coman
- Institute of Analytical Chemistry, University of Vienna, Austria
| | - Nina Nicole Troppmair
- Institute of Analytical Chemistry, University of Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Austria
| | - Mailin-Christin Manke
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Monika Zdanyte
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Manuel Sigle
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | | | - Andrea Bileck
- Institute of Analytical Chemistry, University of Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Austria
| | - Christopher Gerner
- Institute of Analytical Chemistry, University of Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Austria
| | - Nils Hoffmann
- Institute of Analytical Chemistry, University of Vienna, Austria
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences (IBG-5) Jülich, Germany
| | - David Heinzmann
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Alice Assinger
- Institute of Physiology, Centre of Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - David Stegner
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Harald Schulze
- Institute for Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Oliver Borst
- DFG Heisenberg Group Cardiovascular Thromboinflammation and Translational Thrombocardiology, University of Tübingen, Germany
- Department of Cardiology and Angiology, University of Tübingen, Germany
| | - Robert Ahrends
- Institute of Analytical Chemistry, University of Vienna, Austria
| |
Collapse
|
12
|
Bourne JH, Campos J, Hopkin SJ, Whitworth K, Palis J, Senis YA, Rayes J, Iqbal AJ, Brill A. Megakaryocyte NLRP3 hyperactivation induces mild anemia and potentiates inflammatory response in mice. Front Immunol 2023; 14:1226196. [PMID: 37622117 PMCID: PMC10445124 DOI: 10.3389/fimmu.2023.1226196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Background The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome has been described in both immune cells and platelets, but its role in the megakaryocyte (MK) lineage remains elusive. Objective The aim of this study was to explore the role of NLRP3 inflammasome in megakaryocytes and platelets. Methods We generated Nlrp3 A350V/+/Gp1ba-CreKI/+ mice carrying a mutation genetically similar to the one observed in human Muckle-Wells syndrome, which leads to hyperactivity of NLRP3 specifically in MK and platelets. Results Platelets from the mutant mice expressed elevated levels of both precursor and active form of caspase-1, suggesting hyperactivity of NLRP3 inflammasome. Nlrp3 A350V/+/Gp1ba-CreKI/+ mice developed normally and had normal platelet counts. Expression of major platelet receptors, platelet aggregation, platelet deposition on collagen under shear, and deep vein thrombosis were unchanged. Nlrp3 A350V/+/Gp1ba-CreKI/+ mice had mild anemia, reduced Ter119+ cells in the bone marrow, and splenomegaly. A mild increase in MK TGF-β1 might be involved in the anemic phenotype. Intraperitoneal injection of zymosan in Nlrp3 A350V/+/Gp1ba-CreKI/+ mice induced increased neutrophil egression and elevated levels of a set of proinflammatory cytokines, alongside IL-10 and G-CSF, in the peritoneal fluid as compared with control animals. Conclusion MK/platelet NLRP3 inflammasome promotes the acute inflammatory response and its hyperactivation in mice leads to mild anemia and increased extramedullary erythropoiesis.
Collapse
Affiliation(s)
- Joshua H. Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Inflammatory Diseases, Department of Medicine at Monash Health, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Joana Campos
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sophie J. Hopkin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katharine Whitworth
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States
| | - Yotis A. Senis
- Etablissement Français du Sang, Inserm Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)-S1255 Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Asif J. Iqbal
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Barrachina MN, Pernes G, Becker IC, Allaeys I, Hirsch TI, Groeneveld DJ, Khan AO, Freire D, Guo K, Carminita E, Morgan PK, Collins TJC, Mellett NA, Wei Z, Almazni I, Italiano JE, Luyendyk J, Meikle PJ, Puder M, Morgan NV, Boilard E, Murphy AJ, Machlus KR. Efficient megakaryopoiesis and platelet production require phospholipid remodeling and PUFA uptake through CD36. NATURE CARDIOVASCULAR RESEARCH 2023; 2:746-763. [PMID: 39195958 DOI: 10.1038/s44161-023-00305-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/21/2023] [Indexed: 08/29/2024]
Abstract
Lipids contribute to hematopoiesis and membrane properties and dynamics; however, little is known about the role of lipids in megakaryopoiesis. Here we show that megakaryocyte progenitors, megakaryocytes and platelets present a unique lipidome progressively enriched in polyunsaturated fatty acid (PUFA)-containing phospholipids. In vitro, inhibition of both exogenous fatty acid functionalization and uptake as well as de novo lipogenesis impaired megakaryocyte differentiation and proplatelet production. In vivo, mice on a high saturated fatty acid diet had significantly lower platelet counts, which was prevented by eating a PUFA-enriched diet. Fatty acid uptake was largely dependent on CD36, and its deletion in mice resulted in low platelets. Moreover, patients with a CD36 loss-of-function mutation exhibited thrombocytopenia and increased bleeding. Our results suggest that fatty acid uptake and regulation is essential for megakaryocyte maturation and platelet production and that changes in dietary fatty acids may be a viable target to modulate platelet counts.
Collapse
Affiliation(s)
- Maria N Barrachina
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Gerard Pernes
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Isabelle C Becker
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Isabelle Allaeys
- Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche ARThrite, Québec, QC, Canada
| | - Thomas I Hirsch
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Dafna J Groeneveld
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Daniela Freire
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Karen Guo
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Estelle Carminita
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Pooranee K Morgan
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Thomas J C Collins
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Natalie A Mellett
- Metabolomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Zimu Wei
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joseph E Italiano
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - James Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Peter J Meikle
- Metabolomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mark Puder
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Eric Boilard
- Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche ARThrite, Québec, QC, Canada
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kellie R Machlus
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Schurr Y, Reil L, Spindler M, Nieswandt B, Machesky LM, Bender M. The WASH-complex subunit Strumpellin regulates integrin αIIbβ3 trafficking in murine platelets. Sci Rep 2023; 13:9526. [PMID: 37308549 PMCID: PMC10260982 DOI: 10.1038/s41598-023-36387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
The platelet specific integrin αIIbβ3 mediates platelet adhesion, aggregation and plays a central role in thrombosis and hemostasis. In resting platelets, αIIbβ3 is expressed on the membrane surface and in intracellular compartments. Upon activation, the number of surface-expressed αIIbβ3 is increased by the translocation of internal granule pools to the plasma membrane. The WASH complex is the major endosomal actin polymerization-promoting complex and has been implicated in the generation of actin networks involved in endocytic trafficking of integrins in other cell types. The role of the WASH complex and its subunit Strumpellin in platelet function is still unknown. Here, we report that Strumpellin-deficient murine platelets display an approximately 20% reduction in integrin αIIbβ3 surface expression. While exposure of the internal αIIbβ3 pool after platelet activation was unaffected, the uptake of the αIIbβ3 ligand fibrinogen was delayed. The number of platelet α-granules was slightly but significantly increased in Strumpellin-deficient platelets. Quantitative proteome analysis of isolated αIIbβ3-positive vesicular structures revealed an enrichment of protein markers, which are associated with the endoplasmic reticulum, Golgi complex and early endosomes in Strumpellin-deficient platelets. These results point to a so far unidentified role of the WASH complex subunit Strumpellin in integrin αIIbβ3 trafficking in murine platelets.
Collapse
Affiliation(s)
- Yvonne Schurr
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Lucy Reil
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Markus Spindler
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Laura M Machesky
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Markus Bender
- Institute of Experimental Biomedicine-Chair I, University Hospital and Rudolf Virchow Center, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|
15
|
Glassbrook JE, Hackett JB, Muñiz MC, Bross M, Dyson G, Movahhedin N, Ullrich A, Gibson HM. Host genetic background regulates the capacity for anti-tumor antibody-dependent phagocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540046. [PMID: 37214876 PMCID: PMC10197614 DOI: 10.1101/2023.05.09.540046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Antitumor antibody, or targeted immunotherapy, has revolutionized cancer treatment and markedly improved patient outcomes. A prime example is the monoclonal antibody (mAb) trastuzumab, which targets human epidermal growth factor receptor 2 (HER2). However, like many targeted immunotherapies, only a subset of patients benefit from trastuzumab long-term. In addition to tumor-intrinsic factors, we hypothesize that host genetics may influence subsequent immune activation. Methods To model the human population, we produced F1 crosses of genetically heterogeneous Diversity Outbred (DO) mice with BALB/c mice (DOCF1). Distinct DOCF1 mice were orthotopically implanted with the BALB/c-syngeneic TUBO mammary tumor line, which expresses the HER2 ortholog rat neu. Treatment with anti-neu mAb clone 7.16.4 began once tumors reached ∼200 mm 3 . Genetic linkage and quantitative trait locus (QTL) effects analyses in R/qtl2 identified loci associated with tumor growth rates. Locus validation was performed with BALB/c F1 crosses with recombinant-inbred Collaborative Cross (CC) strains selected for therapy-associated driver genetics (CCxCF1). The respective roles of natural killer (NK) cells and macrophages were investigated by selective depletion in vivo. Ex vivo macrophage antibody-dependent phagocytosis (ADCP) assays were evaluated by confocal microscopy using 7.16.4-opsonized E2Crimson-expressing TUBO tumor cells. Results We observed a divergent response to anti-tumor antibody therapy in DOCF1 mice. Genetic linkage analysis detected a locus on chromosome 10 that correlates to a robust response to therapy, which was validated in CCxCF1 models. Single-cell RNA sequencing of tumors from responder and non-responder models identified key differences in tumor immune infiltrate composition, particularly within macrophage (Mφ) subsets. This is further supported by ex vivo analysis showing Mφ ADCP capacity correlates to in vivo treatment outcomes in both DOCF1 and CCxCF1 models. Conclusions Host genetics play a key regulatory role in targeted immunotherapy outcomes, and putative causal genes are identified in murine chromosome 10 which may govern Mφ function during ADCP.
Collapse
|
16
|
Barrachina MN, Pernes G, Becker IC, Allaeys I, Hirsch TI, Groeneveld DJ, Khan AO, Freire D, Guo K, Carminita E, Morgan PK, Collins TJ, Mellett NA, Wei Z, Almazni I, Italiano JE, Luyendyk J, Meikle PJ, Puder M, Morgan NV, Boilard E, Murphy AJ, Machlus KR. Efficient megakaryopoiesis and platelet production require phospholipid remodeling and PUFA uptake through CD36. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.527706. [PMID: 36798332 PMCID: PMC9934665 DOI: 10.1101/2023.02.12.527706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Lipids contribute to hematopoiesis and membrane properties and dynamics, however, little is known about the role of lipids in megakaryopoiesis. Here, a lipidomic analysis of megakaryocyte progenitors, megakaryocytes, and platelets revealed a unique lipidome progressively enriched in polyunsaturated fatty acid (PUFA)-containing phospholipids. In vitro, inhibition of both exogenous fatty acid functionalization and uptake and de novo lipogenesis impaired megakaryocyte differentiation and proplatelet production. In vivo, mice on a high saturated fatty acid diet had significantly lower platelet counts, which was prevented by eating a PUFA-enriched diet. Fatty acid uptake was largely dependent on CD36, and its deletion in mice resulted in thrombocytopenia. Moreover, patients with a CD36 loss-of-function mutation exhibited thrombocytopenia and increased bleeding. Our results suggest that fatty acid uptake and regulation is essential for megakaryocyte maturation and platelet production, and that changes in dietary fatty acids may be a novel and viable target to modulate platelet counts.
Collapse
Affiliation(s)
- Maria N Barrachina
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
- Harvard Medical School, Department of Surgery, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - Gerard Pernes
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Isabelle C Becker
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
- Harvard Medical School, Department of Surgery, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - Isabelle Allaeys
- Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche ARThrite, Québec, QC, G1V4G2 Canada
| | - Thomas I. Hirsch
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
- Harvard Medical School, Department of Surgery, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - Dafna J Groeneveld
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K, B15 2TT
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, U.K. OX3 9DS
| | - Daniela Freire
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - Karen Guo
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - Estelle Carminita
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
- Harvard Medical School, Department of Surgery, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - Pooranee K Morgan
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Thomas J Collins
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Natalie A Mellett
- Metabolomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Zimu Wei
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K, B15 2TT
| | - Joseph E. Italiano
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
- Harvard Medical School, Department of Surgery, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - James Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Peter J Meikle
- Metabolomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mark Puder
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
- Harvard Medical School, Department of Surgery, Boston Children’s Hospital, Boston, MA, 02115 USA
| | - Neil V. Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K, B15 2TT
| | - Eric Boilard
- Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche ARThrite, Québec, QC, G1V4G2 Canada
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kellie R Machlus
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, 02115 USA
- Harvard Medical School, Department of Surgery, Boston Children’s Hospital, Boston, MA, 02115 USA
| |
Collapse
|
17
|
Du M, Hou Z, Liu L, Xuan Y, Chen X, Fan L, Li Z, Xu B. 1Progress, applications, challenges and prospects of protein purification technology. Front Bioeng Biotechnol 2022; 10:1028691. [PMID: 36561042 PMCID: PMC9763899 DOI: 10.3389/fbioe.2022.1028691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Protein is one of the most important biological macromolecules in life, which plays a vital role in cell growth, development, movement, heredity, reproduction and other life activities. High quality isolation and purification is an essential step in the study of the structure and function of target proteins. Therefore, the development of protein purification technologies has great theoretical and practical significance in exploring the laws of life activities and guiding production practice. Up to now, there is no forthcoming method to extract any proteins from a complex system, and the field of protein purification still faces significant opportunities and challenges. Conventional protein purification generally includes three steps: pretreatment, rough fractionation, and fine fractionation. Each of the steps will significantly affect the purity, yield and the activity of target proteins. The present review focuses on the principle and process of protein purification, recent advances, and the applications of these technologies in the life and health industry as well as their far-reaching impact, so as to promote the research of protein structure and function, drug development and precision medicine, and bring new insights to researchers in related fields.
Collapse
Affiliation(s)
- Miao Du
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Zhuru Hou
- Science and Technology Centre, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| | - Yan Xuan
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Xiaocong Chen
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Lei Fan
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Zhuoxi Li
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| |
Collapse
|
18
|
Mauersberger C, Sager HB, Wobst J, Dang TA, Lambrecht L, Koplev S, Stroth M, Bettaga N, Schlossmann J, Wunder F, Friebe A, Björkegren JLM, Dietz L, Maas SL, van der Vorst EPC, Sandner P, Soehnlein O, Schunkert H, Kessler T. Loss of soluble guanylyl cyclase in platelets contributes to atherosclerotic plaque formation and vascular inflammation. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1174-1186. [PMID: 37484062 PMCID: PMC10361702 DOI: 10.1038/s44161-022-00175-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/27/2022] [Indexed: 07/25/2023]
Abstract
Variants in genes encoding the soluble guanylyl cyclase (sGC) in platelets are associated with coronary artery disease (CAD) risk. Here, by using histology, flow cytometry and intravital microscopy, we show that functional loss of sGC in platelets of atherosclerosis-prone Ldlr-/- mice contributes to atherosclerotic plaque formation, particularly via increasing in vivo leukocyte adhesion to atherosclerotic lesions. In vitro experiments revealed that supernatant from activated platelets lacking sGC promotes leukocyte adhesion to endothelial cells (ECs) by activating ECs. Profiling of platelet-released cytokines indicated that reduced platelet angiopoietin-1 release by sGC-depleted platelets, which was validated in isolated human platelets from carriers of GUCY1A1 risk alleles, enhances leukocyte adhesion to ECs. I mp or ta ntly, p ha rm ac ol ogical sGC stimulation increased platelet angiopoietin-1 release in vitro and reduced leukocyte recruitment and atherosclerotic plaque formation in atherosclerosis-prone Ldlr-/- mice. Therefore, pharmacological sGC stimulation might represent a potential therapeutic strategy to prevent and treat CAD.
Collapse
Affiliation(s)
- Carina Mauersberger
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors contributed equally: Carina Mauersberger, Hendrik B. Sager
| | - Hendrik B. Sager
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors contributed equally: Carina Mauersberger, Hendrik B. Sager
| | - Jana Wobst
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Tan An Dang
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Laura Lambrecht
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Marlène Stroth
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Noomen Bettaga
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | - Frank Wunder
- Bayer AG, R&D Pharmaceuticals, Wuppertal, Germany
| | - Andreas Friebe
- Institute of Physiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Johan L. M. Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Neo, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital and Department of Cardiology, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Lisa Dietz
- Bayer AG, R&D Pharmaceuticals, Wuppertal, Germany
| | - Sanne L. Maas
- Institute for Molecular Cardiovascular Research and Interdisciplinary Centre for Clinical Research, Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research and Interdisciplinary Centre for Clinical Research, Rhine-Westphalia Technical University of Aachen, Aachen, Germany
- Institute for Cardiovascular Prevention, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Oliver Soehnlein
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig Maximilian University of Munich, Munich, Germany
- Institute for Experimental Pathology, University of Münster, Münster, Germany
- Department of Physiology and Pharmacology and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors jointly supervised this work: Heribert Schunkert, Thorsten Kessler
| | - Thorsten Kessler
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors jointly supervised this work: Heribert Schunkert, Thorsten Kessler
| |
Collapse
|
19
|
Englert M, Aurbach K, Becker IC, Gerber A, Heib T, Wackerbarth LM, Kusch C, Mott K, Araujo GHM, Baig AA, Dütting S, Knaus UG, Stigloher C, Schulze H, Nieswandt B, Pleines I, Nagy Z. Impaired microtubule dynamics contribute to microthrombocytopenia in RhoB-deficient mice. Blood Adv 2022; 6:5184-5197. [PMID: 35819450 PMCID: PMC9631634 DOI: 10.1182/bloodadvances.2021006545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Megakaryocytes are large cells in the bone marrow that give rise to blood platelets. Platelet biogenesis involves megakaryocyte maturation, the localization of the mature cells in close proximity to bone marrow sinusoids, and the formation of protrusions, which are elongated and shed within the circulation. Rho GTPases play important roles in platelet biogenesis and function. RhoA-deficient mice display macrothrombocytopenia and a striking mislocalization of megakaryocytes into bone marrow sinusoids and a specific defect in G-protein signaling in platelets. However, the role of the closely related protein RhoB in megakaryocytes or platelets remains unknown. In this study, we show that, in contrast to RhoA deficiency, genetic ablation of RhoB in mice results in microthrombocytopenia (decreased platelet count and size). RhoB-deficient platelets displayed mild functional defects predominantly upon induction of the collagen/glycoprotein VI pathway. Megakaryocyte maturation and localization within the bone marrow, as well as actin dynamics, were not affected in the absence of RhoB. However, in vitro-generated proplatelets revealed pronouncedly impaired microtubule organization. Furthermore, RhoB-deficient platelets and megakaryocytes displayed selective defects in microtubule dynamics/stability, correlating with reduced levels of acetylated α-tubulin. Our findings imply that the reduction of this tubulin posttranslational modification results in impaired microtubule dynamics, which might contribute to microthrombocytopenia in RhoB-deficient mice. Importantly, we demonstrate that RhoA and RhoB are localized differently and have selective, nonredundant functions in the megakaryocyte lineage.
Collapse
Affiliation(s)
- Maximilian Englert
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Katja Aurbach
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Isabelle C. Becker
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Annika Gerber
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Tobias Heib
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Lou M. Wackerbarth
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Kristina Mott
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Gabriel H. M. Araujo
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Ayesha A. Baig
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Sebastian Dütting
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Ulla G. Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland; and
| | | | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Zoltan Nagy
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Stevens NE, van Wolfswinkel M, Bao W, Ryan FJ, Brook B, Amenyogbe N, Marshall HS, Lynn MA, Kollmann TR, Tumes DJ, Lynn DJ. Immunisation with the BCG and DTPw vaccines induces different programs of trained immunity in mice. Vaccine 2022; 40:1594-1605. [PMID: 33895015 DOI: 10.1016/j.vaccine.2021.03.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 11/15/2022]
Abstract
In addition to providing pathogen-specific immunity, vaccines can also confer nonspecific effects (NSEs) on mortality and morbidity unrelated to the targeted disease. Immunisation with live vaccines, such as the BCG vaccine, has generally been associated with significantly reduced all-cause infant mortality. In contrast, some inactivated vaccines, such as the diphtheria, tetanus, whole-cell pertussis (DTPw) vaccine, have been controversially associated with increased all-cause mortality especially in female infants in high-mortality settings. The NSEs associated with BCG have been attributed, in part, to the induction of trained immunity, an epigenetic and metabolic reprograming of innate immune cells, increasing their responsiveness to subsequent microbial encounters. Whether non-live vaccines such as DTPw induce trained immunity is currently poorly understood. Here, we report that immunisation of mice with DTPw induced a unique program of trained immunity in comparison to BCG immunised mice. Altered monocyte and DC cytokine responses were evident in DTPw immunised mice even months after vaccination. Furthermore, splenic cDCs from DTPw immunised mice had altered chromatin accessibility at loci involved in immunity and metabolism, suggesting that these changes were epigenetically mediated. Interestingly, changing the order in which the BCG and DTPw vaccines were co-administered to mice altered subsequent trained immune responses. Given these differences in trained immunity, we also assessed whether administration of these vaccines altered susceptibility to sepsis in two different mouse models. Immunisation with either BCG or a DTPw-containing vaccine prior to the induction of sepsis did not significantly alter survival. Further studies are now needed to more fully investigate the potential consequences of DTPw induced trained immunity in different contexts and to assess whether other non-live vaccines also induce similar changes.
Collapse
Affiliation(s)
- Natalie E Stevens
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Marjolein van Wolfswinkel
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; University of Applied Sciences Leiden, Zernikedreef 11, 2333 CK Leiden, the Netherlands
| | - Winnie Bao
- Department of Peadiatrics, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Byron Brook
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Nelly Amenyogbe
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada; Telethon Kids Institute, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
| | - Helen S Marshall
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Hospital, North Adelaide, SA 5006, Australia; Child and Adolescent Health, Robinson Research Institute, The University of Adelaide, North Adelaide, SA 5006, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Tobias R Kollmann
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada; Telethon Kids Institute, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
| | - Damon J Tumes
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia.
| |
Collapse
|
21
|
Bertović I, Bura A, Jurak Begonja A. Developmental differences of in vitro cultured murine bone marrow- and fetal liver-derived megakaryocytes. Platelets 2021; 33:887-899. [PMID: 34915807 DOI: 10.1080/09537104.2021.2007869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Multiple lines of evidence support differences in the megakaryopoiesis during development. Murine in vitro models to study megakaryopoiesis employ cultured megakaryocytes MKs derived from adult bone marrow (BM) or fetal livers (FL) of mouse embryos. Mouse models allow to study the molecular basis for cellular changes utilizing conditional or knock-out models and permit further in vitro genetic or pharmacological manipulations. Despite being extensively used, MKs cultured from these two sources have not been systematically compared. In the present study, we compared BM- and FL-derived MKs, assessing their size, proplatelet production capacity, expression of common MK markers (αIIb, β3, GPIb α, β) and cytoskeletal proteins (filamin A, β1-tubulin, actin), the subcellular appearance of α-granules (VWF), membranes (GPIbβ) and cytoskeleton (F-actin) throughout in vitro development. We demonstrate that FL MKs although smaller in size, spontaneously produce more proplatelets than BM MKs and at earlier stages express more β1-tubulin. In addition, early FL MKs show increased internal GPIbβ staining and present higher GPIbβ (early and late) and VWF (late stages) total fluorescence intensity (TFI)/cell size than BM MKs. BM MKs have up-regulated TPO signaling corresponding to their bigger size and ploidy, without changes in c-Mpl. Expressing endogenous β1-tubulin or the presence of heparin improves BM MKs ability to produce proplatelets. These data suggest that FL MKs undergo cytoplasmic maturation earlier than BM MKs and that this, in addition to higher β1-tubulin levels and GPIb, supported with an extensive F-actin network, could contribute to more efficient proplatelet formation in vitro.
Collapse
Affiliation(s)
- Ivana Bertović
- Department of Biotechnology, The University of Rijeka, Rijeka, Croatia
| | - Ana Bura
- Department of Biotechnology, The University of Rijeka, Rijeka, Croatia
| | | |
Collapse
|
22
|
Scheller I, Beck S, Göb V, Gross C, Neagoe RAI, Aurbach K, Bender M, Stegner D, Nagy Z, Nieswandt B. Thymosin β4 is essential for thrombus formation by controlling the G-actin/F-actin equilibrium in platelets. Haematologica 2021; 107:2846-2858. [PMID: 34348450 PMCID: PMC9713564 DOI: 10.3324/haematol.2021.278537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Coordinated rearrangements of the actin cytoskeleton are pivotal for platelet biogenesis from megakaryocytes but also orchestrate key functions of peripheral platelets in hemostasis and thrombosis, such as granule release, the formation of filopodia and lamellipodia, or clot retraction. Along with profilin (Pfn) 1, thymosin β4 (encoded by Tmsb4x) is one of the two main G-actin-sequestering proteins within cells of higher eukaryotes, and its intracellular concentration is particularly high in cells that rapidly respond to external signals by increased motility, such as platelets. Here, we analyzed constitutive Tmsb4x knockout (KO) mice to investigate the functional role of the protein in platelet production and function. Thymosin β4 deficiency resulted in a macrothrombocytopenia with only mildly increased platelet volume and an unaltered platelet life span. Megakaryocyte numbers in the bone marrow and spleen were unaltered, however, Tmsb4x KO megakaryocytes showed defective proplatelet formation in vitro and in vivo. Thymosin β4-deficient platelets displayed markedly decreased G-actin levels and concomitantly increased F-actin levels resulting in accelerated spreading on fibrinogen and clot retraction. Moreover, Tmsb4x KO platelets showed activation defects and an impaired immunoreceptor tyrosine-based activation motif (ITAM) signaling downstream of the activating collagen receptor glycoprotein VI. These defects translated into impaired aggregate formation under flow, protection from occlusive arterial thrombus formation in vivo and increased tail bleeding times. In summary, these findings point to a critical role of thymosin β4 for actin dynamics during platelet biogenesis, platelet activation downstream of glycoprotein VI and thrombus stability.
Collapse
Affiliation(s)
- Inga Scheller
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany,*IS and SB contributed equally as co-first authors
| | - Sarah Beck
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany,*IS and SB contributed equally as co-first authors
| | - Vanessa Göb
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - Carina Gross
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - Raluca A. I. Neagoe
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany,Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Katja Aurbach
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - Markus Bender
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - Zoltan Nagy
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital, University of Würzburg, and Rudolf Virchow Center for Integrative and Translational BioImaging, University of Würzburg, Würzburg, Germany,B. Nieswandt
| |
Collapse
|
23
|
Heib T, Hermanns HM, Manukjan G, Englert M, Kusch C, Becker IC, Gerber A, Wackerbarth LM, Burkard P, Dandekar T, Balkenhol J, Jahn D, Beck S, Meub M, Dütting S, Stigloher C, Sauer M, Cherpokova D, Schulze H, Brakebusch C, Nieswandt B, Nagy Z, Pleines I. RhoA/Cdc42 signaling drives cytoplasmic maturation but not endomitosis in megakaryocytes. Cell Rep 2021; 35:109102. [PMID: 33979620 DOI: 10.1016/j.celrep.2021.109102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/20/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Megakaryocytes (MKs), the precursors of blood platelets, are large, polyploid cells residing mainly in the bone marrow. We have previously shown that balanced signaling of the Rho GTPases RhoA and Cdc42 is critical for correct MK localization at bone marrow sinusoids in vivo. Using conditional RhoA/Cdc42 double-knockout (DKO) mice, we reveal here that RhoA/Cdc42 signaling is dispensable for the process of polyploidization in MKs but essential for cytoplasmic MK maturation. Proplatelet formation is virtually abrogated in the absence of RhoA/Cdc42 and leads to severe macrothrombocytopenia in DKO animals. The MK maturation defect is associated with downregulation of myosin light chain 2 (MLC2) and β1-tubulin, as well as an upregulation of LIM kinase 1 and cofilin-1 at both the mRNA and protein level and can be linked to impaired MKL1/SRF signaling. Our findings demonstrate that MK endomitosis and cytoplasmic maturation are separately regulated processes, and the latter is critically controlled by RhoA/Cdc42.
Collapse
Affiliation(s)
- Tobias Heib
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Heike M Hermanns
- Department of Internal Medicine II, Hepatology Research Laboratory, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Georgi Manukjan
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Maximilian Englert
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Isabelle Carlotta Becker
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Annika Gerber
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Lou Martha Wackerbarth
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Philipp Burkard
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Johannes Balkenhol
- Department of Internal Medicine II, Hepatology Research Laboratory, University Hospital Würzburg, 97080 Würzburg, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Daniel Jahn
- Department of Internal Medicine II, Hepatology Research Laboratory, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Sarah Beck
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Mara Meub
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Sebastian Dütting
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Deya Cherpokova
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany.
| | - Zoltan Nagy
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany; Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|